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We point out that annihilation of dark matter in the galactic halo can be enhanced relative to that in the

early Universe due to a Breit-Wigner tail, if the dark matter annihilates through a pole just below the

threshold. This provides a new explanation to the ‘‘boost factor’’ which is suggested by the recent data of

the PAMELA, ATIC and PPB-BETS cosmic ray experiments.
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Dark matter of the Universe has been discussed since
1933, yet its nature still remains elusive [1]. Seventy-five
years later we managed only to restrict its mass between
10�31 and 1050 GeV, demonstrating our lack of under-
standing. However, the thermal relic of a weakly interact-
ing massive particle (WIMP) is arguably best theoretically
motivated, because it has the same mass scale as the
anticipated new physics that would explain why our
Universe is a superconductor (electroweak symmetry
breaking). Hopes are high to discover WIMPs at the forth-
coming LHC experiments, to detect them directly in sen-
sitive underground experiments, as well as to observe
signals of WIMP annihilations from the galactic center or
the halo in high-energy cosmic rays.

Recent observations of the PAMELA [2], ATIC [3], and
PPB-BETS [4] experiments strongly suggest the existence
of a new source of positrons (and electrons) in cosmic rays.
The most interesting interpretation of these results is the
annihilation of the dark matter with a mass at the TeV
scale. However, such interpretation requires that the anni-
hilation cross section of the dark matter in the galactic halo
is much larger [by a factor of Oð100Þ] than the one appro-
priate to explain the dark matter relic density precisely
measured by the WMAP experiment [5].

The enhancement of the dark matter annihilation in the
galactic halo is called a ‘‘boost factor.’’ So far, there have
been several proposals to explain the origin of the boost
factor both from astrophysics such as the enhanced local
dark matter density, and from particle physics such as the
Sommerfeld enhancement due to an attractive force among
the dark matter particles [6–8].

In this article, we propose a Breit-Wigner enhancement
as an explanation of the boost factor, where the dark matter
annihilates via a narrow Breit-Wigner resonance. The ef-
fects of such a narrow resonance to the dark matter anni-
hilation have been studied extensively in the past (see e.g.
[9–11]), and there are several recent attempts to attribute
the boost factor to the resonance (see e.g. [8,12,13]). In
those recent attempts, however, the thermal evolution of

the dark matter density in the presence of the narrow
resonance has not been considered carefully. As we will
see (and has been included in [9–11]), the evolution of the
dark matter density is different from that of the ‘‘usual’’
(nonresonant) dark matter annihilation (especially after the
usual freeze-out time), which is quite important to deter-
mine the effective boost factor. Furthermore, we emphasize
that the mere existence of the resonance does not neces-
sarily result in an enhancement of the dark matter annihi-
lation at our galaxy and can result in even a suppression
depending on parameters, as opposed to the naive expec-
tations in many attempts.
In our analysis, we give a detailed and transparent

explanation of the thermal evolution of the dark matter
which annihilates via the Breit-Wigner resonance, so that
we can apply the Breit-Wigner enhancement to the recent
results of the cosmic ray experiments correctly. Especially,
we give a simple formula of the effective boost factor by
the Breit-Wigner enhancement when the resonance mass is
just below twice the dark matter mass. As wewill show, the
cross section required from the dark matter density can be
large enough to explain the PAMELA, ATIC, and PPB-
BETS results, and hence, we do not need in our proposal
any additional boost factor due to an overdense region in
the halo or the Sommerfeld enhancement.
Cross Section Just Above a Pole.—In this study, we

assume that the dark matter with mass m annihilates via
a narrow resonance R. For simplicity, we consider a scalar
resonance, although generalization to arbitrary spins is
straight forward. The general formula for the scattering
cross section via a resonance R is given by

� ¼ 16�

E2
cm

��i�i

M2�2

ðE2
cm �M2Þ2 þM2�2

BiBf; (1)

where M and � are the mass and the decay rate of the
resonance R, respectively. Two body initial and final states

are assumed, and ��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=M2

p
is the initial state
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phase space factor evaluated on the resonance while �i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=E2

cm

p
at the center of mass energy of the colli-

sion. The branching fractions of the resonance into the
initial and final states are denoted by Bi and Bf, respec-

tively. Note that since we are assuming an unphysical pole,
i.e., 2m>M, Bi and ��i are not physical and should be
understood as analytic continuations of those quantities
from the physical region, 2m<M. Even so, a combination
Bi= ��i is well defined in both regions, and hence, the above
cross section is also well-defined even in the unphysical
pole case.

The dark matter annihilation in the early Universe must
be thermally averaged. On the other hand, the dark matter
annihilation in the galactic halo is averaged over the ve-
locity distribution, which can be approximated by the
Maxwellian distribution. In both cases, the dark matter is
nonrelativistic. Therefore, in either case, we can use the
Gaussian average,

h�vreli ¼ 1

ð2�v2
0Þ3

Z
d ~v1d ~v2e

�ð ~v2
1
þ ~v2

2
Þ=2v2

02��i; (2)

where ~v1;2 are the velocities of the initial states, and we

have used vrel ¼ 2�i. The nonrelativistic approximation
gives

E2
cm ¼ 4m2 þm2ð ~vrelÞ2; ð ~vrel ¼ ~v1 � ~v2Þ: (3)

Now, let us consider the annihilation process near a
narrow resonance, i.e.,

M2 ¼ 4m2ð1� �Þ; j�j � 1: (4)

Note that positive � implies that the pole is just below the
threshold of the dark matter annihilation. With this nota-
tion, we can rewrite the above cross section as

� ¼ 16�

M2 ��i�i

�2

ð�þ ~v2
rel=4Þ2 þ �2

BiBf; (5)

where we have defined

� ¼ �=M: (6)

Furthermore, we have verified that we can approximate the
Gaussian integral reasonably well by

h�vreli ’ 32�

M2 ��i

�2

ð�þ �v2
0Þ2 þ �2

BiBf; (7)

where a parameter � � 1=
ffiffiffi
2

p
gives the best fit to the

numerical results for v0 � 1 and � > 0. This expression
shows that the denominator is dominated by the ~v2

rel term

for j�j, � � �v2
0, while the other terms dominate when the

velocity is much smaller. Therefore, the cross section is
sensitive to the parameters � and � and have an enhanced
behavior at the lower temperature for small � and �. This
main point of this article can be seen easily in a schematic
plot in Fig. 1.

Note that the approximation given in Eq. (7) is not a
good one for the dark matter with a rather large velocity,
i.e., v0 * 0:1 [9]. The approximation also becomes worse
around the pole in the physical region, possible if � < 0. In
the following analysis, we mainly consider the unphysical
pole � > 0. As we will see below, for this case, the result-
ant dark matter density is mostly determined by the dy-
namics of the dark matter at v0 � 1, and hence the
approximated cross section works quite well. We will later
briefly discuss the case of a physical pole, � < 0.
Time Evolution of Dark Matter Density.—Now let us

consider the time evolution of the relic density of the dark
matter [16]. The most notable feature of our proposal is
that the annihilation process does not freeze out even after
the ‘‘freeze-out’’ time for the usual nonresonant annihila-
tion models. That is, the interaction rate can be larger than
the Hubble expansion rate even after a freeze-out time,
since the cross section is enhanced at the lower tempera-
ture. In the following, to avoid confusion, we define the
freeze-out time ~xf by the usual meaning at which the yield

of the dark matter Y ¼ n=s starts deviating from the value
in the thermal equilibrium, i.e., Y � YEQ ¼ OðYEQÞ. As we
will show, the actual freeze-out time is much later than ~xf.

In this section, we mainly consider the unphysical pole,
� > 0.
Following Ref. [15], Sec. 5.2, we write down the

Boltzmann equation of the yield of the dark matter [16],

dY

dx
¼ � �

x2
ð�2 þ �2Þ

ð�þ �x�1Þ2 þ �2
ðY2 � Y2

EQÞ: (8)

Here, we have used the following definitions:
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FIG. 1 (color online). A schematic plot that shows dispersion
in relative velocity v2

rel and an unphysical pole in the cross

section at v2
rel < 0 (below threshold). It is clear that a smaller

dispersion v0 gives a larger overlap with the Breit-Wigner tail in
the cross section and hence an enhanced averaged cross section.
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� ¼
�
sðTÞ
HðTÞ

�
T¼m

h�vreliT¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2

45
g�

s
MPLm�0;

�0 ¼ h�vreliT¼0 ¼
32�BiBf

M2 ��i

�2

�2 þ �2
;

YEQ ¼ 45

4
ffiffiffi
2

p
�7=2

�
gi
g�

�
x3=2e�x; x ¼ m

T
¼ v�2

0 : (9)

The parameter g� (gi) is the number of the degrees of
freedom for massless particles (dark matter). Note that
we have used the reduced Planck scale MPL ’ 2:4�
1018 GeV.

As we have defined, the freeze-out time ~xf is determined

by Y � YEQ ¼ OðYEQÞ, and hence, the value of ~xf is not so
sensitive to the parameters � and � and mainly determined
by the exponential suppression factor in YEQ. Thus, we can

expect that the value of ~xf is comparable to the freeze-out

temperature xf in the usual nonresonant annihilation mod-

els, i.e., ~xf � xf � Oð10Þ.
Unlike the nonresonant case where the annihilation

cross section stays constant h�vreli once nonrelativistic,
however, the annihilation cross section here increases as
the temperature drops. As a result, the annihilation process
does not freeze out even for x > ~xf, and the dark matter

keeps annihilating until the temperature comes down to

xb ’ ��1 �max½�; ���1 � ~xf: (10)

Below this temperature, Eq. (8) reduces to

dY

dx
¼ � �

x2
Y2; (11)

and we obtain an asymptotic solution,

Y1 ’ 1

�
xb ’ 1

�
�max½�; ���1: (12)

In Fig. 2, we show the time evolution of the yield Y of
the dark matter for a given parameter set. Here, we have
used the numerical result of the Gaussian average of the
cross section [17]. We also show the time evolution of the
yield with the approximate cross section given in Eq. (7),
Yapp. As we have expected, the yield deviates from YEQ at

~xf ¼ Oð10Þ, while the actual freeze-out occurs at xb � ~xf.

From the figure, we see that Y < Yapp during ~xf < x < xb.

This means that the averaged cross section at ~xf is some-

what larger than the approximate one, while the final result
is determined by the late time dynamics where the approxi-
mate cross section works well. The figure shows that the
above approximate asymptotic solution gives a good esti-
mate of the resultant yield of the dark matter.

It is worth comparing the asymptotic solution in Eq. (12)
with the asymptotic solution in the usual nonresonant (S
wave) annihilation models [15],

Y1 ’ 1

�
xf; (13)

with xf ¼ Oð10Þ. These two solutions show that the dark

matter abundance in our proposal is larger by a factor

xb
xf

’ max½�; ���1

Oð10Þ (14)

when we assume the same cross section at the zero tem-
perature for both models. In Fig. 2, we have showed the
time evolution of the yield in the usual nonresonant anni-
hilation models assuming the same cross section at the zero
temperature �0 used in Y (i.e., � ¼ 109). As expected, the
yield in the nonresonant annihilation is more suppressed
compared to the resonant annihilation. The physical rea-
sons of this enhancement are as follows. First, in our
proposal, the cross section is suppressed by ð~xf=xbÞ2 at

~xf, which results in a relatively larger abundance in a

period of x > ~xf. Second, the annihilation process is rela-

tively less effective during ~xf < x < xb compared to the

usual annihilation case, although the annihilation does not
freeze out in that period.
Before closing this section, we mention the model with a

physical pole, i.e., � < 0. In this case, the cross section
given in Eq. (7) poorly approximates the thermal averaged
cross section [9]. Especially, the thermal average can pick
up the cross section at the pole, v2

rel ¼ 4j�j when the

temperature is rather high, i.e., x�1 � j�j. Thus, the aver-
aged cross section can be much higher than that expected
in the unphysical pole where the cross section is suppressed
by x2ð�2 þ �2Þ at a high temperature. Thus, the annihila-

1 10 100 1000 10 000
x=m/T

Y
=

n/
s

γ<<10−3

x f x b

YEQ

Y

Ynonres

δ=+10−3x f
~

Y∞

Yapp

FIG. 2 (color online). The time evolution of the yield Y of the
dark matter in terms of the parameter x ¼ m=T for given values
of � and � (the solid line). In this figure, we assume � > 0, and
the pole is not in the physical region. The long-dashed line
labeled Yapp is the evolution with the approximated cross section

in Eq. (7). The dashed line labeled Y1 is the asymptotic solution
Y1 given in Eq. (12). The short-dashed line represents the
equilibrium yield YEQ. The dash-dotted line labeled Ynonres shows

the time evolution of the yield in the usual (nonresonant) freeze-
out assuming the same cross section at the low temperature �0

used in Y [see Eq. (13)]. The boost factor is the asymptotic value
of Y=Ynonres.
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tion cross section at ~xf, which typically satisfies ~x�1
f �

j�j, �, is much larger than that in the case of the unphysical
pole. Therefore, the yield enhancement seen in the unphys-
ical pole is much smaller in this case (see Fig. 3 for
example).

Effective Boost Factor.—Finally, let us work out the
boost factor for annihilation in the galactic halo. As we
have seen, the dark matter abundance is enhanced by a
factor of ðxb=xfÞ for � > 0 compared to the usual non-

resonant annihilation models for a given annihilation cross
section at the zero temperature �0. This means that the
cross section�0 must be larger than the one expected in the
usual models to reproduce the observed dark matter
density.

More explicitly, the yield given in Eq. (12) is translated
to the mass density parameter,

�DMh
2 ’ 0:1�

�
10�9 GeV�2

�0

��
xb
xf

�
; (15)

where we have used xf ’ 20 and g� ’ 200. Therefore, the

observed dark matter density �h2 ’ 0:1 requires

�0 ’ 10�9 GeV�2 �
�
xb
xf

�
; (16)

which is much larger than what is expected in the usual
annihilation case, i.e.,

�0 ’ 10�9 GeV�2: (17)

In the galactic halo, the average velocity is given by v0 ’
10�3, and the cross section is well approximated by the one
at the zero temperature as long as v2

0 � �, �. Thus, we can
achieve the large annihilation cross section suggested by
the PAMELA, PPB-BETS, and ATIC anomalies,

h�vreliT¼0 ¼ Oð10�ð6�7ÞÞ GeV�2 for �, � & 10�3.
Therefore, in our proposal, we can explain the large anni-

hilation cross section in the galactic halo without other
boost factors.
For convenience, we could define an effective boost

factor as the ratio between the cross sections in the usual
model and our models. From Eqs. (16) and (17) we obtain

BF ’ xb
xf

’ max½�; ���1

xf
’ max½�; ���1

Oð10Þ : (18)

In this way, we can explain the boost factor of Oð100Þ, in a
model with �, � ¼ Oð10�3Þ, as seen in Fig. 4.
Notice that the above effective boost factor is different

from that of the Sommerfeld enhancement, for example,
with Yukawa-type interactions where the boost factor is
given by BF ’ h�vijT¼0=h�vijT¼Tf

(see Ref. [7] for ex-

ample). This difference stems from the fact that the cross
section in the Breit-Wigner enhancement increases in x2

below the temperature Tf while it increases in x in the case

of the Yukawa-type Sommerfeld enhancement. Thus, the
actual freeze-out in the Breit-Wigner enhancement is much
later than xf, and the yield keeps decreasing by 1=x until

the cross section becomes close to the value at the zero
temperature at xb, while the freeze-out occurs at xf in the

case of the Sommerfeld enhancement. Therefore, the ef-
fective boost factor is suppressed in the case of the Breit-
Wigner enhancement than BF ’ h�vijT¼Tf

=h�vijT¼0 by a

factor of ðxf=xbÞ.
Discussion.—In this article, we showed that the boost

factor required in recent observations of cosmic ray elec-
trons and positrons can be obtained if the dark matter
annihilates via a narrow resonance just below the thresh-

103

102

10

1boost factor

FIG. 4 (color online). The boost factor on the ð�; �Þ plane.
Thermal average is done numerically without relying on the
approximation Eq. (7).
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FIG. 3 (color online). The time evolution of the yield of the
dark matter Y for � < 0 (solid line). Everything else is the same
as in Fig. 2. There is practically no boost for this parameter set.
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old. Because the annihilation in the early Universe is sup-
pressed by the Breit-Wigner tail, the observed dark matter
density requires a larger-than-normal cross section which
can be consistent with the PAMELA, ATIC and PPB-BETS
results. The required cross section is achieved for 4m2 �
M2, M� & 10�3M2.

Note that the small decay width � � 10�3M can be
achieved rather easily, when the resonance R is a weakly
coupled particle. In some models, a coincidence in masses
can also be naturally realized. For example, if the dark
matter is the lightest Kaluza-Klein particle and the reso-
nance is at the second Kaluza-Klein level, we have the
relationM ¼ 2m at the tree level [18,19] (see also a recent

discussion in Ref. [3]). Thus, in such models, we may well
have a small mass splitting � as a result of small radiative
corrections to the tree-level mass relation.
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