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We compute the two-loop renormalization functions, in the RI0 scheme, of local bilinear quark

operators �c�c , where � corresponds to the vector, axial-vector, and tensor Dirac operators, in the lattice

formulation of QCD. We consider both the flavor nonsinglet and singlet operators. We use the clover

action for fermions and the Wilson action for gluons. Our results are given as a polynomial in cSW, in

terms of both the renormalized and bare coupling constant, in the renormalized Feynman gauge. Finally,

we present our results in the MS scheme, for easier comparison with calculations in the continuum. The

corresponding results, for fermions in an arbitrary representation, together with some special features of

superficially divergent integrals, are included in the appendices.
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I. INTRODUCTION

Numerical simulations of QCD, formulated on the lat-
tice, make use of a variety of composite operators, made
out of quark fields. In particular, matrix elements and
correlation functions of such operators, which include
local and extended bilinears, as well as four-fermion op-
erators, are computed in order to study hadronic properties
in this context. A proper renormalization of these operators
is essential for the extraction of physical results from the
dimensionless quantities measured in numerical
simulations.

The present paper is the second in a series of papers
regarding the calculation of renormalization functions of
fermion bilinear operators to two loops in lattice perturba-
tion theory. The calculation of the scalar and pseudoscalar
cases was carried out in Ref. [1]. In this work we study the
renormalization function Z� of fermion bilinears O ¼
�c�c on the lattice, where � ¼ ��, �5��, �5��� (��� ¼
1=2½��; ���). We consider both flavor singlet and non-

singlet operators. We employ the standard Wilson action
for gluons and clover-improved Wilson fermions. The
number of quark flavors Nf, the number of colors Nc,

and the clover coefficient cSW are kept as free parameters.
One necessary ingredient for the renormalization of fer-
mion bilinears is the two-loop quark field renormalization,
Zc , calculated in [1]. The one-loop expression for the

renormalization function Zg of the coupling constant is

also necessary for expressing the results in terms of both
the bare and the renormalized coupling constant.

Our two-loop calculations have been performed in the
bare and in the renormalized Feynman gauge. For the
latter, we need the one-loop renormalization functions Z�

and ZA of the gauge parameter and gluon field, respec-
tively, as well as the one-loop expressions for Z� with an
arbitrary value of the gauge parameter.

The main results presented in this work are the following
two-loop bare Green’s functions (amputated, one-particle
irreducible (1PI)):
(i) 2-pt function of the vector operator �c��c :�L

VðqaLÞ
(ii) 2-pt function of the axial-vector operator �c�5��c :

�L
AVðqaLÞ

(iii) 2-pt function of the tensor operator �c�5���c :
�L

TðqaLÞ
(aL: lattice spacing, q: external momentum).
In general, one can use bare Green’s functions to con-

struct ZX;Y
O , the renormalization function for operator O,

computed within a regularization X (X ¼ L: lattice regu-
larization; X ¼ DR: dimensional regularization) and re-
normalized in a scheme Y. We employ two widely used
schemes to compute the various two-loop renormalization
functions:

(i) The RI0 scheme: ZL;RI0
V , ZL;RI0

AV , ZL;RI0
T

(ii) The MS scheme: ZL;MS
V , ZL;MS

AV , ZL;MS
T

For convenience, the results for ZX;Y
O are given in terms

of both the bare coupling constant g� and the renormalized
one: gRI0 , gMS. Finally, as one of several checks on our

results, we construct the two-loop renormalized Green’s

functions in RI0: �RI0
O ðq; ��Þ (O � V, AV, T), as well as

their counterparts in MS: �MS
O ðq; ��Þ. The values of all

these functions, computed on the lattice, coincide with

values computed in dimensional regularization (we derive
the latter from the results of Ref. [2]).
The present work, along with [1], is the first two-loop

computation of the renormalization of fermion bilinears on
the lattice. One-loop computations of the same quantities
exist for quite some time now (see, e.g., [3–5] and refer-
ences therein). There have been made several attempts to
estimate ZO nonperturbatively; recent results can be found
in Refs. [6–11]. A series of results have also been obtained
using stochastic perturbation theory [12–14]. A related
computation, regarding the fermion mass renormalization
Zm with staggered fermions can be found in [15].
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The paper is organized as follows: Sec. II provides a
formulation of the problem, as well as all necessary defi-
nitions of renormalization schemes and of the quantities to
compute. Section III describes our computational methods
and results. Finally, in Sec. IV we discuss some salient
features of our calculation and comment on future exten-
sions to the present work.

Recently, there has been some interest in gauge theories
with fermions in different representations [16] of the gauge
group. Such theories are being studied in various contexts
[17–22], e.g., supersymmetry [23], phase transitions [24],
and the AdS/QCD correspondence. It is relatively straight-
forward to generalize our results to an arbitrary represen-
tation; this is presented in Appendix A. Some special
features of 2-, 3-, and 4-index superficially divergent in-
tegrals are described in Appendix B. Finally, a detailed
presentation of our calculation results on a per diagram
basis, is provided in Appendix C.

II. FORMULATION OF THE PROBLEM

A. Lattice action

In the present work we employ the Wilson formulation
of the QCD action on the lattice, with the addition of the
clover (SW) [25] term for fermions. In standard notation, it
reads

SL ¼ SG þX
f

X
x

ð4rþm�Þ �c fðxÞc fðxÞ

� 1

2

X
f

X
x;�

½ �c fðxÞðr� ��ÞUx;xþ�c fðxþ�Þ

þ �c fðxþ�Þðrþ ��ÞUxþ�;xc fðxÞ�
þ i

4
cSW

X
f

X
x;�;�

�c fðxÞi���F̂��ðxÞc fðxÞ; (1)

where

F̂ �� � 1

8a2
ðQ�� �Q��Þ (2)

and

Q�� ¼ Ux;xþ�Uxþ�;xþ�þ�Uxþ�þ�;xþ�Uxþ�;x

þUx;xþ�Uxþ�;xþ���Uxþ���;x��Ux��;x

þUx;x��Ux��;x����Ux����;x��Ux��;x

þUx;x��Ux��;x��þ�Ux��þ�;xþ�Uxþ�;x: (3)

SG is the standard pure gluon action, made out of 1� 1
plaquettes. The clover coefficient cSW is treated here as a
free parameter; r is the Wilson parameter (set to r ¼ 1
henceforth); f is a flavor index; ��� ¼ ð1=2Þ½��; ���.
Powers of the lattice spacing aL have been omitted and
may be directly reinserted by dimensional counting.

The ‘‘Lagrangian mass’’ m� is a free parameter here.
However, since we will be using mass-independent renor-

malization schemes, all renormalization functions which
we will be calculating, must be evaluated at vanishing
renormalized mass, that is, when m� is set equal to the
critical value mcr: m� ! mcr ¼ m1g

2� þOðg4�Þ.

B. Definition of renormalized quantities

As a prerequisite to our programme, we will use the
renormalization functions, ZA, Zc, Zc , Zg, and Z�, for the

gluon, ghost, and fermion fields ðAa
�; c

a; c Þ, and for the

coupling constant g and gauge parameter �, respectively
(for definitions of these quantities, see Ref. [1]); we will
also need the fermion mass counterterm mcr. These quan-
tities are all needed to one loop, except for Zc which is

required to two loops. The value of each ZO depends both
on the regularization X and on the renormalization scheme

Y employed and thus should properly be denoted as ZX;Y
O .

Our one-loop results for the vector and axial-vector
operators, even though performed in a generic gauge,
turn out to be independent of the gauge parameter. These
results along with the one-loop expression for the Tensor
operator, are in agreement with results found in the litera-
ture (see, e.g., Ref. [5]).
As mentioned before, we employ the RI0 renormaliza-

tion scheme [26–28], which is more immediate for a lattice
regularized theory. It is defined by imposing a set of
normalization conditions on matrix elements at a scale

��, where (just as in the MS scheme) [29]:

�� ¼ �ð4�=e�EÞ1=2; (4)

where �E is the Euler constant and � is the scale entering
the bare coupling constant g� ¼ ��Zgg when regularizing

in D ¼ 4� 2� dimensions.

C. Conversion to the MS scheme

For easier comparison with calculations coming from

the continuum, we need to express our results in the MS
scheme. Each renormalization function on the lattice,

ZL;RI0
O , may be expressed as a power series in the renor-

malized coupling constant gRI0 . For the purposes of our

work the conversion of gRI0 to MS is trivial since

gRI0 ¼ gMS þOððgMSÞ9Þ: (5)

The conversion of the gauge parameter �RI0 to the MS
scheme is given by [30]

�RI0 ¼ ZL;MS
A

ZL;RI0
A

�MS � �MS=CAðgMS; �MSÞ; (6)

where the conversion factor CA may be calculated more
easily in dimensional regularization (DR) [2], since the
ratio of Z’s appearing in Eq. (6) is necessarily regulariza-
tion independent. To one loop, the conversion factor CA

equals
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CAðg; �Þ ¼ ZDR;RI0
A

ZDR;MS
A

¼ 1þ g2

36ð16�2Þ ½ð9�
2 þ 18�þ 97ÞNc � 40Nf�:

(7)

(Here, and throughout the rest of this work, both g and �

are in the MS scheme, unless specified otherwise.)
Once we have computed the renormalized Green’s func-

tions in the RI0 scheme, we can construct theirMS counter-
parts using the quark field conversion factor which, up to
the required perturbative order, is given by

Cc ðg;�Þ �
ZL;RI0
c

ZL;MS
c

¼ ZDR;RI0
c

ZDR;MS
c

¼ 1� g2

16�2
cF�þ g4

8ð16�2Þ2 cF½ð8�
2 þ 5ÞcF

þ 14Nf � ð9�2 � 24�ð3Þ�þ 52�

� 24�ð3Þ þ 82ÞNc�; (8)

where cF ¼ ðN2
c � 1Þ=ð2NcÞ is the quadratic Casimir op-

erator in the fundamental representation of the color group;
�ðxÞ is Riemann’s zeta function.

D. Renormalization of fermion bilinears

The lattice operators O� ¼ �c�c must, in general, be
renormalized in order to have finite matrix elements. We
define renormalized operators by

O RI0
� ¼ ZL;RI0

� ðaL ��ÞO��: (9)

The flavor singlet axial-vector Green’s function receives
additional contributions as compared to the nonsinglet
case, while for the rest of the operators under study, singlet
and nonsinglet Green’s functions coincide. For the vector
(V), axial-vector (AV), and tensor (T) operators, the renor-

malization functions ZL;RI0
� can be extracted through the

corresponding bare 2-point functions�L
�ðqaLÞ (amputated,

1PI) on the lattice. Let us first express these bare Green’s
functions in the following way:

�L
VðqaLÞ ¼ ���

ð1Þ
V ðqaLÞ þ q� 6q

q2
�ð2Þ

V ðqaLÞ;

�L
AVðqaLÞ ¼ �5���

ð1Þ
AVðqaLÞ þ �5

q� 6q
q2

�ð2Þ
AVðqaLÞ;

�L
TðqaLÞ ¼ �5����

ð1Þ
T ðqaLÞ

þ �5

6qð��q� � ��q�Þ
q2

�ð2Þ
T ðqaLÞ: (10)

It is worth noting here that terms which break Lorentz
invariance (but are compatible with hypercubic invari-
ance), such as ��ðq�Þ2=q2, turn out to be absent from all

bare Green’s functions; thus, the latter have the same
Lorentz structure as in the continuum. Let us also point
out that the presence of the �5 matrix in the tensor operator
definition does not affect the bare Green’s function on the
lattice, in the RI0 scheme. We have performed the calcu-
lation both with and without the inclusion of the �5 matrix,
and we ended up with identical 2-point functions. Thus, for

the purpose of converting our results to theMS scheme, we
employed the conversion factors given in Ref. [2], where
the definition of the tensor operator does not contain the �5

matrix. Furthermore, we expect that�ð2Þ
T ðqaLÞmust vanish,

since this is the case for the corresponding quantity coming
from the continuum. Indeed, after performing the calcula-
tion on the lattice, it turns out that all contributions of this
type cancel out.
Once all necessary Feynman diagrams contributing to

the bare Green’s functions presented above are evaluated,
one can obtain the renormalization functions for the three
operators through the following conditions:

lim
aL!0

½ZL;RI0
c ZL;RI0

V �ð1Þ;L
V ðqaLÞ�q2¼ ��2 ¼ ��; (11)

lim
aL!0

½ZL;RI0
c ZL;RI0

AV �ð1Þ;L
AV ðqaLÞ�q2¼ ��2 ¼ �5��; (12)

lim
aL!0

½ZL;RI0
c ZL;RI0

T �ð1Þ;L
T ðqaLÞ�q2¼ ��2 ¼ �5���; (13)

where

�ð1Þ
V ðqaLÞ ¼ 1þOðg2�Þ; �ð2Þ

V ðqaLÞ ¼ Oðg2�Þ;
�ð1Þ

AVðqaLÞ ¼ 1þOðg2�Þ; �ð2Þ
AVðqaLÞ ¼ Oðg2�Þ;

�ð1Þ
T ðqaLÞ ¼ 1þOðg2�Þ; �ð2Þ

T ðqaLÞ ¼ 0:

(14)

The conversion of the quantities ZL;RI0
� to theMS scheme

is a straightforward procedure. In the case of the vector and

tensor operators, the renormalization functions, ZL;MS
V and

ZL;MS
T , can be obtained by

ZL;MS
� ¼ ZL;RI0

� =C�ðg; �Þ; (15)

where C�ðg; �Þ are regularization independent conversion
factors (� ¼ V, T). These conversion factors have been
calculated in dimensional regularization [2]:

CVðg; �Þ � ZL;RI0
V

ZL;MS
V

¼ ZDR;RI0
V

ZDR;MS
V

¼ 1þOðg8Þ; (16)
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CTðg; �Þ � ZL;RI0
T

ZL;MS
T

¼ ZDR;RI0
T

ZDR;MS
T

¼ 1þ g2

16�2
cF�þ g4

216ð16�2Þ2 cF½ð216�
2

þ 4320�ð3Þ � 4815ÞcF � 626Nf

þ ð162�2 þ 756�� 3024�ð3Þ þ 5987ÞNc�:
(17)

Unlike the tensor operator, where the presence of the �5

matrix is irrelevant, the axial-vector bilinear (O�
AV ¼

�c ��5��c �) requires special attention also in the MS

scheme, due to the nonunique generalization of �5 to D
dimensions. A practical definition of �5 for multiloop
calculations, which is most commonly employed in dimen-
sional regularization and does not suffer from inconsisten-
cies is [31]

�5 ¼ i
1

4!
��1�2�3�4��1

��2
��3

��4
; �i ¼ 0; 1; 2; 3:

(18)

Of course, �5 as defined in Eq. (18) does not anticom-
mute (in D dimensions) with ��, for � � 4; an ultimate

consequence of this fact is that Ward identities involving
the axial-vector and pseudoscalar operators, renormalized
in this way, are violated.

To obtain a correctly normalized axial-vector operator

[32], OMS0
AV , one must introduce an extra finite factor, Z5, in

addition to the usual renormalization function ZDR;MS
AV (the

latter only contains poles in �). We set

OMS0
AV ¼ Z5ðgÞOMS

AV ¼ Z5ðgÞZDR;MS
AV O�

AV: (19)

For the definition of Z5 we must express the MS renor-

malized Green’s functions GMS
V , GMS

AV as well as the renor-

malized Green’s functionGMS0
AV (corresponding toOMS0

AV ), in

a form similar to Eq. (10),

GMS
V ðqaLÞ ¼ ��G

ð1ÞMS
V ðqaLÞ þ q� 6q

q2
Gð2ÞMS

V ðqaLÞ;

GMS
AV ðqaLÞ ¼ �5��G

ð1ÞMS
AV ðqaLÞ þ �5

q� 6q
q2

Gð2ÞMS
AV ðqaLÞ;

GMS
T ðqaLÞ ¼ �5���G

ð1ÞMS
T ðqaLÞ

þ �5

6qð��q� � ��q�Þ
q2

Gð2ÞMS
T ðqaLÞ: (20)

Z5 is then defined by the requirement that the renormalized

Green’s functions Gð1ÞMS
V ðqaLÞ and Gð1ÞMS0

AV ðqaLÞ coincide,

Z5 � Gð1ÞMS
V

Gð1ÞMS
AV

: (21)

Equation (19) is valid for both the singlet and nonsinglet
currents, provided of course, the appropriate choice for Z5

is used. Thus, we have two different expressions, Zs
5 and

Zns
5 , corresponding to the singlet and nonsinglet axial-

vector operator, respectively. They are gauge independent
and differ only in the cFNf term; this is expected consid-

ering the fact that the additional Feynman diagrams con-
tributing to the singlet axial operator have the insertion
within the closed fermion loop. Both Zs

5 and Zns
5 were

evaluated in DR [32] and up to two loops they read

Zs
5ðgÞ ¼ 1� g2

16�2
ð4cFÞ

þ g4

ð16�2Þ2
�
22c2F � 107

9
cFNc þ 31

18
cFNf

�
; (22)

Zns
5 ðgÞ ¼ 1� g2

16�2
ð4cFÞ

þ g4

ð16�2Þ2
�
22c2F � 107

9
cFNc þ 2

9
cFNf

�
: (23)

ZL;MS
AV can now be obtained by

ZL;MS
AV ¼ ZL;RI0

AV =ðCVZ5Þ; (24)

where Z5 stands for Z
s
5 or Z

ns
5 (Eqs. (22) and (23)), for the

singlet or nonsinglet cases, respectively.
Similarly, one can convert the RI0 renormalized Green’s

functions, GRI0
� , to their MS counterparts, through

GRI0
V

GMS
V

¼CcCV;
GRI0

AV

GMS
AV

¼CcCVZ5;
GRI0

T

GMS
T

¼CcCT: (25)

(In Eqs. (24) and (25) it is understood that powers of
gRI0 ; �RI0 , implicit in RI0 quantities, must also be converted
to gMS,�MS, respectively, using Eqs. (5) and (6).) Note that

the combination CVZ5 appearing above yields the value of

CAV � ZDR;RI0
AV =ZDR;MS

AV ¼ CVZ5.

III. COMPUTATION AND RESULTS

The Feynman diagrams contributing to the bare Green’s
functions for the vector, axial-vector, and tensor operators,
�L

V;AV;Tðq; aLÞ, at one- and two-loop level, are shown in

Figs. 1 and 2, respectively. For flavor singlet bilinears,
there are four extra diagrams, shown in Fig. 3, which
contain the operator insertion inside a closed fermion

FIG. 1. One-loop diagram contributing to ZV , ZAV , and ZT . A
wavy (solid) line represents gluons (fermions). A cross denotes
the Dirac matrices �� (vector), �5�� (axial-vector), and �5���

(tensor).
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loop. These diagrams give a nonzero contribution only in
the axial-vector case.

The evaluation and algebraic manipulation of Feynman
diagrams, leading to a code for numerical loop integration,
is performed automatically using our software for lattice
perturbation theory, written in MATHEMATICA.

The most laborious aspect of the procedure is the ex-
traction of the dependence on the external momentum q.
This is a delicate task at two loops; for this purpose, we cast
algebraic expressions (typically involving thousands of
summands) into terms which can be naively Taylor ex-
panded in q to the required order, plus a smaller set of
terms containing superficial divergences and/or subdiver-
gences. The latter can be evaluated by an extension of the
method of Ref. [33] to two loops; this entails analytical
continuation to D> 4 dimensions, and splitting each ex-
pression into a UV-finite part (which can thus be calculated
in the continuum, using the methods of Ref. [34]), and a
part which is polynomial in q. A primitive set of divergent
lattice integrals involving gluon propagators, which can be
obtained in this manner, can be found in Ref. [35]. Because

of the presence of at least one free Lorentz index in the
definition of the operators (for the case of the tensor bi-
linear there are two such indices), it is possible to end up
dealing with superficially divergent integrals with two,
three, or even four free Lorentz indices. In Appendix B,
we provide a brief description of the manipulations per-
formed to resolve such terms, based on the method de-
scribed above.
Some of the diagrams contributing to �L

V;AV;TðqaLÞ are
infrared divergent when considered separately and thus
must be grouped together in order to give finite results.
Such groups are formed by diagrams (3–7), (8–9), (10–11,
19) in Fig. 2 and diagrams (1–2), (3–4) in Fig. 3.
In Figs. 1–3, ‘‘mirror’’ diagrams (those in which the

direction of the external fermion line is reversed) should
also be included. In most cases, these coincide trivially
with the original diagrams; even in the remaining cases,
they can be seen to give equal contribution, by invariance
under charge conjugation.
As mentioned before, all calculations should be per-

formed at vanishing renormalized mass; this can be

21 3 4 5 6

121110987

13 14 15 1716 18

2019

FIG. 2. Two-loop diagrams contributing to ZV , ZAV , and ZT . Wavy (solid, dotted) lines represent gluons (fermions, ghosts). A solid
box denotes a vertex from the measure part of the action; a solid circle is a mass counterterm; crosses denote the matrices �� (vector),

�5�� (axial-vector), and �5��� (tensor).
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achieved by working with massless fermion propagators,
provided an appropriate fermion mass counterterm is in-
troduced (diagram 11 in Fig. 2).

All two-loop diagrams have been calculated in the bare
Feynman gauge (�� ¼ 1). One-loop diagrams have been
calculated for generic values of ��; this allows us to
convert our two-loop results to the renormalized
Feynman gauge (�RI0 ¼ 1 or �MS ¼ 1). After performing

the calculation for the cases of the vector and axial-vector
operator, we see that one-loop expressions for the renor-
malization functions do not depend on the gauge parame-
ter. Especially for the case of the vector operator, having in
mind Eqs. (5), (6), and (16), this fact causes the lattice

results in the RI0 and in the MS scheme to coincide.
Numerical loop integration was carried out by our ‘‘in-

tegrator’’ program, a metacode written in MATHEMATICA,
for converting lengthy integrands into efficient Fortran
code. Two-loop numerical integrals were evaluated as
sums over finite lattices, of size up to L ¼ 40; the results
were then extrapolated to L ! 1. Extrapolation is the only
source of systematic error; this error can be estimated quite
accurately (see, e.g. Ref. [36]), given that L dependence of
results can only span a restricted set of functional forms.

A. One-loop results

One-loop results for ZL;RI0
� are presented below in a

generic gauge. As it turns out, only the tensor renormal-

ization function depends on the gauge parameter, while for
all other operators, one-loop expressions that emerge are
gauge independent. The errors appearing in the expression

for ZL;RI0
T result from the L ! 1 extrapolation,

ZL;RI0
T ¼ 1þ g2�

16�2
cF½� lnða2L ��2Þ þ ��

� 17:018 079 209ð7Þ þ 3:913 332 61ð4ÞcSW
þ 1:972 295 300ð5Þc2SW�: (26)

The corresponding expressions for ZL;RI0
V , ZL;RI0

AV can be

read off from Eqs. (30) and (31) below. In all cases, one-

loop results in the MS scheme (ZL;MS
V , ZL;MS

AV , ZL;MS
T )

present no dependence on the gauge parameter.

B. Two-loop results

In order to derive the expressions for the bare Green’s
functions �L

V;AV;T , one must evaluate all Feynman dia-

grams presented in Figs. 1–3. The extraction of ZL;Y
V ,

ZL;Y
AV , and ZL;Y

T is then straightforward via Eqs. (11)–(13)

(for Y ¼ RI0), and via Eqs. (15)–(17) and (24) (for Y ¼
MS). To this end, we need the following one-loop expres-

sion for ZL;Y
A (note that Z� ¼ 1 to this order):

ZL;RI0
A ¼ ZL;MS

A þOðg4�Þ

¼ 1þ g2�
16�2

�
lnða2L ��2Þ

�
2

3
Nf � 5

3
Nc

�
þ Nfð�2:168 501 047ð1Þ þ 0:796 945 230 8ð4ÞcSW

� 4:712 691 442 8ð1Þc2SWÞ þ 39:478 417 604 36ð1ÞcF þ 1:940 171 300 69ð1ÞNc

�
þOðg4�Þ: (27)

To express our results in terms of the renormalized coupling constant, we also need the one-loop expression for ZL;Y
g ,

ZL;RI0
g ¼ ZL;MS

g þOðg4�Þ

¼ 1þ g2�
16�2

�
lnða2L ��2Þ

�
� 1

3
Nf þ 11

6
Nc

�
þ Nfð0:528 694 967 7ð5Þ � 0:398 472 615 4ð2ÞcSW

þ 2:356 345 721 40ð7Þc2SWÞ � 19:739 208 802 18ð1ÞcF � 3:549 583 420 46ð1ÞNc

�
þOðg4�Þ: (28)

3 41 2

FIG. 3. Extra two-loop diagrams contributing to ZAV;singlet. A cross denotes an insertion of a flavor singlet operator. Wavy (solid)
lines represent gluons (fermions).
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Equations (27) and (28) are in agreement with older references (see, e.g., Ref. [37]).

A final necessary ingredient is the two-loop expression for ZL;RI0
c , as required by Eqs. (11)–(13); this was calculated in

Ref. [1], in the renormalized Feynman gauge �RI0 ¼ 1, and is included here for completeness:

ZL;RI0
c ¼ 1þ g2�

16�2
cF½lnða2L ��2Þ þ 11:852 404 288ð5Þ � 2:248 868 528ð3ÞcSW � 1:397 267 102ð5Þc2SW�

þ g4�
ð16�2Þ2 cF

�
ln2ða2L ��2Þ

�
1

2
cF þ 2

3
Nf � 8

3
Nc

�
þ lnða2L ��2Þð�6:363 174 46ð8ÞNf þ 0:796 945 23ð2ÞNfcSW

� 4:712 691 443ð4ÞNfc
2
SW þ 49:830 821 85ð5ÞcF � 2:248 868 61ð7ÞcFcSW � 1:397 267 05ð1ÞcFc2SW

þ 29:030 293 98ð4ÞNcÞ þ Nfð�7:838ð2Þ þ 1:153ð1ÞcSW þ 3:202ð3Þc2SW þ 6:2477ð6Þc3SW þ 4:0232ð6Þc4SWÞ
þ cFð505:39ð1Þ � 58:210ð9ÞcSW þ 20:405ð5Þc2SW þ 18:8431ð8Þc3SW þ 4:2793ð2Þc4SWÞ þ Ncð�20:59ð1Þ
� 3:190ð5ÞcSW � 23:107ð6Þc2SW � 5:7234ð5Þc3SW � 0:7938ð1Þc4SWÞ

�
: (29)

We present below ZL;RI0
V , ZL;RI0

AV , and ZL;RI0
T to two loops in the renormalized Feynman gauge �RI0 ¼ 1; we also present

the MS analogues ZL;MS
AV and ZL;MS

T in the gauge �MS ¼ 1 (as already mentioned, ZL;MS
V ¼ ZL;RI0

V ). The bare Green’s

functions are relegated to Appendix C, where a per diagram breakdown of the results is provided. It is a straightforward
exercise to recover the total bare Green’s functions from the corresponding Z’s and the renormalized Green’s functions.

ZL;RI0
V ¼ 1þ g2�

16�2
cF

h
�20:617 798 655ð6Þ þ 4:745 564 682ð3ÞcSW þ 0:543 168 028ð5Þc2SW

i

þ g4�
ð16�2Þ2 cF

h
Nfð25:610ð3Þ � 11:058ð1ÞcSW þ 33:937ð3Þc2SW � 13:5286ð6Þc3SW � 1:2914ð6Þc4SWÞ

þ cFð�539:78ð1Þ � 223:57ð2ÞcSW � 104:116ð5Þc2SW � 32:2623ð8Þc3SW þ 4:5575ð3Þc4SWÞ
þ Ncð�51:59ð1Þ þ 18:543ð5ÞcSW þ 20:960ð6Þc2SW þ 2:5121ð5Þc3SW þ 0:1765ð1Þc4SWÞ

i
; (30)

ZL;RI0
AV ¼ 1þ g2�

16�2
cF

h
�15:796 283 066ð5Þ � 0:247 827 627ð3ÞcSW þ 2:251 366 176ð5Þc2SW

i

þ g4�
ð16�2Þ2 cF

h
Nfð18:497ð3Þ � 1:285ð1ÞcSW þ 19:071ð3Þc2SW þ 1:0333ð6Þc3SW � 6:7549ð6Þc4SWÞ

þ cFð�184:01ð1Þ � 389:86ð1ÞcSW � 166:738ð6Þc2SW þ 7:894ð1Þc3SW þ 4:3201ð3Þc4SWÞ
þ Ncð�21:62ð1Þ � 33:652ð5ÞcSW þ 26:636ð6Þc2SW þ 10:2186ð5Þc3SW þ 1:4893ð1Þc4SWÞ

i
; (31)

ZL;MS
AV ¼ 1þ g2�

16�2
cF

h
�11:796 283 066ð5Þ � 0:247 827 627ð3ÞcSW þ 2:251 366 176ð5Þc2SW

i

þ g4�
ð16�2Þ2 cF

�
lnða2L ��2Þ

�
8

3
Nf � 44

3
Nc

�
þ Nfð14:045ð3Þ þ 1:903ð1ÞcSW þ 0:220ð3Þc2SW þ 1:0333ð6Þc3SW

� 6:7549ð6Þc4SWÞ þ cFð�95:28ð1Þ � 390:85ð1ÞcSW � 157:733ð6Þc2SW þ 7:894ð1Þc3SW þ 4:3201ð3Þc4SWÞ
þ Ncð18:67ð1Þ � 33:652ð5ÞcSW þ 26:636ð6Þc2SW þ 10:2186ð5Þc3SW þ 1:4893ð1Þc4SWÞ

�
; (32)
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ZL;RI0
T ¼ 1þ g2�

16�2
cF½� lnða2L ��2Þ � 16:018 079 209ð7Þ þ 3:913 332 61ð4ÞcSW þ 1:972 295 300ð5Þc2SW�

þ g4�
ð16�2Þ2 cF

�
ln2ða2L ��2Þ

�
1

2
cF � 1

3
Nf � 11

6
Nc

�
þ lnða2L ��2Þ

�
3:168 500 2ð6ÞNf � 0:796 945 24ð6ÞNfcSW

þ 4:712 691 43ð3ÞNfc
2
SW � 13:960 338 35ð7ÞcF � 3:913 332 5ð1ÞcFcSW � 1:972 295 35ð2ÞcFc2SW

� 25:043 611 49ð6ÞNc

�
þ Nfð16:923ð6Þ � 8:399ð2ÞcSW þ 18:711ð3Þc2SW � 10:8351ð8Þc3SW � 5:1253ð6Þc4SWÞ

þ cFð�868:0ð1Þ þ 551:6ð2ÞcSW þ 63:9ð1Þc2SW � 79:49ð1Þc3SW � 12:586ð1Þc4SWÞ
þ Ncð�15:76ð8Þ þ 27:6ð1ÞcSW þ 38:2ð1Þc2SW þ 7:021ð8Þc3SW þ 1:6653ð9Þc4SWÞ

�
; (33)

ZL;MS
T ¼ 1þ g2�

16�2
cF½� lnða2L ��2Þ � 17:018 079 209ð7Þ þ 3:913 332 61ð4ÞcSW þ 1:972 295 300ð5Þc2SW�

þ g4�
ð16�2Þ2 cF

�
ln2ða2L ��2Þ

�
� 1

3
Nf þ 1

2
cF þ 11

6
Nc

�
þ lnða2L ��2Þ

�
2:501 833 6ð6ÞNf � 0:796 945 24ð6ÞNfcSW

þ 4:712 691 43ð3ÞNfc
2
SW � 12:960 338 35ð7ÞcF � 3:913 332 5ð1ÞcFcSW � 1:972 295 35ð2ÞcFc2SW

� 21:376 944 82ð6ÞNc

�
þ Nfð21:989ð6Þ � 9:196ð2ÞcSW þ 23:424ð3Þc2SW � 10:8351ð8Þc3SW � 5:1253ð6Þc4SWÞ

þ cFð�893:2ð1Þ þ 547:7ð2ÞcSW þ 61:9ð1Þc2SW � 79:49ð1Þc3SW � 12:586ð1Þc4SWÞ
þ Ncð�41:44ð8Þ þ 27:6ð1ÞcSW þ 38:2ð1Þc2SW þ 7:021ð8Þc3SW þ 1:6653ð9Þc4SWÞ

�
: (34)

All expressions reported thus far for ZV , ZAV , and ZT

refer to flavor nonsinglet operators. In the case of ZV and
ZT , all diagrams of Fig. 3 vanish, so that singlet and non-
singlet results coincide, just as in dimensional regulariza-
tion. For ZAV on the other hand, these diagrams give an
additional contribution,

ZL;RI0
AV;singlet ¼ ZL;RI0

AV þ g4�
ð16�2Þ2 cFNfð�6 lnða2L ��2Þ

� 2:0491ð5Þ þ 15:0315ð6ÞcSW
þ 5:0090ð2Þc2SW � 2:110 16ð5Þc3SW
� 0:043 29ð2Þc4SWÞ: (35)

The same extra contribution applies also to the MS
scheme.

For the sake of completeness, and as an additional check
on our results, we compute the renormalized Green’s func-
tions (for vanishing renormalized mass). Since the bare
Green’s functions have two contributions of different struc-
ture (as defined in Eq. (10), see also Eq. (20)), we derive
the renormalized expressions for these contributions sepa-
rately:

GðiÞRI0
V ðqÞ � ZL;RI0

c ZL;RI0
V �ðiÞ;L

V ; (36)

GðiÞRI0
AV ðqÞ � ZL;RI0

c ZL;RI0
AV �ðiÞ;L

AV ; (37)

GðiÞRI0
T ðqÞ � ZL;RI0

c ZL;RI0
T �ðiÞ;L

T ; (38)

where i ¼ 1, 2; similarly for MS, taking into account
Eq. (25).
Since these functions are regularization independent,

they can be calculated also using, e.g., dimensional regu-

larization. We have computed GðiÞ
V , GðiÞ

AV , and GðiÞ
T in both

ways: either starting from our Eqs. (26)–(34) or using
renormalization functions from dimensional regularization
[2]. In all cases the two ways are in complete agreement.
We obtain

Gð1ÞRI0
V ðqÞ ¼ 1þ g2RI0

16�2
cF lnð ��2=q2Þ

þ g4RI0

ð16�2Þ2 cF
�
ln2ð ��2=q2Þ

�
1

2
cF þ Nc

�

þ lnð ��2=q2Þ
�
� 19

9
Nf � 3

2
cF þ 251

18
Nc

��
;

(39)

Gð2ÞRI0
V ðqÞ ¼ g2RI0

16�2
cFð�2 lnð ��2=q2ÞÞ

þ g4RI0

ð16�2Þ2 cF
�
lnð ��2=q2Þð�2cF � 4NcÞ

þ 38

9
Nf þ 3cF � 251

9
Nc

�
: (40)

The vector renormalized Green’s function in the RI0
scheme coincides with the corresponding axial-vector ex-
pression, and thus Eqs. (39) and (40) also hold for the
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axial-vector case: Gð1Þ
AVðqÞ ¼ Gð1Þ

V ðqÞ, Gð2Þ
AVðqÞ ¼ Gð2Þ

V ðqÞ.
Of course, even though the MS expression for the vector

renormalization function, ZL;MS
V , coincides with the RI0

expression, that is not the case for the renormalized MS
Green’s function, due to Cc appearing in Eq. (25). This

factor results in the following quantities:

Gð1ÞMS
V ðqÞ ¼ 1þ g2

MS

16�2
cFðlnð ��2=q2Þ þ 1Þ

þ g4
MS

ð16�2Þ2 cF
�
ln2ð ��2=q2Þ

�
1

2
cF þ Nc

�

þ lnð ��2=q2Þ
�
� 19

9
Nf � 1

2
cF þ 251

18
Nc

�

þ
�
� 7

4
Nf � 5

8
cF þ

�
143

8
� 6�ð3Þ

�
Nc

��
;

(41)

Gð2ÞMS
V ðqÞ ¼ � g2

MS

16�2
2cF þ g4

MS

ð16�2Þ2 cF
�
lnð ��2=q2Þ

� ð�2cF � 4NcÞ þ 38

9
Nf þ cF � 251

9
Nc

�
:

(42)

Furthermore, the axial-vector renormalized 2-point

functions in the MS scheme differ from Eqs. (41) and
(42), due to the finite conversion factor Zns

5 ; they read

Gð1ÞMS
AV ðqÞ ¼ 1þ g2

MS

16�2
cFðlnð ��2=q2Þ þ 5Þ

þ g4
MS

ð16�2Þ2 cF
�
ln2ð ��2=q2Þ

�
1

2
cF þ Nc

�

þ lnð ��2=q2Þ
�
� 19

9
Nf þ 7

2
cF þ 251

18
Nc

�

þ
�
� 71

36
Nf � 21

8
cF þ

�
2143

72
� 6�ð3Þ

�
Nc

��
;

(43)

Gð2ÞMS
AV ðqÞ ¼ � g2

MS

16�2
2cF þ g4

MS

ð16�2Þ2 cF
�
lnð ��2=q2Þ

� ð�2cF � 4NcÞ þ 38

9
Nf � 7cF � 251

9
Nc

�
:

(44)

If one considers the singlet axial-vector current, then there
exists an extra contribution to the expressions above,

Gð1Þ;MS
AV;singletðqÞ ¼ Gð1ÞMS

AV ðqÞ þ g4
MS

ð16�2Þ2
�
�6 lnð ��2=q2ÞcFNf

� 3

2
cFNf

�
; (45)

Gð2Þ;MS
AV;singletðqÞ ¼ Gð2ÞMS

AV ðqÞ þ g4
MS

ð16�2Þ2 ð�4cFNfÞ: (46)

For the RI0 scheme, similar relations hold, the only differ-
ence being the absence of the factors Zs

5, Z
ns
5 ; we obtain

Gð1Þ;RI0
AV;singletðqÞ ¼ Gð1ÞRI0

AV ðqÞ þ g4RI0

ð16�2Þ2
�ð�6 lnð ��2=q2ÞcFNfÞ; (47)

Gð2Þ;RI0
AV;singletðqÞ ¼ Gð2ÞRI0

AV ðqÞ þ g4RI0

ð16�2Þ2 ð�4cFNfÞ: (48)

Finally, for the tensor renormalized Green’s function, we
obtain

Gð1ÞRI0
T ðqÞ ¼ 1þ g4RI0

ð16�2Þ2 cF
�
ln2ð ��2=q2Þ

�
1

3
Nf � 5

6
Nc

�

þ lnð ��2=q2Þ
�
� 2

3
Nf þ 8cF � 7

3
Nc

��
: (49)

Just as was expected from dimensional regularization,

Gð2ÞRI0
T ðqÞ ¼ 0. The corresponding quantity in the MS

scheme reads

Gð1ÞMS
T ðqÞ ¼ 1þ g4

MS

ð16�2Þ2 cF
�
ln2ð ��2=q2Þ

�
1

3
Nf � 5

6
Nc

�

þ lnð ��2=q2Þ
�
� 2

3
Nf þ 8cF � 7

3
Nc

�

þ 31

27
Nf þ

�
62

3
� 20�ð3Þ

�
cF

þ
�
� 761

54
þ 8�ð3Þ

��
: (50)
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ZV, 2-loop
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FIG. 4 (color online). ZL;RI0
V ðaL ��Þ ¼ ZL;MS

V ðaL ��Þ versus cSW
(Nc ¼ 3, �� ¼ 1=aL, 	� ¼ 6:0). Results up to two loops are
shown for Nf ¼ 0 (solid line) and Nf ¼ 2 (dashed line); one-

loop results are plotted with a dotted line.
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In Figs. 4, 5 and 6, 7 and 8 we plot ZL;RI0
V , ðZL;RI0

AV ; ZL;MS
AV Þ,

and ðZL;RI0
T ; ZL;MS

T Þ, respectively, as a function of cSW.
Values of the clover parameter used in simulations lie
within the typical range 0 � cSW & 2. For definiteness,
we have set Nc ¼ 3, �� ¼ 1=aL and 	� � 2Nc=g

2� ¼ 6:0.
Our results up to two loops for each Z are shown for both
Nf ¼ 0 and Nf ¼ 2 and compared to the corresponding

one-loop results. Furthermore, in the axial-vector case, we
also present the two-loop result for the flavor singlet op-
erator, for Nf ¼ 2.

In Fig. 9 we present, on the same plot, the values of

ZL;RI0
V , ZL;RI0

AV , ZL;RI0
AV;singlet, and ZL;RI0

T up to two loops, versus

cSW. We have chosen Nc ¼ 3, �� ¼ 1=aL, Nf ¼ 2, and
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ZAV, singlet
L, RI′       , Nf = 2

FIG. 5 (color online). ZL;RI0
AV ðaL ��Þ versus cSW (Nc ¼ 3, �� ¼

1=aL, 	� ¼ 6:0). Results up to two loops, for the flavor non-
singlet operator, are shown for Nf ¼ 0 (solid line) and Nf ¼ 2

(dashed line); two-loop results for the flavor singlet operator, for
Nf ¼ 2, are plotted with a dash-dotted line; one-loop results are

plotted with a dotted line.
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FIG. 8 (color online). ZL;MS
T ðaL ��Þ versus cSW (Nc ¼ 3, �� ¼

1=aL, 	� ¼ 6:0). Same notation as in Fig. 7.
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FIG. 7 (color online). ZL;RI0
T ðaL ��Þ versus cSW (Nc ¼ 3, �� ¼

1=aL, 	� ¼ 6:0). Results up to two loops are shown for Nf ¼ 0

(solid line) and Nf ¼ 2 (dashed line); one-loop results are

plotted with a dotted line.
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FIG. 6 (color online). ZL;MS
AV ðaL ��Þ versus cSW (Nc ¼ 3, �� ¼

1=aL, 	� ¼ 6:0). Same notation as in Fig. 5.
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FIG. 9 (color online). ZL;RI0
V (dotted line), ZL;RI0

AV (solid line),

ZL;RI0
AV;singlet (dash-dotted line), and ZL;RI0

T (dashed line) up to two

loops, versus cSW (Nc ¼ 3, �� ¼ 1=aL, Nf ¼ 2, 	� ¼ 5:3).
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	� ¼ 5:3. The corresponding results in theMS scheme are
plotted in Fig. 10.

IV. DISCUSSION

In this paper we have reported results regarding the
vector, axial-vector, and tensor fermion bilinear operators.
This work, along with a previously published paper [1]
regarding the scalar and pseudoscalar operators, provide a
complete two-loop calculation for the renormalization
functions for local fermion bilinears, considering both
the singlet and nonsinglet cases. The two-loop wave func-
tion renormalization constant, Zc , which is a prerequisite

for our calculation, was presented in Ref. [1] (the reader
should also refer to this paper for any necessary notation
not included in the present sequel paper).

It is clear from Figs. 4–8 that the two-loop renormaliza-
tion functions differ significantly from one-loop values;
this difference must then be properly taken into account
in reducing systematic error in Monte Carlo simulations.
At the same time, two-loop contributions are typically
smaller than one-loop contributions, especially for cSW &
1, indicating that the (asymptotic) perturbative series are
under control.

The results are presented as a function of the clover
parameter, where the values of cSW lie within the standard
range 0 � cSW � 2. Optimal values for cSW, which have
been estimated both nonperturbatively [38] and perturba-
tively (to one loop) [25], lie within this range. A breakdown
of our results on a per diagram basis is presented in
Appendix C for completeness.

As already mentioned, we take into account both singlet
and nonsinglet operators. After evaluating all Feynman
diagrams involved, we found that, for the vector and tensor
operators, singlet renormalization functions coincide with

nonsinglet ones. On the other hand, the axial-vector opera-
tor receives an additional contribution in the flavor singlet
case.
The numerical integrations over loop momenta were

executed on a Pentium IV cluster; they required the equiva-
lent of 60 months on a single CPU.
A possible extension to the present calculation is the

renormalization of more extended operators, with the same
continuum limit as we have considered here. A standard
basis of higher dimension operators, with the same quan-
tum numbers as the local bilinears which we have consid-
ered, can be found e.g. in Ref. [5]. Such operators are
frequently used to reduce OðaLÞ effects. A number of
additional Feynman diagrams must be introduced, since
the vertices coming from these operators may also contain
gluon lines. However, the additional integrals resulting
after the contractions will be free of superficial divergen-
ces, leading to a less cumbersome computation, despite an
increase in the size of the integrals. Further directions
regard higher dimensional operators, such as
��D� � � �D���, which enter structure function calcula-
tions, and 4-fermion operators.
Finally, our computation can be easily extended to im-

proved lattice actions. With regard to improved fermion
actions, such as those containing twisted mass terms [39]
or Österwalder-Seiler terms [40], our results remain un-
changed, since they pertain to mass-independent schemes.
Improving the gluon action, on the other hand, is more
CPU consuming, but conceptually straightforward:
Splitting (in iterative fashion) the Symanzik propagator
into a Wilson gluon propagator plus the remainder, leads
to the same bare Green’s functions as the ones presented in
this paper, with the addition of superficially convergent
terms, which can be more easily manipulated. Based on our
experience with other similar calculations, the algebraic
expressions for the integrands will grow roughly by a
factor of 5; furthermore, the gluon propagator must now
be inverted numerically for each value of the momentum,
leading to an additional factor of& 2 in CPU time. Finally,
if one wishes to employ more than one set of values for the
Symanzik coefficients, CPU time for numerical integration
will increase almost proportionately.
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APPENDIX A: FERMIONS IN AN ARBITRARY
REPRESENTATION

The results presented up to this point regarded renor-
malization constants of various fermion bilinear operators
constructed with fermions in the fundamental representa-
tion of the gauge group. Our results were expressed in
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FIG. 10 (color online). ZL;MS
V (dotted line), ZL;MS

AV (solid line),

ZL;MS
AV;singlet (dash-dotted line), and ZL;MS

T (dashed line) up to two

loops, versus cSW (Nc ¼ 3, �� ¼ 1=aL, Nf ¼ 2, 	� ¼ 5:3).
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terms of the clover parameter, cSW, the number of fermi-
ons, Nf, the number of colors, Nc, and the quadratic

Casimir operator in the fundamental representation, cF.
Recently there has been interest in theories with fermi-

ons in other representations; some preliminary nonpertur-
bative calculations have also appeared (see e.g. [41,42]). In
this appendix we describe the conventions we use in our
work, regarding the generators of the algebra, and we then
express our findings in an arbitrary representation.

Our results for ZV , ZAV , ZT , Eqs. (30), (31), and (33),
can be easily generalized to an action with Wilson/clover
fermions in an arbitrary representation R, of dimensional-
ity dR.

In this case, the gluon part of the action remains the
same, while all link variables appearing in the fermion part
of the action assume the form

Ux;xþ� ¼ expðig0Aa
�ðxÞTaÞ

! Ux;xþ� ¼ expðig0Aa
�ðxÞTa

RÞ: (A1)

Using standard notation and conventions, the generators Ta

in the fundamental representation satisfy

½Ta; Tb� ¼ ifabcTc;
X
a

TaTa � 1 � cF ¼ 1 � N
2
c � 1

2Nc

;

trðTaTbÞ � 
abtF ¼ 
ab 1

2
: (A2)

In the representation R we have

½Ta
R; T

b
R� ¼ ifabcTc

R;
X
a

Ta
RT

a
R � 1 � cR;

trðTa
RT

b
RÞ � 
abtR; (A3)

where tR ¼ ðdRcRÞ=ðN2
c � 1Þ.

For the one-loop quantities, Eqs. (27) and (28), convert-
ing to the representation R is a straightforward substitution,

Nf ! Nf � ðtR=tFÞ ¼ Nf � ð2tRÞ (A4)

and, in addition, for Eq. (26),

cF ! cR: (A5)

Aside from these changes, all algebraic expressions (and
the numerical coefficients resulting from loop integrations)
remain the same.

A similar reasoning applies to the two-loop quantities in
Eqs. (30), (31), and (33): For most diagrams, once their
value is expressed as a linear combination of c2F, cFNc, and
cFNf, it suffices to apply substitutions (A4) and (A5). The

only exceptions are diagrams containing a gluon tadpole
[diagram 3 of Fig. 2; one-loop diagrams, when expressed
in terms of aRI0 , �RI0 by means of Zg, ZA]: In these cases,

only one power of cF should be changed to cR; a possible
additional power of cF originates from the gluon tadpole
and should stay as is. This peculiarity implies that, in
order to perform the substitutions as described above,

one must start from the per diagram breakdown of two-
loop results. To avoid a lengthy presentation, we apply,
instead, substitutions (A4) and (A5) indiscriminately on
Eqs. (30), (31), and (33); consequently, we must then add a
correction term, as follows:

ZL;RI0
V jR ¼ ZL;RI0

V jcF!cR;Nf!2NftR þ
g4�

ð16�2Þ2 cRðcR � cFÞ
� ½813:958 065 4ð2Þ � 187:347 384 3ð1ÞcSW
� 21:443 414 2ð2Þc2SW�; (A6)

ZL;RI0
AV jR ¼ ZL;RI0

AV jcF!cR;Nf!2NftR þ
g4�

ð16�2Þ2 cRðcR � cFÞ
� ½623:612 259 5ð2Þ þ 9:783 842 5ð1ÞcSW
� 88:880 374 1ð2Þc2SW�; (A7)

ZL;RI0
T jR ¼ ZL;RI0

T jcF!cR;Nf!2NftR þ
g4�

ð16�2Þ2 cRðcR � cFÞ

� ½4�2 lnða2L ��2Þ þ 632:368 420 2ð3Þ
� 154:492 179ð2ÞcSW � 77:863 097 5ð2Þc2SW�:

(A8)

Actually, the reader could arrive at these results without
knowledge of the per diagram breakdown, by virtue of the
following fact: All ‘‘exceptional’’ powers of cF cancel out

of ZL;RI0
V , ZL;RI0

AV , ZL;RI0
T , if these are expressed in terms of the

renormalized coupling constant aRI0 . Thus, one may
(i) Express Eqs. (30), (31), and (33) in terms of gRI0 by

means of g� ¼ ðZL;RI0
g ÞgRI0 , with ZL;RI0

g in the funda-
mental representation (Eq. (28))

(ii) Apply substitutions (A4) and (A5) throughout
(iii) If desired, reexpress everything in terms of g� (using

ðZL;RI0
g Þ�1 from Eq. (28), with Nf!2NftR and cF as

is)
No correction terms are necessary in this procedure.

APPENDIX B: MANIPULATION OF
SUPERFICIALLY DIVERGENTAND

SUBDIVERGENT TERMS

In the case of the scalar and pseudoscalar bilinears [1] all
superficially divergent terms involved at most one free
Lorentz index, but when one considers other bilinear op-
erators different structures may arise. For example, in the
case of the vector and axial-vector operators, two-index
integrals may arise and, of course, when working with the
tensor operator three- or even four-index integrals appear
during the manipulation of superficially divergent terms.
The most laborious aspect of such an evaluation is to
extract the explicit dependence of the bare matrix element
on the external momentum, by expressing the superficially
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divergent parts in terms of known primitive divergent
integrals.

We will focus on an arbitrary four-index integrand
emerging, for example, from a ‘‘diamond’’-like diagram
with a � ¼ �5��� insertion. Taking into account the sym-

metries of this object, we can deduce all possible tensor
structures which may appear, as a linear combination, in
the result for the corresponding integral. Such structures
are certainly tensors under the hypercubic group, but not
necessarily so under the full SOð4Þ Euclidean rotation
group: Terms such as 
���� or q4=ðq2Þ2 might be present1

(q: external momentum), and if so they might spoil the
renormalizability and/or the Lorentz invariance of the the-
ory. We must show that in all cases, such terms are absent.

Let us begin by taking as an example an algebraic
expression which contains both superficial and subdiver-
gencies; this example serves as a prototype for all the cases
we have encountered. Such an expression may arise from a
diamond-like diagram with the insertion � ¼ �5���:

(B1)

×

where q is the external momentum and

p̂ � ¼ 2sin

�
p�

2

�
; p̂2 ¼X

�

4sin2
�
p�

2

�
; p

�� ¼ sinðp�Þ:

(B2)

No summation is implied over the indices �, �, �, �.
From simple ultraviolet power counting on the term

above, one can realize that the superficial degree of diver-
gence is�8 and the degree of divergence in each of the two
loops is �6 and �4. Thus, this term is not only super-
ficially divergent but also contains a subdivergence in the
right loop. All divergences are resolved by using a
Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) proce-
dure. The potential IR divergences, which may arise in
intermediate steps, necessitate working in D> 4 dimen-
sions as in [33]. Performing a BPHZ subtraction for the
right loop, we split the integral into two parts:

I����ðqÞ ¼ I����
sub ðqÞ þ

Z dDp

ð2�ÞD
p
��p

��

ðp̂2Þ2 dpþ q
2

�
Z dDk

ð2�ÞD
k
��

k
��

ðk̂2Þ3 ; (B3)

I����
sub ðqÞ �

�Z dDpdDk

ð2�Þ2D
k
��

k
��

p
��p

��

ðp̂2Þ2 dpþ q
2 dk� p

2
k̂2 dkþ q

2

�
Z dDp

ð2�ÞD
p
��p

��

ðp̂2Þ2 dpþ q
2

Z dDk

ð2�ÞD
k
��

k
��

ðk̂2Þ3
�
:

(B4)

The last term in Eq. (B3) is a separable integral. The
integral over momentum p is a standard primitively diver-
gent integral (see, e.g., [35]), whose value contains only
Lorentz invariant structures. The integral over momentum
k does not depend on the external momentum q and gives
nonzero result only when the indices � and � are in the
same direction. Thus, this term assumes the following
structural form:

Z dDp

ð2�ÞD
p
��p

��

ðp̂2Þ2 dpþ q
2

Z dDk

ð2�ÞD
k
��

k
��

ðk̂2Þ3

! 
��

�
a
�� þ b

q�q�

q2

�
: (B5)

In the remaining part of the original expression, we must
still perform an extra subtraction, to cure the superficial
divergence:

IsubðqÞ ¼ ½IsubðqÞ � Isubð0Þ� þ Isubð0Þ: (B6)

According to the BPHZ procedure, the quantity ½IsubðqÞ �
Isubð0Þ� is now UV finite, and thus it equals the correspond-
ing continuum expression. Consequently, once again, only
Lorentz invariant structures arise,

½IsubðqÞ � Isubð0Þ� ! a0
q�q�q�q�

ðq2Þ2 þ b0

q2
ð
��q�q�

þ 
��q�q� þ 
��q�q�

þ 
��q�q�Þ þ c0
�� q�q�

q2

þ d0
�� q
�q�

q2
þ e0ð
��
��

þ 
��
��Þ þ f0
��
��: (B7)

The last part of the integral I����ðqÞ (last term in
Eq. (B6)) equals

I����
sub ð0Þ ¼

Z dDpdDk

ð2�Þ2D
k
��

p
��
p
��

k
��

ðp̂2Þ3ðk̂2Þ2
�

1dk� p
2
� 1

k̂2

�
: (B8)

This q-independent integral could give rise to a structural
form of the type 
����, which would spoil Lorentz invari-
ance; however, this problem is avoided since the indices�,
� in I���� actually originate from the insertion � ¼
�5���. As a consequence, only the combination I���� �
I���� appears in the Feynman diagram, and no 
����

contribution survives. Thus, we are led to

1
���� � 1, � ¼ � ¼ � ¼ �; 
���� ¼ 0, otherwise; q4 �P
�ðq�Þ4.
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½I����
sub ð0Þ � I����

sub ð0Þ� ! a00ð
��
�� � 
��
��Þ: (B9)

Having completed the whole procedure for the integral
shown in Eq. (B1), we conclude that the only functional
form that a four-index object (with the symmetries de-
scribed above) can have reads

I����ðqÞ � I����ðqÞ ¼ Aðq2Þð
��
�� � 
��
��Þ

þ Bðq2Þ
q2

ð
��q�q� � 
��q�q�Þ

þ Cðq2Þ
q2

ð
��q�q� � 
��q�q�Þ:
(B10)

We emphasize again that, even though the above expres-
sion would be obvious in a continuum regularization, it is
not so on the lattice, where one could have ended up with
terms breaking Lorentz invariance.

Using similar considerations, we can prove that the two-
and three-index expressions which appear in our calcula-
tion will take the same structural form as in the continuum;
i.e., they will be free of Lorentz noninvariant contributions,
which could be present a priori, such as 
��ðq�Þ2=q2,

���, etc.

Once we establish the structural form of the two-, three-,
and four-index integrals, we must compute the coefficients
multiplying each tensor structure, such as the coefficients
Aðq2Þ, Bðq2Þ, Cðq2Þ of Eq. (B10). We illustrate the proce-
dure by taking as an example the following two-index
integral:

I��ðqÞ ¼
Z d4pd4k

ð2�Þ8
k
��

p
��ðk� � p�Þ

ðp̂2Þ2 dpþ q
2 dk� p

2
k̂2 dkþ q

2
:

(B11)

Along the same lines of reasoning as above, we conclude
that the lattice integral I�� is of the same form as its
continuum counterpart,

I��ðqÞ ¼ A
�� þ B
q�q�

q2
: (B12)

The problem is now reduced to evaluating the coefficients
A and B. Upon contracting the integral shown in Eq. (B12)
with 
�� and q�q�, we get

I1 �
X
��


��I�� ¼ DAþ B; (B13)

I2 �
X
��

q�q�I�� ¼ Aq2 þ Bq2; (B14)

where D is the number of dimensions (on the lattice, D ¼
4). Once we evaluate the integrals I1 and I2, we are able to
determine the quantities A and B through the following
relations:

A ¼ 1

3

�
I1 � 1

q2
I2

�
; B ¼ 1

3

�
4

q2
I2 � I1

�
: (B15)

Let us proceed with the evaluation of the integral I1 by
contracting 
�� with Eq. (B11), keeping only terms of
order Oðq0Þ. At first, we aim to reduce the number of
propagators appearing in the denominator by employing
the following property, which is valid on the lattice:

k
� � p� ¼ 1

2

�bk2 þ bp2 � ð dk� pÞ2 � 1

2

X
�

ðk̂�Þ2ðp̂�Þ2
�
:

(B16)

Omitting some intermediate steps, the resulting expression
can be written as follows:

I1 ¼ Ia þ Ib þ Ic þ Id; (B17)

where

Ia ¼ � 1

4

Z d4pd4k

ð2�Þ8
ðk� � p�ÞP

�
ðk̂�Þ2ðp̂�Þ2

ðp̂2Þ2 dpþ q
2 dk� p

2
k̂2 dkþ q

2
;

(B18)

Ib ¼ � 1

2

X
�

Z d4k

ð2�Þ4
k
��

k̂2 dkþ q
2
�
Z d4p

ð2�Þ4
p
��

ðp̂2Þ2 dpþ q
2
;

(B19)

Ic ¼ 1

2

Z d4pd4k

ð2�Þ8
k
� � p�

k̂2 dkþ q
2
p̂2 dpþ q

2 dk� p
2
; (B20)

Id ¼
Z d4pd4k

ð2�Þ8
k
� � p�

ðp̂2Þ2 dpþ q
2 dkþ q

2 dk� p
2

¼ 1

2

Z d4pd4k

ð2�Þ8
ðk� qÞ� � ðp� qÞ�

p̂2ð dp� q2Þ2k̂2 dk� p
2
: (B21)

As can be seen from the expressions above, we have
managed to reduce diamondlike expressions into simpler
integrals. Integral Ia is IR convergent: one can set q ¼ 0
and carry out the integration numerically. Integral Ib,
shown in Eq. (B19), is the product of two one-loop inte-
grals: The first one is well known and tabulated in [35],
whereas the second, being UV finite, equals its continuum
analogue and can be solved by using the following formula
found in Ref. [34]:
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Z dDp

ð2�ÞD
P nðpÞ

p2�ðp� qÞ2	

¼ ðq2Þ2�"���	

ð4�2Þ
X
��0

Gð�;	; n; �Þq2�

�
�
1

�!

�
hp

4

�
�
P nðpÞ

�
p¼q

; (B22)

where " ¼ ð4�DÞ=2, hp � @2=@p�@p�, and

Gð�;	;n;�Þ ¼ ð4�Þ"�ð�þ	��� 2þ "Þ
�ð�Þ�ð	Þ

�Bð2� "��þ n��;2� "�	þ�Þ:

�ðaÞ is the Gamma function and Bð�;	Þ ¼
�ð�Þ�ð	Þ=�ð�þ 	Þ is the Beta function. P nðpÞ is an
arbitrary homogeneous polynomial in p: P nð�pÞ ¼
�nP nðpÞ. All UV-convergent integrals in our calculation
can be treated using Eq. (B22), for various values of �, 	,
P nðpÞ (and also Eq. (3.4) of [34] for diamond diagrams).
Integral Ic of Eq. (B20) can be treated with one further
application of Eq. (B16), leading to either IR convergent
contributions or tabulated integrals (such as the scalar
‘‘eye’’ integral, Eq. (C.5) of [35]). Regarding the integral
Id, employing integration by parts, we find

Id ¼ 1

2

Z d4pd4k

ð2�Þ8

P
�
cosðk� qÞ�

p̂2 dp� q2k̂2 dk� p
2

� 1

2

X
�

@q�
Z d4pd4k

ð2�Þ8
ðk� qÞ� �

p̂2 dp� q2k̂2 dk� p
2
: (B23)

Simple trigonometry on the first term in Eq. (B23):P
� cosðk� qÞ� ¼ 4� k̂2=2þOðqÞ leads to the scalar

eye diagram plus a simple, separable integral. The second
term in Eq. (B23) is the derivative of a vector eye diagram,
and can be resolved in two steps: (i) The integrand,

ðk� qÞ� �
=ðp̂2 dp� q2k̂2 dk� p

2Þ, after simple trigonometry
and use of the symmetry k ! p� k, may be expressed in
terms of superficially convergent and/or known divergent
integrals, plus an integrand of the form

p
��

=ðp̂2 dp� q2k̂2 dk� p
2Þ; (ii) the latter, upon contraction

with q
��

and use of Eq. (B16), is expressed completely in
terms of known integrals.

Some superficially convergent integrals, which contain
subdivergences, often appear in various stages of our cal-
culation. A simple prototype example is

P
�
ðk̂�Þ4

p̂2 dp� q2k̂2 dk� p
2

which is logarithmically divergent for q ! 0. In such
cases, a subtraction of the form

1dk� p
2 ¼ 1

k̂2
þ

�
1dk� p

2
� 1

k̂2

�

leads to known separable integrals, plus terms in which one
can set q ¼ 0 without appearance of divergences.
In conclusion, using the steps which we outlined above,

we have managed to evaluate the integral I1 of Eq. (B13),
by reducing diamondlike structures into simpler ones,
leading to expressions containing UV-finite integrals and
standard primitively divergent integrals whose values are
known. Using similar considerations, one can also evaluate
the integral I2 of Eq. (B14), which is needed up to order
Oðq2Þ. With the evaluation of these two integrals, we can
fully determine the coefficients A and B of Eq. (B15),
leading to the calculation of the original two-index inte-
gral. Let us point out that, throughout the whole procedure,
the necessity to work in D � 4 dimensions does not
emerge (It was only necessary in order to carry out dem-
onstrations, such as Eqs. (B3)–(B9), leading to the con-
clusion: Eq. (B10)).

APPENDIX C: PER DIAGRAM RESULTS

In this appendix we present our perturbative results for
the bare Green’s functions, ��ðg�; aLqÞ (where � ¼ V,
AV, T) on a per diagram basis. Our results are expressed
in terms of the bare coupling constant, g�, the lattice
spacing aL, the external momentum q, and the clover
parameter cSW. For the sake of simplicity we have setNc ¼
3 in two-loop expressions; at one-loop level the number of
colors is left unspecified and the bare gauge parameter, ��,
may take arbitrary values. In all cases, the number of
flavors, Nf, can take arbitrary values.

Only one Feynman diagram, shown in Fig. 1, contributes
to one-loop expressions. Our corresponding results for the
three operators read

�V;1-loopðg�; aLqÞ ¼ g2�
ðN2

c � 1Þ
Nc

�
��

�
� ��

32�2
logða2Lq2Þ

þ 0:0151 728 775 487ð3Þ��
þ 0:012 580 876 58ð1Þ
� 0:007 905 256 548ð1ÞcSW
þ 0:002 704 322 785 9ð1Þc2SW

�

þ q� 6q
q2

�
� 1

16�2
��

��
; (C1)
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�AV;1-loopðg�; aLqÞ ¼ g2�
ðN2

c � 1Þ
Nc

�5

�
��

�
� ��

32�2
logða2Lq2Þ þ 0:015 172 877 548 7ð3Þ�� � 0:002 685 425 493ð8Þ

þ 0:007 905 256 548ð1ÞcSW � 0:002 704 322 785 9ð1Þc2SW
�
þ q� 6q

q2

�
� 1

16�2
��

��
; (C2)

�T;1-loopðg�; aLqÞ ¼ g2�
ðN2

c � 1Þ
Nc

�5���

�
1� ��
32�2

logða2Lq2Þ þ 0:012 006 590 559 73ð9Þ�� þ 0:001 183 131 74ð2Þ

� 0:005 270 171 0ð1ÞcSW � 0:001 820 704 300ð1Þc2SW
�
: (C3)

The contribution to the bare Green’s functions from the ‘th two-loop diagram, can be written in the following form:

�ð‘Þ
V;2-loopðg�; aLqÞ ¼ g4�Nk

f

�
��

X
i

ciSW

�
vð‘Þ1;i

1152�4
log2ða2Lq2Þ þ vð‘Þ2;i logða2Lq2Þ þ vð‘Þ3;i

�

þ q� 6q
q2

X
i

ciSW

�
vð‘Þ1;i

288�4
logða2Lq2Þ þ vð‘Þ4;i

��
; (C4)

TABLE I. Contribution of two-loop diagrams to �ð‘Þ
V;2-loop (‘ ¼

1–14).

‘ i vð‘Þ1;i vð‘Þ2;i vð‘Þ3;i vð‘Þ4;i

1 0 0 0.001 090 141 3�0:009 555 49ð5Þ 0.002 180 282 6

1 0 0 0.008 990 8(2) 0

2 0 0 �0:005 220 28ð9Þ 0

2 0 0 0 0.002 305 66(3) 0

1 0 0 0 0

2 0 0 �0:000 041 360ð2Þ 0

3–7 0 0 �0:000 401 014 9 0.011 830 22(2) �0:000 802 029 9
1 0 0 �0:007 388 44ð3Þ 0

2 0 0 0.002 607 94(1) 0

8–9 0 0 0.000 053 468 7�0:000 394 7ð1Þ 0.000 106 937 4

1 0 0 0.000 325 45(2) 0

2 0 0 �0:000 778 30ð1Þ 0

3 0 0 0.000 389 303(9) 0

4 0 0 �0:000 146 063ð2Þ 0

10–11 0 0 �0:001 744 226 1 0.015 288 829 2 �0:003 488 452 1
1 0 0 �0:004 354 802 5 0

2 0 0 0.001 489 741 9 0

12 0 0 0 0 0

1 0 0 0.000 063 005(3) 0

2 0 0 �0:000 061 816ð2Þ 0

13 0 0 0.000 039 026 7�0:000 161 967ð5Þ 0.000 078 053 4

1 0 0.000 125 589 1�0:000 997 63ð1Þ 0.000 251 178 1

2 0 �0:000 200 026 4 0.000 094 61(1) �0:000 400 052 7
3 0 0 �0:000 046 762ð1Þ 0

14 0 0 0 0.000 450 44(3) 0

1 0 0 �0:001 470 21ð3Þ 0

2 0 0 �0:000 043 209ð1Þ 0

3 0 0 0.000 057 664(2) 0

TABLE II. Contribution of two-loop diagrams to �ð‘Þ
V;2-loop

(‘ ¼ 15–20).

‘ i vð‘Þ1;i vð‘Þ2;i vð‘Þ3;i vð‘Þ4;i

15 0 27 �0:002 090 415 4 0.006 162 9(1) �0:004 180 77ð4Þ
1 0 �0:000 550 719 1�0:001 010 1ð1Þ �0:001 101 438 1

2 0 0.000 175 922 7 0.000 264 74(6) 0.000 351 845 5

3 0 0 0.000 424 491(6) 0

16 0 0 0.000 039 026 7�0:000 342 083ð4Þ 0.000 078 053 4

1 0 0.000 125 589 1 0.001 157 216(6) 0.000 251 178 1

2 0 �0:000 200 026 4 0.001 783 25(2) �0:000 400 052 7
3 0 0 �0:000 076 152ð1Þ 0

17 0 0 �0:000 035 645 8�0:000 049 925ð1Þ 0.000 018 74(2)

1 0 0 0.000 198 131(2) 0

2 0 0 �0:000 064 731ð4Þ 0

3 0 0 �0:000 016 181 2ð2Þ 0

4 0 0 0.000 003 267 4 0

18 0 �1 0.000 055 819 5 0.000 098 634(7) 0.000 021 59(5)

1 0 �0:000 021 109 7�0:000 057 416ð3Þ �0:000 042 219 4
2 0 0.000 024 903 3�0:000 179 175ð1Þ 0.000 049 806 7

3 0 0 0.000 033 500 5(3) 0

4 0 0 0.000 007 735 8(2) 0

19 0 �8 0.000 268 148 3�0:008 617 5ð2Þ �0:000 034 035 8

1 0 0.000 320 650 6 0.014 402 2(6) 0.000 641 301 2

2 0 0.000 199 226 6 0.004 540 38(9) 0.000 398 453 3

3 0 0 0.001 285 88(2) 0

4 0 0 �0:000 478 70ð1Þ 0

20 0 4 �0:000 803 127 4 0.004 539 73(4) �0:001 035 89ð2Þ
1 0 0.000 177 993 3�0:002 343 05ð6Þ 0.000 355 986 6

2 0 �0:000 060 890 0 0.000 902 17(4) �0:000 121 780 1
3 0 0 0.000 065 108(4) 0

4 0 0 0.000 042 854 3(8) 0
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�ð‘Þ
T;2-loopðg�; aLqÞ ¼ g4�Nk

f�5���

�X
i

ciSW

�
xð‘Þ1;i

1152�4
log2ða2Lq2Þ þ xð‘Þ2;i logða2Lq2Þ þ xð‘Þ3;i

��
; (C6)

where the index ‘ runs over all contributing two-loop

diagrams. The dependence on cSW is polynomial of degree
up to 4 (i ¼ 0; � � � ; 4). The number of flavors, Nf, is raised

to the power k where, of course, k ¼ 1 only for diagrams 8
and 9 of Fig. 2, since they are the only diagrams containing

a closed fermion loop; the remaining diagrams have k ¼ 0.

The coefficients vð‘Þ, wð‘Þ, and xð‘Þ are numerical constants

obtained upon evaluating each two-loop Feynman dia-
gram. In Tables I and II, III and IV, and V and VI we

present our results for vð‘Þ, wð‘Þ, and xð‘Þ, respectively, with
accuracy up to 10 decimal places.
In the case of the singlet axial-vector operator, it turns

out that the only additional diagram contributing to

�ð‘Þ
AV;singletðaLqÞ is diagram 4 of Fig. 3. It is a straightforward

exercise to recover the bare matrix element; starting from

ZL;RI0
AV;singlet (Eq. (35) and Z

L;RI0
c (Eq. (29), one can employ the

RI0 renormalization condition, Eq. (12), to extract the
corresponding matrix element.

TABLE III. Contribution of two-loop diagrams to �ð‘Þ
AV;2-loop

(‘ ¼ 1–14).

‘ i wð‘Þ
1;i wð‘Þ

2;i wð‘Þ
3;i wð‘Þ

4;i

1 0 0 0.001 090 141 3�0:004 299 380ð2Þ 0.002 180 282 6

1 0 0 �0:008 990 8ð2Þ 0

2 0 0 0.005 220 28(9) 0

2 0 0 0 �0:000 102 70ð1Þ 0

1 0 0 0 0

2 0 0 0.000 041 360(2) 0

3–7 0 0 �0:000 401 014 9�0:001 770 94ð2Þ �0:000 802 029 9
1 0 0 0.007 388 44(3) 0

2 0 0 �0:002 607 94ð1Þ 0

8–9 0 0 0.000 053 468 7�0:000 014 3ð1Þ 0.000 106 937 4

1 0 0 �0:000 197 12ð2Þ 0

2 0 0 0.000 016 58(1) 0

3 0 0 �0:000 389 303ð9Þ 0

4 0 0 0.000 146 063(2) 0

10–11 0 0 �0:001 744 226 1 0.006 879 016 1 �0:003 488 452 1
1 0 0 0.004 354 802 5 0

2 0 0 �0:001 489 741 9 0

12 0 0 0 0 0

1 0 0 �0:000 063 005ð3Þ 0

2 0 0 0.000 061 816(2) 0

13 0 0 0.000 039 026 7 0.000 172 34(2) 0.000 078 053 4

1 0 0.000 125 589 1 0.001 729 37(5) 0.000 251 178 1

2 0 �0:000 200 026 4�0:001 476 78ð5Þ �0:000 400 052 7
3 0 0 0.000 046 762(1) 0

14 0 0 0 0.000 203 052(3) 0

1 0 0 0.000 570 21(3) 0

2 0 0 0.000 100 67(1) 0

3 0 0 �0:000 057 664ð2Þ 0

TABLE IV. Contribution of two-loop diagrams to �ð‘Þ
AV;2-loop

(‘ ¼ 15–20).

‘ i wð‘Þ
1;i wð‘Þ

2;i wð‘Þ
3;i wð‘Þ

4;i

15 0 27 �0:002 090 415 4 0.001 912 9(1) �0:004 180 77ð4Þ
1 0 �0:000 550 719 1 0.004 821 4(1) �0:001 101 438 1
2 0 0.000 175 922 7�0:001 003 89ð6Þ 0.000 351 845 5

3 0 0 �0:000 424 491ð6Þ 0

16 0 0 0.000 039 026 7�0:000 153 916 6ð3Þ 0.000 078 053 4

1 0 0.000 125 589 1 0.001 259 57(2) 0.000 251 178 1

2 0 �0:000 200 026 4 0.001 151 401(6) �0:000 400 052 7
3 0 0 0.000 076 152(1) 0

17 0 0 �0:000 035 645 8�0:000 281 627ð7Þ 0.000 506 833 0

1 0 0 0.000 060 887(2) 0

2 0 0 0.000 050 595(4) 0

3 0 0 �0:000 006 587ð2Þ 0

4 0 0 �0:000 004 659 8ð4Þ 0

18 0 �1 0.000 055 819 5 0.000 050 308(7) 0.000 021 59(5)

1 0 �0:000 021 109 7�0:000 226 495ð3Þ �0:000 042 219 4
2 0 0.000 024 903 3 0.000 086 519(1) 0.000 049 806 7

3 0 0 �0:000 033 612 8ð3Þ 0

4 0 0 �0:000 007 735 8ð2Þ 0

19 0 �8 0.000 268 148 3�0:020 645 0ð5Þ �0:000 034 035 8
1 0 0.000 320 650 6 0.025 396 0(7) 0.000 641 301 2

2 0 0.000 199 226 6 0.006 476 2(2) 0.000 398 453 3

3 0 0 �0:001 993 56ð7Þ 0

4 0 0 �0:000 442 050ð6Þ 0

20 0 4 �0:000 459 394 1 0.001 104 29(4) �0:000 348 42ð2Þ
1 0 �0:000 177 993 3 0.000 633 76(6) �0:000 355 986 6
2 0 0.000 060 890 0�0:000 295 72ð4Þ 0.000 121 780 1

3 0 0 �0:000 201 975ð4Þ 0

4 0 0 0.000 006 093 9(8) 0
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