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Twin Higgs models are economical extensions of the standard model that stabilize the electroweak

scale. In these theories the Higgs field is a pseudo Nambu-Goldstone boson that is protected against

radiative corrections up to scales of order 5 TeV by a discrete parity symmetry. We construct, for the first

time, a class of composite twin Higgs models based on confining QCD-like dynamics. These theories

naturally incorporate a custodial isospin symmetry and predict a rich spectrum of particles with masses of

order a TeV that will be accessible at the LHC.

DOI: 10.1103/PhysRevD.79.095012 PACS numbers: 12.60.Cn

I. INTRODUCTION

Quantum corrections to the Higgs mass parameter in the
standard model (SM) are quadratically divergent.
Stabilizing the weak scale against these divergences gen-
erally requires a phenomenologically rich spectrum of new
particles near a TeV, associated with the existence of a new
symmetry of nature. One appealing idea is that the Higgs
sector of the SM might actually be the nonlinear sigma
model of some larger, dynamically generated pattern of
symmetry breaking [1,2]. In such theories, the Higgs be-
haves much like a pion in QCD; the Higgs is a composite
pseudo Nambu-Goldstone boson (pNGB), which is pro-
tected from the worst class of quadratic divergences that
usually afflict scalar bosons. Precision electroweak mea-
surements currently constrain the compositeness scale to
lie above 5 TeV. The fact that the SM gauge couplings, top
Yukawa coupling, and Higgs self-coupling necessarily
break any global symmetry with order one strength then
implies that the mass parameter of the composite Higgs
needs additional protection, if the theory is to be natural.

Little Higgs theories [3–5] (for reviews see [6]), are a
class of nonlinear sigma models, which realize the Higgs
as a protected pNGB. The underlying concept behind little
Higgs theories is the idea of ‘‘collective symmetry break-
ing’’—the global symmetry of which the Higgs is the
pNGB is broken only when two or more couplings in the
Lagrangian are nonvanishing. This is a significant restric-
tion on the form of the quantum corrections to the pNGB
potential, which can be used to engineer natural electro-
weak symmetry breaking. These theories stabilize the
weak scale to about 5–10 TeV.

Twin Higgs theories [7,8] are an alternative class of
nonlinear sigma models that also realize the Higgs as a
protected pNGB. These theories possess a discrete Z2

interchange symmetry, in addition to the approximate
global symmetry of which the Higgs is the pNGB. In the
existing twin Higgs models this Z2 symmetry is identified
either with mirror symmetry, or with left-right symmetry.
This discrete symmetry is enough to ensure that any quad-

ratically divergent contribution to the scalar potential ac-
cidentally respects the global symmetry, and therefore
cannot contribute to the mass of the pNGB. These theories
also stabilize the weak scale to about 5–10 TeV.
Since in general little Higgs and twin Higgs theories

have been formulated only as nonlinear sigma models,
above 5–10 TeV these theories require ultraviolet comple-
tions to maintain unitarity. Weakly coupled ultraviolet
completions using supersymmetry have been constructed
for both the little Higgs [9,10] and the twin Higgs [11], in
the context of the supersymmetric little hierarchy problem.
In the little Higgs case, nonsupersymmetric ultraviolet
completions have also been constructed [12–14]. There
has also been some work on the difficult problem of real-
izing the little Higgs as a strongly coupled composite [15–
19] furthering the analogy to QCD. However, in the twin
Higgs case the corresponding problem has not been
addressed.
A significant challenge in dynamically realizing a com-

posite twin Higgs is to ensure that the strong dynamics
respects a custodial SU(2) symmetry. For this to happen,
the custodial symmetry must be contained in the nonli-
nearly realized global symmetry of the Higgs sector. In the
twin Higgs models currently in the literature this global
symmetry is either SU(4), which is spontaneously broken
to SU(3), or O(8), spontaneously broken to O(7). While the
breaking of SU(4) to SU(3) is fairly straightforward to
realize through QCD-like strong dynamics [16], this pat-
tern does not admit a custodial SU(2). On the other hand,
while the Oð8Þ ! Oð7Þ pattern does preserve a custodial
symmetry, this pattern is significantly more complicated to
realize through strong dynamics.
In this paper we identify an alternative pattern of sym-

metry breaking for twin Higgs models that naturally in-
corporates a custodial isospin symmetry. We then show
how this pattern can be realized through QCD-like dynam-
ics, and apply these ideas to construct a class of composite
twin Higgs models with left-right symmetry. These theo-
ries predict a rich spectrum of new particles at the TeV
scale that will be accessible to the LHC.
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We begin by constructing an alternative realization of
the twin Higgs model, in its left-right symmetric incarna-
tion. Consider a scalar field H that transforms as a funda-
mental under an Sp(4) global symmetry, and which is also
charged under a global U(1). If H acquires a vacuum
expectation value (VEV) such that hHi ¼ ð0; 0; 0; fÞ, the
Spð4Þ � Uð1Þ global symmetry is spontaneously broken to
SUð2Þ � Uð1Þ, and there are 7 Goldstone bosons. We now
break the global Sp(4) explicitly by gauging an SUð2ÞL �
SUð2ÞR subgroup. The overall U(1), which is to be identi-
fied with Uð1ÞB�L, is also gauged. The overall gauge
structure is therefore that of a left-right symmetric model
[20].

Under gauge transformations the field H decomposes
into ðHL;HRÞ, whereHL is a doublet under SUð2ÞL andHR

is a doublet under SUð2ÞR. If the VEVof hHi points along a
direction that breaks SUð2ÞR but preserves SUð2ÞL, the
surviving gauge symmetry is the familiar SUð2ÞL �
Uð1ÞY of the SM. Of the 7 Goldstone bosons, 3 are eaten.
The remaining 4 Goldstone bosons, which are contained in
HL, are to be identified with the SM Higgs doublet. If the
discrete parity symmetry, which interchanges SUð2ÞL and
SUð2ÞR, is exact, HL is protected against quadratic diver-
gences by the twin Higgs mechanism. The key observation
is that the discrete symmetry ensures that any quadratically
divergent contribution to the scalar potential has an Sp(4)
invariant form, and therefore cannot contribute to the mass
of the Goldstones.

Yukawa interactions can take the same form as in the
original left-right twin Higgs model, since they are only
required to respect the gauge and parity symmetries, which
are identical in both models. Although these couplings
violate the global symmetry with order one strength, the
discrete parity symmetry again ensures that quadratic di-
vergences are absent. From this we infer that ½Spð4Þ �
Uð1Þ�=½SUð2Þ � Uð1Þ� constitutes an alternative symmetry
breaking pattern that allows the realization of a twin Higgs
model with left-right symmetry.

Although this construction is extremely simple, it does
not admit a custodial SU(2) symmetry. Furthermore, it is
not clear whether such a pattern of symmetry breaking can
arise from strong dynamics. In the next section we show
that a natural generalization of this model exists that
addresses the first problem. We then go on to discuss
how the required symmetry breaking pattern can be real-
ized through the condensation of strongly coupled fermi-
ons, in analogy with QCD.

II. A CUSTODIAL SYMMETRY FOR THE TWIN
HIGGS

Consider a theory with an Spð4Þ � Spð4Þ global symme-
try, which is spontaneously broken down to the diagonal Sp
(4) at approximately the scale f. We label the 10 resulting
Nambu-Goldstone bosons (NGBs) that are produced by
�A, and define

X ¼ f expð2i�ATA=fÞ: (1)

Here, the matrices TA are the generators of Sp(4), and
correspond to the matrices

�a 0
0 0

� �
0 0
0 �a

� �
0 iI

�iI 0

� �
0 �a

�a 0

� �
; (2)

where a 2 f1; 2; 3g and the �a are the three Pauli matrices.
We now gauge an SUð2ÞL � SUð2ÞR subgroup of the first
Sp(4), and an SUð2ÞL0 � Uð1ÞR0 subgroup of the second Sp
(4). Here, Uð1ÞR0 is the diagonal generator of the SUð2ÞR0

contained in the second Sp(4). We label the gauge coupling
constants of these four groups as gL, gR, g

0
L, and g0R,

respectively. The unbroken gauge symmetry is then
SUð2Þ � Uð1Þ, which is identified with the electroweak
gauge group of the SM. Note that this symmetry breaking
pattern is similar to that of the little Higgs model of Chang
and Wacker [5]. Of the original 10 Goldstone bosons, 6 are
eaten. The remaining 4 pseudo-Goldstone bosons are iden-
tified with the SM Higgs doublet, and correspond to the
generators Ta,

fTag ¼
�

0 iI
�iI 0

� �
0 �a

�a 0

� ��
: (3)

We can write an effective field theory for the pNGBs,
which is valid at low momenta. This takes the form of a
nonlinear sigma model. In general the Lagrangian for this
theory will contain all operators involving the field X
consistent with the nonlinearly realized Spð4Þ � Spð4Þ
global symmetry. Nonrenormalizable operators are sup-
pressed by the cutoff � of the nonlinear sigma model,
and their coefficients are determined by the specific ultra-
violet completion. The cutoff � must be less than about
4�f, where the upper bound corresponds to strong
coupling.
In this low-energy theory, the masses of the pseudo

Goldstones are protected against one loop quadratic diver-
gences from gauge interactions. This can be understood as
a consequence of the little Higgs mechanism. The theory
has an exact Sp(4) global symmetry in the limit that gL and
gR are zero, and also in the limit that g0L and g0R are zero.
Any diagram that results in a quadratic divergence must
therefore involve both these sets of couplings. The leading
contributions to the pseudo-Goldstone masses arise at or-
der g4, and are therefore necessarily suppressed by at least
two loop factors.
If the low-energy effective theory is weakly coupled at

the scale �, in the special case that the SUð2ÞL and SUð2ÞR
of the first Sp(4) are related by a discrete interchange
symmetry, so that gL ¼ gR, there is an alternative way of
understanding this cancellation based on the twin Higgs
mechanism. This discrete symmetry ensures that at qua-
dratic order in X all radiative corrections to the pseudo-
Goldstone potential are invariant under the first Sp(4), and
therefore must simply vanish. To see this let us consider all
possible operators consistent with the gauge symmetry at
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quadratic order in X in the nonlinear sigma model. At one
loop these terms are the only ones generated with a quad-
ratically divergent coefficient in the effective potential.
Schematically these operators include

XLL0XyL0L; XRL0XyL0R; XL3X
y3L;

XR3X
y3R; XL4X

y4L; XR4X
y4R;

(4)

and also (suppressing Hermitian conjugates)

�LL�L0L0XLL0XLL0 ; �RR�L0L0XRL0XRL0 ;

�LLXL3XL4; �RRXR3XR4:
(5)

Here, L and L0 take values 1 and 2, while R takes values 3
and 4. The discrete L $ R symmetry ensures that in the
Lagrangian operators on the same line above necessarily
have the same coefficient. Then it is clear that at quadratic
order in X the Lagrangian is actually invariant under the
first global Sp(4) symmetry. This symmetry is only broken
at quartic order in X, and therefore corrections to the
pNGB mass are loop suppressed, and at most logarithmi-
cally divergent.

The argument above does not carry over to the case
where the low-energy theory is strongly coupled at the
cutoff �, because now the quartic terms in X, though still
loop suppressed, need not be small. The reason is that the
quartic terms can now be generated at order g2 by loops
involving operators that are strongly coupled at the cutoff,
and this could potentially compensate for the loop suppres-
sion.1 However, the little Higgs mechanism still ensures
that any such term is invariant under the second Sp(4), and
so does not contribute to the pNGB potential. Therefore,
the leading terms that contribute to the mass of the pNGB
only arise at order g2g02, and are suppressed by an addi-
tional loop factor.

This construction ensures that the strong dynamics does
not violate the custodial SU(2) symmetry. To see this
explicitly, note that we can write

2�aTa � 0 �
�y 0

� �
; (6)

where � ¼ ði�2h
�
L; hLÞ. The full expression for X is

cos

�jhLj
f

�
fþ if

jhLj sin
�jhLj

f

�
0 �
�y 0

� �
: (7)

The Lagrangian written as a function of X preserves the
SUð2ÞL � SUð2ÞR subgroup of the diagonal Sp(4), under

which � ! UL�Uy
R, and jhLj ! jhLj. After electroweak

symmetry breaking, hhLi ¼ ð0; vÞ, and the diagonal SU(2)

symmetry is preserved. This is precisely the custodial
symmetry we are looking for.
In order to write down Yukawa couplings, first make the

identification

Xi4 ¼ Hi ¼ ðHL;HRÞ: (8)

Yukawa couplings can be written down exactly as in the
original left-right twin Higgs model, in terms of HL and
HR, so that the discrete L $ R symmetry is preserved. The
twin Higgs mechanism then ensures that quadratic diver-
gences from the fermion sector preserve the first global Sp
(4) symmetry and vanish from the pseudo-Goldstone po-
tential, just as in the gauge sector.
The fermionic content of the theory then contains three

generations of

QL ¼ ðu; dÞL ¼ ½2; 1; 1=3�;
LL ¼ ð�; eÞL ¼ ½2; 1;�1�;
QR ¼ ðu; dÞR ¼ ½1; 2; 1=3�;
LR ¼ ð�; eÞR ¼ ½1; 2;�1�;

(9)

where the square brackets indicate the quantum numbers of
the corresponding field under SUð2ÞL � SUð2ÞR �
Uð1ÞB�L. We identify Uð1ÞR0 with Uð1ÞðB�LÞ=2. As dictated
by left-right symmetry the theory includes right-handed
neutrinos in addition to the SM fermions.
The Higgs fields have quantum numbers

HL ¼ ½2; 1; 1�; HR ¼ ½1; 2; 1� (10)

under SUð2ÞL � SUð2ÞR � Uð1ÞB�L. The down-type
Yukawa couplings of the SM arise from nonrenormalizable
couplings of the form

� �QRHRH
y
LQL þ �LRHRH

y
LLL

�

�
þ H:c: (11)

Here, � is an ultraviolet cutoff, which we take to be about
10 TeV, the limit of validity of the nonlinear sigma model.
Similarly, the up-type Yukawa couplings of the SM emerge
from

� �QRH
y
RHLQL þ H:c:

�

�
: (12)

The top Yukawa coupling is too large to be naturally
obtained from a nonrenormalizable operator. As in the
original left-right twin Higgs model, we therefore intro-
duce a pair of vectorlike quarks TL and TR, which have the
quantum numbers

TL ¼ ½1; 1; 4=3�; TR ¼ ½1; 1; 4=3� (13)

under SUð2ÞL � SUð2ÞR � Uð1ÞB�L. We can then write the
Yukawa coupling

ðy �QRH
y
RTL þ y �QLH

y
LTR þM �TLTRÞ þ H:c: (14)

1Whether a quartic term is generated at order g2 in a general
twin Higgs model in the limit of strong coupling depends on the
pattern of symmetry breaking. For example, if the symmetry
breaking pattern is Oð8Þ ! Oð7Þ, a quartic term is only generated
at order g4, and is therefore always loop suppressed [8].
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Here, QL and QR are the usual left and right-handed third
generation quark doublets of the left-right model.

Since the top Yukawa gives the largest contribution to
the Higgs potential, let us understand the cancellation of
quadratic divergences in this case. As in the gauge case, the
discrete L $ R symmetry ensures that terms quadratic inX
are invariant under the first Sp(4), and do not contribute to
the potential for the pNGB. Terms quartic and higher order
in X that violate Sp(4) are only generated at order y4, and
not at order y2, and are therefore suppressed by one loop
factor, even in the limit that the nonlinear sigma model is
strongly coupled at the cutoff.

It is also possible to generate the smaller Yukawa cou-
plings from renormalizable interactions [21], (see also
[22]). To do this we introduce three generations of vector-
like fermions with the following charge assignments:

UL ¼ ½1; 1; 4=3�; UR ¼ ½1; 1; 4=3�;
DL ¼ ½1; 1;�2=3�; DR ¼ ½1; 1;�2=3�;
EL ¼ ½1; 1;�2�; ER ¼ ½1; 1;�2�:

(15)

Then the Yukawa couplings for the lighter fermions can be
written down in analogy with that for the top. For example,
the charged lepton Yukawa couplings arise from the inter-
actions

f �LRHREL þ �LLHLER þM �ELERg þ H:c: (16)

We choose the mass parameter M to be of order several
TeV. On integrating out EL and ER we get back exactly the
same nonrenormalizable operator that earlier generated the
charged lepton masses.

III. A TWIN HIGGS MODEL FROM STRONG
DYNAMICS

We now explain how the symmetry breaking pattern
Spð4Þ � Spð4Þ ! Spð4Þ may be obtained from QCD-like
strong dynamics. Our discussion will closely follow that of
[18], where the same problem was considered in the con-
text of a dynamical realization of the little Higgs model of
Chang and Wacker [5]. Consider an SUðNcÞ gauge group,
with a set of four fermions, ��i, in the fundamental repre-
sentation. Here, � represents an SUðNcÞ gauge index and i
labels the fermions from 1 through 4. We also add a set of
four right-handed fermions c �i. When the SUðNcÞ theory
gets strong, a condensate h�i

�c ji / �ij forms and breaks

the SUð4Þ2 flavor symmetry to the diagonal SU(4). We
label the 15 resulting NGBs that are produced by �A,
and define X ¼ f expð2i�ATA=fÞ, where the matrices TA

are generators of SU(4). We also add to the theory a non-
renormalizable term

m2

ð4�f2Þ2 Tr½ð� �c ÞJð� �c ÞTJ� �m2 Tr½XJXTJ�; (17)

where J is the matrix

J ¼ i�2 0
0 i�2

� �
: (18)

The effect of this term is to explicitly break the global
SUð4Þ2 symmetry to Spð4Þ2, thereby giving a mass of order
m to 5 of the 15 NGBs. With the addition of this term the
pattern of global symmetry breaking is in fact Spð4Þ2 !
Spð4Þ, which accounts for the 10 surviving NGBs. The
unbroken global symmetry, the diagonal Sp(4), contains
the custodial SU(2) symmetry we desire.
In order to recreate the low-energy structure of the

model of the previous section we gauge the subgroups

½SUð2ÞL � SUð2ÞR� � ½SUð2ÞL0 � Uð1ÞR0 � � Spð4Þ2
(19)

as shown in Fig. 1. After symmetry breaking, this gauge
symmetry is broken down to the SUð2Þ � Uð1ÞY gauge
symmetry of the SM, where SUð2Þ is the diagonal sub-
group of SUð2ÞL � SUð2ÞL0 , while Uð1ÞY is the unbroken
linear combination of the diagonal generator of SUð2ÞR and
Uð1ÞR0 . Of the 10 surviving NGBs, 6 are eaten by the
broken gauge symmetries, while the 4 that are left over
precisely constitute the SM Higgs doublet.
In order to write down the Higgs couplings to fermions

we simply make the replacement

Hi ! �i
�c 4

4�f2
(20)

in the Yukawa couplings of the previous section. For
example, the left-right symmetric top Yukawa couplings
become

�
y �QR

�
�R

�c 4

4�f2

�
TL þ y �QL

�
�L

�c 4

4�f2

�y
TR

�
: (21)

These interactions are nonrenormalizable, and therefore
require additional new physics to generate them. We leave
the question of the ultraviolet origin of these operators for
future work.
We briefly consider the precision electroweak con-

straints on this theory. In general, bounds from the S
parameter on any composite Higgs force the composite-
ness scale �� 4�f to be larger than or of order 5 TeV.
Another source of corrections to precision electroweak
observables arises from higher order operators in the ex-

FIG. 1. A UV completion for the custodial Twin Higgs model.
The theory has a global SUð4Þ2 flavor symmetry, with the
indicated gauged subgroups. The two link fields represent the
sets of SUðNcÞ fundamentals, c i and �j.
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pansion of the kinetic term for X in terms of the � fields
that contribute to the 	 parameter. Since the sum over the
TA in X ¼ f expð2i�ATA=fÞ now runs over all SU(4)
generators, and not just the generators of Sp(4), there are
fields with mass below the compositeness scale that corre-
spond to the generators of SUð4Þ=Spð4Þ. These fields,
which we denote by H0

L, have exactly the same gauge
quantum numbers as the light Higgs. The nonrenormaliz-
able terms that arise in the expansion of X in terms of the�
fields involve custodial SU(2) violating couplings of H0

L to
the light Higgs HL, and thereby contribute to the 	
parameter.

The effect of the nonrenormalizable term in Eq. (17) is
to give a mass m to the fields in H0

L, and to thereby
decouple them from the low-energy spectrum. The preci-
sion electroweak constraints therefore translate into a
lower bound on the parameter m. A quick estimate of the
size of the correction to 	 yields

�m2
Z

m2
Z

� hH0
Li2
f2

: (22)

AVEV for H0
L arises from the radiatively generated mass

term, which mixes H0
L with the light Higgs,

hH0
Li �

�
f

4�m

�
2
v: (23)

Here, v is the electroweak VEV. From these formulas we
estimate that the precision electroweak constraints on de-
viations of the 	 parameter from its SM value are comfort-
ably satisfied provided that m is greater than or of order
500 GeV.

As in any general two Higgs doublet model, the presence
of a second Higgs doublet can also lead to contributions to
the 	 parameter at loop level. However, in this specific
model, this contribution translates into a lower bound onm
somewhat weaker than the one we have already found.

The additional SUð2ÞR, Uð1ÞB�L and SUð2ÞL0 gauge
bosons also contribute to the precision electroweak observ-
ables [5]. In general, these force f to be of order 1500 GeV
or larger, reintroducing fine-tuning. However, f can be as

low as 500 GeV if, as in the original left-right twin Higgs

model, there is a second field X̂ with exactly the same
quantum numbers as X that exhibits exactly the same
pattern of symmetry breaking, but where the decay con-

stant f̂ somewhat larger than f. Then, provided that f̂ is
greater than about 1500 GeV the precision electroweak
constraints from the new gauge bosons are satisfied, and

the fine-tuning is under control. The field X̂ can also be
used to generate neutrino masses [23] and dark matter [24],
as in the original left-right twin Higgs model.
Much of the heavy spectrum of particles predicted by

this theory will be accessible at the LHC. The new fields in
the gauge and top sector must have mass of order the TeV
scale if they are to be relevant for stabilizing the electro-
weak scale. Production and decay of the heavy top partner,
as well as the massive gauge bosons associated with
SUð2ÞR and Uð1ÞB�L, have been studied in the context of
the left-right twin Higgs model [25]. The heavy electro-
weak doublet of scalars, from the explicit breaking of the
global SUð4Þ2 symmetry to Spð4Þ2 in Eq. (17), and the
massive gauge bosons that constitute the linear combina-
tion of SUð2ÞL and SUð2ÞL0 that is orthogonal to SU(2) of
the SM, are key predictions of the underlying composite
structure of this model. While the electroweak doublet
decays primarily into third generation quarks and anti-
quarks, the new gauge bosons can decay either into SM
fermions, or into electroweak gauge bosons.
In summary, we have identified a new class of left-right

twin Higgs models that naturally incorporate a custodial
SU(2) symmetry, and shown how the relevant pattern of
symmetry breaking can be realized through QCD-like
strong dynamics. This constitutes an important first step
in the construction of completely realistic twin Higgs
models from strong dynamics.
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