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Charged and neutral, pion and kaon electric polarizabilities are extracted from lattice QCD using an

ensemble of anisotropic gauge configurations with dynamical clover fermions. We utilize classical

background fields to access the polarizabilities from two-point correlation functions. Uniform background

fields are achieved by quantizing the electric field strength with the proper treatment of boundary flux.

These external fields, however, are implemented only in the valence quark sector. A novel method to

extract charge particle polarizabilities is successfully demonstrated for the first time.
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I. INTRODUCTION

A staple component of electrodynamics courses is the
electric polarizability. Neutral materials immersed in elec-
tric fields polarize. At the atomic scale, electron clouds
distort creating microscopic dipole moments that orient
opposite the applied field to minimize the energy. This
simple principle accounts for dielectric properties of ma-
terials, a range of intermolecular forces, and properties of
atoms and nuclei in applied fields. At the femtoscale,
hadrons too polarize in applied fields, but only against
the strong chromodynamic interactions confining their
electrically charged quarks into hadrons.

Understanding properties of hadrons quantitatively is
formidable. Quark and gluon interactions must be treated
nonperturbatively for which lattice QCD has been devel-
oped; see [1] for a review. Low-energy properties of had-
rons, however, can be described using an effective theory
of QCD, based upon treating pseudoscalar mesons as the
Goldstone modes arising from spontaneous chiral symme-
try breaking. A picture of hadrons emerges from chiral
dynamics: that of a hadronic core surrounded by a pseu-
doscalar meson cloud. As some pseudoscalar mesons are
charged, polarizabilities of hadrons encode the stiffness of
the charged meson cloud (as well as that of the core). The
form of pseudoscalar meson polarizabilities is conse-
quently strongly constrained by chiral dynamics [2–4].
Beyond the leading order, however, results depend on
essentially unknown low-energy constants, which cur-
rently must be estimated in a model-dependent fashion.
For the case of the charged pion, confrontation of these
results with experiment has proven difficult, e.g. from the

original measurement [5], to the most recent [6], extracted
results disagree with predictions made using chiral dynam-
ics. New results with higher statistics and the first kaon
results are anticipated from COMPASS at CERN [7].
Lattice gauge theory simulations provide a first prin-

ciples approach to determine hadronic polarizabilities from
QCD, crucially test predictions from chiral dynamics, and
confront experiment. Indeed the unknown low-energy con-
stants of chiral perturbation theory can be determined by
matching to lattice QCD computations. Furthermore, the
ability to vary the quark mass allows one to directly
explore the chiral behavior of observables, investigate the
convergence properties of the perturbative expansion, and
thereby test the predictions of the effective theory. The
highly constrained form for hadronic polarizabilities
within chiral perturbation theory leads to a stringent test
of low-energy QCD dynamics.
Electric polarizabilities of neutral hadrons have been

calculated with lattice QCD using the quenched approxi-
mation at pion masses greater than 500 MeV [8,9]. There
has also been a fully dynamical calculation of the neutron
electric polarizability at a pion mass of 760 MeV [10].
These calculations do not employ constant electric fields
but attempt to mitigate effects from field gradients by
imposing Dirichlet boundary conditions on the quark fields
in the time and/or space directions. Such an approach leads
to uncertainties that are difficult to quantify. In this work,
we report on calculations of pseudoscalar meson polar-
izabilities using lattice QCD with dynamical configura-
tions. A salient feature of our computation is that it
utilizes a periodic lattice action with everywhere constant
electric fields. Our calculations of meson polarizabilities
are the first such to include effects from dynamical quarks.
At this stage, however, we are restricted to electrically
neutral sea quarks. Correcting for this malady would re-
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quire at least an order of magnitude greater computing
power.1 Furthermore, we demonstrate for the first time
how to extract charge particle polarizabilities from lattice
two-point correlation functions.

We begin in Sec. II by describing the implementation of
constant external fields on a lattice. The appendix consid-
ers the effect of nonuniform fields. Next in Sec. III, we
detail how lattice two-point correlation functions can be
utilized to extract the electric polarizabilities of both
charged and neutral particles. Details of our lattice study
are then presented in Sec. IV, and summarized in a con-
clusion, Sec. V.

II. CONSTANT FIELDS ON A LATTICE

To produce a constant electric field, ~E ¼ Eẑ, we use the
Euclidean space vector potential,

A�ðxÞ ¼ ð0; 0;�Ex4; 0Þ; (1)

where E is a real-valued parameter. The analytic continu-
ation E ! �iEM produces a real-valued electric field in
Minkowski space. Generally this continuation cannot be
performed using numerical data because of nonperturba-
tive effects, e.g. the Schwinger pair-creation mechanism
[13] is absent in Euclidean space. We are interested, how-
ever, solely in quantities that are perturbative in the exter-
nal field strength, for which the naı̈ve continuation
produces the correct Minkowski space physics; see [14]
for explicit details.

To implement the background field on the lattice, we
modify the SUð3Þ color gauge links, U�ðxÞ, for each quark
flavor by multiplying by the color-singlet Abelian links,

UðEÞ
� ðxÞ, for the external field, namely,

U�ðxÞ ! U�ðxÞUðEÞ
� ðxÞ; (2)

where UðEÞ
� ðxÞ ¼ exp½iQA�ðxÞ�, Q is the quark electric

charge, and A�ðxÞ is given in Eq. (1). As this multiplication

is carried out on preexisting gauge configurations, the sea
quarks remain electrically neutral. This approximation is
imposed because of computational restrictions which will
not be rectified in the near future without a significant
increase in resources.

The inclusion of the field via Eq. (2) does not lead to a
constant electric field. On a torus, constant gauge fields
require quantization [15–17]. The basic argument is as

follows. With periodic boundary conditions,2 the action
is defined on a torus, which is a closed surface. For the
field we wish to implement, the only plane with nonvanish-
ing flux is the x3-x4 plane. The total area of the x3-x4 plane
is�L, where L is the length of the x3 direction, and� is the
length of the x4 direction. Because the torus is a closed
surface, however, there can be no net flux through the x3-x4
plane (modulo 2�), i.e. � ¼ QE�L � 2�n, with n as an
integer. This leads to the ’t Hooft quantization condition

E ¼ 2�n

qd�L
: (3)

Here we have used the down quark electric charge, qd ¼
�1=3e, and note that the up quark will necessarily encoun-
ter properly quantized fields when Eq. (3) is met because
qu ¼ �2qd.
The argument presented for constant gauge fields ap-

plies to a continuous torus, and must be modified for a
discrete torus; see e.g. [18–20]. On a discrete torus, each of
the elementary plaquettes must be identical with value:
expðiQEÞ to arrive at the constant electric field E. With
Eq. (2), the plaquettes are identical in the bulk of the lattice
but not at the boundary, where there are L plaquettes with
differing flux. Each of these plaquettes wraps around from
x4 ¼ �� 1 to x4 ¼ 0, with the common value
exp½iQEð1� �Þ�. This unwanted flux can be eliminated
on L� 1 of the plaquettes by including additional trans-

verse links, UðEÞ?
� ðxÞ, at the boundary,

U�ðxÞ ! U�ðxÞUðEÞ
� ðxÞUðEÞ?

� ðxÞ; (4)

with UðEÞ?
� ðxÞ ¼ exp½iQE�x3��4�x4;��1�. Now the field

through every plaquette is E, with only one exception:
the plaquette at the far corner of the lattice, ðx3; x4Þ ¼ ðL�
1; �� 1Þ that wraps around to x3 ¼ 0 and x4 ¼ 0. The
value of this plaquette is exp½iQEð1� �LÞ�, which is
identical to the plaquette in the bulk of the lattice provided
’t Hooft’s quantization condition, Eq. (3), is met. We have
previously demonstrated the effects of using nonquantized
field values, finding non-negligible shifts in particle spectra
[21]. We summarize our findings in the appendix. In this
work, we implement the external field using Eq. (4), and
quantized values for the field strength E in Eq. (3). This
choice corresponds to a completely periodic lattice gauge
action, and thus corresponds to a field theory at a finite (but
low) temperature in the continuum limit.

1Pseudoscalar meson polarizabilities first depend on sea quark
charges at next-to-next-to-leading order in the chiral expansion
[11,12]. It is thus possible to extract physical information from
simulations with vanishing sea quark charges by utilizing chiral
perturbation theory. As the current study is restricted to one
volume and one pion mass, we leave this investigation to future
work.

2The argument applies equally well to the case of twisted
boundary conditions on the matter fields c ðxÞ of the form c ðxþ
Lx̂jÞ ¼ ei�jc ðxÞ, and analogously for the time direction.
Dirichlet boundary conditions, on the other hand, inevitably
lead to problems.
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III. CORRELATION FUNCTIONS

For a neutral particle, it is straightforward to calculate
the electric polarizability using standard lattice spectros-
copy [8].3 One merely matches the long-time behavior of
Euclidean two-point functions, gðx4; EÞ, computed in QCD
to the expectations of the effective hadronic theory to
deduce the particle’s energy. The lattice two-point function
has the form

gðx4; EÞ ¼
X
x

h0j�ðxÞ�yð0Þj0iE ; (5)

where � is an interpolating field for the particle of interest
(e.g. � ¼ �d�5s for the K0), and the subscript E denotes
that the correlation function is determined in the back-
ground electric field. This correlation function is matched
onto the correlator Gðx4; EÞ, in the hadronic theory,

Gðx4; EÞ ¼ ZðEÞe�EðEÞx4 þ Z0ðEÞe�E0ðEÞx4 þ . . . ; (6)

where the ellipsis represents exponentially suppressed con-
tributions beyond the first excited state. The ground-state
particle’s energy, EðEÞ, has a series expansion in the exter-
nal field strength

EðEÞ ¼ Mþ 1

2
4��EE2 � 1

4!
ð4�Þ2 ��EEEE4 þ . . . ; (7)

where M is the particle’s mass, �E its electric polarizabil-
ity, and ��EEE is a multiple electric dipole interaction
strength. Here the ellipsis represents terms at higher order
in the strength of the field. The sign of the polarizability
term (quadratic Stark shift) is positive due to our treatment
in Euclidean space. The amplitudes, ZðEÞ and Z0ðEÞ, also
have expansions in even powers of E. As explained below,
we are forced in our particular computations to consider
contributions from excited states, shown in Eq. (6). The
energy, E0, of the first excited state has an analogous weak
field expansion in terms of the mass M0, polarizability �0

E,
etc..

When charged particles are subjected to constant electric
fields, we again match the lattice correlation function,
gðx4; EÞ, to the correlator calculated in the hadronic theory.
With sufficiently weak fields, quarks and gluons will still
hadronize into a tower of states of the same quantum

numbers, specifically of the same charge. For times, x4,
long compared to that set by the excited state mass, x4 �
	0 � 1=M0, the excited state contributions to the two-point
function will still be exponentially suppressed (albeit not a
simple exponential). For times beyond 	0, we can assume
the two-point correlation function will be dominated by the
ground state. As this state is charged, the behavior of the
correlation function will have a more complicated form
than a simple exponential falloff with time.
For a relativistic scalar particle of chargeQ, consider the

single-particle effective action in the hadronic theory. As
the particle is composite, there are both Born and non-Born
terms in the action. The non-Born terms account for non-
minimal couplings of the field to the particle, such as
polarizabilities. These couplings can be summed, as in
the case of a neutral particle, into the energy, EðEÞ, defined
above. The Born couplings additionally must be summed
to arrive at the charged particle two-point function. For the
field specified by Eq. (1), the equations of motion for a
scalar particle are exactly solvable, and lead to the two-
point function in the hadronic theory

Gðx4; EÞ ¼ ZðEÞDðx4; EðEÞ; EÞ þ Z0ðEÞDðx4; E0ðEÞ; EÞ
þ . . . ; (8)

with the ellipsis representing contributions beyond the first
excited state, and the relativistic propagator of a charged
scalar, Dðx4; EðEÞ; EÞ, given by [14]

Dðx4; EðEÞ; EÞ ¼
Z 1

0
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QE

2� sinhðQEsÞ

s

� exp

�
�QEx24

2
cothðQEsÞ � EðEÞ2s

2

�
;

(9)

where EðEÞ can no longer be interpreted as the energy but
remains given by Eq. (7). Classically EðEÞ is the rest
energy of the charged particle. The analogy to a classically
accelerating particle occurs at the level of the particle’s
action. Interpreting the Euclidean time behavior of the
particle’s motion on a compact space in terms of accelera-
tion proves difficult. For Q ¼ 0, this propagator properly
reduces to Eq. (6). For sufficiently weak fields, or equiv-
alently short times, the OðE2Þ term in the series expansion
of the correlator reproduces the nonrelativistic result de-
rived in [24]. Because of our particular anisotropic lattices,
we include contributions to the two-point function from the
first excited state thereby stabilizing the extraction of
ground-state parameters. The quantum numbers of the
excited state are identical to the ground state, i.e. Q0 ¼ Q.

3Strictly speaking this is only true at infinite volume. At finite
volume, there are additional effects stemming from boundary
conditions and the compact nature of the external gauge field
[22,23]. As we employ only one lattice volume to demonstrate
our methods, we neglect these additional corrections at this
stage. Further analysis with multiple volumes and multiple
pion masses is needed to control these systematics.
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IV. LATTICE RESULTS

To demonstrate our method for extracting meson polar-
izabilities from lattice two-point functions, we have em-
ployed an ensemble of anisotropic gauge configurations
with 2þ 1 flavors of dynamical clover fermions [25,26].
The ensemble we use consists of 200 lattices of size 203 �
128. After an initial 1000 thermalization trajectories, the
lattices were chosen from an ensemble of 7000 spaced
either by 20 or 40 to minimize autocorrelations. The spatial
lattice spacing of these configurations is as ¼ 0:123 fm
[25,26], with a nonperturbatively tuned anisotropy parame-
ter of 
 � as=at ¼ 3:5, where at is the temporal lattice
spacing. The finer temporal spacing affords us the ability to
better fit nonstandard behavior for two-point correlation
functions, and is critical for this analysis. On the ensemble,
the renormalized strange mass is near the physical value,
while the renormalized light quark mass leads to a pion
mass of m� � 390 MeV.

On each configuration, we compute at least 10 up quark
propagators, 10 down quark propagators, and 10 strange
quark propagators with random spatial source locations.
Multiple inversions were made efficient using the EigCG
inverter [27]. Interpolating fields at the source are gener-
ated from gauge covariantly Gaussian-smeared quark
fields [28,29] on a stout-smeared [30] gauge field in order
to optimize the overlap onto the ground state. Interpolating
fields at the sink are constructed from local quark fields.
Each propagator is located with source time at 	src ¼ 0.
Randomization of the source time location, while improv-
ing the statistical sampling, would complicate the extrac-
tion of both charged and neutral meson correlation
functions, as two-point functions are no longer time trans-
lationally invariant. For charged particles, the correlator in
Eq. (8) is explicitly a function of the sink time slice and not
simply a function of the source-sink separation (the full
dependence on source time is given in [14]), while for
neutral particles the violation of time-translation invari-
ance arises from volume effects.

The external field was implemented using Eq. (4), and
propagators were computed for nine values of the field
strength, n, corresponding to the integer appearing in the
quantization condition, Eq. (3). We use n ¼ 0, which
corresponds to a vanishing external field, as well as n ¼
�1; . . . ;�4. On our lattices, the expansion parameter gov-
erning the deformation of a hadron’s pion cloud is given by
[14]

�
eE
m2

�

�
2 ¼ 0:18n2: (10)

From the size of this parameter, we anticipate the need to
include terms beyond quadratic order in the electric-field
expansion of hadron energies. In our analysis, we include
terms up to quartic order. Larger lattices will be required
for better control over systematics relating to the electric-
field expansion of observables.

Meson two-point functions were obtained for each
source location on a given configuration. Individual results
for the multiple source locations on each configuration
were then source averaged. This procedure was carried
out for each value of the external field. To satisfy invari-
ance under parity transformations, under which E ! �E,
we took the geometric mean of correlators calculated at n,
and �n on each configuration. This reduced the set of
fields to five magnitudes corresponding to the integers, n ¼
0; . . . ; 4. The ensemble of correlation functions was then
used to generate 200 bootstrap ensembles. Fits to the boot-
strapped ensemble were performed as described below.4

A. Neutral pion and kaon

Bootstrapped correlators for the neutral pion and kaon
were obtained using the procedure described above. As we
use standard spectroscopy to determine the polarizabilities
for neutral particles, we handle these mesons first. To
facilitate the discussion, we consider the standard effective
mass, given by

MeffðtÞ ¼ � log
gðtþ 1; EÞ
gðt; EÞ ; (11)

where gðt; EÞ is the bootstrap ensemble-averaged correla-
tor. Error bars on the effective mass are determined using
the bootstrap ensemble. Effective-mass plots for the neu-
tral pion and neutral kaon are shown in Fig. 1. For the
neutral pion, so far we have only calculated the connected
part of the correlation function. The effective-mass plot
should exhibit a plateau over a range of time when the
ground state saturates the correlation function. The tempo-
ral extent of our anisotropic lattices is � ¼ 128 at ¼
4:5 fm, which is considerably smaller than typical iso-
tropic lattices, where �> 7:5 fm. As one must wait long
enough for the excited states to drop out, the pion and kaon
effective masses never plateau (or barely exhibit a plateau)
because of the backward propagating image from the time
boundary.
To extract the ground-state properties, we fit the corre-

lation function gðt; EÞ using the two-state form ofGðt; EÞ in
Eq. (6) augmented to include a backwards propagating
ground state, and backwards propagating excited state
(i.e. a sum of two hyperbolic cosines). We use a correlated
chi-squared analysis to fit the time dependence of the
bootstrap ensemble of correlators. To determine the fit
window, we use black box methods comparing single and

4We have performed multiple differing procedures to analyze
the data, of which only one is described in detail in the text.
Throughout we will comment on the alternate procedures. Most
notably, fits have been performed using a jackknife procedure to
determine uncertainties, and with a separate analysis of the
positive and negative values of the field strength. Effects of
correlations in the data have been investigated by blocking
neighboring configurations, and consistent results have been
obtained.
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FIG. 1 (color online). Effective-mass plots for the (connected) neutral pion and neutral kaon. Values for n correspond to the
magnitude of the quantized electric field E, Eq. (3). Curved bands show fits to the correlation functions. For each plot, the band spans
the fit window, and the width is set by the uncertainty in the ground-state energy. The flat bands shown are ground-state energies with
uncertainty for each field value. On a lattice of infinite time extent, the effective masses should asymptote to these bands over long
times.

EXTRACTING ELECTRIC POLARIZABILITIES FROM . . . PHYSICAL REVIEW D 79, 094505 (2009)

094505-5



double effective masses; see [31–33] for details on the
latter. We found the same fit window, 8 	 t 	 29, could
be used for a given particle for every value of the field
strength. Alternate fits on the same window without back-
wards propagating states result in a 1.5% shift of the
neutral pion energies, and a negligible shift of the kaon
energies.

As the parameters ZðEÞ and Z0ðEÞ enter the fit function
Gðt; EÞ linearly, we utilize variable projection (see [31] for
references) to reduce the number of fit parameters from
four down to two, namely, just the energies EðEÞ and
E0ðEÞ.5 We perform these two-state fits on the entire boot-
strap ensemble arriving at an ensemble of energies for each
magnitude of the electric field E, in particular fEiðEÞg for
the ground state, where i indexes the bootstrap sample, i ¼
1; . . . ; N. As the ensembles of configurations for different
field strengths are generated from the same underlying
lattice configurations, correlations between the energies
for different field strengths will be significant and it is
important to account for these. On the bootstrap ensemble
of energies, we perform electric-field correlated fits to the
energy function EðEÞ given in Eq. (7). With the ensemble
average energies denoted by EðEÞ ¼ 1

N

P
iEiðEÞ, we mini-

mize the correlated chi-squared, namely,

�2 ¼ X
E;E0

½EðEÞ � EðEÞ�C�1
E;E0 ½EðE0Þ � EðE0Þ�; (12)

with the field-strength correlation matrix, CE;E0 , given by

CE;E0 ¼ 1

N � 1

XN
i¼1

½EðEÞ �EiðEÞ�½EðE0Þ �EiðE0Þ�: (13)

Because all three fit parameters, M, �E, and ��EEE, enter
the fit function EðEÞ linearly, the chi-squared minimization
can be done analytically. Fits to the energy function are
carried out on the bootstrap ensemble, resulting fit parame-
ters are averaged, and the uncertainties from fitting and
bootstrapping are added in quadrature. We perform two
different field-correlated fits as follows: (I) a fit to all five
field strengths using Eq. (7), (II) the same fit function but
with the largest field strength excluded. Finally, to estimate
the systematics due to the choice of fit window, we per-
formed uncorrelated fits to the electric-field dependence of
meson energies determined on adjacent fit windows. We
chose the nine fit windows obtained by varying the start
and end times by one unit in either direction. On each time
window, we determined the electric polarizability. The
systematic uncertainty on �E due to the fit window is
estimated as the standard deviation of the extracted �E

over the various adjacent windows. Fit details and ex-
tracted parameters are tabulated in Table I.
From the extracted polarizabilities, we can investigate

the electric-field dependence of meson energies. This is
done in Fig. 2 for the neutral pion and neutral kaon. For the
connected part of the neutral pion, we see downward
curvature of the energy with respect to increasing E, while
for the neutral kaon the energy is comparatively quite flat.

In physical units, the polarizabilities ��0

E , and �K0

E , are not
consistent with naı̈ve expectations. To attempt a qualitative
explanation for the size of the ground-state polarizabilities,
we compare our results with predictions from chiral per-
turbation theory. The neutral pion electric polarizability at
one-loop is negative [34,35]. While this is surprising, the

TABLE I. Summary of fit results for neutral meson two-point functions for 8 	 t 	 29. Here �0 refers to the connected part of the
correlation function, the fine-structure constant is �f:s: ¼ e2=4�, and 1� P is the integrated chi-squared. All quoted values are
averages over the bootstrap ensemble, and are given in dimensionless lattice units. For the electric polarizability, �latt

E ¼
�Eð2�f:s:ata

2
sÞ�1 and the higher-order coupling, ��latt

EEE ¼ ��EEEð4!�2
f:s:a

3
t a

4
sÞ�110�3. The first half of the table summarizes the time-

correlated fits to the energies in each field, while the second half summarizes the field-correlated fits. The fits I and II are described in
the text. The second uncertainty on the polarizabilities is an estimate of the systematic due to the choice of fit window as explained in
the text.

�0 n atEðEÞ 1� P K0 n atEðEÞ 1� P

0 0.0692(5) 0.90 0 0.0967(3) 0.89

‘ 1 0.0691(5) 0.70 1 0.0968(4) 0.87

2 0.0687(5) 0.76 2 0.0971(4) 0.84

3 0.0674(5) 0.74 3 0.0973(4) 0.92

4 0.0656(5) 0.83 4 0.0976(4) 0.94

�0 atM �latt
E ��latt

EEE 1� P K0 atM �latt
E ��latt

EEE 1� P

I 0.0692(1) �2:6ð5Þð9Þ 1.8(5) 0.69 I 0.0968(1) 1.5(4)(7) 0.6(5) 0.97

II 0.0692(1) �1:0ð1:5Þð1:4Þ 5.3(3.2) 0.92 II 0.0967(1) 1.8(1.0)(1.9) 1.3(1.9) 0.95

5We also analyze correlation functions by fitting the effective
masses with two states. These three parameter fits give consistent
results.
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one-loop polarizability arises solely from the disconnected
contraction between quark basis �u and �d mesons [11].
Hence the negative sign owes to group theory weight of �u

versus �d in the pion interpolating field, �0 � 1ffiffi
2

p ð�u �
�dÞ. As we have only calculated the connected part of the

correlator, chiral perturbation theory suggests that ��0

E is
an order of magnitude smaller than the naı̈ve expectation.
While our result is of this magnitude, it is of the wrong sign
(the average of �u and �d polarizabilities should be posi-
tive). This negative value could arise from volume effects,
which are known to be nonvanishing at next-to-leading
order in chiral perturbation theory [23]. For the neutral
kaon polarizability, the one-loop chiral computation van-
ishes, even with electrically neutral sea quarks [12]. Our
extracted neutral kaon polarizability, however, is smaller
than typical two-loop contributions. Because the dominant
volume corrections arise from pion loops, we expect the
neutral pion and kaon volume effects to be of the same size.
If the negative result for the connected �0 is due to volume
corrections, then the near vanishing result for the K0 could
be due to a near cancellation between the polarizability and
the volume effect. Further study at multiple volumes and
pion masses is necessary to disentangle the chiral and
volume corrections.

B. Charged pion and kaon

We utilize the conventional effective-mass plot in order
to display the nonstandard behavior of charged particle
correlation functions. In Fig. 3, we display effective-mass
plots for the charged pion and charged kaon. In nonvanish-
ing fields, correlators exhibit a clear rise in the effective
mass, Eq. (11), with respect to time. The need for a fully

relativistic treatment of the two-point function is also
evident from the figure as effective-mass shifts are on the
order of the rest mass.
Fits to the correlation functions of charged particles have

been shown in the effective-mass plots, Fig. 3. We fit the
charged particle correlation functions using contributions
from two states, as in Eq. (8) Although the amplitudes of
the two states, ZðEÞ and Z0ðEÞ, enter the fit function line-
arly, we have not utilized variable projection due to the
increased computational time needed to perform the fits. In
zero field, we augmented the correlation function with
backwards propagating contributions to the two states. In
nonvanishing electric fields, however, we found that back-
wards propagating charged particles make negligible con-
tributions to the correlation functions. For a 1% effect due
to a backwards propagating state, one must go beyond t ¼
40 for the n ¼ 1 field strength, and to even larger times in
stronger fields. Consequently we ignore backwards propa-
gation in all but the zero-field case. Carrying out time-
correlated fits on the bootstrap ensemble, we arrive at an
ensemble of rest energies, fEiðEÞg, for the ground state. At
this point, the analysis parallels that of the neutral particles.
Fits to the energy function are carried out on the bootstrap
ensemble using Eq. (12) producing the mass, polarizability,
and quartic coupling. These extracted parameters are then
averaged over the bootstrap ensemble. Their uncertainties
arise from both fitting and bootstrapping, which we have
added in quadrature.
Extracted values of rest energies and fit parameters have

been tabulated for the charged pion and kaon in Table II. In
performing these fits, we used the fit window 8 	 t 	 29.
By comparing fits on adjacent time windows, we can
estimate the systematic due to the choice in fit window.
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FIG. 2 (color online). Plots of correlated fits to the electric-field dependence of neutral meson energies. For each field strength, the
bootstrap averaged energies are plotted with error bars reflecting the uncertainty from statistics and fitting. Fits I and II to the E
dependence are also shown with the plotted bands reflecting the uncertainty in the parameters appearing in Eq. (7).
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We find a large spread in the extracted value of charged
particle polarizabilities, and consequently a comparatively
large systematic uncertainty due to the fit window. Rest
energies are particularly sensitive to the fit window as the
field strength increases.

While fits to charged particle correlation functions ap-
pear to describe the data well when displayed in terms of
the effective mass, a further tool can be used to more

clearly present these fits. This tool, moreover, aids in the
determination of appropriate fit windows, and we refer to it
as the effective energy plot. The effective energy, just like
the effective mass, is produced by considering the corre-
lation function at successive times. The relativistic propa-
gator for a charged particle in Eq. (9) depends on the time,
the electric field, and rest energy, D ¼ Dðt; EðEÞ; EÞ, albeit
through a complicated one-dimensional integral. Given
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FIG. 3 (color online). Charged pion and kaon effective-mass plots along with two-state fits to the correlation function using Eq. (8).
The bands represent the uncertainty from the extracted ground-state rest energy, which is also plotted separately as a flat band. Using
the fit parameters ZðEÞ and EðEÞ, we form the ground-state correlation function which is depicted by the intermediate (gray) bands.
Over long times, the effective mass should asymptotically approach these bands. We omit the zero-field plots because they are quite
similar to their uncharged counterparts.
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FIG. 4 (color online). Effective energy plots for the charged pion and kaon two-point functions. Fits to the correlation functions are
also shown. Values for n correspond to the strength of the quantized electric field E, given in Eq. (3). We have omitted the n ¼ 0 plots,
as they are just the ordinary effective-mass plots.

TABLE II. Summary of fit results for charged meson two-point functions for 8 	 t 	 29. Entries are as in Table I.

n atEðEÞ 1� P n atEðEÞ 1� P

�þ 0 0.0691(4) 0.66 Kþ 0 0.0969(3) 0.70

1 0.0702(6) 0.46 1 0.0979(4) 0.77

2 0.0718(8) 0.61 2 0.0982(7) 0.78

3 0.0733(16) 0.93 3 0.0958(10) 0.98

4 0.0497(129) 0.97 4 0.0927(23) 0.97

�þ atM �latt
E ��latt

EEE 1� P Kþ atM �latt
E ��latt

EEE 1� P

I 0.0692(2) 18(4)(6) 24(10) 0.30 I 0.0971(2) 8(3)(1) 17(5) 0.03

II 0.0692(2) 16(3)(3) 17(10) 0.64 II 0.0969(2) 16(4)(3) 40(9) 0.23
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numerical data for the correlation function, gðt; EÞ, we can
successively solve6 for the effective energy in time by
considering the ratio

Dðtþ 1; Eeff ; EÞ
Dðt; Eeff ; EÞ

¼ gðtþ 1; EÞ
gðt; EÞ ; (14)

with the value of the electric field, E, as input. This pro-
duces the effective energy as a function of time, EeffðtÞ.
Effective energy plots for the charged pion and kaon are
shown in Fig. 4. The effective energy should plateau over
long times to the rest energy of the charged particle. From
the figure, however, we see that contributions from the first
excited state linger, and plateaus are not quite reached
before the noise grows substantially. Nonetheless, we
clearly see behavior reminiscent of the neutral particle
effective-mass plots in Fig. 1. This confirms that Eq. (9)
properly describes the correlation function of a charged
particle in an electric field.

Finally in Fig. 5, we plot the electric-field dependence of
the extracted rest energies of the charged pion and kaon.
There is striking nonmonotonic behavior which indicates
the presence of quartic and perhaps higher-order terms in
the field strength. We can make a brief comparison with
chiral perturbation theory. The size of the extracted polar-
izabilities is consistent with naı̈ve expectations, i.e. posi-
tive and on the order of 10�4 fm3 in physical units.

V. CONCLUSION

In this work, we have employed constant electric fields
on a periodic lattice to investigate meson electric polar-
izabilities. Sizes of current-day lattices allow the utiliza-
tion of properly quantized values of the electric field that
lead to perturbative shifts in hadron energies. To test our
setup, we have shown that the neutral pion (connected part)
and kaon polarizabilities can be extracted from lattice
QCD by measuring their energies as a function of the
applied electric field strength. Furthermore, we have in-
vestigated the charged pion and charged kaon polarizabil-
ities, for which simple spectroscopy is of no avail. Using
the relativistic charged particle propagator in the presence
of an electric field, we fit lattice two-point functions and
extract rest energies of charged pions and kaons. Using
effective energy plots, we showed that, despite nonstandard
behavior for the correlation function, rest energies of
charged particles show behavior similar to the effective
masses of neutral particles in electric fields. Charged me-
son polarizabilities were then extracted from the behavior
of the rest energy as a function of the electric field.
Resulting electric polarizabilities have comparatively large
uncertainties due predominantly to two sources. With our
current analysis method, the choice of time window gives a
larger than expected systematic uncertainty. Global fits,
that are correlated in both time and electric field strength,
can address such systematic error. Second, higher-order
terms in the weak field expansion of charged particle rest
energies appear to be very important, prompting future
study on larger lattices on which the quantized field
strengths are smaller. We hope that further refinements to
the fitting procedure, additional data at different volumes
and pion masses will remove the largest systematic effects,
and ultimately bring lattice QCD in contact with experi-
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FIG. 5 (color online). Plots of the electric-field dependence of the extracted rest energies for charged mesons.

6Because the effective energy is deduced from the nonlinear
relation in Eq. (14), there is no guarantee a solution exists.
Ensembles for which no solution can be found at a given time
are dropped from the bootstrap. This only affected error bars the
n ¼ 4 effective energy plot for the �þ, and only for t 
 24,
where on average 5 bootstraps were dropped.
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mental data for polarizabilities. Ultimately we will also use
sea quarks that couple to the background fields.
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APPENDIX: NONUNIFORM FIELDS

Although we employ quantized field strengths, Eq. (3),
with a proper treatment of the boundary flux, Eq. (4), we
have additionally explored the effect of nonquantized fields
on particle correlators. For this study, we use isotropic
243 � 64 lattices, the details of which are presented in
[21]. We summarize our findings here.

First we consider the naı̈ve implementation of the exter-
nal field using Eq. (2) and the field value corresponding to
n ¼ 3 in Eq. (3). In the continuum limit, the spike in the
boundary flux contracts to a point and the field becomes
uniform. To test the uniformity of the field at finite lattice
spacing, we look at the (connected) neutral pion two-point
function. If we take the source time at tsrc ¼ 0, then the
effective mass exhibits a plateau around t ¼ 12, as shown
in Fig. 6. On the other hand, if we take the source time at
tsrc ¼ 52, then the plateau would set in as the pion wraps
around the time boundary. The correlation function shows
striking evidence for the spike in the electric field from
boundary flux. Notice in plotting we have translated the
latter correlation function forward by 12 units in time.
Next we consider the proper implementation of the

external field on a torus using Eq. (4). We again consider
the (connected) neutral pion two-point function. Fixing the
source time at tsrc ¼ 52, we plot in Fig. 6 the resulting
effective mass for two values of the field strength, n ¼ 3
and n ¼ e ¼ 2:71828 . . . . We translate both correlation
functions forward by 12 units in time. For n ¼ e, the effect
of boundary flux has been mitigated (roughly by a factor of
10), but, leads to easily measurable shifts in the particle
energy. The quantized value, n ¼ 3, exhibits a plateau as
the field is uniform across the time boundary.
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