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We discuss a three-flavor lattice QCD action with clover improvement in which the fermion matrix has
single level stout smearing for the hopping terms together with unsmeared links for the clover term. With
the (tree-level) Symanzik improved gluon action this constitutes the stout link nonperturbative clover or
SLiNC action. To cancel O(a) terms the clover term coefficient has to be tuned. We present here results of
a nonperturbative determination of this coefficient using the Schrodinger functional and as a by-product a
determination of the critical hopping parameter. Comparisons of the results are made with lowest order

perturbation theory.
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I. INTRODUCTION

When constructing a lattice QCD action, even the sim-
plest gluon action has only O(a?) corrections. The naive
quark action also has O(a?) corrections, but suffers from
the ““doubling problem” describing 16 flavors in the con-
tinuum limit. A cure is to add the Wilson mass term, so 15
flavors decouple in the continuum limit, but the price is that
there are now O(a) corrections (and also loss of chiral
invariance), so that, for example, for a ratio of hadron
masses

M _ ro + ar; + 0(a?). €))

My
The Symanzik approach is a systematic improvement to
O(a") (where in practice n = 2 for the fermion action) by
adding a basis (an asymptotic series) of irrelevant operators
and tuning their coefficients to completely remove O(a" ")
effects. Restricting improvement to on-shell quantities the
equations of motion reduce the set of operators in both the
action and in matrix elements. Indeed, for O(a) improve-
ment of the fermion action only one additional flavor-
singlet operator is required

£clover X ACgy z q(x)a-,uVF,u,V(x)q(x)’ (2)

q.xX, uv

the so-called ‘“Sheikholeslami-Wohlert” or “‘clover” term,
[1]. So if we can improve one on-shell quantity this then
fixes cq, as a function of the lattice spacing a or equiv-
alently of the bare coupling g3, so that all other on-shell
quantities are automatically improved to O(a), i.e., we now
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have
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A nonperturbative determination of ¢y, will be the main
goal of this paper, the general approach being described
below.

Matrix elements still require additional O(a) operators,
for example, for the axial current and pseudoscalar density

21,
A, =1+ bgamy)A, + caadiATP),

4)
P = (1 + bpam,)P,

(for mass degenerate quarks) with

AL = qvu7s9 P = qvysq, ©)

which require additional b4, c4, and bp improvement
coefficients. An easily determined quantity is the quark
mass computed from the partially conserved axial current
Ward identity (PCAC WI),”

wI _ (35T (Ag(xg) + c4ad5?TP(x)) O)
M T 2(P(x)0)

(6)

'We implicitly distinguish between quark flavors in operators,
i e consider nonsinglet operators.

GLAT is the symmetric lattice derivative, (95T f)(x) =[f(x +
a,u,) f(x—ap)]/(a), and (no u @ummatlon) (62LATf)(x) =
[F(x +an) = 2f(x) + f(x — ap)]/a® = (BATOLAT £)(x) + O(a?).
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Choosing different operators, O, gives different determi-
nations of the quark mass myl(i), i = 1, 2 with different
lattice artifacts. If the quark mass is improved then its
errors are O(a?). So we can determine the “optimal” c,

improvement coefficient by tuning until

my' V) = V1) (7)

[This is equivalent to considering the renormalized quark
mass

Z,(1+b
_ Za( Aamq)mWI (8)

qu N Zp(l + bpamq) a-

In general the b4, bp coefficients do affect considerations
of O(a) improvement. However, here one imposes a con-
dition at fixed bare parameters (g(z), m,) which means that
the factors drop out.] Practically, how this is achieved will
be discussed in this paper after the action is introduced.

This paper is organized as follows. In Sec. II, the action
is given and in Sec. III the Schrodinger functional is briefly
discussed, together with the general procedure for deter-
mining the optimal ¢, and optimal critical hopping pa-
rameter, .. Section IV gives some lattice details for a
series of simulations at various coupling constants, which
after suitable interpolations leads to this determination.
Section V then discusses possible finite size effects in the
results. Results are collected together in Sec. VI and a
polynomial interpolation (in the coupling constant) for
both ¢y, and k. is given, together with a comparison
with the lowest order perturbation result. Finally in
Sec. VII some brief conclusions are discussed. Tables of
the raw results are given in the Appendix.

II. THE SLINC ACTION

We shall consider here n; = 3 flavor stout link clover
fermions—SLiNC fermions (stout link nonperturbative
clover). In a little more detail, for each flavor,

Sy — Z{szu)m — D)0, (W + af)
— 4y, + DOLGx — ap)glx — ai)]

O C R WO Y SO
wy

Rescaling the quark fields ¢ — g/+/2k gives the quark
mass m, where

my(ew) =50 (5~ ) (10)

2a\k  Kolcq)

which is proportional to the PCAC quark mass, m)''. The
loss of chiral invariance means that for a given cy,, a critical
hopping parameter, «.(c,) has now also to be determined.

The hopping terms (Dirac kinetic term and Wilson mass
term, i.e., those terms involving a «) in Eq. (9) use a once
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stout-smeared link or ““fat link,” [3],
U, = expliQ, (0)}U, (x),
1
0,(x) = %[VUT —ovi—STvut - ovhl o ap

(V,, is the sum of all staples around U ) while the clover
term remains built from ‘“‘thin” links—they are already of
length 4a and we want to avoid the fermion matrix becom-
ing too extended. Smearing is thought to help at present
lattice spacings by smoothing out fluctuations in the gauge
fields slightly and so reducing the condition number and
also to avoid a near first-order phase transition. The critical
kappa in Eq. (10) corresponds to an additive mass renor-

malization
1 1 1
) =—|— 12
mc (CSW) Za (KC(CSW) 1/8) ( )

It is known that with a combination of link fattening and
increase of the clover coefficient, it is possible to reduce
this mass term [4-6]. The stout variation is also analytic
which means that the derivative in the gauge group can be
taken (so the force in the hybrid Monte Carlo, or HMC,
simulation is well defined) and perturbative expansions are
also possible, [7].

To complete the action we also use the Symanzik tree-
level gluon action

6 1
Se = _2{50 Z = Re Tr(1 — Upjyquete)
80 Plaquette

1
+ ¢ Z 7 Re Tr(l - URectangle)}: (13)

Rectangle

together with

20 1 6¢ 10

=1, a=-15 and ,8=g—(2)°=g—%. (14)
While this gluon action has elements of higher order
improvement, namely O(a*), this is not the reason that it
is used here. [The best we can hope for the fermion action
is O(a?) improvement.] Again we wish to move the action
away from a nearby first-order phase transition occurring
when using the standard Wilson action (i.e., ¢ — 1, ¢ —
0) [8], by using a slightly extended action. Different values
of ¢y and ¢; can be and have been used in the literature to
address this problem, e.g., [8].

III. THE SCHRODINGER FUNCTIONAL

The ALPHA Collaboration determined the improvement
coefficients by means of the ‘“Schrodinger functional,”
[2,9—-11]. Some numerical results for c, for the quenched
case (nf = 0) were given in [12,13], for ng = 2 flavors in
[14] and for ny = 3 flavors in [15-17]. In this approach
Dirichlet boundary conditions are applied on the time
boundaries to the fields. For the gluon fields, fixing them
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on the boundary is then equivalent to inducing some clas-
sical background field about which they fluctuate. It is
simplest to consider spatially constant color diagonal
fields, corresponding to a constant chromo-electric back-
ground field. Concretely, we consider a L3 X T lattice
(with T = 2L) and take the background field to be

U§(%, xp) = 1,

(15)
Ui o) = exp( ~i 5 [wC? + (T = x)C]),
with
L[ 0 o
ch=—1 0 ¢ o | (16)
0 0 ¢¥
and
(@1 o) Iy = (_17 0 17T>
R 66" )
5 1 1 an
2 2 2
(¢(), (2)7¢g)):<_877,§77',§77),

and fix the boundary values a posteriori. As we have an
extended gauge action (rather than the simpler Wilson
gluon action), we fix two values at each double boundary
layer and so we choose, following [18],° Uy, from Eq. (15)
at xo = —a, 0 (lower boundary) and similarly U, at x, =
T — a and T (upper boundary). The “‘bulk’ of the lattice is
thus from xo = 0 to xy = T — a. Additionally the weight
factors for the gluon loops in Eq. (14) must be appropri-
ately chosen on the boundary for O(a) improvement.
Classically these weight factors are not difficult to find,
however a full nonperturbative determination would be
difficult. But away from the boundaries, they only affect
the local PCAC relation to O(a?) and so are not essential
for the determination of the optimal c,, and so it is
sufficient to use the classical values.

The fixed boundary quark fields, p, p (taken as zero
here) make simulations with m, ~ 0 with no zero mode
problems possible. They are specified on the lower inner
boundary and upper inner boundary from

g(x, 0Py = pW(%),
G T — a)P§ = pP(3),
(18)

P§q(%0) = pV(3),
Pyq(x T —a) = pP (),

where Pg is the projection operator defined by
P§ =11 = yy). (19)
These projections are necessary for consistency. p and p

can be taken as sinks and sources, respectively, to build

*An alternative procedure using single layer boundaries is
given in [19].
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operators for correlation functions. For example, here we
can take at the lower inner boundary x, = 0 (i = 1) and
upper inner boundary x, = T — a (i = 2), the operators

o = Z(_ sz(ji)))YS((S/_)f)(Z)). (20)

¥z

So we can investigate PCAC behavior at different distances
from the boundaries.
In a little more detail, following Eq. (6), we first set

91 ) RN 13 (o)

r(x) = . , sD(xy) = a :
T2 ’ 219 (x)
21
where
1
f,(ql)(xo) = T3 1<A0(x0)0<1)>,
ny
T = x0) = + (A1) OP), (22)
ny
and
1
Ip(x0) = = (P(x)O")
"y
1
ST = x) = = (P(x) O (23)
ny

Then redefine the quark mass slightly, but which coincides
to O(a?) for the improved theory

M (xg, yo) = r'(xg) + &4(9)s?(xo),
r(yo) — r?(yo)
s (o) = 5P (vo)’

which eliminates the unknown c4 in the determination of
the quark mass [12], and replaces it by an estimator, ¢,.
Improvement is defined when

(M, AM) = (0,0), (25)

ealyo) = — (24)

where
M =MD, AM =MD — M@, (26)

are chosen at some suitable x, [12]. This gives the required
optimal ¢, and k., which we will denote by a star: ¢, and

;. Conventionally, we choose
M = M(l)(T/Z, T/4),
(27
AM = MYBT/4,T/4) — MDD (3T /4, T/4).

There are small changes due to the finite volume used, so
Eq. (25) becomes

(M, AM) = (0, AM"™), (28)

where AM"® is the tree-level (i.e., g§ = 0, ¢y, = ¢ =
1) value of AM|,—, on the L3 X T lattice. This ensures
that ¢, — 1 exactly as 8 — oo0. For a = 0, the analytic
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FIG. 1 (color online). AM against M for B8 = 5.10, 5.25 (upper left, right pictures, respectively), for 8 = 5.50, 8 = 6.00 (middle
left, right pictures, respectively), and for 8 = 6.50, 8 = 7.20 (lower left, right pictures, respectively), together with quadratic
interpolations to M = 0 (the open symbols).
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result on a NJ X 2N, = 83 X 16 lattice (where L = aN,)
is 0.000277, [12]. Carrying out the interpolation proce-
dures outlined in the next section for a free configuration,
with background field given by Eq. (15) yields 0.000 271.
For the stout smearing used here (see next section) we find
this is reduced to AM™* = 0.000066 and so we have
neglected AM"*® in the following and simply used
Eq. (29).

IV. THE LATTICE SIMULATION

The three-flavor lattice simulation used the Chroma
software library [20], the Schrédinger functional details
following [18]. Results were mostly generated on N3 X
2N, = 8% X 16 lattices, together with some additional
123 X 24 lattices, using the HMC algorithm together
with the RHMC variation [21] for the one-flavor. A mild
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were performed [typically generating O(3000) trajectories
for the 8% X 16 lattices and O(2000) trajectories for the
123 X 24 lattices], quadratic and then linear interpolations
of the (M, AM) results being used to locate the optimal
point (0, 0) as described below. Some further details and
tables of the results are given in the Appendix.
(Preliminary results were given in [22].)

A. Ciw

We have a two-parameter interpolation in ¢y, and
which is split here into two separate interpolations. First
plotting AM against M and then interpolating to M = 0 for
fixed c, gives a critical k, namely, k.(cgy),

AM(cgy, €)|p—0 = AM(cgy, k(o)) p—0 = AM(cgy).
(29)

smearing of @ = 0.1 was used. A series of simulations  In Figs. 1 and 2 we plot AM versus M for various cg,
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FIG. 2 (color online).

AM against M for B = 8.00, 10.0 (upper left, right pictures, respectively) and for 8 = 14.0 (lower picture),

together with quadratic interpolations to M = 0 (the open symbols).
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FIG. 3 (color online).
quadratic interpolations to M = 0 (the open symbols).

values for the 8% X 16 lattices and in Fig. 3 the results for
the 123 X 24 lattices.

These graphs are the fundamental plots requiring high
statistics as AM is the difference between two different
M’s. As there are always 4 (or more) points for each graph
a quadratic fit is made and the value of AM is determined
where M vanishes.

These values of AM(cg,) for each B value are then
plotted against c, as shown in Fig. 4 together with linear
fits. The point where AM(c,) vanishes gives ci,. This
gives values of
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FIG. 4 (color online).
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AM against M for 8 = 5.50, 6.00 (left, right pictures, respectively) on a 12° X 24 lattice together with

C,

sw

(open circles). The left plot shows the 83 X 16 results while the right plot shows the 123 X 24 results.
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FIG. 5 (color online). M against 1/« for B = 5.10, 5.25 (upper left, right pictures, respectively), for 8 = 5.50, 8 = 6.00 (middle
left, right pictures, respectively), and for 8 = 6.50, 8 = 7.20 (lower left, right pictures, respectively), together with quadratic
interpolations to M = 0 (the open symbols).
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We postpone a discussion of possible finite size effects
until Sec. V.

From Fig. 4, we see that linear fits even for four points
(the B = 7.20, 6.00, 5.25 results) show very little curva-
ture, so that we may write [14]

AM(cgy) = wlcgy = c5), €1V
with the gradient, w, a slowly varying function of g,. To

test this we note that

0AM(cg) _ o, (32)
9Cqn

so a fit to the gradients in Fig. 4 (for the 8° X 16 lattices)
yields an estimate for w. We find that  is constant with an
approximate value of —0.018, although for the largest
values of g3 there are deviations from this.

PHYSICAL REVIEW D 79, 094507 (2009)
B. k]

A similar procedure yields «: plotting M against 1/«
and interpolating quadratically to M = 0 for fixed cg,
gives the critical «, denoted by k. (cq, ). Then subsequently
plotting AM(cy,,) against 1/k.(cg,) and interpolating us-
ing a linear fit to AM = 0 gives k.

We first plot M against 1/« for the 83 X 16 results in
Figs. 5 and 6 and for the 123 X 24 results in Fig. 7.

Note that to produce these graphs should not require
high statistics as it does not involve AM. [Although these
are not the fundamental graphs they are also useful in
helping to determine the various (cg,, k) values for the
runs. |

These AM(k,) are then plotted in Fig. 8 again with a
linear fit. Where AM vanishes gives ;.. For legibility the
results have been split into subgraphs. We see that k. is a
nonmonotonic function of B.
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FIG. 6 (color online).

8.0 8.1 8.2 8.3
1/x

M against 1/« for 8 = 8.00, 10.0 (upper left, right pictures, respectively) and for 8 = 14.0 (lower picture),

together with quadratic interpolations to M = 0 (the open symbols).
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FIG. 7 (color online). M against 1/k for B = 5.50, 6.00 (left, right pictures, respectively) on a 123 X 24 lattice together with
quadratic interpolations to M = 0 (the open symbols).

We find results of As a consistency check the alternative plot of ¢, against
1/k. is shown in Fig. 9 where ¢, is plotted against

(0.116227(180) B =510 ) 1/k.(cy,), again with a linear fit between the points. The
0.118385(184) B =5.25 optimal values of ¢, namely cj,, taken from the previous
0.121125(330) B =5.50 fits as given in Eq. (30) are shown as dashed horizontal
0.124043(199) B = 6.00 lines, the intersection with the 1/, curves then giving the
0.124825(107) B =650 18X 16 optimal critical values of ., namely .. These are denoted

ke =1 0.125343(61) B =720 . (33)  in the figure as open points. As a comparison, the results
0.125281(38) B = 8.00 from the previous determination of 7, Eq. (33), are also
0.124993(22) B =10.0 shown as vertical lines. We see good agreement between
0.124773(26) B =14.0 the different determinations of «7, which indicates that the

0.122086(554) B =5.50
[ 0.123849(330) B = 6.00

123 % 24 fit procedure adopted here gives consistent results for both

——

0.010 : : : : , , 0.010 : : : : T T T T
® (=8.00 ®(=5.10 B=5.50 B=5.50
(=100 =525 B=6.00 B=6.00
® =140 B=5.50
0.005 - 1 0.005 |- 1t 1
Z  0.000 0.000 F---——m-—bbymmmmmemoo LoD N PP
-0.005 1 -0.005 1 F 1
12°24
~0.010 ) ) ) ) L L -0.010 . . . \ ) ) L L
7.8 8.0 8.2 8478 80 82 84 86 88 78 80 82 84 86 8878 80 82 84 86 88
1/, 1h, 1/, 1/,

FIG. 8 (color online). Results of AM(k (cg,)) versus 1/, together with linear fits. The open circles give the optimal critical «,’s,
i.e., the k*’s. The two left plots show the 8% X 16 results while the two right plots compare the 8 = 5.50, 6.00, 8° X 16 results with the
123 X 24 results.
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FIG. 9 (color online). Results of ¢y, (filled circles) versus 1/,
together with linear fits. The optimal cg,, ¢4y, from Eq. (30) are
shown as dashed horizontal lines. The open circles are the
intersection of the linear fits with these horizontal lines and
give an alternative determination of the optimal critical k.., .,
which are to be compared with the results of Eq. (33) shown as
vertical lines.

csw and «. Finally note that plotting the n, = 2 flavor
results would yield a similar curve to Fig. 9.

For future reference (in Sec. VI B) as the fits in Fig. 9 are
all linear, then we write

+ d(csw - c:w)’ (34)

with a measured coefficient d(g),

(1.0521(92) B =510 )
1.0208(54) B =5.25
0.9783(100) B = 5.50
0.7753(53) B = 6.00

d=1{ 06722(51) B=650 8x16. (35

0.5658(11) B =17.20
0.4907(10) B = 8.00
0.3719(08) B = 10.0

[ 0.2704(23) B =140 |

V. FINITE SIZE EFFECTS

There are (small) ambiguities due to the finite volume
used. In an infinite volume we expect O(aAqcp) contribu-
tions [in the chiral limit, otherwise there are also extra
O(amq) terms] due to the different boundary conditions or
operators chosen. In a finite volume there are additional
O(a/L) terms. Thus, one might expect asymptotically,
following [16],

PHYSICAL REVIEW D 79, 094507 (2009)

. a
cawl(go, L/a) = ciy(go, ) + Ly +cpalgep + 0.
(36)

The terms proportional to aAgcp vanish as a (or g3 —0
and represent the ambiguities in the different definitions of
M. For a physical quantity @, then

Q = Q(a) + q.(ciw (g0, L/a)
— ¢&y(80, ®@))aAqep + O(a?)

= Q) + qrer T akgen + 0@, (37)

The correction term may be rewritten as (where L = aNj)

a c

qreLy aMqcp = q]L\,—SL alAqgep. (38)
Potentially this might mean that Q is no longer O(a)
improved for simulations where ¢, has been determined
on a fixed lattice size, N;. However, it is likely that the
unknown coefficients ¢g; and c¢; are small and coupled with
the N, factor in the denominator, this is then expected to be
a small effect.

To avoid this altogether we can either keep L fixed in
physical units as @ — 0 (the “constant physics condition”)
so O(a/L) — 0, or alternatively simulate for several values
of N, and extrapolate to N, — 0. The “‘poor man’s solu-
tion” is to evaluate at large B8 — oo (i.e., on a free con-
figuration for N, = 8 here) and subtract this result.
Practically, following the same procedure as in Sec. IVA
we have found that for cg, this O(1/N,) term (for N, = 8)
is negligible.

As noted previously we have also performed additional
simulations on larger lattices 123 X 24 for 8 = 6.00, 5.50
in order to discuss finite lattice size corrections. The results
are plotted in Figs. 3 and 7, and compared with the 8° X 16
results in Figs. 4 and 8. At tree level we have [23]

AM©ee = k(clee — 1)% +oee (39)
which would indicate that for larger N, then AM becomes
smaller, with the consequent noise/signal ratio becoming
worse. Indeed this is seen in our results, with the 123 X 24
data being more bunched together in Fig. 3 than for the
corresponding 8 X 16 data in Fig. 1. This may be miti-
gated somewhat by choosing a larger range of ¢, due to
the linear nature of the data as seen in Fig. 4 and Eq. (31).
For B = 6.00 we have increased the number of ¢, ’s used
in the analysis.

In Fig. 10 we plot c%, and «: against 1/N,. For both 8 =
6.00 and 5.50 there seems to be small finite size effects for
ca- For k7 this is also the case for 8 = 6.00, while for 8 =
5.50 the situation is perhaps a little less clear-cut. However,
there is no systematic trend in the data and a constant fit
always lies within the error bars of the data. So although we
cannot come to a definite conclusion, there do not seem to
be large finite volume effects, i.e., ¢; appears to be small in
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shown are constant fits (dashed lines) together with the extrapolated values (open circles).

Eq. (36). So in Eq. (37) we only expect small violations of
O(a) improvement. We shall, in the future, just consider
the 8% X 16 data.

VI. RESULTS FOR c;,, AND x:

A. Perturbative results for c,, and «;

Before giving the nonperturbative results for ¢, and
we first recapitulate the perturbative results. The lowest
order perturbative limit has been computed for both ¢,
and « [7]. For cg, we have

cin(go) = 1+ (0.196244 + 1.151 888«
—4.2391365a%)g3, (40)

where « is the stout smearing parameter, set equal to 0.1
here. This gives

caw(go) =1+ ¢85 ¢ =0.269041, 1)

i.e., the smearing parameter has increased the value of ¢,
(for @ = 0, we have ¢; = 0.196244). For k.(csy, o) We
have

Ke(Conr 80) = 4[1 + (0.0853699 — 0.961 525
+ 3.558 06> — (0.025221
—0.078 737 9a)cy,, — 0.009 842 24¢2,)g2],

(42)
giving for &« = 0.1
Ko (Cowr 80) = gl 1 + (0.024798 — 0.017 347 2c,
— 0.009 842 24¢2,)g3], (43)
and finally for ¢y, = ci® = 1,

ky = —0.002391.

Ki(go) = 31 + kigjl. (44)

[Note that the result for k.(cqy, o) is more general than the
one given in [7] when only the result for ¢y, = 1 was
given.]

B. Nonperturbative results for c,, and «;

The results for ¢}, and | against gj are plotted in
Figs. 11 and 12, respectively, in the range 8 = 5.10. The
lowest order perturbative limits are also shown, Egs. (41)
and (44).

3.6 T T T T T T T T T T
3.4F perturbative E
@ B=5.10 o

3.2F ®p=5.25 3
$=5.50

3.0F B=6.00 1 3
) ® =6.50

E ®p=7.20 3
2.8 ® p=8.00
(=100

2.6F ®B=14.0 E

) o4k deg. 5 poly. E

5
o 22EF 3
2.0F ]
[
1.8F ]
o
1.6¢ . 3
14F e 3
S
1.2¢ 3
i b b b liaaaaaag IFETTETRETE FERERRETE] IFTETRERERI AR RTN] IFETRTRETE] Lo

1.0ﬁ 1 1 1 1 1 1
00 02 04 06 08 10 12 14 16
9%

18 2.

FIG. 11 (color online). ¢}, against g3 for various values of 3
(circles), together with a polynomial interpolation (line). Also
shown is the perturbative result.
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FIG. 12 (color online). « against g3 for various values of 8
(circles), together with a polynomial interpolation (line). Also
shown is the perturbative result.

An interpolation between the numerically determined
points is also shown. For both ¢}, and «) a 5th order
polynomial in g3 proved sufficient. (These interpolation
functions are constrained to reproduce the perturbative
results, in the 8 — oo limit and therefore, they have four
free parameters.) For ¢, (gg) we write

can(80) =1+ c185 + cagd + 385 + cagh + 5800,

(45
and find
¢ +0.299 10
ol-fome
Cs +0.153 59,

while for k:(g,) we write

Ki(g0) = 41 + kigf + kgl + ksgf + kagl + ksgl”l

47)
and find
k> +0.0122470
o [ =1 +00668197 @)
ks —0.0242800.

PHYSICAL REVIEW D 79, 094507 (2009)
These give for the specific 8 values used here

(3306 B =5.10
3.021 B =525
2.653 B =5.50
2179 B = 6.00
1.907 B = 6.50
1.692 B =720
1.560 B =8.00
1.407 B =10.0
(1279 B = 14,0,

(0.116262 B =5.10
0.118424 [ =15.25
0.120996 B =5.50
0.123751 B = 6.00
1 0.124870 B = 6.50
0.125328 B =17.20
0.125314 = 8.00
0.124979 B =100
L0.124783 B = 14.0,

ES J—
Cow = 1

(49)

which are to be compared with the numerically determined
values. The errors for ¢, from the fit are estimated to be
about 0.4% while for «; we have 0.02% at B8 = 14.0 rising
to 0.15% at B8 = 5.10.

These smooth fits between the points give estimates for
caw (and k%) which could be used in the action for future
generation of configurations.

For cj, the polynomial only tracks the perturbative
solution for small values of g3. This is perhaps not surpris-
ing as the tadpole improved, TI, estimate is ¢I! = u /ué
[71, which is to be compared with the unsmeared case of

eIl = 1/ul, where uj is the average plaquette value and

ué)s) is the smeared value. As smearing increases the pla-
quette value this indicates that cj,, can be large. For 7., on
the other hand, as ' =1/ (8u§)5)) we expect that it is
~1/8. This is true for reasonably fine lattices, however
K does begin to decrease for larger values of g3. For ng =
2 the same phenomenon occurs: for larger g(z), K, begins to
decrease (after initially increasing).

As a further consistency check on the results, we can
investigate the gradient a(1/k.)/dcgyl.: . From Eq. (34)
we have

a(1/k.)

0Cqyw

=d, (50)
as the fits in Fig. 9 are linear, where d is given in Eq. (35).
Perturbatively we have from Eq. (43),

a(1/x,)

Sryenie 8[0.037032 + 0.019 684(cy,, — 1)]g3. (51)
CSW

As gg increases cq,, increases, so not only do more terms in
this expansion become important, but the coefficient of the
leading term increases as well. For ¢y, = ¢ =1 we
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have the leading order perturbative result,

a(1/x.)

0Cqw

= d1g(2)’

%
Cyw

d; = 0.296253. (52)

In Fig. 13 we plot 9(1/k,)/dcl., against g§, together

with a 5th order polynomial in g3,

% T gy dagy + digh + dgi + dsgy
W (53)
and find
d, +0.4180
Zi - +8:Egg o9
ds —0.0919.

The results follow a smooth curve.

VII. CONCLUSIONS AND DISCUSSION

Nonperturbative O(a) improvement is a viable proce-
dure for (stout) smeared actions with typical clover results
being obtained. (Other recent results for 3 flavors are given
in [15-17].) Using the Schrodinger functional method we
have determined the optimal clover coefficent c,,, neces-
sary to achieve O(a) improvement and also the optimal
critical hopping parameter, k., Egs. (45) and (47) over a
wide range of coupling constant.

As a increases we need a significant ¢y, > clie® = 1 for
O(a) improvement. We are now seeking a region where
a ~ 0.05-0.1 fm. Improvement, which is presumably rep-
resented by an asymptotic series, brings an advantage for
smaller a, say a = 0.1 fm. The two extremes for a are

1.4 o T T T T T T T T T T
b perturbative
£ ®B=5.10
12F ®p=525 3
E =5.50
E $=6.00
F ® B=6.50 o
1.0F ®p=7.20 o E
F ® B=8.00
F ®B=100
F ®pB=140
* 2 0.8 ? deg. 5 poly. k|
g .
g 0.6 * . 1
=S .
0.4 * . E
g .
0.2 E 3
0.0 B st
00 02 04 06 08 10 12 14 16 18 20

2
Y%

FIG. 13 (color online). 9(1/k.)/dcqyl.:, against g§ for various
values of B (circles), together with a polynomial interpolation
(line). Also shown is the perturbative result.
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simulations at small @ with “large” m,, when there is no
continuum extrapolation but a chiral extrapolation, or al-
ternatively simulations at “coarse” a with m,; ~ m, when
there is no chiral extrapolation but a continuum extrapola-
tion. Of course the Schrodinger functional does not tell us
a; for this conventional HMC simulations are required.
Some preliminary results indicate that around S ~ 5.50
we have a ~ 0.08 fm.
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APPENDIX: M AND AM RESULTS

In Tables I, I1, III, IV, V, VI, VII, VIII, and IX we collect
the numerical values of M and AM as defined in Eq. (27)
for the N3 X 2N, = 8 X 16 lattices, while in Tables X and
X1 the results for the 123 X 24 lattices are given.

The data sets are of size O(3000) trajectories for the
83 X 16 lattices and O(2000) trajectories for the 123 X 24

TABLE 1. 8% X 16 results for M and AM for 8 = 5.10.

B Csw K M AM

5.10 3.20 0.11760 0.007 049(2313) 0.005762(1923)
5.10 3.20 0.11780 —0.01315(205) 0.001 565(1545)
5.10 3.20 0.11800 —0.02324(231) 0.003037(1212)
5.10 3.20 0.11820 —0.04187(212) —0.001353(1782)
5.10 3.30 0.116 10 0.01941(227) 0.004 648(1570)
5.10 3.30 0.11620 0.001408(2298) —0.003942(1737)
5.10 3.30 0.11640 —0.005654(2058) 0.001 279(1438)
5.10 3.30 0.11660 —0.02596(166) —0.002 347(1310)
5.10 3.30 0.11690 —0.04356(181) —0.004 137(1550)
5.10 3.40 0.11470 0.01098(191) —0.003299(1305)
5.10 3.40 0.11490 —0.004606(1516) —0.004438(1044)
5.10 3.40 0.11510 —0.01742(160) —0.006 135(1442)
5.10 3.40 0.11530 —0.02432(125) —0.005 855(748)
5.10 3.40 0.11550 —0.03424(165) —0.004 780(1086)
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TABLE II. 83 X 16 results for M and AM for 8 = 5.25. TABLE V. 83 X 16 results for M and AM for 8 = 6.50.
B Cow K M AM B Cow K M AM
525 290 0.12000 0.02772(322) 0.007 506(2096) 650 1.80 0.12550  0.01994(59) 0.001612(472)
525 290 0.12015 0.01468(226) 0.008 527(1944) 650 1.80 0.12575 0.01067(59) 0.001914(457)
525 290 0.12025 0.005850(2967) 0.003 412(1559) 650 1.80 0.12600 0.001513(513)  0.001973(466)
525 290 0.12050 —0.02097(186) 0.004 020(1167) 650 1.80 0.12650 —0.01600(55) 0.002 172(496)
525 290 0.12100 —0.04947(241) 0.0008952(14184) <0 190 012440 0.02139(60) 0.000403 9401 1)
525 3.00 0.11860 0.02041(279) —0.0007319(14965) 650 1.90 0.12470  0.01068(56) 0.001 113(435)
525 3.00 0.11875 0.0008556(19694) 0.001 173(1115) 650 1.90 0.12495 0.001754(539)  0.000338 8(5215)
525 3.00 0.11890 —0.006210(2160)  —0.001295(1424) 6.50  1.90 0.12520 —0.007849(601) —0.00003026(52328)
525 3.00 0.11905 —0.01727(244) —0.006 479(2808) 650 200 012360 00125549)  —0.002074(450)
525 3.00 0.11920 —0.03280(169) —0.002655(1102) 650 200 012390 0.001931(525) —0.001253(358)
525 3.10 0.11700 0.01973(153) —0.001 642(991) 6.50 200 0.12410 —0.006006(505) —0.002711(510)
525 3.10 0.11720 0.01021(171) —0.002551(1054) 6.50 200 0.12440 —0.01635(49)  —0.001294(453)
525 3.10 0.11740 —0.002194(1506)  —0.001440(922)
525 3.10 0.11760 —0.01303(133) —0.002512(1050)
525 310 011780 —0.02344(186) —0.0008732(12753)  jagtices. An initial thermalization phase was typically of
525 320 0.11580 0.01019(131) —0.005591(815) order 300 trajectories. The trajectory length 7 oma Was
525 320 0.11600 0.0001673(11516) —0.005485(875) always 1, while the number of steps in the trajectory,
525 320 0.11620 —0.008 058(1185) —0.005259(1342) N varied for the 83 X 16 lattices from 10 for B =
525 320 0.11640 —0.01905(114) 0.003621(1214) 6.50 10 12, 12, 15, and 18 for 8 = 6.00, 5.50, 5.25, and
TABLE III. 8% X 16 results for M and AM for B = 5.50. 5.10, respectively. This maintained an acceptance rate of
>80%. (This decreased very slightly for the larger
P Cow K M AM B values.) For the 123 X 24 lattices n,, =18, 22 for
550 250 0.12300 0.02608(208) 0.005 685(1134) B = 6.00, 5.50 was used to give this acceptance.
550 250 012320 0.01112(215) 0.003630(1484) The jackknife errors for the ratios are given uniformly to
5.50 250 0.12335 —0.001449(2014) 0.004018(1567) two significant figures, with the overriding requirement
550 250 012360 —0.01565(210) 0.007337(1321) that the result must also have a minimum of four significant
550 260 0.12170 0.006007(1703) 0.0009700(16220) figures. To reduce possible autocorrelations in the data
550 260 0.12190 —0.000 1614(18320)  0.001739(1046) every second trajectory was used with a jackknife block
550 2.60 0.12210 —0.01343(170) 0.0001628(11051)  gize of 10,
550 2.60 0.12230 —0.01959(223) 0.003 397(1508)
550 270 0.12015 0.01584(149) —0.002008(1139) 3 _
550 270 012040 0.002419(1200)  —0.001062(798) TABLE VI8 X 16 results for M and AM for § = 7.20.
550 270 0.12070 —0.01264(125) —0.001321(1175) B cu K M AM
550 2.70 0.12090 —0.01831(150) —0.001626(915)
720 1.40 0.12720  0.02534(46) 0.006 503(387)
TABLE IV. 8’ X 16 results for M and AM for B = 6.00. 7.20 1.40 0.12797 —0.0007597(4109) 0.005 029(430)
F N - Iy AM 7.20 1.40 0.12850 —0.017 13(48) 0.005 118(372)
Al 7.20 1.40 0.12920 —0.03970(53) 0.007 053(563)
600 210 0.12430 0.01841(99) 0.001 623(800)
600 210 012460 0006443(1084)  0.001332(753) 720 1.60 012500 0.03835(43) 0.003053(391)
600 210 012495 —0.004446(970) 0.0006452(7878)  /-20 1.60 012570 0.01500(38) 0.001 534(389)
720 1.60 0.12660 —0.01525(36) 0.001 353(543)
600 220 0.12330 0.01135(86) —0.0007576(5905) 7750 1’60 012720 —0.03608(38) 0.001 644(307)
600 220 0.12355 0.002234(706)  —0.000 174 7(6084)
6.00 220 0.12390 —0.01050(79) —0.000806 1(7138)  7.20 1.80 0.12270  0.05607(29) —0.001 786(239)
6.00 220 0.12420 —0.02108(79) —0.0008650(6771)  7.20 1.80 0.12380  0.01959(32) —0.001 553(260)
600 230 012190 0.01996(58) —0.002989(439) 7.20 1.80 0.12438 —0.00008070(34186) —0.002103(288)
600 230 012215 0009817(838)  —0.002765(574) 720 1.80 0.12500 —0.02136(34) —0.001939(300)
600 230 012240  0.0001335(7744) —0.003061(672) 720 1.80 012590 —0.05319(35) —0.001455(388)
6.00 230 0.12280 —0.01430(67) —0.003268(549) 720 2.00 0.12150 0.03819(31) —0.005604(315)
6.00 240 0.12100 0.01228(69) —0.004 705(456) 720 2.00 0.12210  0.01736(38) —0.005 245(340)
6.00 240 0.12120 0.003415(610)  —0.005526(586) 720 2.00 0.12264 —0.0002027(3196)  —0.005262(470)
600 240 0.12140 —0.004357(723)  —0.004751(540) 720 2.00 0.12290 —0.008518(356) —0.005990(375)
600 240 0.12160 —0.01066(73) —0.004 149(657) 7.20 2.00 0.12360 —0.03421(34) —0.006 188(311)
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TABLE VII. 8% X 16 results for M and AM for 8 = 8.00. TABLE X. 123 X 24 results for M and AM for 8 = 5.50.
B Cow K M AM B Cow K M AM
800 140 012570  0.02742(25) 0.003 117(207) 550 250 012300 0.02540(221) 0.000615 3(17 988)
800 140 012630  0.007469(239) 0.002932(272) 550 250 012320  0.004367(3139)  0.001051(1568)
800 140 012651 0000197 1(2329)  0.002716(221) 550 250  0.12335 —0.002279(2162)  0.001425(1272)
800 140 012680 —0.009671(223) 0.003 270(247) 550 250 012360 —0.01981(151)  0.002050(1237)
800 140 012730 —0.02596(28) 0.003221(256) 550 260 0.12170  0.007744(2026) —0.000943 8(8558)
800 1.60 012430  0.02266(23) —0.0004972(2019) 550 260 0.12190 —0.002810(1805)  0.0002407(11 134)
800 1.60 012480 0005679(245)  —0.0008718(2676) 550 260 0.12210 —0.01117(179)  —0.000 847 1(12790)
800 1.60 012498  0.0002484(2335) —0.0008608(2491) 550 260 0.12230 —0.02560(168)  —0.0007416(19293)
800 160 012520 —0.007169(242) ~ —0.0006004(2378) 550 270 (012015 001289(175)  —0.0008967(10745)
800 1.60 012570 —0.02410(25) —0.001201(239) 550 270  0.12040  0.001170(2838) —0.0003062(16 169)
800 1.80 012240 0.03501(24) —0.003 785(264) 550 270 012070 —0.01224(140)  —0.001362(852)
800 1.80 012290 0.01858(26) ~0.003763(179) 550 270 012090 —0.02138(153)  0.000267 7(9645)
800 1.80 0.12344  0.0005959(2472) —0.004 154(247)
800 1.80 012350 —0.002196(264)  —0.005071(223)
800 1.80 0.12400 —0.01861(27) —0.004 060(270)
TABLE VIII. 83 X 16 results for M and AM for 8 = 10.00.
B Cow K M AM
1000 120 012570 0.01641(22) 0.003 409(179)
1000 120 0.12619 —0.000 1306(1605)  0.003 338(182)
1000 120 0.12630 —0.003541(173) 0.003321(217)
1000 120 0.12690 —0.023 50(20) 0.003 296(198)
1000 120 0.12750 —0.04340(17) 0.003 247(206)
1000 140 012410  0.03094(21) 0.000 344 2(1695)
1000 140 012470  0.01351(29) 0.000 686 0(2239)
1000 140 012507 0.0004563(4134)  0.001032(171)
1000 140 0.12530 —0.008549(319) 0.000 568 3(2022)
1000 140 0.12590 —0.02794(27) 0.001 172(222)
1000 1.60 0.12270  0.03342(46) —0.004 086(267)
1000 1.60 012320  0.02152(16) —0.003 744(145)
1000 1.60 0.12382 0.001171(165)  —0.003759(157)
1000 1.60 0.12390 —0.002455(294)  —0.003 601(186)
1000 160 012450 —002161(19) —0.004 090(163) TABLE XI. 123 X 24 results for M and AM for 8 = 6.00.
B Cow K M AM
TABLE IX. 8 X 16 results for M and AM for 8 = 14.00, 600 210 012430  0.01957(74) 0.0003629(5316)
600 210 012460  0.007496(680)  0.0006202(5838)
B Cow K M AM 600 210 012495 —0.001642(1038)  0.001463(1070)
1400 L10 012500 001723®) 0,002 646(110) 600 210 012520 —0.01123(113) 0.000541 1(5241)
1400 110 012530  0.007452(89)  0.002787(103) 600 220 012330 001228(67)  —0.0008308(5383)
1400 110 012560 —0.002273(87)  0.002941(114) 600 220 012355  0.002046(917)  —0.000895 3(4855)
1400 110 012590 —0.01196(9) 0.002 676(100) 600 220 012390 —0.01153(83) 0.000513 9(5375)
1400 110 012620 —0.02194(9) 0.002 684(113) 600 220 012420 —0.02019(76)  —0.0003129(6525)
1400 120 012420  0.03218(36) 0.001 696(167) 600 230 012190 0.02111(49)  —0.001234(455)
1400 120 012470  0.01423(16) 0.001 044(98) 600 230 012215 001067(68)  —0.001233(833)
1400 120 012530 —0.002225(329)  0.002 191(174) 600 230 012240  0.002555(557) —0.000873 5(5407)
1400 120 012580 —0.01786(46) 0.002 320(199) 600 230 012280 —0.01306(64)  —0.000 156 5(5009)
1400 130 012380  0.02900(34)  —0.001514(170) 600 240 012100 00127349)  —0.001217(461)
1400 130 012430  001132(40)  —0.0004894(1641) 600 240 012120  0.005458(635) —0.002194(415)
1400 130 012480 —0.005572(301) —0.0007392(1529) 600 240 0.12140 —0.003718(533) —0.002257(514)
1400 130 012530 —0.02027(107) —0.0009807(2838)  6.00 240  0.12160 —0.009398(475) —0.001493(486)
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