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We present our results for the on-shell �I ¼ 3=2 kaon decay matrix elements using domain wall

fermions and the DBW2 gauge action at one coarse lattice spacing corresponding to a�1 ¼ 1:31 GeV in

the quenched approximation. The on-shell matrix elements are evaluated in two different frames: the

center-of-mass frame and nonzero total-momentum frame. We employ the formula proposed by Lellouch

and Lüscher in the center-of-mass frame, and its extension for a nonzero total-momentum frame to extract

the infinite volume, on-shell, center-of-mass frame decay amplitudes. We determine the decay amplitude

at the physical pion mass and momentum from the chiral extrapolation and an interpolation of the relative

momentum using the results calculated in the two frames. We have obtained ReA2 ¼ 1:66ð23Þðþ48
�03Þ�

ðþ53
�0 Þ � 10�8 GeV and ImA2 ¼ �1:181ð26Þðþ141

�014Þðþ44
�0 Þ � 10�12 GeV at the physical point, using the data

at the relatively large pion mass, m� > 0:35 GeV. The first error is statistic, and the second and third are

systematic. The second error is estimated with several fits of the chiral extrapolation including the

(quenched) chiral perturbation formula at next to leading order using only lighter pion masses. The third

one is estimated with an analysis using the lattice dispersion relation. The result of ReA2 is reasonably

consistent with experiment.
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I. INTRODUCTION

There are long-standing problems in nonleptonic kaon
decays, such as, �I ¼ 1=2 selection rule and the ratio of
the direct and indirect CP violation parameters "0=" [1,2],
which need to be resolved for precision tests of the stan-
dard model. The major difficulty is to evaluate the non-
perturbative strong interaction effect. Although such a
nonperturbative effect in principle can be quantified by
lattice QCD, there are many technical difficulties in calcu-
lating the K ! �� decay process directly on the lattice.
This is because there are problems in dealing with the two-
pion state in finite volume [3]. To avoid the difficulties,
Bernard et al. proposed one possible approach, called the
indirect method [4], where the K ! �� process is reduced
to K ! � and K ! 0 processes through chiral perturba-
tion theory (ChPT). So far, several groups have reported
results obtained by this method [5–11].

It is especially worth mentioning that the CP-PACS [10]
and RBC [11] Collaborations have independently calcu-
lated the full weak matrix elements of the K ! �� decay
with the indirect method by using domain wall fermion
action [12–14], which has good chiral symmetry on the
lattice. Their final results of "0=", however, have the oppo-
site sign to that of the experiment. Indeed, in their calcu-
lations there are many systematic uncertainties since those

calculations have been performed at a single finite lattice
spacing using the indirect method based on tree-level
ChPT within the quenched approximation. The indirect
method might cause the larger systematic error than other
sources, i.e., the quenching effect and the scaling violation,
because the final-state interaction of the two-pion is ex-
pected to play an important role in this decay process.
Therefore we have to directly calculate the scattering effect
of the two-pion state on the lattice to eliminate this par-
ticular systematic error. For this purpose we attempt to
carry out a calculation with the direct method, where the
two-pion state is properly treated on the lattice, in the�I ¼
3=2 K ! �� decay process.
There are two main difficulties for the direct method.

The first problem is that it is hard to extract the two-pion
state with relatively large momentum, e.g., about 200MeV,
on the lattice by a traditional single exponential analysis.
The problem was pointed out by Maiani and Testa [3]. To
avoid this problem two groups [15,16] calculated the two-
pion at rest, but allowing a nonzero energy transfer in the
weak operator. We, however, cannot obtain physical am-
plitudes from the calculation, unless we use some effective
theory, such as ChPT, to extrapolate unphysical amplitudes
to the physical one.
There are several ideas for solving the problem. One of

the ideas is to employ a proper projection of the K ! ��
four-point functions [17]. In this approach we need com-
plicated calculations and analyses, e.g., diagonalization of
a matrix of the two-pion correlation functions [18], to treat
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the two-pion state with nonzero relative momentum on the
lattice.

A simpler idea, where such complicated analyses are not
required, is to prohibit the two-pion state with zero mo-
mentum. Recently Kim [19,20] reported an exploratory
study with H-parity (antiperiodic) boundary conditions in
the spatial direction. The method works to extract the two-
pion state with nonzero relative momentum from the
ground state contribution of correlation functions, because
the two-pion state with zero momentum is prohibited by
the boundary condition.

Alternatively, if we perform the calculation in the non-
zero total-momentum (Lab) frame, we will be able to
forbid the zero momentum two-pion state, which certainly
appears in the center-of-mass (CM) frame. In the simplest

Lab frame the ground state of the two-pion is j�ð0Þ�ð ~PÞi
with ~P being nonzero total momentum, which is related to
the two-pion state with the nonzero relative momentum in
the CM frame. Therefore, we can extract the two-pion state
with nonzero momentum from the ground state contribu-
tions [21–23], as well as in the H-parity boundary case. In
this work we mainly employ the latter, namely, the Lab
frame method.

The other difficulty of the direct method is the finite
volume correction due to the presence of the two-pion
interaction. We have to estimate this finite volume effect
to obtain desired matrix elements in the infinite volume,
because the effect is much larger than that of the one-
particle state. Lellouch and Lüscher (LL) [24] suggested
a solution of this difficulty, which is a relation of the on-
shell, CM frame decay amplitudes in finite and infinite
volumes. However, their derived relation is valid only in
the CM frame with the periodic boundary condition in the
spatial direction, so that we need a modified formula when
we utilize the H-parity boundary condition [20] or Lab
frame method. Recently, two groups, Kim et al. [25] and
Christ et al. [26], generalized the formula that is an exten-
sion of the LL formula for the Lab frame calculation. The
generalized formula is based on the finite volume method
to extract the scattering phase shift from the Lab frame
calculation [22] derived by Rummukainen and Gottlieb.
Here we attempt to apply this generalized formula to the
calculation of the �I ¼ 3=2 kaon weak matrix elements
with domain wall fermions and quenched DBW2 gauge
action [27,28] at a single coarse lattice spacing.

It is worth noting that there are some (dis)advantages of
the two methods, the Lab frame and H-parity boundary
condition calculations. In the H-parity method, the statis-
tical error of the matrix elements is smaller than those in
the Lab calculation when the same simulation parameters,
e.g., lattice size and quark mass, are utilized. This is
because the unit of the momentum in the H-parity method
is a half of that in the Lab frame calculation due to the
antiperiodic boundary condition in the spatial direction.
However, the H-parity method is not effective in the cal-

culation of �I ¼ 1=2 K ! �� decay, because under the
H-parity boundary condition only �� states satisfy the
antiperiodic boundary condition [19,29]. The �0 state
does not satisfy the boundary condition, unless we intro-
duce another discrete boundary condition, such as the G-
parity boundary condition [30]. On the other hand, the Lab
frame method does not break the isospin symmetry, so that
we can apply the method to the calculation of the �I ¼
1=2 channel as well as that of �I ¼ 3=2.
The organization of the article is as follows. In Sec. II we

give a brief explanation of the generalized formula as well
as the original LL formula. We also explain the calculation
method of the correlation functions, from which we evalu-
ate the decay amplitudes. The parameters of our simulation
are given in Sec. III. We show the result of the I ¼ 2 two-
pion scattering length and phase shift in Sec. IV. Then we
present the results for the off-shell and on-shell decay
amplitudes, weak matrix elements, ReA2, and ImA2.
Finally, we briefly summarize this work in Sec. V. A
preliminary result of this work was presented in
Refs. [31,32].

II. METHODS

A. LL formula

Let us briefly review the method suggested by Lellouch
and Lüscher [24]. They derived a formula, which connects
a CM decay amplitude jAj defined in infinite volume to the
one given on finite volume jMj as,

jAj2 ¼ 8�

�
E��

p

�
3
�
p
@�ðpÞ
@p

þ q
@�ðqÞ
@q

�
jMj2; (1)

where E�� is the two-pion energy in the CM frame and the
scattering phase shift � is responsible for the�� final-state
interactions. The relative momentum of the two pions p is
determined from measured E��,

p2 ¼ E2
��=4�m2

�; (2)

and its normalized momentum q is defined by

q2 ¼ ðpL=2�Þ2; (3)

with the spatial extent L. The function �ðqÞ, derived by
Lüscher [33], is defined by

tan�ðqÞ ¼ � q�3=2

Z00ð1; q2Þ
; (4)

where

Z00ð1; q2Þ ¼ 1ffiffiffiffiffiffiffi
4�

p X
~n2Z3

1

~n2 � q2
: (5)

Using the function �ðqÞ, we can also determine the scat-
tering phase shift at the momentum p through the relation

�ðpÞ ¼ n���ðqÞ; (6)
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where n is an integer, and �ð0Þ ¼ 0. Note that the formula
Eq. (1) is valid only for on-shell decay amplitude, i.e.,
E�� ¼ mK.

B. Extended LL formula for nonzero total-momentum
frame

Next, we describe the extended LL formula for the
nonzero total-momentum frame (denoted in the following
by the Lab frame). Recently two groups [25,26] derived a
formula, which connects a CM decay amplitude jAj in the
infinite volume to a Lab frame decay amplitude jMPj given
on finite volume

jAj2 ¼ 8��2

�
E��

p

�
3
�
p
@�ðpÞ
@p

þ q
@� ~PðqÞ
@q

�
jMPj2; (7)

where � is a boost factor given by

� ¼ EP
��=E��; (8)

with EP
�� being the Lab frame value, which is determined

by two-pion energy with the total-momentum ~P. The total
CM frame energy of two-pion states E�� is evaluated
through the energy-momentum conservation,

E2
�� ¼ ðEP

��Þ2 � P2: (9)

In Eq. (7), p and q are defined as the same in Eqs. (2) and
(3), except the determination of E��, which is given by
Eq. (9). In the following the momentum denoted by the
capital letter like P represents the total momentum, while
the small p represents the relative momentum, unless
explicitly indicated otherwise. In addition, quantities with
a superscript P, e.g., EP

��, indicate the Lab frame values.
The function � ~PðqÞ, derived by Rummukainen and

Gottlieb [22], is given by

tan� ~PðqÞ ¼ � �q�3=2

Z
~P
00ð1;q2;�Þ

; (10)

where

Z
~P
00ð1;q2;�Þ ¼

1ffiffiffiffiffiffiffi
4�

p X
~n2Z3

1

n21 þn22 þ��2ðn3 þ 1=2Þ2 �q2
;

(11)

in the case for ~P ¼ ð0; 0; 2�=LÞ. The formula given in
Eq. (7) is valid only for the case EP

�� ¼ EP
K where EP

K is

the kaon energy with the momentum ~P, in other words,
E�� ¼ mK as in the LL formula given in Eq. (1). When we
set P2 ¼ 0 and � ¼ 1, the formula Eq. (7) reproduces the
original LL formula Eq. (1). Of course, we can determine
the scattering phase shift at the momentum p by using
� ~PðqÞ as

�ðpÞ ¼ n��� ~PðqÞ; (12)

where n is an integer, and� ~Pð0Þ ¼ 0 as the same in Eq. (6).

C. Calculation of K ! �� four-point function

We calculate four-point functions for the �I ¼ 3=2
K ! �� decay in zero (CM) and nonzero (Lab) total-

momentum frames. In actual simulations, we employ ~P ¼
ð0; 0; 2�=LÞ for the nonzero total momentum. The four-
point functions in the CM and Lab frames are defined by

Giðt; t�; tKÞ ¼ h0j�þ�0ð~0; t�ÞO3=2
i ðtÞ½Kþð~0; tKÞ�yj0i;

(13)

GP
i ðt; t�; tKÞ ¼ h0j�þ�0ð ~P; t�ÞO3=2

i ðtÞ½Kþð ~P; tKÞ�yj0i;
(14)

where the two-pion operator in GP
i is averaged with the

following two types of products of pion operators in order
to extract the I ¼ 2 part of the two-pion state:

�þ�0ð ~P; t�Þ ¼ ð�þð ~P; t�Þ�0ð~0; t�Þ
þ �þð~0; t�Þ�0ð ~P; t�ÞÞ=2: (15)

O3=2
i are lattice operators entering �I ¼ 3=2 weak decays:

O3=2
27 ¼ X

~x

fð�sað ~xÞdað ~xÞÞL½ð �ubð ~xÞubð ~xÞÞL � ð �dbð ~xÞdbð ~xÞÞL�

þ ð�sað ~xÞuað ~xÞÞLð �ubð ~xÞdbð ~xÞÞLg; (16)

O3=2
88 ¼ X

~x

fð�sað ~xÞdað ~xÞÞL½ð �ubð ~xÞubð ~xÞÞR � ð �dbð ~xÞdbð ~xÞÞR�

þ ð�sað ~xÞuað ~xÞÞLð �ubð ~xÞdbð ~xÞÞRg; (17)

O3=2
m88 ¼

X
~x

fð�sað ~xÞdbð ~xÞÞL½ð �ubð ~xÞuað ~xÞÞR � ð �dbð ~xÞdað ~xÞÞR�

þ ð�sað ~xÞubð ~xÞÞLð �ubð ~xÞdað ~xÞÞRg (18)

where ð �qqÞL ¼ �q��ð1� �5Þq, ð �qqÞR ¼ �q��ð1þ �5Þq,
and a, b are color indices. The kaon weak decay operators
are classified into the (8,1), (27,1), and (8,8) representa-
tions of SUð3ÞL � SUð3ÞR, but the �I ¼ 3=2 part has only

the (27,1) and (8,8) representations. O3=2
27 and O3=2

88 are the

operators in the (27,1) and (8,8) representations with I ¼
3=2, respectively. O3=2

m88 equals O
3=2
88 with its color summa-

tion changed to cross the two currents.
We employ the momentum projection source for the

quark operator with the Coulomb gauge fixing to obtain
better overlap to a state with each momentum. The pion
operators with the source are constructed as,

�þð ~k; tÞ ¼
�X

~x

�dð ~x; tÞe�i ~k1� ~x
�
�5

�X
~y

uð ~y; tÞe�i ~k2� ~y
�

(19)
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�0ð ~k; tÞ ¼
��X

~x

�uð ~x; tÞe�i ~k1� ~x
�
�5

�X
~y

uð ~y; tÞe�i ~k2� ~y
�

�
�X

~x

�dð ~x; tÞe�i ~k1� ~x
�
�5

�X
~y

dð ~y; tÞe�i ~k2� ~y
��� ffiffiffi

2
p

;

(20)

with ~k ¼ ~k1 þ ~k2 ¼ ~P or ~0, where the momentum ~k and ~ki
represent the momentum of the pion and each quark,
respectively. In the zero momentum case, these operators
are nothing but the wall source operator. The Kþ operator
with each momentum is calculated in the same way with
changing �d to �s in Eq. (19).

The four-point function in the Lab frame is much noisier
than that in the CM frame. In order to improve the statis-
tics, we calculate the four-point function GP

i ðt; t�; tKÞ with
two possible momentum insertions, ~k1 ¼ ~0, ~k2 ¼ ~P and
~k1 ¼ ~P, ~k2 ¼ ~0 in Eqs. (19) and (20) for the pion operators,
and then we average them on each configuration. On the
other hand, we fix the momentum of the kaon operator in

the four-point function as ~k1 ¼ ~P, ~k2 ¼ ~0.
We also calculate the four-point function for the I ¼ 2

two-pion and the two-point function for the kaon and pion
with zero momentum,

G��ðt; t�Þ ¼ h0j�þ�þð~0; tÞ½�þ�þð~0; t�Þ�yj0i; (21)

GKðt; tKÞ ¼ h0jKþð~0; tÞ½Kþð~0; tKÞ�yj0i; (22)

G�ðt; t�Þ ¼ h0j�þð~0; tÞ½�þð~0; t�Þ�yj0i; (23)

and with nonzero total momentum,

GP
��ðt; t�Þ ¼ h0j�þ�þð ~P; tÞ½�þ�þð ~P; t�Þ�yj0i; (24)

GP
Kðt; tKÞ ¼ h0jKþð ~P; tÞ½Kþð ~P; tKÞ�yj0i; (25)

GP
�ðt; t�Þ ¼ h0j�þð ~P; tÞ½�þð ~P; t�Þ�yj0i: (26)

We employ the operator with ~k1 ¼ ~0, ~k2 ¼ ~P in Eq. (19)

for GP
�ðt; t�Þ and GP

��ðt; t�Þ, while with ~k1 ¼ ~P, ~k2 ¼ ~0 in

the kaon operator of GP
Kðt; tKÞ. At the sink t of GðPÞ

��, G
ðPÞ
K ,

and GðPÞ
� , we use the same operators as the source operator,

and also the momentum projected operator for the meson

field. The �þð ~k; tÞ field with the latter operator is given byX
~x

�dð ~x; tÞ�5uð ~x; tÞe�i ~k� ~x (27)

with ~k ¼ ~P or ~0. In the zero momentum case, the operator
corresponds to the point sink operator of the pion. We shall
call the symmetric correlator under the exchange of the
source and sink operators the ‘‘wall’’ sink correlator, while
the one calculated by the different source and sink opera-
tors the ‘‘point’’ sink correlator. We determine the energy

for each ground state from the point sink correlator, and the
amplitude from the wall sink operator.
We use linear combinations of quark propagators with

the periodic and antiperiodic boundary conditions in the
temporal direction to have a quark propagator with 2T
periodicity in the time direction.

III. SIMULATION PARAMETERS

Our simulation is carried out in quenched lattice QCD
employing a renormalization group improved gauge action
for gluons,

SG½U� ¼ �

3

�
ð1� 8c1Þ

X
x;�<�

P½U�x;�� þ c1
X

x;���

R½U�x;��

�

(28)

where P½U�x;�� and R½U�x;�� represent the real part of the

trace of the path ordered product of links around the 1� 1
plaquette and 1� 2 rectangle, respectively, in the �, �
plane at the point x and � � 6=g2 with g being the bare
coupling constant. For the DBW2 gauge action [27,28], the
coefficient c1 is chosen to be �1:4069, using a renormal-
ization group flow for lattices with a�1 ’ 2 GeV [27,28].
Gauge configuration was previously generated [34] at � ¼
0:87 with the heat bath algorithm and the over-relaxation
algorithm mixed in the ratio 1:4. The combination is called
a sweep, and physical quantities are measured every 200
sweeps.
We employ the domain wall fermion action [12–14] with

the domain wall height M ¼ 1:8 and the fifth-dimension
length Ls ¼ 12. The residual mass is reasonably small in
these parameters,mres ¼ 0:00125ð3Þ [35]. Our conventions
for the domain wall fermion operator are given in Ref. [36].
The inverse lattice spacing is 1.31(4) GeV [34] determined
by the � meson mass. The lattice size is L3 � T ¼ 163 �
32, where the physical spatial extent corresponds to about
2.4 fm.
We fix the two-pion operator at t� ¼ 0, while we employ

three source points tK ¼ 16, 20 and 25 for the kaon opera-
tor to investigate tK dependence of the statistical error of
the Lab frame decay amplitude, and to check the consis-
tency of these results. We employ four u, d quark masses,
mu ¼ 0:015, 0.03, 0.04, and 0.05 corresponding to m� ¼
0:354ð2Þ, 0.477(2), 0.545(2), and 0.606(2) GeV, for the
chiral extrapolation of the decay amplitudes.
To utilize the LL formula Eq. (1) and the extended

formula Eq. (7), it is important to obtain a decay amplitude
at on-shell, where the energies of the initial and final states
are equal. In order to obtain the decay amplitude, we vary
the kaon energy with several strange quark masses at a
fixed light quark mass. Then we carry out an interpolation
of the amplitudes to the on-shell point. For the interpola-
tions, six strange quark masses are employed, ms ¼ 0:12,
0.18, 0.24, 0.28, 0.35, and 0.44, except the lightest mu for
the tK ¼ 16 and 20 cases where we use the three lighterms.
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We will see that the three strange quark masses are enough
for the interpolation of the case in a later section.

In our simulation we employ relatively heavy strange
quark masses to obtain the kaon energy closely satisfying
the on-shell condition, E�� �mK. This might cause a
systematic error, because lower modes of the Hermitian
Dirac operator would not be well separated to the left- and
right-hand in a heavy quark mass as discussed in Ref. [37].
The systematic error can be removed by simulations with
lighter pion mass, larger volume, and finer lattice spacing
[37]. However, we will not estimate such an effect in this
work, which may be accepted as an exploratory work.
Thus, it should be recalled that our result might suffer
from above-mentioned systematic error, at least at the
heavier strange quark masses.

The LL formula and its extension require a relatively
large spatial volume. This requirement stems from both the
on-shell condition and size of the scattering range R. R is
defined by

Vð ~rÞ ¼ 0 at j~rj 	 R; (29)

where Vð ~rÞ is the effective potential of the two-pion scat-
tering at the relative coordinate ~r of the two pions. The
former is very essential here. The on-shell condition re-
quires a large spatial extent, e.g., L ¼ 6ð3:2Þ fm for the
CM(Lab) frame, which is evaluated at the physical pion
and kaon masses. The required spatial size, indeed,
changes in accordance with simulated masses of the pion
and kaon states, as L2 ¼ 4�2=ðm2

K=4�m2
�Þ for the CM

frame and L2 ¼ 4�2=ðm2
K=4�m2

�Þ �m2
�=m

2
K for the Lab

frame. Thus, it is possible to fulfill the on-shell condition
on a smaller volume than the one required at the physical
point. In this work we tunemK at the simulatedm� and the
fixed L to satisfy the on-shell condition in each frame as we
explained above.

Another constraint on the spatial volume is determined
from the scattering range R, because R< L=2 is an im-
portant assumption [22,33] to derive the two relations
Eqs. (6) and (12), where we can evaluate the scattering
phase through the two-pion energy on finite volume. The
LL formula and its extension are based on those relations.
If the assumption is not satisfied, the scattering effect is
contaminated by unwanted finite spatial size effect, in
other words, the effective potential is distorted by the
boundary condition. The determinations of R were carried
out numerically in both the CM [38] and Lab [39] frame
calculations in the I ¼ 2 two-pion channel. These refer-
ences reported that the required spatial extent was esti-

mated as L ¼ 2:4–3:2 fm in the range of m� ¼
0:42–0:86 GeV. The spatial volume �ð2:4 fmÞ3 in this
calculation is not fully justified in this sense. Thus, we
simply assume that effects stemming from the distortion of
the effective potential are small or negligible in our
simulation.
We use 252 configurations in the case of tK ¼ 16 and 20,

except at the lightest pion mass where 371 configurations
are employed in order to improve statistics, while we
employ 100 configurations in the case of tK ¼ 25 at all
the quark masses. The numbers of the gauge configuration
used in our simulations are summarized in Table I.
In the following analysis we evaluate the statistical error

of all the measured quantities by the single elimination
jackknife method. For chiral extrapolations in the tK ¼ 16
and 20 cases, we employ the modified jackknife method
[40] to take into account the different numbers of the
configurations between the lightest and other heavier u, d
quark masses.

IV. RESULTS

A. Physical quantities for I ¼ 2 �� scattering

The calculation of the two-pion scattering is important
not only to employ the LL type methods, but also to
understand hadronic scattering from lattice QCD. So far
many groups calculated the scattering length of the S-wave
I ¼ 2 �� channel [38,41–48] with the finite volume
method [33,49]. Some of the works obtained the result in
the continuum limit [23,50–53]. Recently, the result using
the domain wall valence quark on the 2þ 1 flavor im-
proved staggered sea quark was reported by Beane et al.
[54,55]. There are a few papers to calculate the I ¼ 2 ��
scattering phase shift, with the finite volume method and
its extension [22], at only a single lattice spacing
[19,20,39,48] and in the continuum limit with quenched
approximation [53] and two-flavor dynamical quark effect
[23]. It is worth remarking that there is the recent work for
the I ¼ 1 �� scattering phase shift with � meson reso-
nance [56]. In this section we present our results of the I ¼
2 �� scattering length and scattering phase shift.

1. Scattering length

We evaluate the scattering phase shift �ðpÞ through the
finite volume method Eq. (6) of Lüscher [33] in the CM
calculation. In the CM calculation we extract the two-pion
energy E�� to fit the point sink two-pion correlator using
the fit form [20],

TABLE I. Time slice of kaon operator tK, u, d quark mass mu, strange quark mass ms, and number of configuration.

tK mu ms No. of conf.

16, 20 0.015 0.12, 0.18, 0.24 371

0.03, 0.04, 0.05 0.12, 0.18, 0.24, 0.28. 0.35, 0.44 252

25 0.015, 0.03, 0.04, 0.05 0.12, 0.18, 0.24, 0.28. 0.35, 0.44 100
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A � ðe�E��t þ e�E��ð2T�tÞ þ CÞ: (30)

We should notice that we employ linear combinations of
quark propagators with the periodic and antiperiodic
boundary conditions in the temporal direction, so that the
periodicity of the correlators is 2T. The fitting analysis is
carried out with three parameters A, C, and E�� in the fit
range of t ¼ 6–31. The constant C stems from two pions
propagating opposite ways in the temporal direction due to
the periodic boundary condition.

Using the finite volume method Eq. (6), we obtain the
scattering phase shift from the relative momentum which is
determined from E�� through Eq. (2). The results for E��,
p, and �ðpÞ in the CM calculation are summarized in
Table II.

We estimate the scattering length a0 with the measured
�ðpÞ by using an assumption,

a0 
 �ðpÞ
p

; (31)

where the scattering length is defined by

a0 ¼ lim
p!0

�ðpÞ
p

: (32)

This assumption is valid in our CM calculation, because p
is small enough. The measured value of a0=m� is pre-
sented in Table II. Figure 1 shows that the measured value
of a0=m�, denoted by ‘‘CM analysis,’’ has an appreciable
curvature for the pion mass squared. The scattering length
a0=m� at the physical pion mass, m� ¼ 140 MeV, is
determined by a chiral extrapolation with the fit form,

Aþ Bm2
� þ Cm4

�; (33)

whose result is summarized in Table III. In Fig. 1, the result
at the physical pion mass is compared with the experiment
[57] and a prediction of ChPT [58].
We also fit the data using the prediction of the next-to-

leading-order (NLO) ChPT [59],

� 1

8�f2

�
1� m2

�

8�2f2

�
lð�Þ � cl log

�
m2

�

�2

���
; (34)

where � is scale, cl ¼ 7=2, and lð�Þ is a low-energy
constant. f is the pion decay constant at the chiral limit.
The scale is fixed at � ¼ 1 GeV for simplicity. We cannot
obtain a reasonable 	2=d:o:f: from a fit with one free

TABLE II. Results of CM calculation. Pion mass m�, two-pion energy E��, relative momentum p, scattering phase shift �ðpÞ,
scattering length over pion mass a0=m�, and derivatives q � ð@� ~PðqÞ=@qÞ and p � ð@�ðpÞ=@pÞ are summarized. TðpÞ and F are the

scattering amplitude and conversion factor, which are defined in Eqs. (37) and (39). F= �F is the ratio of conversion factor to one in
noninteracting case. Definition of �F is given in Eq. (41).

mu 0.015 0.03 0.04 0.05

m� [GeV] 0.35462(97) 0.4784(10) 0.54609(94) 0.60703(89)

E�� [GeV] 0.7233(20) 0.9698(20) 1.1043(19) 1.2254(18)

p [GeV] 0.0710(19) 0.0792(16) 0.0816(16) 0.0831(16)

�ðpÞ [deg.] �2:55ð19Þ �3:43ð19Þ �3:72ð19Þ �3:90ð19Þ
TðpÞ �0:227ð11Þ �0:367ð13Þ �0:439ð14Þ �0:502ð16Þ
a0=m� [1=GeV2] �1:770ð81Þ �1:580ð54Þ �1:455ð47Þ �1:348ð42Þ
q � ð@�ðqÞ=@qÞ 0.1215(83) 0.1601(81) 0.1724(82) 0.1801(83)

p � ð@�ðpÞ=@pÞ �0:0473ð32Þ �0:0611ð29Þ �0:0657ð30Þ �0:0685ð31Þ
F 44.41(48) 67.56(51) 81.50(54) 94.86(59)

F= �F 0.8708(89) 0.8456(59) 0.8363(52) 0.8306(49)

0 0.1 0.2 0.3 0.4

mπ
2
[GeV

2
]

-3

-2.5

-2

-1.5

-1

CM analysis

mπ=0.14[GeV]

δ(p) analysis

experiment

ChPT

a0/mπ[1/GeV
2
]

FIG. 1. Scattering length over the pion mass and its chiral
extrapolation. Star and cross symbols are the prediction of
ChPT and the experimental result, respectively. Open circles
are obtained from analysis of scattering phase shift, and are
slightly shifted to minus direction in x-axis.

TABLE III. Fit result of scattering length a0=m�½1=GeV2�
with a quadratic function. Results at physical pion mass are
also listed.

A [1=GeV2] B C [GeV2] 	2=d:o:f: m
phys
�

�2:10ð13Þ 2.78(69) �1:93ð92Þ 0.11 �2:05ð11Þ
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parameter lð�Þ, where we use f ¼ 0:133 GeV [35]. As
summarized in Table IV, a three-parameter fit with f, lð�Þ,
and cl, gives a reasonable value of 	

2=d:o:f:While in the fit
f is consistent with the one at the chiral limit [35], the
coefficient cl differs from the prediction of ChPT.
Although the quenched ChPT formula [60,61] is also
available, the quality of the fit is similar to what we
obtained with Eq. (34). At the physical pion mass the
ChPT fit result agrees with the simple polynomial fit in
the above, so that we choose the polynomial one in the
following analysis.

2. Scattering phase shift

The two-pion energy in the Lab frame is noisier than the
one obtained in the CM calculation, so that we determine
the two-pion energy in the Lab frame EP

�� in the following
way to reduce the statistical error. First, we fit the point
sink two-pion correlator with the nonzero total momentum
using the fit form [21],

A � ðe�Wt þ e�Wð2T�tÞ þ C½e�ðEP
��m�Þt þ e�ðEP

��m�Þð2T�tÞ�Þ;
(35)

where EP
� is the measured value of the single pion energy

with the momentum. The terms multiplied by C come from
two pions propagating in a different temporal direction due
to the periodic boundary condition as in Eq. (30). The fit is
carried out with three parameters, A,C, andW, in the range
of t ¼ 6–31. Using the parameter W, we determine the

energy shift �EP
�� ¼ W � ðEP

� þm�Þ from the noninter-
acting two-pion energy. Finally we reconstruct EP

�� using
m�, �E

P
��, and the total-momentum squared P2

EP
�� ¼ �EP

�� þm� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ P2
q

: (36)

We determine the CM frame, two-pion energy E�� from
EP
�� with Eq. (9). We also determine the relative momen-

tum p from E�� as in the CM case through Eq. (2), and
then obtain the scattering phase shift by the extension of
the finite volume method to the Lab frame, Eq. (12) [22].
The results for EP

��, �E
P
��, E��, � ¼ EP

��=E��, p, and
�ðpÞ in the Lab calculation are summarized in Table V.
To investigate the momentum dependence of the scat-

tering phase shift, we use the results obtained from both the
frames. We define ‘‘scattering amplitude’’ TðpÞ as in
Refs. [23,48,53,62]

TðpÞ ¼ tan�ðpÞ
p

� E��

2
; (37)

which is normalized by a0m� at the zero momentum. The
results of TðpÞ in each frame are tabulated in Tables II and
V. Figure 2 shows the measured value of TðpÞ as a function
of the relative momentum squared. The amplitude TðpÞ is
fitted with a naive polynomial function for m2

� and p2

A10m
2
� þ A20m

4
� þ A30m

6
� þ A01p

2 þ A11m
2
�p

2; (38)

where the indices of the parameter Aij denote the powers of

m2
� and p2, respectively. This fit form does not include the

p4 term, because our calculation is carried out with only
two different total-momentum frames. In order to include a
p4 term in the fit form, we need several data with different
relative momentum. Since the scattering amplitude at p ¼
0 is nothing but the scattering length a0m�, we need the
A30 term to coincide with the pion mass dependence of the
scattering length in the previous section. The result of the

TABLE V. Results of Lab calculation. Pion mass m�, energy shift �EP
��, two-pion energy EP

��, relative momentum p, boost factor
�, scattering phase shift �ðpÞ, and derivatives q � ð@� ~PðqÞ=@qÞ and p � ð@�ðpÞ=@pÞ are summarized. TðpÞ and FP are the scattering

amplitude and conversion factor, which are defined in Eqs. (37) and (40). FP= �FP is ratio of conversion factor to one in the
noninteracting case. The definition of �FP is given in Eq. (42).

mu 0.015 0.03 0.04 0.05

m� [GeV] 0.35462(97) 0.4784(10) 0.54609(94) 0.60703(89)

�EP
�� [GeV] 0.0250(36) 0.0213(20) 0.0196(15) 0.0183(12)

EP
�� [GeV] 1.0045(39) 1.2022(26) 1.3159(22) 1.4210(20)

p [GeV] 0.2456(37) 0.2575(24) 0.2618(19) 0.2649(16)

� 1.1643(16) 1.10641(54) 1.08646(33) 1.07277(23)

�ðpÞ [deg.] �11:6ð1:6Þ �12:4ð1:1Þ �12:59ð92Þ �12:78ð79Þ
TðpÞ �0:362ð48Þ �0:462ð40Þ �0:517ð36Þ �0:567ð33Þ
q � ð@� ~PðqÞ=@qÞ 1.878(32) 2.137(20) 2.232(16) 2.300(13)

p � ð@�ðpÞ=@pÞ �0:261ð57Þ �0:266ð42Þ �0:261ð35Þ �0:253ð30Þ
FP 48.9(1.2) 65.8(1.1) 76.1(1.0) 86.0(1.0)

FP= �FP 0.869(20) 0.865(14) 0.865(11) 0.866(10)

TABLE IV. Fit result of scattering length a0=m�½1=GeV2�
with NLO ChPT formula. Results at physical pion mass are
also listed.

f [GeV] lð�Þ cl 	2=d:o:f: mphys
�

0.1330(56) 0.85(14) 0.68(23) 0.22 �2:13ð15Þ
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fit parameters is presented in Table VI, and the fit lines for
each m2

� are plotted in Fig. 2.
The a0=m� estimated with the fit result, shown in Fig. 1

as denoted by ‘‘�ðpÞ analysis,’’ is reasonably consistent
with those of the CM analysis at each pion mass. We obtain
a0=m� ¼ �1:99ð12Þ GeV�2 at the physical pion mass,
which agrees with the fit result given in the previous
section (see Table III).

The measured scattering phase shift is plotted in Fig. 3
as well as the result at the physical pion mass estimated
from the TðpÞ fitting. The result is compared with the
prediction of ChPT [58] estimated with experiment in the
figure.

3. Finite volume effect from final-state interaction

We estimate the derivative of the scattering phase shift
from the fit results Eq. (38), and evaluate the derivatives for
the functions�ðqÞ and� ~PðqÞ numerically to utilize the LL

formula Eq. (1) and its extension Eq. (7), respectively.
For convenience, we define the conversion factors F and

FP,

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�

�
E��

p

�
3
�
p
@�

@p
þ q

@�

@q

�s
; (39)

FP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��2

�
E��

p

�
3
�
p
@�

@p
þ q

@� ~P

@q

�s
; (40)

which are the factors connecting the finite volume, decay
amplitude in CM and Lab frames to the CM one in the
infinite volume, respectively. The results of F and FP are
shown in Tables II and V. To investigate the size of the
interaction effect, we evaluate a ratio of the conversion
factor to the one in the noninteracting case. We estimate
the factors without the interaction �F and �FP in each frame
as,

�F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�

� �E��

�p

�
3
�
�q
@�

@ �q

�s
; (41)

�F P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��2

� �E��

�p

�
3
�
�q
@� ~P

@ �q

�s
; (42)

where the quantities with the overline are the ones without
two-pion interaction. In Eq. (42), �E�� and �p are deter-
mined by

�E 2
�� ¼ 4ðm2

� þ �p2Þ ¼ ð �WPþÞ2 � P2; (43)

with

�W P� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ P2
q

�m�: (44)

In the CM frame case, �p ¼ 0, and then �F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð �E��LÞ3

p
as

in Ref. [24], while in the Lab frame case,

0 0.02 0.04 0.06 0.08

p
2
[GeV

2
]

-0.8

-0.6

-0.4

-0.2

0

mπ=0.35[GeV]
mπ=0.48[GeV]
mπ=0.54[GeV]
mπ=0.61[GeV]

T(p)=tanδ(p)Eππ/2p

CM
Lab

FIG. 2. Scattering amplitude TðpÞ defined in Eq. (37). Dashed
lines are fit results with polynomial function Eq. (38). Results at
smaller (larger) p2 are obtained from CM (Lab) calculation.

TABLE VI. Fit results of scattering amplitude TðpÞ with polynomial function Eq. (38).

A10 [1=GeV2] A20 [1=GeV4] A30 [1=GeV6] A01 [1=GeV2] A11 [1=GeV4] 	2=d:o:f:

�2:04ð13Þ 2.59(71) �1:78ð93Þ �2:42ð81Þ 3.1(1.8) 0.34

0 0.02 0.04 0.06 0.08 0.1

p
2
[GeV

2
]

-20

-15

-10

-5

0

mπ=0.14[GeV]
mπ=0.35[GeV]
mπ=0.48[GeV]
mπ=0.55[GeV]
mπ=0.61[GeV]
ChPT with exp.

δ(deg.)

CM

Lab

FIG. 3. Measured scattering phase shift. Solid line with error
band is the result at physical pion mass. Dashed line is prediction
of ChPT with experiment. Results at smaller (larger) p2 are
obtained from CM (Lab) calculation.
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�F P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �WPþðð �WPþÞ2 � ð �WP�Þ2ÞL3

q
: (45)

The ratios F= �F and FP= �FP are summarized in Tables II
and V. The results show that the interaction effect is
relatively large, e.g., 13–17%. The effect depends on the
pion mass in the CM case, while there is no large depen-
dence in the Lab case. In the CM case we find that the ratio
decreases as the pion mass increases. This trend was also
seen in the previous calculation [16] where the interaction
effect was estimated by one-loop ChPT. It might be de-
scribed by the fact that the scattering effect of the two-pion
decreases in the smaller pion mass, because a0 / m�.

B. Decay amplitudes

1. Off-shell decay amplitudes in finite volume

To determine off-shell decay amplitudes in finite vol-
ume, we define ratios of correlation functions RiðtÞ in the
CM frame and RP

i ðtÞ in the Lab frame as

RiðtÞ ¼
ffiffiffi
2

3

s
Giðt; t�; tKÞZ��ZK

G��ðt; t�ÞGKðt; tKÞ ; (46)

RP
i ðtÞ ¼

ffiffiffi
2

3

s
GP

i ðt; t�; tKÞZP
��Z

P
K

GP
��ðt; t�ÞGP

Kðt; tKÞ
; (47)

whereG��ðGP
��Þ andGKðGP

KÞ are the I ¼ 2 two-pion four-
point function and the kaon two-point function in the CM
(Lab) frame, respectively. These correlators are calculated
with the wall sink operator as described in Sec. II C.Gi and
GP

i are the �I ¼ 3=2 K ! �� four-point functions de-
fined in Eqs. (13) and (14). The index i denotes each
operator i ¼ 27, 88 and m88 defined in Eqs. (16)–(18).

ZðPÞ
�� and ZðPÞ

K are the overlaps for the relevant operators
with each state.

When the correlation functions in Eqs. (46) and (47) are
dominated by each ground state, the ratios in principle will
be a constant for those values of t, which corresponds to the
off-shell decay amplitude. We determine the desired am-
plitudes from the ratio in the flat region where the effective
energy of each state has a plateau. The typical plateaus for
the two-pion and kaon states are presented in Fig. 4.

The overlaps are determined by the wall sink correlators
with the following fit forms:

G��ðt; t�Þ ¼ Z2
�� � ���ðE��; jt� t�jÞ; (48)

GP
��ðt; t�Þ ¼ ðZP

��Þ2 ��P
��ðEP

��; jt� t�jÞ; (49)

GKðt; tKÞ ¼ Z2
K ��KðmK; jt� tKjÞ; (50)

GP
Kðt; tKÞ ¼ ðZP

KÞ2 � �KðEP
K; jt� tKjÞ; (51)

where E��, E
P
��, mK, and EP

K are the measured energies
from the point sink correlators, whose values are presented

in Tables II, V, VII, and VIII, respectively. The mK and EP
K

are in the tK ¼ 20 case. The kernels are defined by

���ðE; tÞ ¼ e�Et þ e�Eð2T�tÞ þ C; (52)

�P
��ðE; tÞ ¼ e�Et þ e�Eð2T�tÞ

þ C½e�ðEP
��m�Þt þ e�ðEP

��m�Þð2T�tÞ�; (53)

�KðE; tÞ ¼ e�Et þ e�Eð2T�tÞ; (54)

where m� and EP
� in Eq. (53) are the measured single pion

mass and energy, and C is one of the fit parameters. In the
extraction of the overlaps, we use the fitting range of 6 �
t � 25 for the two-pion correlators, and 0 � t � tK � 7
for the kaon correlators in both the frames.
Figure 5 shows RiðtÞ for all the operators with the differ-

ent tK obtained in the CM calculation at the lightestmu and

0 10 20 30
t

0.75

1

1.25

1.5 mu=0.03 CM
mu=0.04 CM
mu=0.03 Lab
mu=0.04 Lab

0 5 10 15 20

t

0.4

0.6

0.8

1

mu=0.03 CM
mu=0.04 CM
mu=0.03 Lab
mu=0.04 Lab

FIG. 4. Top panel is effective mass and energy for �� state
with zero (CM) and nonzero (Lab) momentum obtained from the
wall sink correlator. Bottom panel is same as the top panel
except for kaon state at ms ¼ 0:12 in tK ¼ 20 case.
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ms. All the ratios have clear signals, and are almost flat in
the region of t� � t � tK. Thus, the off-shell amplitudes
are determined from averaged values in the flat region of
6 � t � tK � 7. The values with the error are presented in
each panel by the solid and dashed lines. The averaged
values in different tK are consistent with each other.

The ratios RP
i ðtÞ are shown in Fig. 6 at the same parame-

ters as in the CM case. For all operators, the statistical error
of the ratio is much larger than those in the CM case, while
the error decreases as tK decreases. In the case of tK ¼ 25
it is hard to determine a flat region due to the huge error,
while we can see a reasonable flat region for tK ¼ 16 and
20 cases. We choose the same time slice range for the
averaged values as in the CM case. The results of the off-
shell amplitudes for tK ¼ 16 and 20 reasonably agree with
each other.

According to the above discussion, the result in the tK ¼
16 case has the smallest statistical error in the Lab frame.
The separation between the two-pion and the kaon sources,
however, seems to be small in this case. Thus, we should
worry about excited state contamination. In order to avoid
this systematic error as much as possible, we choose the
results with tK ¼ 20 in the following analyses. We tabulate
the result of the off-shell amplitudes for each mu and ms in
Tables IX, X, and XI for the CM calculation, and in
Tables XII, XIII, and XIV for the Lab calculation in the
case of tK ¼ 20.

2. On-shell decay amplitudes in finite volume

We determine the finite volume, on-shell amplitudes in
both the frames, jMij and jMP

i j, for each operator i ¼ 27,
88 and m88, by interpolating the off-shell amplitudes with
different strange quark masses at fixed mu. The on-shell
kinematic point corresponds to mK ¼ E�� in the CM
frame, and EP

K ¼ EP
�� in the Lab frame.

We plot the off-shell decay amplitude as a function of
the kaon energy in Fig. 7. The figure shows that the
amplitudes at mu ¼ 0:015 are described by a linear func-
tion of the kaon energy using three strange quark masses.
On the other hand, the off-shell decay amplitudes for
heavier mu show large curvature with the kaon energy, so
we employ a quadratic function ofmK or EP

K. The results of
the on-shell amplitudes are presented by open symbols in
the figures, and also tabulated in Tables IX, X, XI, XII,
XIII, and XIV, denoted as ‘‘on-shell’’ for each operator and
frame.

3. On-shell decay amplitudes in infinite volume

The on-shell decay amplitudes in infinite volume, jAij
for i ¼ 27, 88 and m88, are obtained for the LL formula
Eq. (1) and its extension Eq. (7) by combining the mea-
sured on-shell amplitudes jMij and jMP

i j in finite volume
and the conversion factors F and FP in Tables II and V. The
results of the infinite volume, on-shell decay amplitudes
are summarized in Table XV.
We compare the infinite volume, on-shell decay ampli-

tudes obtained from the different frame calculations.
Figure 8 shows the decay amplitudes of the 27 operator
with the CM and Lab calculations at the lightest mu as a
function of p2. We also plot previous results calculated
with H-parity boundary condition [19,20] in the figure. The
amplitude calculated in the Lab frame is consistent with
the line interpolated between those of the CM and H-parity
boundary condition calculations. This momentum depen-
dence is consistent with a simple expectation that the Lab
result is smoothly connected to the results obtained from
the CM frame. In contrast to this result, the one obtained
with tK ¼ 16, also plotted in the figure, is below the linear
fit. It may suggest that excited state contaminations are
large in the tK ¼ 16 case.

TABLE VII. Kaon mass for each of the light and strange quark masses in tK ¼ 20 case.

mK [GeV] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44

0.015 0.7073(12) 0.8507(13) 0.9753(15) � � � � � � � � �
0.03 0.7428(12) 0.8814(12) 1.0029(13) 1.0763(14) 1.1914(16) 1.3163(18)

0.04 0.7666(11) 0.9023(11) 1.0221(12) 1.0946(13) 1.2086(14) 1.3324(15)

0.05 0.7901(10) 0.9232(11) 1.0413(11) 1.1129(12) 1.2258(12) 1.3487(13)

TABLE VIII. Kaon energy with momentum P ¼ 2�=L for all light and strange quark masses in the tK ¼ 20 case.

EP
K [GeV] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44

0.015 0.8673(25) 0.9847(24) 1.0914(25) � � � � � � � � �
0.03 0.8948(21) 1.0111(19) 1.1168(19) 1.1818(20) 1.2856(21) 1.4002(22)

0.04 0.9146(18) 1.0293(17) 1.1339(16) 1.1984(17) 1.3014(17) 1.4152(18)

0.05 0.9343(16) 1.0476(15) 1.1511(14) 1.2150(14) 1.3172(15) 1.4303(16)

TAKESHI YAMAZAKI PHYSICAL REVIEW D 79, 094506 (2009)

094506-10



C. Weak matrix elements

The matching factors of the weak matrix elements were
previously calculated in Ref. [20], using the regularization
independent (RI) scheme and a nonperturbative method
[63,64] at the scale � ¼ 1:44 GeV. The renormalization
factors are summarized below:

Zij ¼
0:8322ð96Þ 0 0

0 0:8940ð75Þ �0:0561ð71Þ
0 �0:0795ð58Þ 0:964ð17Þ

0
@

1
A;
(55)

with the operator indices i, j ¼ 27, 88, m88. In the follow-
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FIG. 5. Ratio RiðtÞ for 27, 88, m88 operators defined in Eq. (46) obtained from CM calculation with mu ¼ 0:015 and ms ¼ 0:12.
Solid and dashed lines are averaged value in flat region and its error, respectively.
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ing analysis we neglect the statistical errors of the renor-
malization constants, because those of the matrix element
are larger than the ones of the diagonal parts. The renor-
malized weak matrix elements jARI

i j ¼ ZijjAjj for i, j ¼
27, 88 and m88 are summarized in Table XVI.

1. 27 operator

The weak matrix element of the 27 operator is shown in
Fig. 9. The horizontal axis is the pion mass squared. The
matrix elements obtained from the CM and Lab calcula-
tions are clearly distinguished from each other. This means
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FIG. 6. Ratio RiðtÞ for 27, 88, m88 operators defined in Eq. (47) obtained from Lab calculation with mu ¼ 0:015 and ms ¼ 0:12.
Solid and dashed lines are averaged value in flat region and its error, respectively.
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TABLE IX. Decay amplitude of 27 operator for all light and strange quark masses in the CM frame. Result is in lattice unit. Results
of on-shell amplitude are also included.

jM27j [10�3] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44 On-shell

0.015 1.026(16) 1.082(18) 1.118(21) � � � � � � � � � 1.033(16)

0.03 1.200(17) 1.232(18) 1.246(20) 1.245(21) 1.227(22) 1.174(24) 1.246(19)

0.04 1.328(17) 1.349(18) 1.353(20) 1.347(20) 1.320(21) 1.255(22) 1.343(20)

0.05 1.453(18) 1.465(19) 1.462(20) 1.451(21) 1.416(21) 1.340(22) 1.410(21)

TABLE X. Decay amplitude of 88 operator for all light and strange quark masses in the CM frame. Result is in lattice unit. Results of
on-shell amplitude are also included.

jM88j [10�3] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44 On-shell

0.015 7.00(12) 6.56(11) 6.22(12) � � � � � � � � � 6.95(11)

0.03 4.709(76) 4.391(75) 4.133(74) 3.972(74) 3.693(74) 3.320(72) 4.216(74)

0.04 3.996(60) 3.721(58) 3.494(57) 3.353(56) 3.108(56) 2.786(54) 3.326(56)

0.05 3.511(51) 3.268(48) 3.065(47) 2.937(46) 2.718(45) 2.430(43) 2.705(45)

TABLE XI. Decay amplitude of m88 operator for all light and strange quark masses in the CM frame. Result is in lattice unit.
Results of on-shell amplitude are also included.

jMm88j [10�2] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44 On-shell

0.015 2.548(40) 2.417(39) 2.314(40) � � � � � � � � � 2.532(39)

0.03 1.837(28) 1.740(27) 1.660(27) 1.608(27) 1.513(27) 1.379(26) 1.687(27)

0.04 1.632(23) 1.546(22) 1.473(21) 1.425(21) 1.339(21) 1.219(20) 1.415(21)

0.05 1.499(20) 1.421(19) 1.354(18) 1.309(18) 1.229(18) 1.118(17) 1.224(17)

TABLE XII. Decay amplitude of 27 operator for all light and strange quark masses in the Lab frame. Result is in lattice unit. Results
of on-shell amplitude are also included.

jMP
27j [10�3] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44 On-shell

0.015 1.31(11) 1.37(11) 1.41(12) � � � � � � � � � 1.38(11)

0.03 1.500(70) 1.545(70) 1.562(72) 1.559(74) 1.531(76) 1.457(77) 1.554(74)

0.04 1.630(56) 1.679(56) 1.696(57) 1.693(58) 1.663(59) 1.583(59) 1.651(59)

0.05 1.774(49) 1.824(49) 1.841(49) 1.837(50) 1.802(51) 1.715(51) 1.726(51)

TABLE XIII. Decay amplitude of 88 operator for all light and strange quark masses in the Lab frame. Result is in lattice unit. Results
of on-shell amplitude are also included.

jMP
88j [10�3] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44 On-shell

0.015 6.31(56) 6.19(48) 6.05(45) � � � � � � � � � 6.16(48)

0.03 4.41(24) 4.26(22) 4.09(21) 3.96(20) 3.72(20) 3.38(19) 3.92(20)

0.04 3.85(16) 3.70(15) 3.54(14) 3.43(14) 3.21(13) 2.90(13) 3.16(13)

0.05 3.47(12) 3.33(11) 3.18(10) 3.07(10) 2.870(97) 2.586(92) 2.614(93)
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that the relative momentum dependence is important in the
matrix element. The figure also shows that the matrix
element decreases with the pion mass. In order to inves-
tigate the dependences of the pion mass and relative mo-
mentum, we carry out a global fit of the result with a naive
polynomial form,

B00 þ B10m
2
� þ B01p

2: (56)

We omit a p4 term, because our result is obtained at only
two different momentums in each pion mass, as discussed
in Sec. IVA. The value of 	2=d:o:f: is 8.6 when we fit all
the four pion mass data, so that we exclude the heaviest
data to make the 	2=d:o:f: acceptable. We obtain B00 ¼
�0:0022ð23Þ, which is consistent with zero within the
statistical error. This implies that the matrix element at
p ¼ 0 vanishes in the chiral limit as shown in Fig. 9 as a
dotted line. Thus, a fit form without the constant term B00

also gives a reasonable 	2=d:o:f: as summarized in
Table XVII.

This tendency is consistent with the prediction of
leading-order (LO) ChPT [4,65],

jARI
27j ¼ �
27

12
ffiffiffi
3

p
f3

ðm2
K �m2

�Þ (57)

¼ �
27

12
ffiffiffi
3

p
f3

ð3m2
� þ 4p2Þ; (58)

where 
27 is a constant and f is the pion decay constant in
the chiral limit. In the second line we use the on-shell
condition,

m2
K ¼ 4ðm2

� þ p2Þ; (59)

because our matrix element is calculated for on-shell
states. The normalization of Eq. (57) is based on
Ref. [11]. It should be noted that while the behavior of
the matrix element near the chiral limit agrees with the LO
ChPT, we omit logarithms predicted at NLO due to the
large pion mass used in our calculation.

We attempt to estimate a systematic error stemming
from neglecting the NLO log terms in (quenched) ChPT
formula [66]. Both the formulae are explained in the

Appendix, and the results are summarized in
Table XVIII. In the fits we assume that the formulae are
valid in the lighter pion mass region, m� < 0:5 GeV, and
then we use only the data at the two lightest pion masses. In
this restricted pion mass region, both the formulae work
well. We estimate a dimensionless quantity 
27=f

4 with
f ¼ 0:133 GeV [35] using the full (quenched) ChPT for-
mula, and then find that the absolute value is 52(37)%
smaller than the one estimated by B10 of the linear fit.
This suggests that the determination of 
27=f

4 has the
large systematic error. In order to remove the systematic
error, we need to calculate more data at the region where
ChPT is valid. While 
27=f

4 varies largely with the fit
form, the linear fit and the two ChPT fits give consistent
results at the physical point (see Tables XVII and XVIII),

m� ¼ 140 MeV; p ¼ 206 MeV; (60)

which is determined by the on-shell condition with the
physical kaon mass mK ¼ 498 MeV.

2. 88 and m88 operators

The weak matrix elements of the 88 and m88 operators
are presented in Figs. 10 and 11, respectively. The matrix
elements of the 88 operator obtained from the different
frames are clearly separated and have appreciable slopes.
The pion mass and relative momentum dependences are
important in the matrix element as in the 27 operator case.
In contrast to the 88 operator, the results of the m88
operator have neither strong pion mass nor relative mo-
mentum dependences. Both the matrix elements do not
have clear curvatures with respect to the pion mass
squared. Thus, we simply adopt the polynomial function
in Eq. (56) for the global fit of the matrix elements. In this
fit we use the data at all four pion masses. The fit results are
tabulated in Table XVII. In the m88 case the 	2=d:o:f: is
relatively larger than the other cases. This might be due to
the poor determination of the covariance matrix of the
matrix element. The matrix element at the physical point
and the chiral limit is almost independent of fit form,
because it does not have strong dependences for m2

� and
p2. Therefore we choose to quote this fit as our result.
We plot the fit results at the chiral limit with p ¼ 0 for

the 88 and m88 operators in Figs. 10 and 11, respectively.

TABLE XIV. Decay amplitude of m88 operator for all light and strange quark masses in the Lab frame. Result is in lattice unit.
Results of on-shell amplitude are also included.

jMP
m88j [10�2] ms

mu 0.12 0.18 0.24 0.28 0.35 0.44 On-shell

0.015 2.44(19) 2.42(16) 2.38(15) � � � � � � � � � 2.41(16)

0.03 1.843(84) 1.808(75) 1.757(70) 1.717(68) 1.632(65) 1.503(62) 1.701(67)

0.04 1.688(58) 1.652(51) 1.603(48) 1.564(47) 1.484(45) 1.363(43) 1.467(44)

0.05 1.595(45) 1.559(40) 1.511(37) 1.473(36) 1.396(35) 1.280(33) 1.292(33)
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FIG. 7. Interpolations of off-shell decay amplitude jMij and jMP
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shell decay amplitudes.
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A constant remains in both the matrix elements at the limits
m� ¼ p ¼ 0. While the trend is quite different from the 27
case, it is consistent with the prediction of LO ChPT
[65,67–69],

jARI
i j ¼ �
i

24
ffiffiffi
3

p
f3

; i ¼ 88; m88; (61)

where 
i is a constant. Again, although these trends agree
with the behavior in the chiral limit of LO ChPT, we omit
logarithms which enter NLO in ChPT due to large pion
mass.

A systematic error stemming from the fit without log
terms is estimated using the full ChPT formula [66] (see

Appendix for details). The quenched formula does not
work in both the matrix elements as presented in
Table XVII. Therefore, we will not discuss the fit result
obtained with the quenched formula. We use the same
assumption for the pion mass as in the 27 operator case,
and then fit with only the two lightest pion mass data. It is
found that a dimensionless quantity
i=f

6 (i ¼ 88,m88) in
the ChPT fit is reasonably consistent with that of the linear
fit, determined by B00. The differences are less than 11%.
This means that the low-energy constants are less sensitive
to the NLO logs than that in the 27 operator. As presented
in Tables XVII and XVIII, the polynomial and ChPT fit
results at the physical point, m� ¼ 140 MeV and p ¼
206 MeV, also reasonably agree with each other.

3. Comparison between direct and indirect methods

We attempt to compare the results for the direct and
indirect methods through the dimensionless parameters in
LO ChPT, 
27=f

4 and 
i=f
6 (i ¼ 88, m88), which have

been already discussed in the previous sections. The results
are tabulated in Table XIX as well as those obtained from
the previous indirect calculation [11]. The constants of the
previous work are estimated with f ¼ 0:137 GeV [36] and
the renormalization scale � ¼ 2:13 GeV. We find that the
results for 
88 and 
m88 are almost consistent in both the
methods, while 
27 differs by a factor of 2.6. Our result of

27, however, contains a large systematic error of the chiral
extrapolation, and varies by a factor of 1=2 as can be found
in Table XIX. Other possible systematic errors in this
comparison are a different choice of parameters, such as
lattice spacing and the renormalization scale, and a differ-
ent choice of gauge action.
These parameters in LO ChPT obtained from the direct

method should be consistent with those from the indirect
method if no systematic error is included. This is because

TABLE XV. Decay amplitudes in infinite volume for 27, 88, m88 operators in the CM and Lab calculations.

CM Lab

mu jA27j [GeV3] jA88j [GeV3] jAm88j [GeV3] jA27j [GeV3] jA88j[GeV3] jAm88j [GeV3]

0.015 0.1031(20) 0.694(14) 2.528(48) 0.151(12) 0.676(53) 2.65(18)

0.03 0.1892(33) 0.640(13) 2.562(47) 0.230(12) 0.579(30) 2.51(10)

0.04 0.2461(41) 0.609(11) 2.593(44) 0.283(11) 0.541(23) 2.510(83)

0.05 0.3007(50) 0.577(10) 2.609(41) 0.334(11) 0.506(19) 2.499(71)
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FIG. 8. Comparison of decay amplitudes obtained from differ-
ent calculations in infinite volume of 27 operator at mu ¼ 0:015.

TABLE XVI. Weak matrix elements in regularization independent scheme for 27, 88,m88 operators in the CM and Lab calculations.

CM Lab

mu jARI
27j [GeV3] jARI

88j [GeV3] jARI
m88j [GeV3] jARI

27j [GeV3] jARI
88j [GeV3] jARI

m88j [GeV3]

0.015 0.0858(17) 0.4782(96) 2.382(46) 0.126(10) 0.456(38) 2.50(17)

0.03 0.1575(28) 0.4288(88) 2.419(44) 0.1913(97) 0.377(22) 2.378(98)

0.04 0.2048(34) 0.3992(78) 2.451(41) 0.2351(90) 0.343(17) 2.376(78)

0.05 0.2502(41) 0.3693(70) 2.470(39) 0.2778(89) 0.312(14) 2.369(67)
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the final-state interaction effect of the two pions in the
matrix elements vanishes in both the limits m2

� ¼ p2 ¼ 0.
However, a more strict consistency check of these parame-
ters is beyond this work, because many systematic errors
are included in the comparison discussed above. For this
check, we need to calculate the matrix elements with both
the direct and indirect methods on exactly the same con-
figurations at the lighter pion masses.

D. ReA2 and ImA2

We calculate ReA2 and ImA2 from the weak matrix
elements jARI

27j, jARI
88j, and jARI

m88j. The definition of the

decay amplitude AI is given by

hð��ÞIjHW jK0i � AIe
i�I (62)

¼ GFffiffiffi
2

p VudV

us

�X10
i¼1

ðzið�Þ þ �yið�ÞÞhQiiIð�Þ
�
; (63)

where the index I denotes the isospin, zið�Þ and yið�Þ are
theWilson coefficients at the scale�, and other parameters
are presented in Table XX. The relations between the weak
matrix elements hQii2 and jARI

j j for j ¼ 27, 88, m88 are

listed below:

jARI
27j ¼ 3jhQ1i2j ¼ 3jhQ2i2j ¼ 2jhQ9i2j ¼ 2jhQ10i2j

(64)

jARI
88j ¼ 2jhQ7i2j (65)

jARI
m88j ¼ 2jhQ8i2j: (66)

The other weak matrix elements vanish in the I ¼ 2 case,
i.e., hQ3i2 ¼ hQ4i2 ¼ hQ5i2 ¼ hQ6i2 ¼ 0. The details of
the calculation of the Wilson coefficients is in Ref. [20].
The coefficients are evaluated in the NDR scheme [70],
which are converted to the RI scheme at the scale � ¼
1:44 GeV [20]. The values of the Wilson coefficients are
summarized in Table XXI.
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FIG. 9. Weak matrix element of 27 operator. Dotted line is
obtained from global fit with p ¼ 0. Dashed line and triangle
symbol denote global fit result with physical momentum p ¼
206 MeV. Open circle and square symbols are omitted in global
fits.

TABLE XVII. Fit results for weak matrix elements of each operator in regularization independent scheme, jARI
i j for i ¼ 27, 88,m88.

Fit function is defined in Eq. (56). Results at physical point, m� ¼ 140 MeV and p ¼ 206 MeV, are also tabulated.

opr. B00 [GeV3] B10 [GeV] B01 [GeV] 	2=d:o:f: phys. [GeV3]

27 � � � 0.6687(95) 0.48(11) 1.26 0.0336(47)

88 0.534(11) �0:429ð22Þ �0:86ð12Þ 0.22 0.490(11)

m88 2.391(49) 0.14(10) �1:89ð63Þ 2.48 2.313(55)

TABLE XVIII. Fit results with full and quenched NLO ChPT formulae for weak matrix elements of each operator in regularization
independent scheme, jARI

i j for i ¼ 27, 88, m88. Fit functions are defined in the Appendix. Results at physical point, m� ¼ 140 MeV
and p ¼ 206 MeV, are also tabulated.

opr. 
27=f
4 �20 [1=GeV2] �11 [1=GeV2] 	2=d:o:f: phys. [GeV3]

27(Full) �0:0391ð15Þ �20:4ð6:3Þ 8.5(1.5) 0.02 0.0331(13)

27(Quen.) �0:0509ð20Þ �11:7ð4:8Þ 5.2(1.2) 0.08 0.0374(15)

opr. 
i=f
6 �10 [1=GeV2] �01 [1=GeV2] 	2=d:o:f: phys. [GeV3]

88(Full) �5:17ð19Þ �0:51ð69Þ 0.04(16) 1.44 0.432(20)

88(Quen.) �8:20ð31Þ 0.28(44) �0:30ð10Þ 5.39 0.554(24)

m88(Full) �22:37ð90Þ �0:78ð70Þ 0.38(16) 2.33 2.039(94)

m88(Quen.) �35:5ð1:5Þ 0.15(44) �0:09ð10Þ 7.24 2.56(11)
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1. ReA2

The real part of A2 is evaluated through the following
equation:

ReA2 ¼GFffiffiffi
2

p jVudjjVusj
�X10
i¼1

ðzið�ÞþReð�Þyið�ÞÞjhQii2jð�Þ
�
:

(67)

ReA2 obtained in the CM and Lab frame calculations is
tabulated in Table XXII.

The upper panel of Fig. 12 shows that the main contri-
bution of ReA2 comes from jhQ1i2j and jhQ2i2j in the CM
calculation with the lightest pion mass (contributions come
only from jARI

27j). This is consistent with previous results
[10,11]. The trend is not changed in the Lab calculation as
shown in the lower panel of Fig. 12.

We will not discuss the chiral extrapolations of ReA2 in
detail, because they are essentially the same as those of
jARI

27j in Sec. IVC 1. In spite of this, we just summarize the
result of the chiral extrapolations in Table XXIII. At the
physical point, we obtain

ReA2 ¼ 1:66ð23Þðþ48
�03Þ � 10�8 GeV

where the first and second errors are statistical and system-
atic, respectively. The central value and the first error are
obtained from the simple polynomial fit Eq. (56) with
B00 ¼ 0. The systematic error is estimated by comparing
the central value with the result from a fit with an added
m2

�p
2 term,

B10m
2
� þ B01p

2 þ B11m
2
�p

2; (68)

and also (quenched) ChPT fit using the two lightest pion
mass data as in Sec. IVC 1. The larger systematic error
stems from the polynomial fit result with Eq. (68) as shown
in Table XXIII, while the ChPT fits give consistent results
with the one obtained from the simple polynomial fit,
Eq. (56) with B00 ¼ 0, as in jARI

27j.
In Fig. 13 we plot the result at the physical point as well

as the previous results obtained with the indirect method
[10,11], direct calculation with ChPT [16], and the experi-
ment. Our result reasonably agrees with the experimental
value and also the previous results except the result in
Ref. [11] (choice 2 with � ¼ 2:13 GeV). The difference
ofReA2 between our result and the RBC result is a factor of
1.4. This difference is smaller than what we observed in

27=f

4 as described in Sec. IVC1. We may consider that
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FIG. 10. Weak matrix element of 88 operator. Dotted line is
obtained from global fit with p ¼ 0. Dashed line and triangle
symbol denote global fit result with physical momentum p ¼
206 MeV. Square symbol is slightly shifted to minus direction in
x-axis.
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FIG. 11. Weak matrix element of m88 operator. Dotted line is
obtained from global fit with p ¼ 0. Dashed line and triangle
symbol denote global fit result with physical momentum p ¼
206 MeV. Square symbol is slightly shifted to minus direction in
x-axis.

TABLE XIX. Comparison of dimensionless constant of LO ChPT. This work and previous work [11] are denoted by ‘‘direct’’ and
‘‘indirect,’’ respectively.

a�1 [GeV] f [GeV] 
27=f
4 
88=f

6 
m88=f
6

direct(Lin.) 1.31 0.133 �0:0809ð11Þ �5:52ð11Þ �24:68ð51Þ
direct(ChPT) 1.31 0.133 �0:0391ð15Þ �5:17ð19Þ �22:37ð90Þ
indirect 1.92 0.137 �0:0306ð13Þ �5:89ð30Þ �21:4ð1:2Þ
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ReA2 / 
27ð3m2
� þ 4p2Þ according to the LO ChPT rela-

tion Eq. (58), so that the reduction of the discrepancy
between our result and the RBC result, found in 
27=f

4

to that of ReA2, seems inconsistent with the expectation
derived from the LO relation. Indeed, our polynomial fit
with B00 ¼ 0 is not consistent with LO ChPT, as B10=3>
B01=4 can be read off in Table XXIII, although both the
quantities give the same value of 
27=f

4 if LO ChPT is
valid. This inconsistency between B10=3 and B01=4 causes
a smaller difference between ours and the RBC result of
ReA2 than that of 
27=f

4. Again, this is due to the large
systematic uncertainty during the determination of 
27=f

4.

2. ImA2

The imaginary part of A2 is determined through the
definition of the decay amplitude, Eq. (63), as

ImA2 ¼ GFffiffiffi
2

p jVudjjVusj
�X10
i¼7

Imð�Þyið�ÞjhQii2jð�Þ
�
: (69)

The results at each pion mass and frame are tabulated in
Table XXIV.

Figure 14 shows the contribution of each operator to
ImA2 in the CM and Lab calculations at the lightest pion
mass. In both frames the largest contribution to ImA2 is
jhQ8i2j, which is constructed only from jARI

m88j, and the

second largest one is jhQ9i2j with the opposite sign and
comes from jARI

27j. Figure 15 shows that ImA2 has a sig-
nificant slope for m2

�, while the leading contribution of
ImA2, jARI

m88j does not have such a slope as can be seen in

Fig. 11. This slope is caused by the large pion mass
dependence of jhQ9i2j and jhQ10i2j, or jARI

27j, as shown in
Fig. 16 for the CM case. This tendency does not change in
the Lab calculation.
We estimate ImA2 at the physical point using the same

polynomial fit form, Eq. (56), because the largest contri-
bution of ImA2 is given by jARI

m88j. The result with the

physical momentum and its chiral extrapolation are plotted
in Fig. 15. We obtain

ImA2 ¼ �1:181ð26Þðþ141
�014Þ � 10�12 GeV

at the physical point. Again, the central value and statistical

TABLE XX. Parameters for weak matrix element [11].

GF 1:166� 10�5 GeV�2

jVusj 0.2237

jVudj 0.9747

jVtsj 0.0410

Vtd 0:00708� 0:00297i
� 0:00133� 0:000559i

TABLE XXI. Results of Wilson coefficients [20].

i zið�Þ yið�Þ
1 �0:3522 0.0

2 1.17721 0.0

3 0.00446831 0.0241094

4 �0:0140925 �0:0503954
5 0.00506909 0.00563178

6 �0:015967 �0:0928098
7 0.0000502692 �0:000186283
8 �0:0000134347 0.00118057

9 0.0000428969 �0:0114749
10 0.0000117198 0.0037748

TABLE XXII. Results of ReA2½10�8 GeV� in CM and Lab
calculations.

mu 0.015 0.03 0.04 0.05

CM 4.241(81) 7.78(14) 10.12(17) 12.37(20)

Lab 6.22(50) 9.45(48) 11.62(45) 13.74(44)
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FIG. 12. Absolute values of each weak operator contribution
for ReA2 at lightest quark mass in CM (upper panel) and Lab
(lower panel) calculations. Open and stripe bars denote positive
and negative contributions, respectively. Signs of operator 1 and
8 contributions are changed.
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error are obtained from a fit to Eq. (56), while the system-
atic error is determined by comparing the central value
with that from a fit form with an added m2

�p
2 term,

B00 þ B10m
2
� þ B01p

2 þ B11m
2
�p

2; (70)

and ChPT formula for 88 and m88 operators, explained in
Appendix, with the data at the two lightest pion masses as
in Sec. IVC 2. In this case, the quenched ChPT formula
does not give a reasonable 	2=d:o:f: as in jARI

88;m88j. The
larger systematic error comes from the fit with the ChPT
formula. These fit results are presented in Table XXV.

The result at the physical point is compared with the
previous indirect calculation results [10,11] in Fig. 17. The
differences of our result from CP-PACS [71] and RBC
(choice 2 with � ¼ 2:13 GeV) results are a factor of 1.9

and 0.93, respectively. However, from the comparison we
cannot conclude that the final-state interaction effect is
appreciable or not in ImA2, because the previous works
employed different simulation parameters from our calcu-
lation, and also even the two results with the indirect
method are inconsistent. Moreover our result has about
10% systematic error of the chiral extrapolation estimated
in the above. A more detailed comparison between the
direct and indirect methods is required for making a firm

TABLE XXIII. Fit results with polynomial and NLO full (quenched) ChPT formula of ReA2, and result at physical point, m� ¼
140 MeV and p ¼ 206 MeV.

Poly. B10 [10�7=GeV] B01 [10�7=GeV] B11 [10�7=GeV3] 	2=d:o:f: phys. [10�8 GeV]

3.306(47) 2.39(56) � � � 1.26 1.66(23)

3.304(47) 3.60(99) �4:0ð2:7Þ 0.90 2.14(40)

ChPT 12
ffiffiffi
3

p

ReA2

=f3 [10�8=GeV] �20 [1=GeV2] �11 [1=GeV2] 	2=d:o:f: phys. [10�8 GeV]

Full �5:33ð21Þ �20:4ð6:3Þ 8.5(1.5) 0.02 1.636(65)

Quen. �6:93ð27Þ �11:7ð4:8Þ 5.2(1.2) 0.08 1.847(72)

0

5e-09
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2e-08
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This work
experiment

RBC K->π
CP-PACS K->π
JLQCD K->ππ

ReA2[GeV]

FIG. 13. ReA2 obtained from global fit results denoted by
circle symbol with only statistical error. Results of previous
works [10,11,16] are also plotted by open symbols. Star symbol
is experimental result.

TABLE XXIV. Results of ImA2½10�12 GeV� in CM and Lab
calculations.

mu 0.015 0.03 0.04 0.05

CM �1:036ð22Þ �0:786ð19Þ �0:624ð17Þ �0:462ð16Þ
Lab �0:952ð90Þ �0:635ð53Þ �0:468ð42Þ �0:301ð35Þ
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FIG. 14. Absolute values of each weak operator Qi contribu-
tion for ImA2 at lightest quark mass in CM (upper panel) and
Lab (lower panel) calculations. Open and stripe bars denote
positive and negative contributions, respectively. Signs of op-
erator 8 and 10 contributions are changed.
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conclusion about how much the final-state interaction ef-
fect is in this quantity.

3. Systematic error from definition of momentum

A systematic error for ReA2 and ImA2 arises from the
violation of the naive dispersion relation on lattice. This
error would decrease toward the continuum limit. To esti-
mate the systematic error, we compare the results in the
above Secs. IVD1 and IVD2 with the ones given in the
analysis with the lattice dispersion relation in
Refs. [22,56],

coshðEP
�Þ ¼ coshðm�Þ þ 2sin2ðP=2Þ: (71)

In the analysis Eqs. (2) and (9) are replaced by

2sin2ðp=2Þ ¼ coshðE��=2Þ � coshðm�Þ; (72)

coshðE��Þ ¼ coshðEP
��Þ � 2sin2ðP=2Þ; (73)

respectively. Basically, these equations provide a different
relative momentum p from the naive analysis.

In the CM results, the change of the relative momentum
is small, 0.6–1.8% in all the four masses, which increases
as m� increases. The changes for ReA2 and ImA2 are less
than 1.5% in this case. In contrast to the CM case, p differs
by 2.7–5.2% in the Lab calculation. The difference also
increases as m� increases. At the heaviest pion mass the
analysis gives 12(11)% smaller(larger) value than the naive
dispersion analysis in ReA2ðImA2Þ. The main source of this
difference is the conversion factor whose difference is
8.6% at the heaviest point. At the lightest pion mass the
difference in ReA2ðImA2Þ is reduced to 5.8(5.2)%, where
the difference of the conversion factor is 3.0%. This sug-
gests that the systematic error decreases as the pion mass
gets lighter at fixed relative momentum, or as the momen-
tum decreases at fixed pion mass.
In this analysis we determine ReA2 and ImA2 at the

physical point with the same fit forms as used in the above
sections. For ReA2 the fit form, Eq. (56) with B00 ¼ 0, no
longer gives a reasonable 	2=d:o:f:, because the Lab re-
sults at the heavier point are largely changed. On the other
hand, Eq. (68) gives a consistent result, ReA2 ¼
2:19ð36Þ � 10�8 GeV, at the physical point compared to
the one given by using the same form as in Sec. IVD1. For
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FIG. 15. ImA2 obtained from CM and Lab calculations and its
global fit. Triangle symbol denotes fit result with physical
momentum p ¼ 206 MeV. Dashed line is chiral extrapolation
to physical point. Square symbol is slightly shifted to minus
direction in x-axis.
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TABLE XXV. Fit results with polynomial and NLO ChPT formula of ImA2, and result at physical point, m� ¼ 140 MeV and p ¼
206 MeV.

Poly. B00 [10�12 GeV] B10 [10�12=GeV] B01 [10�12=GeV] B11 [10�12=GeV3] 	2=d:o:f: phys. [10�12 GeV]

�1:333ð25Þ 2.307(56) 2.54(36) � � � 0.15 �1:181ð26Þ
�1:332ð25Þ 2.302(57) 2.2(1.0) 0.7(1.9) 0.15 �1:194ð43Þ

ChPT 24
ffiffiffi
3

p

ImA2

=f3 [10�12 GeV] �10 [1=GeV2] �01 [1=GeV2] 	2=d:o:f: phys. [10�12 GeV]

1.250(42) �1:24ð66Þ �0:02ð16Þ 1.24 �1:040ð46Þ
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ImA2 the consistent result is obtained with the fit form
Eq. (56), while the result with Eq. (70) is larger, ImA2 ¼
�1:137ð37Þ � 10�12 GeV, than the corresponding one in
Sec. IVD2.

We estimate the systematic errors for ReA2 and ImA2 at
the physical point arising from this analysis by comparing
the central values with the ones obtained in the above
sections. We combine them with the previous systematic
errors, and finally quote

ReA2 ¼ 1:66ð23Þðþ48
�03Þðþ53

�0 Þ � 10�8 GeV; (74)

ImA2 ¼ �1:181ð26Þðþ141
�014Þðþ44

�0 Þ � 10�12 GeV; (75)

where the first error is statistic, and the second and third are
systematic ones.

V. CONCLUSIONS

In this article we have presented our results of the �I ¼
3=2 kaon weak matrix elements calculated with nonzero
total momentum using the quenched approximation on a
coarse lattice; a�1 ¼ 1:31ð4Þ GeV. The calculation is car-
ried out with an extension of the Lellouch and Lüscher
formula, recently proposed by two groups, to obtain the
infinite volume, on-shell decay amplitude. It is very en-
couraging that we have obtained the on-shell weak matrix
elements, taking into account final-state interactions prop-
erly, with a reasonable statistical error. We have found that
our result of ReA2 at the physical point is reasonably
consistent with the experimental value, and ImA2 is com-
parable with previous results using the indirect method.
While we have attempted to compare our results with those

from the indirect method, many systematic errors are in-
volved in the comparison, e.g., chiral extrapolations and
different simulation parameters from previous calcula-
tions. A more comprehensive investigation is required.
Another systematic uncertainty may come from the fact

that we use the heavy strange quark masses, which we have
used in order to evaluate the decay amplitude closely at the
on-shell kinematical point in this study. The difference of
the definition of the relative momentum on lattice may
cause an additional systematic error. To get rid of all the
systematic errors related to a rigorous satisfaction of the
on-shell condition, we need either the lighter pion mass or
larger volume simulations to make the two-pion energy
closer to the physical kaon mass, and also the simulations
at finer lattice spacing are preferable.
We also note that although chiral log behavior in the

weak matrix elements is expected from ChPT, we have not
seen such effects in our data. The problem may stem from
the large pion mass and the coarse lattice spacing in our
simulation because the prediction of ChPT is valid only in
the small pion mass region and may also be modified by
nonzero lattice spacing effects. To confirm expected ChPT
behavior, the simulations at the smaller pion mass and finer
lattice spacing are again required.
Apparently the systematic error due to quenching is

uncontrolled in this study, so that we should extend the
present calculation in the dynamical lattice simulation as
well. Besides the investigation of the unrevealed system-
atic errors, further investigation of the final-state interac-
tion remains an important future work. It is also important
to calculate the �I ¼ 1=2 kaon weak matrix elements with
this method to evaluate the CP violation parameter "0="
and the �I ¼ 1=2 selection rule. However, it is more
difficult than the present �I ¼ 3=2 case because the I ¼
0 �� scattering contribution enters in the �I ¼ 1=2 case.
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APPENDIX A: NLO CHPT FORMULAE AT
PHYSICAL KINEMATICS

The NLO ChPT formula for the 27 and 88 operators at
the physical kinematics in full and quenched case is ob-
tained in Ref. [66]. Following the analysis in Ref. [21], we
rewrite f� and fK in the formula in terms of f. Thus, we
use the following fit forms in ChPT analysis:
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FIG. 17. Circle symbol is ImA2 obtained from global fit. Error
is only statistical. Results of previous works [10,11] are also
plotted by open symbols.
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jARI
27j ¼ �
27

12
ffiffiffi
3

p
f3

�
ðm2

K �m2
�Þ

�
�
1þ m2

K

ð4�fÞ2 ðIzf � 2I� � IKÞ
�

þ m4
K

ð4�fÞ2 ðIa þ Re½Ib� þ IcþdÞ þ �20m
4
�

þ �11m
2
�p

2

�
(A1)

for the 27 operator, and

jARI
88j ¼ �
88

24
ffiffiffi
3

p
f3

�
1þ m2

K

ð4�fÞ2 ðIzf � 2I� � IKÞ

þ m2
K

ð4�fÞ2 ðJa þ Re½Jb� þ JcþdÞ þ �10m
2
�

þ �01p
2

�
(A2)

for the 88 (m88) operator, where Izf;a;b;cþd and Ja;b;cþd are

presented in Ref. [66], and I�;K in Ref. [72]. Ii and Jj
contain log terms and the scale �. In our analysis we set
� ¼ 1 GeV for simplicity. We omit a p4 term in Eq. (A1)
as explained in Sec. IVC 1. The normalization of these
equations are based on Ref. [11].
The quenched formula is obtained by replacing

Izf;a;b;cþd and Ja;b;cþd by Iqzf;a;b;cþd and Jqa;b;cþd in

Ref. [66], respectively, and IK by ~IK in Ref. [72], and
setting I� ¼ 0 in the above equations. In the quenched
analysis, we need two parameters 
 and m0. We find that
the result does not largely depend on the parameters in the
ranges, 0 � 
 � 0:5 and 0:1 � m0 � 0:866 GeV, so that
we use 
 ¼ 0:1 and m0 ¼ 0:866 GeV in our analysis.
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