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We compute, for the first time using lattice QCD methods, charmonium radiative transition rates

involving states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to

project out various excited-state contributions to three-point correlators computed on quenched aniso-

tropic lattices. In the first lattice QCD calculation of the exotic 1�þ �c1 radiative decay, we find a large

partial width �ð�c1 ! J=c�Þ � 100 keV. We find clear signals for electric dipole and magnetic

quadrupole transition form factors in �c2 ! J=c�, calculated for the first time in this framework, and

study transitions involving excited c and �c1;2 states. We calculate hindered magnetic dipole transition

widths without the sensitivity to assumptions made in model studies and find statistically significant

signals, including a nonexotic vector hybrid candidate Yhyb? ! �c�. As well as comparison to experi-

mental data, we discuss in some detail the phenomenology suggested by our results and the extent to

which it mirrors that of quark-potential models, and make suggestions for the interpretation of our results

involving exotic quantum numbered states.
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I. INTRODUCTION

The charmonium system is often described as the ‘‘hy-
drogen atom’’ of meson spectroscopy. Being reasonably
nonrelativistic, it is explained fairly well by potential
models, at least below the open-charm (D �D) threshold.
More recently, it has also been studied using effective field
theory approaches (such as potential nonrelativistic QCD)
and QCD sum rules. Lately there has been a resurgence of
interest in the charmonium system, with the B-factories,
CLEO-c, and BES finding missing states, making more
accurate measurements of properties of these states, and
discovering a number of new resonances that are not easily
explained by the quark model. This has spurred renewed
theoretical interest with much speculation as to whether
these states are hybrids or multiquark/molecular mesons.
To date, there are no charmonium states having manifestly
exotic JPC, such as 1�þ, 0þ�, 2þ�, that would directly
signal physics not present in potential models.

The states below open-charm (D �D) threshold cannot
decay via an Okubo-Zweig-Iizuka allowed strong decay
and so have reasonably narrow widths. Their radiative
transitions can therefore have significant branching ratios
and are experimentally accessible. The transitions from
and production of the, as yet unobserved, exotic 1�þ are
particularly interesting. A lattice calculation of transition
form factors of excited charmonia is therefore timely, and
this is the first such study. The corresponding excited
charmonium spectrum was calculated in lattice QCD in
Ref. [1]. Transition form factors of the lightest few char-
monia, those ground states accessible with interpolating
fields �c�c , were calculated in Ref. [2]. This work brought

to the attention of CLEO-c experimentalists the discrep-
ancy between the lattice calculated value of �ðJ=c !
�c�Þ (and indeed the values predicted in most model
calculations) and the single experimental measurement of
this from Crystal Ball [3]. In a tour-de-force analysis [4], a
much more reliable value was extracted from CLEO-c data
that is in much better agreement with theoretical estimates.
The calculation we will present is performed in the

quenched approximation, neglecting altogether the effect
of light-quark degrees of freedom. As such, it is rather
directly related to the simplest quark-potential models in
which charm quarks move in a static potential of assumed
gluonic origin. Attempts have been made to add in the
effects of light-quark loops to these models [5–7], in some
cases finding that these effects can be large [8]. We will
address this possibility in light of our results.
A strong motivation for developing the lattice QCD

techniques required to extract excited- and exotic-state
radiative transition matrix elements is the versatility of
the method. We can use these methods, tested here in
charmonium, at any computationally feasible quark mass.
In particular, this opens up the possibility of computing, in
a framework close to QCD, the meson photocouplings that
appear in the meson photo-production process to be uti-
lized in the JLab 12 GeV GlueX experiment [9]. In this
paper we will also compare results with the flux-tube
model of gluonic excitations, which to date is the only
theoretical guide to the size of the hybrid couplings and
hence production rates [10,11].
The paper is structured as follows: We begin in Sec. II

with a description of the technology used to construct
three-point correlators and to project onto the contribution
due to various excited states. In Sec. III we present our
results for the transition form factors between various*dudek@jlab.org
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meson states. A discussion of the phenomenology of these
results, in terms of experiment and models, follows in
Sec. IV before we conclude in Sec. V. Two appendixes
which consider some technical details complete the
manuscript.

II. TECHNOLOGY

In this paper we will explore radiative transitions with
charm-mass quarks using the quenched anisotropic lattices
and clover fermion action described in [1]. Radiative tran-
sition matrix elements follow from vector current three-
point functions, whose construction using sequential-
source technology is described in [2]. As in [2], only
connected diagrams are considered, with the assumption
that disconnected diagrams are negligible in comparison.
The new item of technology in this study is the use of a
large basis of meson interpolating fields as explored in
two-point functions in [1] with further interpretation in
[12].

The operators utilized are lattice-discretized versions of
the gauge-invariant fermion bilinears,

�c ðxÞ�D$iD
$

j . . . c ðxÞ;
where D

$ ¼ DQ � ~D is the gauge-covariant derivative op-
erator. In order to improve the overlap onto lower-lying
mesons, the quark fields may also be smeared over space as

eð1=4Þ�2DiDic ðxÞ. Linear combinations of these basic opera-
tors have been constructed which transform irreducibly
under the lattice cubic symmetry and which have rather
simple interpretations in the limit of zero lattice spacing;
for details see [1,12]. The operator set is large enough to
have a considerable redundancy within a given quantum
number sector, which can be utilized to extract excited
states.

A. ‘‘Ideal’’ operators and eigenvector projection

In [1] the spectrum of charmonium was extracted by
solution of the generalized eigenvalue problem1

CijðtÞvn
j ¼ �nðtÞCijðt0Þvn

j ; �nðtÞ !
ðt�t0Þ

e�Enðt�t0Þ;

vn�
i Cijðt0Þvm

j ¼ �nm;
(1)

which constitutes the best solution for the spectrum in the
variational sense. The matrix of two-point correlators is

constructed as CijðtÞ ¼ h0jP ~xOið ~x; tÞOjð~0; 0Þj0i, where

the sum over lattice sites forces the three-momentum of
single particle states to be zero.2 This method relies upon a
redundancy of operators Oi in any given quantum number
sector.

Fitting the time dependence of principal correlators,
�nðtÞ, gives us the masses (or energies at finite three-
momentum) of the states with the quantum numbers of
the Hermitian operators Oi;j. Details of the two-point

analysis, including the importance of the choice of time
slice t0, are given in [1]. The interpretation of the eigen-
vector vn in the solution of Eq. (1) can be expressed as
follows: weighting the operators by this vector gives the
optimal operator, within the limited operator space, for the
state labeled by n. It is convenient to normalize these ideal
operators in a manner which accounts for the value of t0:

�n ¼ ffiffiffiffiffiffiffiffiffi
2En

p
e�Ent0=2vn

i Oi.
Note that these eigenvectors are trivially related to the

vacuum-operator-state matrix elements or ‘‘overlaps,’’
Zn
i ¼ hnjOij0i, that appear in a bound-state spectral de-

composition,

CijðtÞ ¼
X
n

Zn�
i Zn

j

2En

e�Ent;

by Zn
j v

m
j ¼ ffiffiffiffiffiffiffiffiffi

2En

p
eEnt0=2�n;m or

Zn
j ¼ ffiffiffiffiffiffiffiffiffi

2En

p
eEnt0=2vn�

i Cijðt0Þ: (2)

The procedure we shall follow in this paper is to com-
pute three-point correlators having at the source (located
on a fixed time slice, ti) a (smeared) local operator of the

form �c ð~0; tiÞ�c ð~0; tiÞ—all possible gamma matrices can
be considered for the computing cost of a single ‘‘forward’’
propagator. In this work we consider � ¼ �5, �i, 1, giving
access to pseudoscalar, vector, and scalar states at the
source.
At the sink (located on a fixed time slice, tf) we use

sequential-source technology using a broad selection of
local and derivative-based operators as described in [1]—
for each operator at a given momentum (usually ~pf ¼ 000)

we have the computing cost of a single ‘‘backward’’
propagator. At the vector current insertion (inserted on all
time slices ti < t < tf) we insert the local vector current

with all possible lattice three-momenta ~q up to j ~qj2 ¼ 4.
Translational invariance ensures momentum conservation,
selecting the correct value of ~pi out of the sum over all
momenta produced by a local operator.

C��jð ~pi; ~pf; ti; t; tfÞ

¼
�
0

��������
X
~z

e�i ~pf�~zOjð~z; tfÞ �
X
~y

ei ~q� ~yj�ð ~y; tÞ

� �c ð~0; tiÞ�c ð~0; tiÞ
��������0

�
:

(3)

Three-point correlators for ideal operators are con-
structed from the ‘‘raw’’ correlators, Eq. (3), by projecting
with the appropriate eigenvector,3

1Repeated indices are summed.
2In some cases we also considered nonzero three-momentum

correlators—this will be discussed later.

3A somewhat different application of the same basic idea has
recently been presented in [13].
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C��nð ~pi; ~pf; ti; t; tfÞ
¼

�
0

��������
X
~z

e�i ~pf�~z�nð ~z; tfÞ �
X
~y

ei ~q� ~yj�ð ~y; tÞ

� �c ð~0; tiÞ�c ð~0; tiÞ
��������0

�

¼ ffiffiffiffiffiffiffiffiffi
2En

p
e�Ent0=2vn�

j C��jð ~pi; ~pf; ti; t; tfÞ:

The net effect is to provide us with a three-point corre-
lator that, while it has multiple states contributing through

the local source operator �c ð~0; tiÞ�c ð~0; tiÞ, should have
only a single state, n, contributing from the sink operator
�n. In principle, we could improve this further by using
the full basis of operators at the source as well as the sink,
but using sequential-source technology this quickly be-
comes rather expensive.4

In fact, we can be a little more precise about the state-
ment that only a single state contributes at the sink—in
considering the analysis of the two-point correlators, we
determined that t0 can be considered to be the time slice on
which the correlator matrix (of dimension N) is saturated
byN states; closer to the operator we require more states to
describe the correlator matrix [1,14]. It follows that if we
are t0 time slices away from the sink operator position tf,

we can be quite confident that we have contribution only
from the single state labeled by n. When we go to fit the
time dependence of the three-point correlator, we will not
use time slices any closer to the sink than t ¼ tf � t0.

In Fig. 1 we show the effect of the eigenvector projection
onto ideal states in the case of a pseudoscalar source
operator �c�5c and a selection of pseudoscalar sink op-
erators. We clearly see that the projection onto the ground-
state ideal operator produces a considerable ‘‘flattening’’
of the correlator moving toward the sink. We do see some
curvature beginning within t0 ¼ 8 time slices away from
the sink, as expected.5 More importantly, for this study we
see that projection onto the ideal operator for the first
excited state yields a clear nonzero signal from which
one can extract a transition matrix element.

There is a slight technical subtlety to be dealt with in the
eigenvector projection onto ideal operators that arises from
the method of solution of the two-point problem. Solving
the eigenvalue problem gives eigenvectors on each time
slice, vn

j ðt2ptÞ—if the solution is to be a true spectral

representation, there should be no time dependence in the
eigenvectors, at least for t2pt > t0 where the correlator

matrix is supposed to be saturated. In [1] we saw that
over a considerable range of t2pt, the Z values [obtained

trivially from the v; see Eq. (2)] were flat. We explore the
effect of any such possible time dependence on the three-
point functions by performing the projection for eigenvec-
tors belonging to a range of time slices, vn

j ðt2ptÞ. In Fig. 2

we show for a ground-state and first excited-state projec-
tion the t2pt dependence on the projected correlator. It is

clear that there is no strong dependence on t2pt, and we

choose to average over the projections for various t2pt to

reduce configuration-by-configuration fluctuations that
may be caused by the generalized eigensystem solver.

B. Transition form factors

The ideal operator-projected three-point functions are
related to the transition matrix elements between states as

10 15 20 25 30 35
0.01

0.02

0.03

0.04

0.05

0.06

0.07

t t f =39ti =9
tf - t0

1st exc.

ground state

FIG. 1 (color online). Blue and yellow data—suitably normal-
ized pseudoscalar-vector current-pseudoscalar correlators for a
set of different sink operators. Red data—formed by projection

with the ground-state eigenvector vð0Þ
i . Green data—formed by

projection with the first excited-state eigenvector vð1Þ
i .

10 15 20 25 30 35

t tf =39ti =9

t 11 22

avg.
ground state

1  exc.

FIG. 2 (color online). Eigenvector projected correlators as a
function of current insertion time t. For each t value we show the
result of projecting with each of vn¼0;1

i ðt2ptÞ for 11 � t2pt � 22.

Also shown is the average over the various t2pt values.

4In addition, analysis of these correlators would require de-
tailed knowledge of the finite-momentum behavior of the
derivative-based operators—we will consider this in
Appendix A and find that it is not entirely trivial.

5Indeed, if we fit the time dependence of the curvature at the
sink with a single exponential, we find that it corresponds to a
mass heavier than the heaviest state extracted from the eight-
operator two-point correlation matrix.
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follows:

C��nð ~pi; ~pf; ti; t; tfÞ ¼ h0j�nð~0;0Þjfnð ~pfÞie
�Enðtf�tÞ

2En

�X
m

hfnð ~pfÞjj�ð~0;0Þjimð ~piÞi

� e�Emðt�tiÞ

2Em

himð ~piÞjOið~0;0Þj0i: (4)

While all possible eigenstates with the quantum num-
bers of Oi will contribute at the source (the sum over m),
the eigenvector projection ensures that we need only con-
sider the single state n at the sink. Our normalization of�n

ensures that if f is spin zero, h0j�nð~0; 0Þjfnð ~pfÞi ¼ 2En.

The Minkowski-space transition matrix element

hfnð ~pfÞjj�ð~0; 0Þjimð ~piÞi can be decomposed in terms of

multipole form factors multiplied by Lorentz covariant
combinations of the momenta and (if appropriate) polar-
ization tensors of the particles labeled by i, f:P

kFkðQ2Þ��
k ðpi; pf; 	i; 	

�
fÞ. The general technique for ob-

taining these covariant multipole decompositions is given
in the Appendix of [2]. Inserting this decomposition into
Eq. (4), and performing the implicit sums over helicity (in
the case of spin � 1), the three-point correlator on each
time slice t can be expressed as a linear sum of known
‘‘kinematic’’ and ‘‘propagation’’ factors times the un-
known multipole form factors,6

C��nð ~pi; ~pf; ti; t; tfÞ ¼
X
m

Pm;nð ~pi; ~pf; ti; t; tfÞ

�X
k

K
�
k;m;nð ~pi; ~pfÞFk;m;nðQ2Þ:

In practice, we opt to solve this linear system7 on each time
slice t for a set of ‘‘effective,’’ t-dependent form factors,
~FknðQ2; tÞ, using the propagation and kinematic factors for
the ground state at the source (m ¼ 0):

C��nð ~pi; ~pf; ti; t; tfÞ ¼ P0;nð ~pi; ~pf; ti; t; tfÞ
�X

k

K
�
k;0;nð ~pi; ~pfÞ ~Fk;nðQ2; tÞ:

The propagation factor P0;nð ~pi; ~pf; ti; t; tfÞ contains the

overlap Z0
�ð ~piÞ and the energy E0ð ~piÞ. These are deter-

mined in the analysis of a two-point function at finite
momentum. Since the state masses at zero momentum
are rather precisely determined by the variational solution,
we use the continuum dispersion relation to obtain Eð ~pÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ j ~pj2p

. Z values then follow from a linear fit to the
finite-momentum two-point correlators, supplying the
known expð�Enð ~pÞtÞ factors.

The extracted effective form factors have the property

that ~Fk;nðQ2; tÞ 	 Fk;nðQ2Þ þOðe�ðEm¼1�Em¼0Þðt�tiÞÞ so

that away from the source the excited-state contributions
die off and the form factor plateaus to the im¼0 ! fn value.
We fit the time dependence of these extracted effective
form factors to a sum of exponentials, where the energy
dependence is that extracted from spectrum studies.8 A
typical example is shown in Fig. 3. We retain only the
plateau value, discarding the excited-state information at
the source.9

The expansion of transition matrix elements as per-
formed above relies upon the continuum Lorentz symme-
try, which is broken on our cubic lattice. A more rigorous
study would consider the expansion in terms of irreducible
representations of the cubic group at finite momentum and
would typically involve a larger number of form factors,
some of which would tend to the multipole form factors as
the lattice spacing a ! 0 and some of which would have to
vanish. We have not performed such a decomposition but
suspect that it is not important at this lattice spacing since,
when we solve the correlator-form-factor linear system
assuming continuumlike decompositions, we typically ob-
tain �2 per d.o.f. very close to 1, suggesting that there is
little need to enlarge the basis space.

10 15 20 25 30 35
1.4

1.45

1.5

1.55

t tf=39ti =9 tf - t0

F
(Q

2 ,t
)

~

1.461(17)

FIG. 3 (color online). Effective time-dependent form factor.
The fit with a constant plus a single exponential is shown in red,
with the constant fit value shown in green. The fit is linear for the
coefficients since the excited-state energies appearing in the
exponent are determined from the solution of the two-point
function problem.

6This is essentially the same decomposition presented in [2].
7By jackknifed singular value decomposition as described in

[2].

8With the exponential dependence supplied, this is a linear fit
for the coefficients.

9Strictly speaking, the kinematic factors for excited m states
need not be proportional to the ground-state values, such that
excited-state multipoles may ‘‘leak’’ into the wrong ground-state
multipole—clearly this effect will fall off for t � ti. An alter-
native approach is to include the excited-state terms directly into
the decomposition fit, expanding the space to also be over time
slices, the time dependence being the discriminator for the
various states contributing at the source—this guarantees the
right kinematic factors for excited states. In all cases to be
presented, the analysis was cross-checked using this fitting
method (the excited-state energies obtained from applying the
dispersion relation to the excited-state masses reliably extracted
using the variational method) and agreement within statistical
fluctuations was found.
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The fact that charmonium states are eigenstates of
charge conjugation (C), coupled with the photon having
C ¼ �1, means that all charmonium radiative transitions
are between states of opposite C. The origin of this is that
the photon couples equally to the charm quark and the
charm antiquark. In our lattice calculation we need not
impose this symmetry; by coupling only to the quark we
can obtain transitions between states of equal C. One way
of viewing this is that it is like having a u, d pair but as
heavy as the charm quark—this can be useful for compari-
son with models, and we will show results for a number of
C violating transitions.

III. RESULTS

A. Vector current renormalization

Since we use the local vector current in the construction
of our three-point functions, we need to determine the
renormalization constant ZV to relate the extracted matrix
elements to physical matrix elements. We do this by insist-
ing that the pseudoscalar form factor at zero Q2 takes the
value 1. On an anisotropic lattice we should allow there to
be different renormalization constants for temporally and
spatially directed currents; indeed, we find ZVðsÞ ¼ 1:23ð2Þ
and ZVðtÞ ¼ 1:118ð6Þ. In all results presented below, only

the spatially directed current is used. See Appendix B for a
discussion of the effect of improvement of the vector
current.

B. Scalar-vector transitions

The first results we will present concern transitions
between scalar (0þþ) and vector (1��) states of charmo-
nium. Using a quark-smeared operator �c c at the source
and 13 vector operators10 at the sink, we extracted tran-
sitions between the ground-state scalar �c0 and the lowest
six vector states. In Table I we show the spectrum reported
in [12], possible comparable experimental states, and a
model-dependent state assignment.

This transition is characterized by two multipole ampli-
tudes, a transverse electric dipole E1ðQ2Þ and a longitudi-
nal C1ðQ2Þ, the matrix element decomposition being

hSð ~pSÞjj�ð0ÞjVð ~pV; �Þi
¼ ��1ðQ2Þ

�
E1ðQ2Þ½�ðQ2Þ	�ð ~pV; �Þ � 	ð ~pV; �Þ � pS

� ðp�
VpV � pS �m2

Vp
�
S Þ
 þ

C1ðQ2Þffiffiffiffiffi
q2

p mV	ð ~pV; �Þ � pS

� ½pV � pSðpV þ pSÞ� �m2
Sp

�
V �m2

Vp
�
S 

�
; (5)

where �ðQ2Þ ¼ ðpV � pSÞ2 �m2
Sm

2
V .

The ‘‘vector’’ operators used are, in fact, all in a par-
ticular irreducible representation of the cubic group at rest,
namely T1, which in the continuum limit contains spins 1,
3, 4 . . .. By considering the degeneracy pattern and the

values of the overlaps ZðnÞ
j , the two-point function analysis

strongly suggests that the second excited state in the T��
1

sector is actually a spin-3 state and as such we do not
present results involving this state here [1,12]. Addi-
tionally, we do not show the amplitudes for the fourth
excited state as the signals are statistically consistent
with zero for all Q2. Shown in Fig. 4 are the electric di-
pole transition form factors for the four relevant states. See
Appendix A for a discussion of the inclusion of ~pf ¼ ð100Þ
correlators in this analysis.
In each case the Q2 dependence of the lattice data has

been fitted with the form

E1ðQ2Þ ¼ E1ð0Þð1þ �Q2Þe�ðQ2=16
2Þ; (6)

whose motivation is described in [2]. The results of the fits
are given in Table II. One point to make here is that, in our
lattice calculations, the photon only couples to the quark
and not the antiquark, and we do not explicitly include the
electric charge of the quark. Therefore, we actually com-

pute and present F̂kðQ2Þ which are related to the physical

multipole amplitudes by FkðQ2Þ ¼ 2� 2
3 e� F̂kðQ2Þ.

Note also that the multipole amplitudes have mass dimen-
sion 1 and hence we plot them in temporal lattice units,
where a�1

t ¼ 6:05 GeV is determined from the static po-
tential. Partial decay widths follow by averaging over
initial helicities and summing over final helicities which
gives, for a general A ! B� decay,

�ðA ! B�Þ ¼ 1

2JA þ 1
�
16

9

j ~qj
m2

A

X
k

jF̂kð0Þj2:

Where we have experimental masses for states, we use
these to compute the phase space; otherwise we use the
value extracted from the lattice calculation [1,12].
The ground-state transition �c0 ! J=c� form factor

shows behavior rather similar to that found in [2], which
used the same lattices but domain wall fermions rather than
clover and which did not make use of multiple sink opera-
tors and operator projection. Wewill return to this in a little

TABLE I. T��
1 spectrum extracted from two-point functions,

suggested experimental state analogues, and quark-model
bound-state assignments made in [12].

Level Mass/MeV Suggested state Model assignment

0 3106(2) J=c 13S1
1 3746(18) c 0ð3686Þ 23S1
2 3846(12) c 3ð3��Þ Lattice artifact

3 3864(19) c 00ð3770Þ 13D1

4 4283(77) c ð“4040”Þ 33S1
5 4400(60) Y? Hybrid

10In the notation of [1] they are the quark-smeared versions of
�i, �i�0, a0 �rT1, a1 �rT1, ��DT1, �ð2Þ �DT1, � BT1,
ð2Þ � BT1 and the unsmeared versions of �i, �i�0, a1 �rT1,
� BT1, ð2Þ � BT1. In the ~pf ¼ ð100Þ case the �ð2Þ �D and
ð2Þ � B operators were not included.
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more detail in Appendix B, where we will consider the
effect of OðmaÞ improvement of the local vector current.
We will discuss the results in comparison with experiment
and with quark-potential models in Sec. IVB.

C. Vector-pseudoscalar transitions

Using the same T��
1 operator set at the sink and the

quark-smeared �c�5c operator at the source, we obtained
results for the single magnetic dipole form factor in the
vector-pseudoscalar transition. The decomposition used11

is

hPð ~pPÞjj�ð0ÞjVð ~pV; �Þi

¼ 2VðQ2Þ
mP þmV

	��
�pP�pV
	�ð ~pV; �Þ:

Figure 5 shows the form factors for the transition between
the lightest four vector states [ignoring the suspected 3��
intruder and the noisy c (‘‘4040’’) state] and the�c. The fit
form in Eq. (5) was again used, with the fit results pre-
sented in Table III. We refer the reader to the paper [2] for a
discussion of the systematic error introduced into the phase

TABLE II. Results of the fit to lattice data using Eq. (6). We give the partial decay width
computed using the fitted value of E1ð0Þ and physical phase space (where known). All errors are
just lattice statistical. Experimental partial decay widths are from [15,16].

Sink level Suggested transition atÊ1ð0Þ 
=MeV �=GeV�2 �lat=keV �expt=keV

0 �c0 ! J=c� 0.127(2) 409(12) 1.14(5) 199(6) 131(14)

1 c 0 ! �c0� 0.092(19) 164(55) 0 (fixed) 26(11) 30(2)

3 c 00 ! �c0� 0.265(33) 324(77) 0.58(56) 265(66) 199(26)

5 Yhyb ! �c0� 0.00(3) Linear Fit & 20 � � �
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FIG. 4 (color online). Electric dipole transition form factors �c0 $ c . Plotted is the form factor in temporal lattice units against the
photon virtuality in GeV2. The fits are to the lattice Q2 dependence as described in the text. Experimental points at Q2 ¼ 0 are
extracted from experimental decay widths taken from [15,16].
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space by an inaccurate lattice estimate of the hyperfine splitting.

D. Axial-vector transitions

In transitions between axial (1þþ) and vector (1��) states there are two transverse form factors, the electric dipole (E1)
and magnetic quadrupole (M2), and one longitudinal form factor (C1). The matrix element decomposition takes the form

hAð ~pA;�AÞjj�ð0ÞjVð ~pV;�VÞi ¼ i
4
ffiffi
2

p
�ðQ2Þ	

����ðpA �pVÞ�
�
E1ðQ2ÞðpA þpVÞ�ð2mA½	�ð ~pA;�AÞ �pV
	�ð ~pV;�VÞ

þ 2mV½	ð ~pV;�VÞ �pA
	��ð ~pA;�AÞÞþM2ðQ2ÞðpA þpVÞ�ð2mA½	�ð ~pA;�AÞ �pV
	�ð ~pV;�VÞ

� 2mV½	ð ~pV;�VÞ �pA
	��ð ~pA;�AÞÞþC1ðQ2Þffiffiffiffiffi
q2

p ð�4�ðQ2Þ	��ð ~pA;�AÞ	�ð ~pV;�VÞ

þ ðpA þpVÞ�½ðm2
A �m2

V þ q2Þ½	�ð ~pA;�AÞ �pV
	�ð ~pV;�VÞ
þ ðm2

A �m2
V � q2Þ½	ð ~pV;�VÞ:pA
	��ð ~pA;�AÞ
Þ

�
:

In this case12 we computed with the vector at the source, produced using quark-smeared �c�jc and a set of ten axial
(actually Tþþ

1 ) operators at the sink.13 In Fig. 6(a) we present the two transverse form factors for the ground-state axial
meson, and in Fig. 6(b) we show their ratio. The amplitudes were each fitted with a form like Eq. (6), which unfortunately
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FIG. 5 (color online). Magnetic dipole transition form factors c ! �c. Plotted is the dimensionless form factor against the photon
virtuality in GeV2. Fits to the lattice Q2 dependence are as described in the text. Experimental points at Q2 ¼ 0 are extracted from
experimental decay widths taken from [4,15].

12We could have used �c�5�jc at the source to produce the axial meson; this operator at finite momentum also has overlap with the
pseudoscalar state which severely limits its usefulness.
13�i�5, ��rT1, �ð2Þ � rT1, a1 �DT1, b1 � BT1 in both quark-smeared and unsmeared versions.
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is not as well constrained as in the scalar case, owing to
the kinematic factors preventing a slightly timelike Q2

point corresponding to ~pi¼ ~pf¼ð000Þ. The results of the
fits are atÊ1ð0Þ¼0:23ð3Þ, 
E1¼440ð40ÞMeV, �E1¼
0:71ð30ÞGeV�2 and atM̂2ð0Þ ¼ �0:020ð17Þ, 
M2 ¼
450ð50Þ MeV, �M2 ¼ 5ð6Þ GeV�2. This corresponds to a
partial decay width of �ð�c1 ! J=c�Þ ¼ 270ð70Þ keV
which is in reasonable agreement with the PDG’s average
of 320(25) keV.

The ratio M2

E1
ðQ2Þ, shown in Fig. 6(b), was fitted with

various functional forms shown by the shaded bands yield-

ing M2

E1
ð0Þ ¼ �0:20ð6Þ, where the error includes a crude

estimate of the systematic error due to the uncertainty in
the fitting form. The ratio of the extrapolated values from

the separate fits to E1, M2 gives M2

E1
ð0Þ ¼ �0:020ð17Þ

0:23ð3Þ ¼
�0:09ð7Þ. Clearly, without data points at smaller Q2 or
some certainty about the expected Q2 dependence, we
cannot constrain this any further and hence cannot make
a particularly meaningful comparison with the PDG aver-

age M2ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ð0Þ2þM2ð0Þ2

p ¼ �0:002þ0:008
�0:017.

Form factors for the transition from the first excited axial
state �0

c1 down to the J=c are shown in Fig. 7, where
multiple fit forms were used, all returning a �2=Ndof close
to 1. The estimates for the physical photon point thus

obtained are atÊ1ð0Þ¼0:050ð15Þ and atM̂2ð0Þ¼
�0:004ð14Þ, where again we include a crude systematic
error estimate for the fit-form variation. The E1 transition
corresponds, for a �0

c1 at 4.1 GeV, to a partial decay width
�ð�0

c1 ! J=c�Þ ¼ 21ð12Þ keV.

E. Tensor-vector transition

The transition between the lightest 2þþ state and the
lightest vector state was not considered in [2], as that study
used only local fermion bilinears [ �c ðxÞ�c ðxÞ] to produce
states—a spin-2 particle cannot be produced by any such
operator. Here we use a set of six operators projected into
Tþþ
2 and Eþþ irreps at the sink.14 The multipole decom-

position for this transition takes the following form,

TABLE III. Results of the fit to lattice data using Eq. (6). We give the partial decay width
computed using the fitted value of V̂ð0Þ and physical phase space (where known). All errors are
purely lattice statistical. Experimental partial decay widths are from [4,15].

Sink level Suggested transition V̂ð0Þ 
=MeV �=GeV�2 �lat=keV �expt=keV

0 J=c ! �c� 1.89(3) 513(7) 0 (fixed) 2.51(8) 1.85(29)

1 c 0 ! �c� 0.062(64) 530(110) 4(6) 0.4(8) 0.95(16)

1.37(20)

3 c 00 ! �c� 0.27(15) 367(55) �1:25ð30Þ 10(11) � � �
5 Yhyb ! �c� 0.28(6) 250(200) 0 (fixed) 42(18) � � �
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FIG. 6 (color online). (a) Electric dipole and magnetic quadrupole form factors for the transition �c1 ! J=c�. We show the Q2

dependence fitted with Eq. (6) and extrapolated to the physical photon point Q2 ¼ 0 for comparison with experimental data from [15].
The relative sign of E1 toM2 is relevant. (b) Ratio of magnetic quadrupole to electric dipole form factors. Colored bands represent fits
with various fit functions.

14��r, �ð2Þ � r, b1 � B in both quark-smeared and unsmeared versions.
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hVð ~pV; �VÞjj�ð0ÞjTð ~pT; �TÞi

¼ E1ðQ2Þ
ffiffiffi
3

5

s �
�A� þmT

�
ð ~!�mVÞB� þmT

�
ð ~!D�

T �mTD
�
V Þ þ

m2
T

�2
ð ~!�mVÞð� ~!F�

T þmTF
�
V Þ
�

þM2ðQ2Þ
ffiffiffi
1

3

s �
A� �mT

�
ð ~!þmVÞB� � 2m2

T

�
C� þmT

�
ð� ~!D

�
T þmTD

�
V Þ

þm2
T

�2
ðð ~!2 þ ~!mV � 2m2

VÞF�
T þmTð ~!�mVÞF�

V Þ
�

þ E3ðQ2Þ
ffiffiffiffiffiffi
1

15

s �
�A� þmT

�
ð ~!þ 4mVÞB� � 5m2

T

2�
C� þmT

�
ð ~!D�

T �mTD
�
V Þ

þm2
T

�2

�
�
�
~!2 þ 4 ~!mV þ 5

2
m2

V

�
F�
T þmT

�
7

2
~!þ 4mV

�
F�
V

��

þ C1ðQ2Þ
ffiffiffi
3

5

s
mT

�
ffiffiffiffiffi
q2

p
�
ðm2

V � ~!mTÞD�
T þ ðm2

T � ~!mTÞD�
V �mT

�
ð ~!�mVÞððm2

V � ~!mTÞF�
T þ ðm2

T � ~!mTÞF�
V Þ
�

þ C3ðQ2Þ
ffiffiffi
2

5

s
mT

�
ffiffiffiffiffi
q2

p
�
ðm2

V � ~!mTÞD�
T þ ðm2

T � ~!mTÞD�
V �mT

�

�
~!þ 3

2
mV

�
ððm2

V � ~!mTÞF�
T þ ðm2

T � ~!mTÞF�
V Þ
�
:

(7)

Here � � ðpT � pVÞ2 �m2
Tm

2
V and ~! � pV �pT

mT
and

A� � 	��ð ~pT; �TÞ	��ð ~pV; �VÞ;
B� � 	��ð ~pT; �TÞpV

� ð	�ð ~pV; �VÞ � pTÞ;
C� � 	��ð ~pV; �VÞð	�
ð ~pT; �TÞpV

�p
V

Þ;

D�
T � p�

T ð	�
ð ~pT; �TÞ	��ð ~pV; �VÞpV

Þ;

D
�
V � p

�
V ð	�
ð ~pT; �TÞ	��ð ~pV; �VÞpV


Þ;
F�
T � p�

T ð	�
ð ~pT; �TÞpV
�p

V

Þð	�ð ~pV; �VÞ � pTÞ;

F
�
V � p

�
V ð	�
ð ~pT; �TÞpV

�p
V

Þð	�ð ~pV; �VÞ � pTÞ:

In order to have a constrained linear system for extrac-
tion of the five form factors, we are required to consider
all five spin-2 helicities, which, with respect to the
lattice cubic symmetry, are distributed in T2ð3Þ and
Eð2Þ irreps. Strictly speaking, these are independent
irreps on the lattice and we should be careful about
combining them; however, any lattice symmetry break-
ing must vanish as a ! 0, and in [1] we found that there
were strong signals that the continuum rotational
symmetry was restored to a good approximation already
at this value of a. For example, for the ground states in
the T2, E channels, we have a high degree of mass
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FIG. 8 (color online). Electric dipole, magnetic quadrupole,
and electric octopole form factors for the transition �c2 !
J=c�. We show the Q2 dependencies fitted with Eq. (6) and
extrapolated to the physical photon point Q2 ¼ 0 for comparison
with experimental data from [15]. Relative signs are relevant.
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degeneracy, and the values of the overlaps (ZT2
=ZE) are

compatible at the 1% level. Details of this analysis are in
[1].

The extracted form factors and fits to theQ2 dependence
are shown in Fig. 8, where the expected hierarchy
jE1ð0Þj > jM2ð0Þj � jE3ð0Þj, to be discussed in
Sec. IVB, is observed. The description of the lattice
three-point correlators by the continuum decomp-
osition, Eq. (7) (which does not take any account of
T2=E discretization differences), is excellent, with typi-
cally �2=Ndof � 1. As a simple systematic test of the
degree to which T2=E discretization differences could
affect the determination of the form factors, we tried
deliberately introducing such a difference by arbi-
trarily multiplying all E correlators by a factor. Even
with a 10% increase in the magnitude of all E corre-
lators, the form-factor values changed by less than the
statistical error, while the �2=Ndof increased to around
6. If we were to see such large �2 in our raw data
(which we never do), we would not trust the results—
we conclude that our form-factor extractions are not
being strongly affected by T2=E discretization differ-
ences.

The amplitudes at Q2 ¼ 0 correspond to a partial decay
width of �ð�c2 ! J=c�Þ ¼ 380ð50Þ keV to be com-
pared with the PDG average of 406(31) keV. The elec-
tric dipole fit parameters are 
 ¼ 550ð80Þ MeV and
� ¼ �0:39ð1Þ GeV�2. The fits yield values for the ratios

of multipole amplitudes of M2ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1ð0Þ2þM2ð0Þ2þE3ð0Þ2

p ¼
�0:39ð7Þ and E3ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ð0Þ2þM2ð0Þ2þE3ð0Þ2
p ¼ 0:010ð11Þ; in the

case of the first ratio, the value is considerably larger
than the PDG average of �0:13ð5Þ but does appear to be
of the correct sign.

We also extracted the �0
c2 ! J=c� transition form

factors15 as presented in Fig. 9(a). The large value of E3

might be surprising when compared to the ground-state
result—a number of simple systematic tests were per-
formed to investigate if this might come about through
various lattice effects, with the result that we were un-
able to change the values outside statistical error bars by
any reasonable adjustment. The amplitudes at Q2 ¼ 0
correspond to a partial decay width of 20(13) keV. In Fig. 9
(b) we present the transition form factors for the next
excited tensor state,16 �00

c2 ! J=c�, where the hierarchy
jE1ð0Þj> jM2ð0Þj � jE3ð0Þj appears to be restored and
where we predict a partial decay width of 88(13) keV. In
Sec. IVB we will propose a simple explanation for all
these observations in the framework of a nonrelativistic
quark model.

F. Exotic transitions

Our principal focus here is on the exotic 1�þ state,
�c1, here

17 found to be at 4300(50) MeV. On a quenched
lattice, provided we can eliminate the possibility that the
lightest state in T�þ

1 is part of a nonexotic 4�þ (see [12] for

support of this elimination), we can be fairly certain that
this state is a hybrid, having an excited gluonic field in
addition to a charm-anticharm quark pair. This is in con-
trast to having a higher quark number Fock state which,
since we lack light quarks altogether in this calculation,
could only arise for states having mass near 4mc.

18 A
charge-conjugation allowed decay of this meson would
be �c1 ! J=c�, having transverse magnetic dipole and
electric quadrupole multipole contributions. The decom-
position of the vector current matrix element between two
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FIG. 9 (color online). (a) Electric dipole, magnetic quadru-
pole, and electric octopole form factors for the transition �0

c2 !
J=c�. Q2 dependencies fitted with various fit forms are shown
by the shaded bands. Relative signs are relevant. (b) Same as (a),
but for �00

c2 ! J=c�.

15We found a mass of 4115(28) MeV for the �0
c2.

16We found a mass of 4165(30) MeV for the �00
c2.

17But note our comments regarding the box size as a cause of
systematic error.
18And in a quenched calculation, they would arise in a unitarity
violating way [17].
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nonidentical vector mesons takes the following form:

hV 0ð ~p0; �0Þjj�jVð ~p; �Þi ¼ �
�

mffiffiffiffiffiffiffi
2�

p
��

M1ðQ2Þ
�
	��ð ~p0; �0Þð	ð ~p; �Þ � p0Þ þm0

m
	�ð ~p; �Þð	�ð ~p0; �0Þ � pÞ

þ ð	ð ~p; �Þ � p0Þð	�ð ~p0; �0Þ � pÞ
�
q�

q2

�
m0

m
� 1

�
þ q2 þ!ðm0 �mÞ

2�
��

��

þ E2ðQ2Þ
�
	��ð ~p0; �0Þð	ð ~p; �Þ � p0Þ �m0

m
	�ð ~p; �Þð	�ð ~p0; �0Þ � pÞ þ ð	ð ~p; �Þ � p0Þð	�ð ~p0; �0Þ � pÞ

�
�
�q�

q2

�
m0

m
þ 1

�
þ q2 �!ðm0 þmÞ

2�
��

��

þ C0ðQ2Þffiffiffiffiffi
q2

p
�

q2ffiffiffi
6

p
m

�
��

�
ð	�ð ~p0; �0Þ � 	ð ~p; �ÞÞ þmð!þm0 �mÞ

�
ð	ð ~p; �Þ � p0Þð	�ð ~p0; �0Þ � pÞ

�

þ C2ðQ2Þffiffiffiffiffi
q2

p
�

q2

2
ffiffiffi
3

p
m

�
��

�
ð	�ð ~p0; �0Þ � 	ð ~p; �ÞÞ �mð2m0 þm�!Þ

�
ð	ð ~p; �Þ � p0Þð	�ð ~p0; �0Þ � pÞ

��
;

where ��¼ðp0 þpÞ��m02�m2

q2
ðp0�pÞ�, ��ðp �p0Þ2�

m2m02, and !¼m2�m02þq2

2m .
We used a set of eight operators at the sink to produce

the T�þ
1 state.19 Our results projected onto the ground state

in T�þ
1 are shown in Fig. 10—the lattice data are not fitted

as a function of Q2, as very little extrapolation is required
to associate the point at Q2 ¼ 0:06 GeV with the real
photon point. The value of M1ð0Þ corresponds to a partial
decay width �ð�c1 ! J=c�Þ ¼ 115ð16Þ keV. Note that
this is no different in scale from many measured conven-
tional charmonium transitions.

If we also consider charge-conjugation symmetry vio-
lating decays (by coupling only to one quark), we have

access to 1�ðþÞ ! 0�ðþÞ�, 1�ðþÞ ! 0þðþÞ�. These results
can be compared to models of hybrid bound-state structure,
as we will do in the following section. Results are shown in
Fig. 11.

Another exotic JPC to which we have easy access is
the 0þ� state which appears in the Aþ�

1 channel at
4465(65) MeV. We have computed a charge-conjugation
symmetry violating decay of the lightest state with these
quantum numbers to the conventional ground-state vector

1�ð�Þ. This transition matrix element has the same decom-
position as the vector-scalar in Eq. (5). We used a set of

three operators20 to create the 0þð�Þ state; in Fig. 12 we

show the electric dipole form factor for 0þð�Þ ! 1�ð�Þ�.

G. Other assorted transitions

We also computed some C violating transitions which
have allowed analogues in the light-quark sector,21

1þðþÞ ! 0�ðþÞ� and 2þðþÞ ! 0�ðþÞ�. The first of these
has a multipole decomposition identical to Eq. (5) while
the second takes the form

hPð ~pVÞjj�ð0ÞjTð ~pT; �Þi
¼ M2ðQ2Þ ffiffiffi

2
p mT

�
	����pT�pP�	��ð ~pT; �Þp�

P:

Results are shown in Fig. 13. A discussion in terms of
nonrelativistic quark models follows in the next section.

IV. PHENOMENOLOGY

The results presented in the previous section can be
compared with experimental measurements and, addition-
ally, with the predictions of various models describing
heavy-quark bound states. A rather successful approach
to describing charmonium has emerged by considering
heavy charm quarks to be moving nonrelativistically (or
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FIG. 10 (color online). Magnetic dipole and electric quadru-
pole form factors for the transition �c1ð1�þÞ ! J=c�. The
point at Q2 ¼ 0:06 GeV is translated to the physical photon
point Q2 ¼ 0.

19In the nomenclature of [1] they are smeared and unsmeared
versions of a0ð2Þ � rT1, b1 �rT1, �� BT1, �ð2Þ � BT1. The B
operators induce an essential gluonic component through a
factor proportional to F�� in the continuum limit; the r opera-
tors reduce to covariant derivatives and hence have a factor A�.
20Quark-smeared �c�0c and smeared and unsmeared a1�BA1.
21Namely, a�1 ! �� and a�2 ! ��.
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nearly so) in a static potential motivated by QCD. These
quark-potential models have been used to compute spectra,
radiative transition rates, and, in many-body extensions of
the theory, hadronic decay rates (e.g. [6,18,19]). In their
simplest formulation, the gluonic field plays no dynamical

role and one does not have exotic quantum numbered states
with excited glue (hybrids). In order to consider such states
one can construct models making specific assumptions
about the nature of the gluonic field and its excitations,
examples being the flux-tube model [20], ‘‘constituent’’
gluon models, and models based upon a many-body treat-
ment of QCD in a physical gauge [21]. In what follows we
will address to what extent our lattice QCD results inform
these models.
First we should discuss the degree to which the approx-

imations we have made in our computation introduce
systematic error to our results.

A. Lattice systematics

This calculation has been performed within the
quenched truncation—as such, one way to view it is as a
calculation of a version of QCD having just one heavy
flavor of quark, with the neglect of heavy flavor quark
loops being justified by their large mass. In this regard
this calculation is rather directly comparable to quark-
potential models which in their simplest form also neglect
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the effect of dynamical light quarks. We set the lattice scale
in our calculation using the Sommer parameter which is
itself related to the static quark potential and the charmo-
nium spectrum, so here too the comparison is fairly direct.
In Fig. 14 we show the static potential extracted on this
lattice along with the phenomenological forms used in a
selection of potential models.

Clearly, then our calculation does not include the effect
of charmonium states coupling to multihadron states con-
taining light quarks, e.g. D �D. There have been suggestions
within extensions of quark-potential models that including
such physics can have a considerable effect on the spec-
trum [5,6] and radiative transition rates [8] of charmonium.
We will attempt to address this in the discussion to follow.

In terms of direct comparison with reality, in which there
are three flavors of quarks lighter than charm, another
failure introduced by the quenched approximation is the
incorrect running of the strong coupling due to the beta
function containing the wrong number of quark degrees of
freedom.We expect this to show up in terms of inconsistent
scale setting—something that has been observed previ-
ously [22].

Our calculation has been performed at only one value of
the lattice spacing; as is well known, one expects there to
be systematic shifts in quantities, owing to the lattice
discretization that goes away as one approaches the con-
tinuum. These are suggested to be particularly serious for
the discretization of heavy quarks. At a single lattice
spacing we cannot accurately estimate the size of such
effects, although our use of the improved clover action
and an anisotropic lattice22 should help a great deal in the
reduction. We present in Appendix B a limited study of
improving the vector current insertion in the manner de-
scribed in [23]. In general, the improvement effects are not

large, suggesting that scaling to the continuum should not
overwrite our results.
In the spectrum calculations using the same action on the

same lattices [1,12], the possibility that the spatial volume
is too small to comfortably house highly excited states was
raised.
One way to reduce the systematic error introduced by

extrapolating from finite Q2 to Q2 ¼ 0 would be to con-
sider utilizing twisted boundary conditions on the propa-
gator inversions to get momenta and hence Q2 values
rather close to Q2 ¼ 0—this has proven to be successful
in form-factor computations [24].
Modulo the caveats that we have raised, we remain

convinced that the results we present likely represent a
faithful description of the pattern of physics of radiative
transitions in charmonium, including the properties of
gluonic hybrids. Most importantly, we have clearly dem-
onstrated that the technology of projecting three-point
functions using ideal operator eigenvectors obtained in
two-point function calculations works well in giving us
access to excited-state transitions. All the possible sources
of systematic error can be addressed in future calculations
using a set of sufficiently large dynamical lattices of vari-
ous lattice spacings.

B. Conventional-state transitions and the
quark-potential model

Reference [12] used information extracted from two-
point functions to identify excited charmonium states
found in a lattice calculation with the corresponding states
expected in the quark model. The transition form factors
can also be compared to calculations in quark-potential
models. Our quenched lattice calculations offer a rather
direct comparison with these potential models: in both
cases loops of mesons containing light quarks have been
ignored. As discussed in Refs. [2,25], the results of quark
models are sensitive to approximations, such as the choice
of frame, which are not an issue in lattice calculations—we
will not discuss these further here. In the following, for
simplicity, we use harmonic oscillator wave functions and
consider the rest frame of the initial meson.
Within the simplest nonrelativistic model of a meson

emitting a photon of momentum ~q, we find the following
transition form factors for nonradially excited states under-
going a change of orbital angular momentum of one unit:

E1ðj ~qj2Þ /
�
1þ r

j ~qj2
4
2

�
exp

�
� j ~qj2
16
2

�
(8)

where 
 is the harmonic oscillator wave-function parame-
ter. Here the r values follow from the coupling of quark
spin and orbital angular momentum as23
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FIG. 14 (color online). Lattice static potential along with phe-
nomenological potentials used in [7,18,34].

22Some comparison of the clover action with the domain wall
action on these lattices is given in [1]. 23Note that a typographical error in [2] is corrected here.
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r ¼ 1; �c0ð3P0Þ ! J=c ð3S1Þ�;
r ¼ 1=2; �c1ð3P1Þ ! J=c ð3S1Þ�;
r ¼ �1=2; �c2ð3P2Þ ! J=c ð3S1Þ�;
r ¼ 0; hcð1P1Þ ! �cð1S0Þ�:

Transforming from j ~qj2 to the invariant virtuality of the
photon (Q2) in the rest frame of the decaying meson, this
corresponds to

E1ðQ2Þ /
�
1þ r

Q2

4
2

1þ�

1þ r�

�
exp

�
� Q2

16
2
ð1þ�Þ

�
(9)

with � � m2
f
�m2

i

2m2
i

and � � ðm2
f
�m2

i Þ2
16m2

i 

2 . Note that this is of the

general form given in Eq. (6).
In the same model, we have for transitions involving

both a change in orbital angular momentum and a quark
spin-flip, the expression

E1ðj ~qj2Þ / j ~qj2

2

exp

�
� j ~qj2

16
2

�
: (10)

This applies to the charge-conjugation forbidden decays

1þðþÞð3P1Þ ! 0�ðþÞð1S0Þ� and 1þð�Þð1P1Þ ! 1�ð�Þð3S1Þ�.
In addition, this same form is predicted for the M2 form
factor in the transitions �c1;2ð3P1;2Þ ! J=c ð3S1Þ� and the

charge-conjugation forbidden 2þðþÞð3P2Þ ! 0�ðþÞð1S0Þ�
and 1þð�Þð1P1Þ ! 1�ð�Þð3S1Þ�. In terms of Q2 this gives

E1ðQ2Þ /
�
�þ Q2

4
2
ð1þ �Þ

�
exp

�
� Q2

16
2
ð1þ �Þ

�
;

(11)

which we note is also of the form of Eq. (6).
Within this model we find that E3ðQ2Þ ¼ 0 for

�c2ð3P2Þ ! J=c ð3S1Þ�. In fact, this result follows from
the general assumption of a single quark transition [26]
and does not depend critically upon the details of the
model. For a transition J ! J0 (where J and J0 are, respec-
tively, the initial and final meson spins) the allowed k (for
Ek or Mk depending on k and the parity change) are, in
general, jJ � J0j � k � J þ J0. However, if only a single
quark is involved in the transition, there is a further re-
striction on the values allowed. If the interacting quark in
the initial (final) meson has total angular momentum j (j0),
then jj� j0j � k � jþ j0. Hence, in general, for an
n3P2 ! n03S1 transition the allowed k are k ¼ 1, 2, 3.
However, in the single quark transition assumption we
have j ¼ 3=2 ! j0 ¼ 1=2 and k is restricted to k ¼ 1, 2.
Note that it is possible to have E3 � 0 if the tensor meson
is a 3F2 (j

0 ¼ 5=2) state, in which case k ¼ 2, 3 and E1 ¼
0. It is also possible to have E3 � 0 in transitions involving
hybrid, multiquark, or molecular mesons where there are
other degrees of freedom able to carry some angular
momentum.

1. c -�c transitions

Our result for �ðJ=c ! �c�Þ is in reasonable agree-
ment with the new experimental value from CLEO-c [4],
the potential model calculations of [18,27], the potential
nonrelativistic QCD result of [28], and the QCD sum-rule
estimate of [29]. Similarly, our result for the ‘‘hindered’’
M1 transition �ðc 0 ! �c�Þ is consistent with the experi-
mental values in [4,15] and Eichten et al. [27], but signifi-
cantly smaller than the values in Ref. [18] which depend
sensitively on the overlap of orthogonal wave functions
with a small recoil factor breaking the orthogonality.
Li and Zhao [8] study the possibility of hadronic loop

contributions in J=c and c 0 radiative decays to �c and �
0
c.

They find that the addition of loop contributions involving
pairs of D and D� mesons can bring the model values from
Ref. [18] into line with experiment. Most significantly, they
find large loop contributions, of order 10 keV, to the c 0 !
�c� transition. A cancellation between the quark-model
contribution of order 10 keV (from Ref. [18]) and these
loop contributions results in a small transition width of
�1 keV. This appears to present a problem with respect to
our result, which being quenched does not include loop
contributions, since there is no room for a large loop
contribution when our �ðc 0 ! �c�Þ is compared to the
experimental value. This might indicate that the loop con-
tributions of Ref. [8] are overestimated, and we have
identified one possible source for this in the coupling
gD�D� used. The partial decay width �ðD�0 ! D0�Þ �
800 keV assumed in Ref. [8] appears to be rather large
for anM1 radiative transition and, with the branching ratio
from the PDG [15], implies a D�0 total width of 2.1 MeV
which is at the upper limit allowed by the PDG. For
comparison, Close and Swanson [30], using a nonrelativ-
istic quark model, predict �ðD�0 ! D0�Þ ¼ 32 keV. The
corresponding decrease in the loop amplitudes would re-
move the problem in comparison with our result. In addi-
tion, there are considerable uncertainties arising from the
estimated hadronic coupling constants in the loop contri-
butions which are not discussed in Ref. [8]. These uncer-
tainties may be particularly important because of the
delicate nature of the cancellation.
We have also been able to extract a signal for the c 00 !

�c�, which in the standard interpretation of the c 00 would
be a 13D1 ! 1S0 transition. In a harmonic oscillator wave-

function basis the form factor has the same leading j ~qj3
behavior as 23S1 ! 1S0�, indicating that it should suffer

hindered suppression just like the c 0 ! �c� relative to
J=c ! �c�. The lattice data for the amplitude appear to
be in line with this, within a large statistical uncertainty.
Discussion of the next excited vector state will follow in
Sec. IVC.

2. �-c transitions

The �cJ ! J=c� partial widths we obtain are domi-
nated by the electric dipole component and compare favor-
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ably with the experimental values. The largest discrepancy
is in the statistically precise �c0 transition. The lattice
systematic errors discussed above may be to blame for
this; without further calculation we cannot determine this
definitively, but we note that [7] found that approximately
‘‘unquenching’’ the quark model for this transition did not
induce a large change in the rate. In Appendix B we
consider the effect of using an improved vector current,
and we find that the �c0 ! J=c� transition is one case
where a statistically significant change with respect to the
local current does occur. This might indicate that this
transition is particularly sensitive to scaling in the lattice
spacing.

The fitted values of 
 in Eq. (6) are in rough agreement
for all of �c0;1;2, as one might expect for states that in the

potential model differ only by small spin-orbit effects. The
fitted values of � deviate somewhat from the expected
quark-model ratio 1:12:� 1

2 for �c0;1;2, being 1:0:62ð26Þ:�
0:34ð2Þ. Given the approximations and frame dependence
inherent in the quark model, even such rough agreement is
surprising.

In the �c1;2 ! J=c� transitions, the hierarchy of multi-

poles expected in the quark model [jE1ð0Þj> jM2ð0Þj �
jE3ð0Þj] is observed. The precise degree of suppression of
M2 compared with E1 is not easy to compute in nonrela-
tivistic quark-potential models. However, the single quark
transition assumption predicts that E3ðQ2Þ ¼ 0, indepen-
dent of the frame and details of the potential, and that the
lattice data do agree with this. Our extracted values of
M2ð0Þ or the ratio M2ð0Þ=E1ð0Þ all depend upon theoreti-
cally undetermined extrapolation in Q2, and so the appar-
ent disagreement with the very small values found in
experiment is not yet overly concerning.

The electric dipole couplings for c 0 ! �c0� and c 00 !
�c0� are, within reasonably large statistical errors, in
agreement with experimental values and with the ‘‘GI’’
values tabulated in [18].24 The estimates of D-meson loop
effects from [7] are comparable to the level of our statis-
tical uncertainty.

For the transition �0
c1 ! J=c� we extract a partial

width of 21(12) keV which is in reasonable agreement
with the quark-model estimates of [18], being 14 or
71 keV depending upon model details. Since in our study
this state has a likely interpretation as the 23P1 state of the

quark model, without any D �D� effects included, this can
act as a benchmark for models that consider the experi-
mental Xð3872Þ state as being 1þþ.

The large E3ð0Þ in the lattice calculation of the �0
c2 !

J=c� transition is in stark disagreement with the general
result that E3 ¼ 0 for a 3P2 ! 3S1 transition. As discussed
above, this does not appear to be a lattice artifact and so
another interpretation must be found. Possible explana-

tions include that the �0
c2 state is a hybrid where the gluonic

field carries spin, but here we concentrate on the most
conservative interpretation, that �0

c2 is a conventional 3F2

state.
An F-wave tensor state (3F2) is expected to have

E1ðQ2Þ ¼ 0, in general, from the single quark transition
assumptions outlined earlier. In addition, a quark-model
calculation shows that M2ð0Þ is highly suppressed:

M2ðj ~qj2Þ / j ~qj4

4

exp

�
� j ~qj2
16
2

�
;

whereas E3 is less suppressed:

E3ðj ~qj2Þ / j ~qj2

2

exp

�
� j ~qj2

16
2

�
;

with the same leading j ~qj2 dependence as the M2 form
factor in a 3P2 ! 3S1 transition [Eq. (11)]. This pattern
that jE3ð0Þj> jM2ð0Þj � jE1ð0Þj is consistent with the
lattice results for this �0

c2 ! J=c� transition. These lattice
results support the interpretation of this �0

c2 as the lightest
3F2 state having a partial decay width to J=c� of
20(13) keV. We are unaware of any model calculations of
this transition rate.
The �00

c2 ! J=c� transition appears to have reverted to
the jE1ð0Þj> jM2ð0Þj � jE3ð0Þj hierarchy expected for a
3P2 state, and we propose that this state is the 23P2. There
is of course the possibility that the P and F states are
mixed, but this mixing cannot be anything like maximal
mixing given that a large E3 only appears in one case and a
large E1 only appears in the other case. Within a non-
relativistic quark model, the 3P2 and 3F2 states can mix
via any tensor potential in the Hamiltonian. However, in
most models this term is suppressed by the inverse charm
mass squared and so is small. The tensor term, like the
hyperfine interaction, is a short-distance effect and so may
not be reliable in these quenched lattice calculations.
Because this term is suppressed anyway, the errors intro-
duced from this should be small. Another possible source
of mixing which we lack in the quenched theory comes
through D �D meson loops—such effects are discussed in
[5,31].
The partial decay width �ð�00

c2 ! J=c�Þ extracted from
the lattice data is 88(13) keV, which is comparable with the
53 or 81 keV computed by [18]. We note that the inter-
pretation of excited states in this channel as F and P waves
was hinted at in the two-point function analysis of [12],
where states compatible with being 3F2 and 23P2 were
found to be nearly degenerate. Within the quark-potential
models used in [18], the F wave state is expected to be 60–
100 MeV heavier than the P wave. The approximate
degeneracy we found may be an artifact of ‘‘squeezing’’
these spatially larger states into a 1.2 fm box.
A discussion of the excited �c2 states is timely, given the

observation of a candidate state at 3929(5) MeV by Belle in
�� ! D �D which has been associated with the 23P2 state

24But note the considerable dependence on the details of the
quark model in that paper’s ‘‘NR’’ results.
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[32]. We lack reliable theoretical estimates of the ��
widths of 3F2 and 23P2 states—this calls for an extension
of the work done in [33] to consider excited states which
could use operator projection technology very similar to
that discussed in this paper. We note here that an optimist
viewing Fig. 2 of [32] might hope that the statistically
insignificant excess at 4080 MeV could, with increased
statistics, become a signal for the other state in the
23P2=1

3F2 pair.

The JþðþÞ ! 0�ðþÞ� transitions shown in Fig. 13 are
consistent with the quark-model predictions. The electric

dipole amplitudes in 1þðþÞ ! 0�ðþÞ� are much smaller
than other electric dipole amplitudes since they involve
both �L ¼ 1 and a spin-flip. For the magnetic quadrupole

amplitudes in 2þðþÞ ! 0�ðþÞ�, the 3P2 amplitude behaves
like Eq. (10) while the 3F2 amplitude is suppressed by a
two more powers of j ~qj which suggests yet again the
assignment �c2 ¼ 13P2, �

0
c2 	 13F2, and �00

c2 	 23P2.

C. Exotic and crypto-exotic transitions

The only charge-conjugation allowed transition involv-
ing an exotic we compute, �c1 ! J=c�, has a rather large
partial decay width 115(16) MeV which is dominantly
through a magnetic dipole transition. Even accounting
for the large phase space, this is very large on the usual
scale of magnetic dipole transitions. Conventional c �c states
can only have magnetic dipole transitions if there is a quark
spin-flip, and this is suppressed by the large charm-quark
mass. In a hybrid meson the extra gluonic degree of free-
dom allows an M1 transition without spin-flip. This can be
seen explicitly within the flux-tube model, where in an M1

transition between a conventional L ¼ 0 meson and a
hybrid meson, the tube absorbs the angular momentum.25

The two-point function analysis of [12] suggested that
the excited vector state we have called Yhyb (having mass

around 4.4 GeV) is a crypto-exotic hybrid meson, having
nonexotic JPC ¼ 1�� but internally an excited gluonic
field. That analysis preferred the quarks to be in a spin
singlet in this state. In that case we would expect a large
non-spin-flip M1 transition Y ! �c� which is precisely
what is seen in our lattice data. Here �ðY ! �c�Þ ¼
42ð18Þ keV, which is considerably larger than any other
vector-to-pseudoscalar transition. Within the flux-tube
model, the nonexotic Yð1��

hyb Þ and the exotic �c1ð1�þ
hyb Þ

(which we find at a mass �4:3 GeV) differ only in being
quark spin singlets and triplets, respectively, and �ðY !
�c�Þ 	 �ð�c1 ! J=c�Þ. The lattice data do not strongly
disagree with this. It would be very interesting to see
analogous calculations in other models of excited glue to
see if this is a general result or one peculiar to the flux-tube
model.

We also consider charge-conjugation violating electric

dipole transitions involving exotic mesons, 1�ðþÞ !
0þðþÞ� and 0þð�Þ ! 1�ð�Þ�, where for both we found
nonzero signals. Roughly speaking, one can gauge the
cost of exciting the gluonic field versus exciting conven-
tional orbital angular momentum by comparing the electric

dipole transitions 1�ðþÞ $ 0þðþÞ having E1ð0Þ ¼ 0:06ð1Þ,
and 1�ð�Þ $ 0þðþÞ having E1ð0Þ ¼ 0:127ð2Þ. These num-
bers are clearly of the same order, a result that is also true in
the flux-tube model [10,11]—whether this is true in other
models has not yet, to our knowledge, been tested. The

transition 0þð�Þ ! 1�ð�Þ where E1ð0Þ � 0:04ð1Þ suggests
that Lq �q ¼ 0 transitions to exotic hybrids are also

unsuppressed.
Further evidence for the quark spin-triplet nature of the

�c1ð1�þ
hyb Þ and the quark spin-singlet nature of the Yð1��

hyb Þ
comes from the fact that E1ð0Þ for 1�ðþÞ ! 0þðþÞ� is

0.06(1) while for 1�ð�Þ
hyb ! 0þðþÞ� it is consistent with

zero. The first of these then is ðSq �q ¼ 1Þ ! ðSq �q ¼ 1Þ
while the second requires a spin-flip, expected to be sup-
pressed by the heavy-quark mass. Note that the magnetic

dipole transition 1�ðþÞ ! 0�ðþÞ� in Fig. 11 is at the scale
of other hindered M1 transitions, consistent with requiring
both gluonic excitation and quark spin-flip. We note that
the spin-singlet nature of our Y state does not make it a
good candidate for the experimental Yð4260Þ state whose
potentially large decay rate into J=c would tend to
suggest dominance of the spin triplet.
Here we briefly comment that if this heavy-quark hybrid

physics is any guide to the behavior of light-quark hybrid
systems, we should expect the GlueX experiment to copi-
ously photoproduce hybrid mesons off the meson cloud
around a baryonic target.

V. CONCLUSIONS

We have demonstrated that the ideal excited-state op-
erators within a basis of operators can be used to success-
fully extract excited-state transitions from three-point
correlators. Using this technique we have carried out an
extensive survey of radiative transitions in charmonium
with detailed consideration of the phenomenology sug-
gested by the results.
Notably we have performed the first lattice QCD calcu-

lation of the exotic �c1 radiative decay and found a large
�ð�c1 ! J=c�Þ ¼ 115ð16Þ keV. We found statistically
significant electric dipole and magnetic quadrupole form
factors in �c2 ! J=c�, calculated for the first time in this
framework, and have studied excited �c1;2 transitions. Our

results for the excited �c2 states suggest that there could be
a radially excited 23P2 state and a 1

3F2 state rather close in
mass. This signal followed from a clear observation of
dominance of E1 over E3 in one case and E3 over E1 in
the other and matches the general expectations of potential

25Details are presented in the unpublished D.Phil. thesis of
J. J. D. where the following partial widths were obtained:
�ð�c1 ! J=c�Þ 	 �ðYhyb ! �c�Þ 	 30 ! 60 keV.

DUDEK, EDWARDS, AND THOMAS PHYSICAL REVIEW D 79, 094504 (2009)

094504-16



models. This is relevant given the recent observation of a
candidate 2þþ excited state in �� ! D �D [32].

Our calculation of magnetic dipole transition widths,
such as c ! �c� and hindered excited-state transitions,
reflect the expected suppression of the excited-state tran-
sitions. We note that, modulo lattice systematic effects
which can be reduced, our method is not troubled by the
uncontrolled approximations and model dependence inher-
ent in model calculations of such suppressed transitions. In
light of this we were able to make statements regarding the
possible influence of closed channel D-meson loops on the
hindered transitions, determining that they cannot be as
large as suggested in certain studies. We identified a puta-
tive nonexotic hybrid state having a large magnetic dipole
transition amplitude to �c—the possibility that this reflects
the non-spin-flip magnetic dipole excitation allowed within
the flux-tube model (and likely within other models having
more than c �c content) was raised.

While the current numerical results may be affected by
lattice systematic errors, future calculations using the now
proven methodology can address these shortcomings by
using dynamical lattices of sufficient size and a number of
different lattice spacings. At some point after the introduc-
tion of dynamical lattices, the difficulty of dealing with
resonant states embedded in a multimeson continuum will
have to be addressed.

We have demonstrated that our results are in agreement
with general predictions of quark-potential models but we
are able to go beyond this to make statements about states
in which there is an excited gluonic field. These results are
appropriate for comparison with models proposing particu-
lar forms for the gluonic excitation.

The great advantage of this development within lattice
QCD, as compared to models relying upon the nonrelativ-
istic motion of quarks, is its immediate applicability to the
light-quark systems. Future efforts will consider photo-
couplings of light-quark mesons, and, in particular, exotics,
as these are of central importance in the production rates
for the GlueX project. If the large couplings we find for the
1�þ state with heavy quarks persist into the light-quark
sector, this will confirm the intuition and model results
used to motivate the GlueX production process.
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APPENDIX A: DERIVATIVE OPERATORS AT
ZERO AND NONZERO MOMENTUM

In this appendix we give a few details of the spin
structure we deal with when considering two- and three-
point correlators. We take the example of the T��

1 vector
operators considered at ~p ¼ ð000Þ and ~p ¼ ð100Þ. Using
the decompositions in Appendix A of [1], we find that at
zero momentum all the operators we have used have the
following behavior in the continuum limit,

h1��ð ~p ¼ ~0; �ÞjOij0i / 	�i ð~0; �Þ; (A1)

and there are no nonzero overlaps onto particles of any
other JPC (except those lattice artifacts that appear sup-
pressed by powers of a). The three-point correlator then

involves a sum
P

�	
�
i ð~0; �Þ	jð~0; �Þ ¼ �gij.

At nonzero momentum things are not so simple; with
one unit of lattice momentum [e.g. ~p ¼ ð100Þ] we have the
following nonzero overlaps in the continuum limit,

h1��ð ~p; �ÞjOij0i � 	�i ð ~p; �Þ; pj	
�
j ð ~p; �Þpi;

h1þ�ð ~p; �ÞjOij0i � 	ijk	
�
j ð ~p; �Þpk;

h0þ�ð ~pÞjOij0i � pi;

h2þ�ð ~pÞjOij0i � pj	
�
ijð ~p; �Þ; pi	

�
00ð ~p; �Þ: (A2)

These forms are derived following the decompositions
given in Appendix A of [1].26

So here we have additional contributions from
ð0; 1; 2Þþ� particles—the ð0; 2Þþ� contributions we can
neglect, as these exotic states are very heavy, but the 1þ�
we must worry about. We can see the entry of such parti-
cles in the two-point function spectral analysis; in Fig. 15
we show the spectrum at ~p ¼ ð100Þ with either i ¼ x,
where 1þ� does not contribute, or with i ¼ y, z, where
1þ� can contribute. Also shown are the T��

1 and Tþ�
1

spectra extracted at ~p ¼ ð000Þ extrapolated to ~p ¼ ð100Þ
using the continuum dispersion relation E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ j ~pj2p
.

We see the entry of the lightest 1þ� state into the T��
1 ð ~p ¼

ð100ÞÞ spectrum in the case i ¼ y, z but not in the case i ¼
x as expected. We can explicitly exclude this state from our
three-point analysis by not projecting onto the eigenvector
belonging to this level. In the results presented in Figs. 4
and 5 we separately consider the cases i ¼ x and i ¼ y, z
shown by the triangles and the circles. Note that we did not
simply rely upon energy matching to determine the lev-
els—a more precise mapping between ~p ¼ ð000Þ levels
and ~p ¼ ð100Þ comes from considering the overlaps, Z. As
a concrete example consider the matrix elements
h1��ð ~p; �Þj �c�ic j0i ¼ Z	�i ð ~p; �Þ where Z is proportional
to the vector decay constant and where, for unsmeared
quark fields in the continuum limit, Z should be indepen-
dent of momentum ~p. As can be clearly seen in Table IV,

26Correcting some minor typographical errors therein.
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one can identify the J=c state with the lightest in each
case, while the c 0 state is the next lightest in two of the
cases, but is the third state in the case where the 1þ� can
contribute. We considered the Z values for the entire set of
operators when making the state assignments at finite
momentum. This approach becomes increasingly cumber-
some as the momentum increases and so we have not
considered it any further.

APPENDIX B: IMPROVEMENT OF THE VECTOR
CURRENT

In [23] the improvement of the vector current to OðmaÞ
in a manner compatible with the improvement in the
anisotropic clover action was presented. Therein the analy-
sis was for heavy-light currents and the renormalization
constants were determined perturbatively. Here we are
interested in heavy-heavy currents and we shall determine
ZV nonperturbatively. Nevertheless we can consider mod-
ifying our local current to include extra terms suggested by
the improvement scheme to investigate any change in the
form-factor values. This can be considered to give a crude
estimate of how much we might anticipate scaling to the
continuum to affect our results.

Our clover action uses r ¼ 1, and as such our local
vector current is not automatically improved—at tree level

the improved current is given by ����� where �ðxÞ /
ð1þ asd1�j

~DjÞc ðxÞ is the ‘‘rotated’’ field used in the

construction of the improved action. The improvement
parameter d1 ¼ 1

4 ð1� �rÞ þOðm0atÞ 	 �0:5 for renor-

malized anisotropy � ¼ 3:0. The quark mass parameter
that appears in our clover action, m0at, has the value
0.0401 which is clearly small, while the mass in spatial
lattice units is 3 times as large, but still might be argued to
be small.
We have attempted to construct the improved current by

using the tree-level equation of motion�
at�4r4 þ as

�

�0

�jrj þm0at

�
c ¼ 0 (B1)

to eliminate the derivative in the expansion toOðasÞ of the
improved current �����. This yields the result

���4� / �c�4c � d1as@jð �c�j4c Þ; (B2)

���i� /
�
1� 2m0at

�0

�

�
�c�ic � d1

�0

�
at@4ð �c�i4c Þ;

(B3)

3000

3500

4000

FIG. 15 (color online). Low-lying spectrum extracted from
two-point correlators. The state assignment (color coding) fol-
lows from the consideration of the overlap factor as described in
the text.

TABLE IV. Z values in h1��ð ~p; �Þj �c�ic j0i ¼ Z	�i ð ~p; �Þ. The
state proposed to be J=c is in bold, and the state proposed to be
c 0 is in italics.

~p ¼ ð100Þ ~p ¼ ð100Þ
Level ~p ¼ ð000Þ

Oi ¼ Ox Oi ¼ Oy;z

0 0:163ð1Þ 0:173ð1Þ 0:166ð1Þ
1 0.190(6) 0.205(10) 0.04(1)

2 0.05(25) 0.01(3) 0.201(12)
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FIG. 16 (color online). Scalar-vector E1 transition form factors
using local and OðmaÞ improved current with anisotropic clover
quarks and the fit from a study using the local current with
domain wall fermions on the same anisotropic lattices.
(a) �c0 ! J=c�, (b) c 0 ! �c0�.
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where a common proportionality factor is ignored given
that we determine ZV nonperturbatively using the pseudo-

scalar form factor atQ2 ¼ 0. At ~q ¼ ð000Þ the second term
does not contribute and we would expect

ZVðsÞ
ZVðtÞ

¼
1� 2m0at

�0

� d1 	 1:11 for the parameters in our action.

Note that in Sec. III Awe found 1.11(1) for this ratio using
a nonperturbative extraction.
We computed form factors using the improved currents

for a few of the transitions considered in this paper. The
only effect of a considerable size was found in the �c0 !
J=c� transition as shown in Fig. 16(a). Note that the
addition of the improvement brings the clover data into
better agreement with the domain wall fermion data on the
same lattices, as we might expect given the automaticOðaÞ
improvement one has with domain wall fermion. We note
that for the same correlators projected onto the excited
state c 0, such a large difference with respect to the local
current was not seen; see Fig. 16(b). Wewere unable to find
any other large effects due to improvement; e.g. consider
J=c ! �c� shown in Fig. 17. These observations may
suggest that, except in certain notable cases (the scalar), the
discretization errors on our results are relatively small.
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FIG. 17 (color online). J=c ! �c� transition form factor
using local and OðmaÞ improved current with anisotropic clover
quarks and the fit from a study using the local current with
domain wall fermions on the same anisotropic lattices.
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