
Dynamical simulation ofN ¼ 1 supersymmetric Yang-Mills theory with domain wall fermions

Michael G. Endres

Physics Department, Columbia University, New York, New York 10027, USA
(Received 9 March 2009; published 13 May 2009)

We present results from a numerical study ofN ¼ 1 supersymmetric Yang-Mills theory using domain

wall fermions. In this particular lattice formulation of the theory, supersymmetry is expected to emerge

accidentally in the continuum and chiral limits without any fine-tuning of operators. Dynamical

simulations were performed for the gauge group SUð2Þ on 83 � 8 and 163 � 32 lattice space-time

volumes and at three different values of the coupling: � ¼ 2:3, 2:35�3, and 2.4. Results from this study

include measurements of the static potential, residual mass, and a chirally extrapolated value for the

gluino condensate at � ¼ 2:3. In addition to these, we study the low-lying eigenvalues and eigenvectors of

the five-dimensional Hermitian domain-wall fermion Dirac operator and present evidence that, for the

choice of parameters under investigation, features of the spectrum appear qualitatively consistent with

strong coupling and the presence of a large residual mass. From the five-dimensional eigenvalues we

explore the possibility of using the Banks-Casher relation to determine an independent value for the gluino

condensate in the chiral limit.
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I. INTRODUCTION

In recent years, substantial effort has been devoted
toward formulating supersymmetric (SUSY) gauge theo-
ries on the lattice.1 These efforts have been partially mo-
tivated by the fascinating theoretical and technical
difficulties associated with the problem, as well as the
obvious potential role of SUSY in beyond the standard
model physics. Of crucial importance pertaining to the
latter point is an understanding of a variety of nonpertur-
bative phenomena, including—but not limited to—dy-
namical SUSY breaking. An understanding of
nonperturbative aspects such as these may in principle be
achieved with numerical simulations, provided an appro-
priate lattice discretization of the theory may be found.

Since naı́ve lattice discretizations typically break SUSY
explicitly, simulations of such theories will generally re-
quire a substantial degree of fine-tuning in order to cancel
any undesirable SUSY breaking operators which may arise
through radiative corrections. Such a task is exceedingly
difficult, even when the number of parameters which re-
quire fine-tuning are relatively small. However, it has been
realized for some time that one of the simplest SUSY
theories, N ¼ 1 supersymmetric Yang-Mills (SYM),
may be simulated using conventional lattice discretizations
and yet require only a minimal degree of fine-tuning.

The field content of N ¼ 1 SYM consists of a vector
field and a single Majorana fermion which transforms as an
adjoint under the gauge group, which for our purposes will
be taken to be SUðNcÞ. The theory possesses an anomalous
Uð1ÞA axial symmetry; however, a discrete Z2Nc

subgroup

of Uð1ÞA survives at the quantum level. It is believed that

N ¼ 1 SYM shares a variety of features in common with
quantum chromodynamics (QCD), such as confinement
and chiral symmetry breaking [3]. But in contrast to
QCD, N ¼ 1 SYM is believed to possess discrete chiral
symmetry breaking from N2Nc

! Z2 which results in the

possible formation of domain walls but no Goldstone
bosons. Although this theory does not possess dynamical
SUSY breaking, as implied by a nonvanishing Witten
index [4], it is still believed to exhibit a variety of other
features which may be of interest to explore nonperturba-
tively. Of perhaps greatest interest is whether or not a
gluino condensate forms, the spectrum of the theory, and
the relationship between the domain wall tension and the
gluino condensate.
The low energy spectrum ofN ¼ 1 SYM is believed to

consist of massive supermultiplets which may involve
glue-glue, glue-gluino, as well as gluino-gluino bound
states. Although the states within a given supermultiplet
are degenerate, at finite gluino mass one expects mass
splittings which may be calculated using a variety of
effective theories [5,6]. Lattice simulations of N ¼ 1
SYM may be used to directly test the predictions of these
effective theories, as well as to determine the effects of soft
SUSY breaking on observables other than the spectrum.
N ¼ 1 SYM theory provides an ideal starting point for

studying aspects of SUSY numerically while still allowing
one to utilize familiar and well understood fermion discre-
tizations. Because the field content of this theory consists
only of a vector field and Majorana fermion (and, in
particular, no scalar fields), with conventional lattice dis-
cretizations of this theory, the only relevant SUSY violat-
ing operator which may arise radiatively is a gluino mass
term. In the chiral and continuum limits, SUSY is therefore
expected to emerge accidentally at infinite volume. For
fermion discretizations that explicitly break chiral symme-
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1For recent reviews, see e.g., [1,2].
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try, taking the chiral limit requires tuning the input mass
parameter to some critical value, such that the bare mass
vanishes.

With the use of a Ginsparg-Wilson [7] fermion discreti-
zation such as overlap fermions [8], fine-tuning of the
gluino mass term may be entirely avoided. This study
utilizes the closely related domain wall fermion (DWF)
formalism [9–11], which realizes chiral symmetry in the
limit of infinite fifth dimension extent and vanishing input
gluino mass. In a typical DWF simulation where the fifth
dimension is finite, however, the action receives residual
chiral symmetry violating radiative corrections, including
an additive mass renormalization. The important advan-
tage that DWF fermions have over other discretizations
(which lack chiral symmetry) is that these renormalizations
may be removed by taking a controlled and unambiguously
determined limit.

In the past, a variety of numerical studies have employed
Wilson fermions in order to simulate N ¼ 1 SYM [12–
29]. This discretization requires fine-tuning and formally
possesses a sign problem, since the Pfaffian obtained from
integrating out the fermion degrees of freedom is generally
not positive definite.2 Studies, however, have found that the
Pfaffian phase becomes innocuous in the parameter regime
of physical interest and may be effectively handled by
phase reweighting techniques. It was observed in [30]
that DWFs have an additional advantage over Wilson
fermions in that the fermion Pfaffian is positive definite.
With the use of DWFs, one may therefore avoid the task of
phase reweighting altogether.

The first and until recently the only study to use DWFs to
investigateN ¼ 1 SYM focused on the chiral limit of the
gluino condensate [31] at a single lattice spacing. This
study was performed by using an inexact, hybrid molecular
dynamics R (HMDR) algorithm [32] which, for the theory
under consideration, is prone to finite integration step size
errors. Our study offers an improvement over [31], by
utilizing the rational hybrid Monte Carlo (RHMC) algo-
rithm [33–35], which is an exact algorithm. Furthermore,
due to algorithmic improvements and faster computers, we
are able to explore the theory on larger lattices and at
smaller couplings as well. Recently an independent study
ofN ¼ 1 SYM using DWFs was reported by Giedt, et al.
in [36,37].

The primary purpose of our study is to establish a set of
sensible simulation parameters, perform basic measure-
ments, and provide the necessary ground work for more
detailed studies of the theory in the future. As such, we
expand the work of [31] in several important respects: we
1) establish the lattice scale by measuring the static poten-
tial and provide evidence for confinement which is con-

sistent with expectations; 2) determine the size of the
residual mass in order to ascertain the proximity to the
SUSY point; 3) extrapolate the chiral condensate to the
chiral limit using a recent, theoretically motivated fit for-
mula for its Ls dependence and which differs from the
formula used in [31]; and 4) study the structure of the low
lying eigenvectors and eigenvalues of the Hermitian DWF
Dirac operator and attempt to extract an independent value
for the chiral condensate using the Banks-Casher relation
[38]. With exception to the third and final points, questions
such as these could not be easily addressed in [31] due to
the limited space-time volumes employed.
Portions of this work have been reported at Lattice 2008

[39], including results obtained for points 1–3. In this paper
we go into greater detail on the analysis of these results,
and expand this analysis by including the eigenvalue and
eigenvector studies outlined in point 4. We organize this
paper as follows. In Sec. II, we describe the details of our
numerical simulations, including a brief review of the
domain wall fermion formalism and conventions, the
RHMC algorithm, ensembles, and measurement methods.
Section III is devoted to issues concerning thermalization,
and autocorrelations, while Sec. IV pertains to measure-
ment details, data analysis, and results. In Sec. V, we
summarize our findings. Finally, in Appendix A, we review
some basic properties of Marjorana fermions, which may
be less familiar to those readers who specialize in lattice
QCD, and specifically derive expressions for some of the
gluino-dependent observables studied in this paper.

II. SIMULATION DETAILS

A. Lattice action and conventions

Dynamical numerical simulations ofN ¼ 1 SYMwere
performed using a Wilson gauge action and domain wall
fermions. The full form of the partition function in
Euclidean space-time is given by

Z ¼
Z
½dU�½d��½d��e�SG½U��SF½�;U��SPV ½�;U�; (1)

where SG represents the gauge action and SF represents the
action for domain wall fermions. SPV represents the action
for the Pauli-Villars (PV) fields which are required in order
to cancel off the UV contributions associated with the bulk
fermions in the fifth dimension. Simulations are performed
on a V � Ls lattice, where V ¼ L3 � T represents the
lattice space-time volume of the four physical dimensions
with spatial extent L and temporal extent T, and Ls repre-
sents the size of the unphysical fifth dimension.
The Wilson gauge action is given by

SG½U� ¼ �
X
x;��

�
1� 1

2 Re TrPx;��

�
; (2)

where Px;�� ¼ TrðUx;�Uxþ�;�U
y
xþ�;�U

y
x;�Þ represents a

1� 1 plaquette and Ux;� are link variables which belong

2While one may prove that the fermion Pfaffian for this theory
is positive definite in the continuum, positivity is not necessarily
guaranteed on the lattice.

MICHAEL G. ENDRES PHYSICAL REVIEW D 79, 094503 (2009)

094503-2



to a fundamental representation of SUðNcÞ and are asso-
ciated with the four-dimensional space-time coordinate (x)
and orientation (�). As is usual with the domain wall
fermion discretization, the gauge field is taken to be inde-
pendent of the fifth dimension coordinate (s). The bare
coupling is given by � ¼ 4=g2.

The five dimensional DWF Dirac operator D is defined
by

Dx;s;x0;s0 ðM5; mfÞ ¼ �s;s0D
k
x;x0 ðM5Þ þ �x;x0D

?
s;s0 ðmfÞ; (3)

where

Dk
x;x0 ðM5Þ ¼

X4
�¼1

½P�
�Vx;��xþ�;x0 þ Pþ

�V
T
x0;��x��;x0

þ ðM5 � 4Þ�x;x0 �; (4)

D?
s;s0 ðmfÞ ¼

8><
>:
�mfP�; if s0 ¼ 0 and s ¼ Ls � 1
�mfPþ; if s ¼ 0 and s0 ¼ Ls � 1
P��sþ1;s0 þ Pþ�s�1;s0 � 2�s;s0 ; otherwise;

(5)

and the spin projectors P�
3 and P�

� are given by

P� ¼ 1
2ð1� �5Þ; P�

� ¼ 1
2ð1� ��Þ: (6)

The gamma matrices �� in Euclidean space are taken to be
Hermitian and satisfy the properties: Trð����Þ ¼ 4���

and ð��Þ2 ¼ 1 (no sum on �); the four-dimensional chi-
rality operator is given by �5 ¼ �0�1�2�3. The real link
variables Vx;� belong to the adjoint representation of the
gauge group. These may be expressed in terms of funda-
mental representation link variables Ux;� which appear in
the gauge action via the identity:

Vab ¼ 2TrðTaUyTbUÞ; (7)

where Ta are generators of the fundamental representation
of the gauge group which satisfy TrðTaTbÞ ¼ �ab=2,
with a ¼ 1; . . . ; N2

c � 1. Finally, M5 and mf appearing in
Eq. (3) represent the domain wall height and input gluino
mass, respectively.

The DWF Dirac operator satisfies the following proper-
ties:

�y
5D�5 ¼ Dy; CyDC ¼ D�; (8)

where �5 ¼ R5�5, R5 is the reflection operator about the
midplane in the fifth direction, C ¼ R5C is the DWF charge
conjugation operator, and C is the standard four-
dimensional charge conjugation operator which satisfies
the usual relations:

Cy��C ¼ ��T
�; Cy�5C ¼ �T

5 ;

CT ¼ �C; CyC ¼ 1; CyTa
adjC ¼ �ðTa

adjÞT: (9)

Here, Ta
adj are the generators of the adjoint representation of

the gauge group which satisfy TrTa
adjT

b
adj ¼ Nc�

ab. The

DWF and PV actions are given by

SF½�; U� ¼ 1
2
��DðM5; mfÞ�;

SPV½�; U� ¼ 1
2
��DðM5; 1Þ�;

(10)

where we have imposed the DWF and PV Majorana con-

ditions: �� ¼ �TC and �� ¼ �TC. Note that the PV action
used in these simulations is not the one introduced in [40]
but rather a variant of that action [41].
All gluino dependent observables in this study are ex-

pressed in terms of the four-dimensional gluino interpolat-
ing fields qðxÞ, which are defined at the boundaries of the
fifth dimension. In terms of the five-dimensional fields
�ðx; sÞ, the gluino interpolating fields are given by

qðxÞ ¼ P��ðx; 0Þ þ Pþ�ðx; Ls � 1Þ;
�qðxÞ ¼ ��ðx; Ls � 1ÞP� þ�ðx; 0ÞPþ:

(11)

For convenience, we also define here the four-dimensional
gluino fields qmðxÞ which may be associated with the
midplane in the fifth dimension:

qmðxÞ ¼ P��ðx; Ls=2Þ þ Pþ�ðx; Ls=2� 1Þ;
�qmðxÞ ¼ ��ðx; Ls=2� 1ÞP� þ�ðx; Ls=2ÞPþ:

(12)

Note that each of the interpolating fields in Eqs. (11) and
(12) satisfy the appropriate four-dimensional Majorana
conditions: �q ¼ qTC and �qm ¼ qTmC.
Following [40] we may define four-dimensional vector

and axial currents V�ðxÞ and A�ðxÞ by

V�ðxÞ ¼
XLs�1

s¼0

j�ðx; sÞ;

A�ðxÞ ¼
XLs�1

s¼0

sgn

�
s� Ls � 1

2

�
j�ðx; sÞ;

(13)

where j�ðx; sÞ are the first four components of the five-

dimensional conserved current, given by3P� ¼ PR=L in the notation of, for example, Ref. [40].
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j�ðx; sÞ ¼ ��ðxþ�; sÞPþ
�V

T
x;��ðx; sÞ � ��ðx; sÞP�

�Vx;��ðxþ�; sÞ; (14)

and the last component is given by

j5ðx; sÞ ¼
� ��ðx; sÞP��ðx; sþ 1Þ � ��ðx; sþ 1ÞPþ�ðx; sÞ; 0 � s < Ls � 1;
��ðx; Ls � 1ÞP��ðx; 0Þ � ��ðx; 0ÞPþ�ðx; Ls � 1Þ; s ¼ Ls � 1:

(15)

The divergence of the four-dimensional vector and axial
currents satisfy

��V�ðxÞ ¼ 0; ��A�ðxÞ ¼ 2mfJ5ðxÞ þ 2J5qðxÞ;
(16)

where ��fðxÞ ¼ fðxþ�Þ � fðxÞ is the forward finite
difference operator and

J5ðxÞ ¼ j5ðx; Ls � 1Þ ¼ �qðxÞ�5qðxÞ;
J5qðxÞ ¼ j5ðx; Ls=2� 1Þ ¼ �qmðxÞ�5qmðxÞ;

(17)

are the pseudoscalar densities defined on the walls and
midpoint of the fifth dimension, respectively. The axial
Takahashi-Ward identity (ATWI) is given by

��hA�Oi ¼ 2mfhJ5Oi þ 2hJ5qOi þ ih�Oi; (18)

where it may be verified that the term involving the mid-
point pseudoscalar density J5qðxÞ gives rise to the desired
axial anomaly [42].

B. Simulation method

In order to simulate the partition function given by
Eq. (1), it is necessary to first integrate out the DWF and
PV degrees of freedom. After performing this integration,
we are left with an effective action which depends only on
the gauge fields and is given by

e�Seff ½U� ¼ eSG½U� � Pf½CDðM5; mfÞ�
Pf½CDðM5; 1Þ� ; (19)

where, using the relation detC ¼ 1, the Pfaffian may be
expressed as

Pf ðCDÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
detD

p
: (20)

Numerical simulations ofN ¼ 1 SYM requires a positive
definite fermion Pfaffian in order to unambiguously define
the Pfaffian as the square root of a determinant. It may be
shown that for domain wall fermions, this is indeed the
case and demonstrates an advantage of using this formal-
ism over other discretizations, such as Wilson fermions
[30]. By exploiting �5-Hermiticity described by Eq. (8),
we may rewrite the effective action as

e�Seff ½U� ¼ eSG½U� � det

�DðM5; mfÞ
DðM5; 1Þ

�
1=4

; (21)

where DðM5; mfÞ ¼ DðM5; mfÞyDðM5; mfÞ. For the pur-

pose of numerical simulation, we introduce a single com-
plex pseudofermion field � in order to reproduce the

effects of the ratio of fermion determinants given by
Eq. (21).4 The resulting partition function is given by

Z ¼
Z
½dU�½d�y�½d��e�SG½U��SPF½�y;�;U�; (22)

where the pseudofermion action SPF is given by

SPF½�y; �; U� ¼ �yD1=8ðM5; 1ÞD�1=4ðM5; mfÞ
�D1=8ðM5; 1Þ�: (23)

Dynamical numerical simulations of Eq. (22) withNc ¼
2 were performed using a modified version of the
Columbia Physics System (CPS)—a software system
which is developed and maintained by the RBC collabo-
ration for the purpose of studying lattice quantum chromo-
dynamics. Modifications to the software were specifically
made in order to accommodate the adjoint character of the
fermions being simulated as well as to reduce the gauge
group under consideration from SUð3Þ down to SUð2Þ. We
perform numerical simulations of the partition function
given by Eq. (22) via the exact rational hybrid
Monte Carlo (RHMC) algorithm [33–35]. Details of the
parameters used in the approximation of DpðM5; mfÞ and
DqðM5; 1Þ, for the appropriate rational powers p and q
(i.e., p ¼ 1=8 and q ¼ 1=8 for the pseudofermion refresh-
ment step, and p ¼ 1=4 and q ¼ 1=8 for the evolution)
used in this simulation, may be found in Tables I and II.
Parameters attributed to the PV fields in this study are
labeled with the superscript PV. The parameters �min

(�PV
min) and �max (�

PV
max) specify the lower and upper bounds

on the eigenvalue range of DðM5; mfÞ, over which we

require the rational approximation to be valid. The rational
approximation is used both in the molecular dynamics
(MD) evolution of the gauge field as well as in the accept
or reject Monte Carlo (MC) step, which is performed at the
end of the trajectory in order to remove any errors asso-
ciated with the finite step size �� in the MD evolution. The
parameters nMD (nPVMD) and nMC (nPVMD) represent the degree
and therefore accuracy of the rational approximation in
each of these steps. In our simulations we require a greater
accuracy in the accept or reject step compared to the
evolution and therefore take nMC > nMD. Similarly, for
the MD evolution and MC accept or reject step, the con-
jugate gradient stopping conditions used in the operator
inversions were 1� 10�7 and 1� 10�10, respectively.

4The simultaneous treatment of normal and PV fermion con-
tributions with a single pseudofermion field was an idea of M.
Clark, and was first introduced in [43].

MICHAEL G. ENDRES PHYSICAL REVIEW D 79, 094503 (2009)

094503-4



Finally, the MD evolution was performed using a two
level Omelyan integrator [44,45] with the Omelyan inte-
grator parameter set to � ¼ 0:215. The length of each
trajectory in the evolution is given by 5� �� MD time
units. At the end of each trajectory, we project the gauge

field back onto the gauge group. This step breaks revers-
ibility; however, the errors induced by the projection are
negligible. Parameters and characteristics of the MD evo-
lution and accept or reject MC step are provided in
Tables III and IV. In each ensemble, the time step ��

TABLE III. MD evolution parameters and MC statistics for 83 � 8 lattices. For each ensemble,
the MD evolution trajectory length was 5� ��MD time units. A total number of trajectories for
each ensemble is given by Ntraj. Ntherm is the number of initial trajectories before configurations

in a given ensemble were deemed thermalized. ‘‘Accept’’ indicated the acceptance rate
associated with the MC accept or reject step. Ensemble averages of various functions of the
Hamiltonian H were performed using measurements on every trajectory.

� Ls mf �� Ntraj Ntherm Accept h�Hi ffiffiffiffiffiffiffiffiffiffiffiffiffiffih�H2ip he��Hi
2.3 12 0.02 0.260 1000 300 0.626(18) 0.498(28) 1.095(27) 0.956(39)

16 0.02 0.220 750 300 0.749(20) 0.146(26) 0.577(19) 1.004(19)

20 0.02 0.240 1000 300 0.594(18) 0.541(39) 1.165(30) 1.013(60)

24 0.02 0.230 1000 300 0.627(18) 0.470(35) 1.965(43) 0.966(42)

TABLE II. Parameter values for the RHMC algorithm for 163 � 32 lattices. An explanation of
these parameter values may be found in Table I.

� Ls mf �max �min nMD nMC �PV
max �PV

min nPVMD nPVMC

2.3 16 0.01 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

0.02 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

0.04 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

20 0.01 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

0.02 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

0.04 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

24 0.01 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

0.02 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

0.04 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

28 0.01 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

0.02 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

0.04 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

32 0.02 4.0 1� 10�4 9 15 4.0 1� 10�3 6 9

40 0.02 4.0 4� 10�5 9 15 4.0 5� 10�4 6 9

48 0.02 4.0 4� 10�5 9 15 4.0 5� 10�4 6 9

2:35�3 16 0.02 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

28 0.02 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

2.4 16 0.02 4.0 4� 10�4 9 15 4.0 1� 10�2 6 9

28 0.02 4.0 4� 10�4 9 15 4.0 5� 10�3 6 9

TABLE I. Parameter values for the RHMC algorithm for 83 � 8 lattices. �max and �min are the
maximum and minimum eigenvalues ofDðM5; mfÞ required for the rational approximation, and

nMD and nMC represent the degree of the rational approximation for the MD and MC accept or
reject step, respectively.

� Ls mf �max �min nMD nMC �PV
max �PV

min nPVMD nPVMC

2.3 12 0.02 4.0 4� 10�4 9 15 4.0 1� 10�3 6 9

16 0.02 4.0 4� 10�4 9 15 4.0 1� 10�3 6 9

20 0.02 4.0 4� 10�4 9 15 4.0 1� 10�3 6 9

24 0.02 4.0 4� 10�4 9 15 4.0 1� 10�3 6 9
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was chosen such that the acceptance rate was approxi-
mately 70–80%; however, for some ensembles the accep-
tance rates were as low as 60% or as high as 90%. One may
verify from Tables III and IV that the equality he��Hi ¼ 1
holds within errors for all ensembles, which indicates that
the algorithm is working correctly with our modifications
to the code [46].

C. Ensembles and simulation parameters

Numerical simulations were performed on two different
lattice space-time volumes: V ¼ 83 � 8 and 163 � 32. For
the gauge fields we impose periodic conditions (BCs) in all
space-time directions, whereas for the gluino we impose
periodic BCs in the spatial directions and antiperiodic BCs
in the temporal direction. The 83 � 8 ensembles were
generated using the parameters: � ¼ 2:3, Ls ¼ 12, 16,
20 and 24, mf ¼ 0:02, and M ¼ 1:9, in order to check

our code against the results of [31]. Simulation parameters
for these configurations are listed in Tables I and III.
Estimates of the gluino condensate and average plaquette

are given in Table V, and are consistent with [31] at the
1–2	 level.
Our 163 � 32 ensembles were generated at � ¼ 2:3,

Ls ¼ 16, 20, 24, and 28, and input gluino masses: mf ¼
0:01, 0.02, and 0.04. As with the 83 � 8 ensembles, the
domain wall height is set to M ¼ 1:9. For � ¼ 2:3 and
mf ¼ 0:02, we extended the range of Ls values to include

Ls ¼ 32, 40, and 48 in order to investigate the dependence
of the residual mass and gluino condensate on the size of
the fifth dimension. Several simulations were performed at
the weaker couplings � ¼ 2:35�3 and � ¼ 2:4 as well in
order to investigate the coupling dependence of the resid-
ual mass and eigenvalues of the five-dimensional
Hermitian DWF Dirac operator. Tables II and IV provide
a complete list of the ensembles associated simulation
parameters used. Gluino condensate and average plaquette
results for these ensembles are provided in Table VI.

D. Measurement methods

1. Residual mass

At long distances, finite lattice spacing effects may be
characterized by a continuum Symanzik effective
Lagrangian:

L Symanzik ¼ LSYM þ a�1L�1 þ aL1 þ . . . ; (24)

where the leading contribution LSYM represents the target
continuum N ¼ 1 SYM theory. The contributions Ln

with n ¼ �1; 1; . . . characterize finite lattice spacing ef-
fects at order OðanÞ, up to possible logarithms.
Specifically, the lowest order contributions to LSymanzik

TABLE IV. MD evolution parameters and MC statistics for 163 � 32 lattices. An explanation of these parameter values may be
found in Table III.

� Ls mf �� Ntraj Ntherm Accept h�Hi ffiffiffiffiffiffiffiffiffiffiffiffiffiffih�H2ip he��Hi
2.3 16 0.01 0.160 3125 500 0.758(19) 0.193(28) 0.673(9) 1.016(14)

0.02 0.160 3195 500 0.762(18) 0.187(26) 0.625(8) 0.991(12)

0.04 0.160 2790 500 0.776(19) 0.152(26) 0.577(8) 1.003(12)

20 0.01 0.155 2895 500 0.745(20) 0.208(30) 0.685(10) 1.008(15)

0.02 0.155 2655 500 0.753(21) 0.212(31) 0.674(10) 0.993(16)

0.04 0.160 2760 500 0.731(21) 0.238(32) 0.722(11) 0.995(16)

24 0.01 0.155 2855 500 0.775(19) 0.142(26) 0.578(8) 1.019(13)

0.02 0.130 2620 500 0.792(20) 0.143(28) 0.593(11) 1.020(14)

0.04 0.155 2610 500 0.760(21) 0.175(32) 0.690(10) 1.050(17)

28 0.01 0.135 2740 500 0.817(18) 0.086(22) 0.474(7) 1.022(11)

0.02 0.140 2855 500 0.796(19) 0.158(24) 0.536(7) 0.974(11)

0.04 0.155 2880 500 0.784(19) 0.157(25) 0.577(8) 0.996(12)

32 0.02 0.140 2730 500 0.757(20) 0.180(29) 0.654(9) 1.016(15)

40 0.02 0.140 2189 500 0.628(27) 0.455(51) 1.028(18) 0.974(27)

48 0.02 0.140 1555 500 0.608(34) 0.586(76) 1.247(25) 1.031(46)

2:35�3 16 0.02 0.163 2575 600 0.782(20) 0.160(27) 0.583(9) 0.996(13)

28 0.02 0.140 2305 600 0.829(20) 0.072(22) 0.415(7) 1.012(10)

2.4 16 0.02 0.160 2710 750 0.824(18) 0.093(20) 0.432(7) 0.996(10)

28 0.02 0.140 2285 750 0.882(18) 0.040(18) 0.320(6) 1.010(8)

TABLE V. Gluino condensate h �qqi, h �q�5qi, and average pla-
quette h �Pi for 83 � 8 lattices.

� Ls mf h �qqi h �q�5qi � 10�5 h �Pi
2.3 12 0.02 0.010631(40) �1ð6Þ 0.73496(36)

16 0.02 0.008736(42) �5ð9Þ 0.73296(51)

20 0.02 0.007522(37) �10ð6Þ 0.73276(30)

24 0.02 0.006806(34) �1ð7Þ 0.73202(32)
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may be expressed as

a�1L�1 ¼ 1
2ðmf þmresÞJ5; aL1 ¼ 1

2cswJ5f; (25)

where

J5 ¼ �c c ; J5f ¼ fabc �c a	��F
b
��c

c; (26)

and c and F�� are the four-dimensional continuum fer-

mion field and color field strength tensor. The invariant
tensor fabc ¼ �2iTrTa½Tb; Tc� represents the structure
constants of the gauge group. The residual mass mres in
Eq. (25) characterizes the leading chiral symmetry break-
ing effects due to the finite extent of Ls, and is defined in
such a way that the bare gluino mass is given by the simple
sum

mg ¼ mf þmres: (27)

The Sheikholeslami-Wohlert term which is proportional to
csw will in turn depend on both mf and Ls, and is expected

to vanish in the mf ! 0 and Ls ! 1 limits.

In the continuum effective theory, the ATWI will read

��hA�ðxÞOðx0Þi ¼ 2ðmf þmresÞhJ5ðxÞOðx0Þi
þ h
topðxÞOðx0Þi þ ih�Oðx0Þi þ . . . ;

(28)

where


top ¼ Nc

32�2
TrF ~F; (29)

and the contribution proportional to csw has been omitted
as it is higher order in the lattice spacing and is suppressed

at large Ls. Comparing the continuum ATWI with that of
the lattice expression, we expect at long distances and
sufficiently close to the continuum limit the identity

J5qðxÞ � mresJ5ðxÞ þ 
topðxÞ: (30)

It should be emphasized that there are no anomalous con-
tributions to the gluino mass (as there may be for the quark
mass in one flavor QCD) due to the underlying Z2Nc

symmetry which is present in the target N ¼ 1 SYM
theory.
Next we describe details on how the residual mass may

be extracted from the low energy identity Eq. (30) obtained
above. The cleanest method for extracting the residual
mass in the context of QCD is to study the long time
behavior of the flavor nonsinglet wall-midpoint pseudo-
scalar density correlator divided by the wall-wall pseudo-
scalar density correlator. In the case of N ¼ 1 SYM,
however, the method is complicated by the fact that there
are no flavor nonsinglet pseudoscalars, and that the flavor
singlet pseudoscalar correlator is contaminated by anoma-
lous contributions.
In order to proceed, we consider separately the con-

nected and disconnected contributions to the wall-midpoint
and wall-wall pseudoscalar density correlators, which may
be defined in a standard fashion. For the wall-midpoint
correlator we have:

hJ5qðxÞPðx0Þi ¼ 2hJ5qðxÞPðx0Þiconnected
þ hJ5qðxÞPðx0Þidisconnected; (31)

where, if the pseudoscalar density PðxÞ is taken to be J5ðxÞ,
for example, the connected and disconnected parts of the

TABLE VI. Gluino condensate h �qqi, h �q�5qi, and average plaquette h �Pi for 163 � 32 lattices.

� Ls mf h �qqi h �q�5qi � 10�6 h �Pi
2.3 16 0.01 0.0078277(43) 11(6) 0.733463(33)

0.02 0.0086506(30) 3(5) 0.733218(24)

0.04 0.0102120(41) �1ð5Þ 0.733203(36)

20 0.01 0.0067032(46) �1ð6Þ 0.732618(36)

0.02 0.0075158(46) 5(6) 0.732530(57)

0.04 0.0091267(35) 1(6) 0.732419(31)

24 0.01 0.0059855(40) 2(7) 0.732127(35)

0.02 0.0068081(42) �2ð7Þ 0.732110(41)

0.04 0.0084396(36) 1ð6Þ 0.731983(37)

28 0.01 0.0055027(46) �8ð7Þ 0.731734(34)

0.02 0.0063346(33) 6(6) 0.731688(32)

0.04 0.0079882(32) �3ð5Þ 0.731628(38)

32 0.02 0.0059947(47) 11(7) 0.731418(45)

40 0.02 0.0055266(43) �2ð10Þ 0.730947(44)

48 0.02 0.0052238(43) �10ð10Þ 0.730727(50)

2:35�3 16 0.02 0.0077917(72) 7(6) 0.745243(40)

28 0.02 0.0057106(61) 7(10) 0.743853(38)

2.4 16 0.02 0.0068851(64) �8ð8Þ 0.754149(30)

28 0.02 0.0049179(82) �16ð9Þ 0.752951(27)
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wall-midpoint correlator are given by

hJ5qðxÞJ5ðx0Þiconnected ¼ h �qmðxÞ�5qmðxÞ �qðx0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}�5qðx0Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

i;

hJ5qðxÞJ5ðx0Þidisconnected ¼ h �qmðxÞ�5qmðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} �qðx0Þ�5qðx0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}i;
(32)

respectively. In each of these equations the braces indicate
which gluino fields are contracted. The factor of 2 appear-
ing in the connected contribution to Eq. (31) above ac-
counts for the fact that we are working with Majorana
rather than Dirac fermions (i.e., the quark fields �q and q
may be contracted with themselves; for more details, see
Appendix A). Similar expressions may be defined for the
wall-wall pseudoscalar correlator.

At low energies and long distances we expect the rela-
tion:

hJ5qðxÞPðx0Þi � mreshJ5ðxÞPðx0Þi þ h
topðxÞPðx0Þi; (33)

which we assume for the moment may be decomposed in
terms of connected and disconnected parts as:

hJ5qðxÞPðx0Þiconnected � mreshJ5ðxÞPðx0Þiconnected;
hJ5qðxÞPðx0Þidisconnected � mreshJ5ðxÞPðx0Þidisconnected

þ h
topðxÞPðx0Þi: (34)

If this decomposition is indeed valid, then the residual
mass may be extracted from the ratio of long time corre-
lation functions

m0
resðmfÞ ¼ lim

t!1RðtÞ; RðtÞ ¼
hP
x
J5qðx; tÞPð0Þiconnected

hP
x
J5ðx; tÞPð0Þiconnected :

(35)

Note that there is an OðaÞ ambiguity in this particular
expression for the residual mass due to the presence of
mf and Ls dependent higher order contributions to Eq. (28)

which have been omitted in Eq. (30). As such, we adopt the
notation m0

resðmfÞ rather than mres to represent the quantity

which is extracted from the ratio RðtÞ.
In the case of two- or two plus one-flavor QCD, the

correctness of the decomposition given in Eq. (34) may be
proved trivially because there is an underlying flavor sym-
metry which allows one to relate the connected contribu-
tions to these diagrams to their nonanomalous flavor
nonsinglet counterparts. In N ¼ 1 SYM, however, there
is no such underlying flavor symmetry and therefore
Eq. (35) remains based upon an assumption. One may
verify from numerical simulations that the ratioRðtÞ indeed
tends to a constant value, which suggests that the time
dependence of the connected part of the wall-midpoint
and wall-wall correlators are the same. However, this ob-
servation does not preclude the possibility that the discon-
nected contribution to the wall-midpoint correlator on the

left-hand side of Eq. (33) contributes to the connected part
of the wall-wall correlators on the right-hand side at low
energies, thus giving an incorrect estimate of the residual
mass. Ultimately, establishing the validity of Eq. (35) will
require additional theoretical analysis or corroboration
from an independent calculation of the residual mass.
Close to the continuum limit one may, for instance, be
able to compute the residual mass from the valence mass
(mv) dependence of the Hermitian DWF Dirac operator
eigenvalues and verify that the value extracted from RðtÞ
measurements, modulo OðaÞ corrections, is consistent.
Details of this approach are explained in greater detail in
Sec. II D 4.

2. Static potential

The potential associated with two static, fundamental
representation sources separated by a distance jxj may be
obtained from the Wilson loop: hWðx; tÞi. Wilson loops
were measured using Coulomb gauge fixed gauge field
configurations with link fields belonging to the fundamen-
tal representation of the gauge group. In order to reduce the
statistical errors associated with this observable, Wilson
loops were measured with their time axis oriented along
each of the four directions of the lattice and the results were
then averaged. The space-time dependence of the Wilson
loop is expected to be of the form:

hWðx; tÞi ¼ CðxÞe�VðxÞt þ excited states; (36)

and from this the static potential VðxÞ may be extracted
from:

Veffðx; tÞ ¼ log
hWðx; tÞi

hWðx; tþ 1Þi (37)

at asymptotically large times. The signal to noise ratio
associated with Eq. (37) generally deteriorates in this limit,
therefore moderate values of time are instead used to
extract the potential.
In this work, we use Eq. (37) to locate the plateau region

of Veffðx; tÞ for each value of x. We then fit the Wilson
loops to the functional form given by Eq. (36) in order to
extract the potential. Finally, the extracted values of VðxÞ
may be fit to the Cornell potential which is given by

VðxÞ ¼ V0 � �

jxj þ 	jxj; (38)

allowing us to determine the constant term (V0), Coulomb
term (�), string tension (	), and Sommer scale (r0) defined
by [47]:

jxj2 @VðxÞ
@jxj

��������jxj¼r0

¼ 1:65; (39)

at fixed values of the lattice spacing and gluino mass.
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3. Gluino condensate

The gluino condensate

h �qqi ¼ 1

12V

X
x

h �qðxÞqðxÞi (40)

was measured using a stochastic estimator with a single
random Gaussian space-time volume source. Note that we
normalize the gluino condensate following the conventions
of [48] (i.e., we divide by 4 spin� 3 adjoint color compo-
nents), such that h �qqi �m�1

f for large mass. For these

measurements, the conjugate gradient stopping condition
used for the inversion of the Dirac operator was set to 1�
10�12. Measurements of the condensate were made for
several different values of mf and Ls, then a chiral limit

extrapolation of the data was performed. Details of this
analysis are provided in Sec. IVC.

A second, independent measurement of the chiral con-
densate may be obtained using the Banks-Casher relation
[38], which in the continuum reads:

lim
mg!0

lim
V!1�h �c c i ¼ �

12

ð0Þ; (41)

where c is a continuum Majorana gluino field, and 
ð�Þ is
the density of eigenvalues per unit volume of the four-
dimensional continuum Dirac operator 6D, given by:


ð�Þ ¼ lim
mg!0

lim
V!1

1

V

	X
i

�ð�� �iÞ


: (42)

In Sec. II D 4 we describe how one may obtain a numerical
estimate of 
ð�Þ by studying the low-lying spectrum of the
five-dimensional Hermitian DWF Dirac operator. In this
study we are unable to measure 
ð�Þ per se, but rather a
closely related quantity 
0ð�;mgÞ, which is given by

Eq. (42) prior to taking the V ! 1 and mg ! 0 limits.

Note that 
0ð�;mgÞ implicitly depends on the gluino mass

through the distribution of gauge fields which has been
sampled at finite mf and Ls. The gluino condensate at a

finite mass may be extracted from 
0ð0;mgÞ in the infinite

volume limit, in a way very much analogous to Eq. (41), by
taking the valence mass to zero limit. Unlike the conden-
sate obtained from Eq. (40), however, the condensate
extracted by this method is free of UV divergent contribu-
tions and, as such, should only depend on mf and Ls in the

particular combination: mg ¼ mf þmres, provided

higher order terms in the Symanzik action may be ne-
glected. Hence, by measuring this quantity as opposed to
Eq. (40), we eliminate having to perform two independent
extrapolations (i.e., mf ! 0 and Ls ! 1) in favor of a

single extrapolation of mg ! 0.

4. Eigenvalues of the Hermitian DWF Dirac operator

Here we describe some properties of the Hermitian
DWF Dirac operator and its eigenvalues. Before proceed-

ing, however, we first review some of the expected features
of the continuum, four-dimensional Dirac operator D4 ¼
6Dþmg and the four-dimensional Hermitian Dirac opera-

torD4
H ¼ �5D

4. Using the anti-Hermiticity of 6D ¼ ��D�,

one may show that analogous to Eq. (8), D4 satisfies the
following relations:

�5D
4�5 ¼ ðD4Þy; CyD4C ¼ ðD4Þ�: (43)

From these properties it is easy to show that the eigenval-
ues of D4 come in complex conjugate pairs given by
�i�þmg, where �i� are eigenvalues of 6D and � 2 R.
Furthermore, the eigenvalues of D4 are two-fold degener-
ate. The eigenvalues of D4

H, which we shall denote �H, are

real and given by �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

g

q
. Similarly, the eigenvalues

ofD4
H also have a two-fold degeneracy which follows from

the property

ð�5CÞyD4
Hð�5CÞ ¼ ðD4

HÞ�: (44)

Specifically, if D4
Hc �H

¼ �Hc �H
, then it follows that

D4
Hc

c
�H

¼ �Hc
c
�H
, where c c

�H
¼ �5Cc

�
�H
.

Orthogonality of c �H
and c c

�H
may be established from

the antisymmetry of �5C and implies that c �H
and c c

�H
are

linearly independent eigenvectors of D4
H.

The eigenvectors c��H
of D4

H may be expressed as

linear combinations of c��, with coefficients that depend
on � and mg. When � ¼ 0, the eigenvectors of DH are

simply given by c �H
¼ c �. However, when � � 0, they

and are given by

c��H
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2j�Hj
p ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�þmg

q
c � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�þmg

q
c���:

(45)

In this basis, the matrix elements of �5 are given by

h�0
Hj�5j�Hi ¼ 1

�H

½mg��0
H;�H

þ ij�j���0
H;�H

�: (46)

Note, in particular, that in the limit � 	 mg, the eigen-

states of DH are approximately given by c��H
�ffiffiffi

2
p

P�c � and thus they become near eigenstates of �5

with eigenvalue �1. On the other hand, in the limit � 

mg the chirality operator is off-diagonal in this basis for

modes which are not zero modes.
The Hermitian Dirac operator also satisfies the commu-

tator relation

½D4
H; �5�c 0 ¼ 0; (47)

where c 0 represents one of possibly many zero modes of
D4

H. Equation (47) implies that �5 may be diagonalized
within the subspace of zero modes and has eigenvalues
given by�1. Hence, the zero modes ofD4 andD4

H are also
chiral modes. On a given background gauge field configu-
ration the four-dimensional Dirac operatorD4 has an index
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given by 2Nc� ¼ nþ � n�, where nþ and n� are the
number of left- and right-handed chiral zero modes of
D4, and the winding number � according to the Atiyah-
Singer index theorem is given by

� ¼ 1

32�2

Z
dx4Fa

��
~Fa
��; (48)

where ~F�� ¼ 
��	
F	
. Note that since nþ � n� is an

even integer, � may be a rational number of the form:
k=Nc, with k 2 Z. If periodic BCs are used, fractional
values for the winding number are permitted for this theory
[49].

The five-dimensional Hermitian DWF Dirac operator is
given by DH ¼ �5D, where D is the DWF Dirac operator
defined in Eq. (3).DH satisfies a modified form of Eq. (44),
namely,

ð�5CÞyDHð�5CÞ ¼ D�
H: (49)

Hence, with eigenvalues and eigenvectors of DH given by

DH��H
¼ �H��H

; (50)

it similarly follows that �c
�H

¼ �5C��
�H

are eigenvectors

of DH with eigenvalues �H. Because of the antisymmetry
of C�5, one may also verify that��H

and�c
�H

are linearly

independent and orthogonal vectors.
In this paper we study several quantities which may be

extracted from the five-dimensional eigenvectors of DH.
We may define a four-dimensional norm:

N �H
ðsÞ ¼ X

x

�y
�H

ðx; sÞ��H
ðx; sÞ; X

s

N �H
ðsÞ ¼ 1;

(51)

which characterizes the profile of each eigenstate of DH in
the fifth dimension. The low energy modes of DH which
describe the four-dimensional effective theory will appear
as bound states, whereas at high energies, the modes will
appear as propagating waves in the fifth dimension. We
may also define a physical chirality operator �s whose
matrix elements are given by

h�0
Hj�sj�Hi ¼

X
x;s

sgn

�
Ls � 1

2
� s

�
�y

�0
H
ðx; sÞ��H

ðx; sÞ:

(52)

Near the continuum limit, matrix elements of �s which
involve the low lying modes should exhibit all of the
properties of �5 in the continuum four-dimensional theory.

In order to extract the residual mass and four-
dimensional eigenvalue density 
ð�Þ, we consider the va-
lence mass (mv) dependence of the eigenvalues of D2

H on
background gauge field configurations, which have been
generated at the input gluino mass value mf. For small mv,

we may parametrize the mv dependence of �2
H using the

reparametrized Taylor expansion [48]:

�2
H;iðmvÞ ¼ n25;ið�2

i þ ðmv þ �miÞ2Þ þOðm3
vÞ; (53)

and determine eigenvalue by eigenvalue the best-fit values
of n5;i, �i, and �mi, where i labels ith eigenvalue of DH.

One may show from Eq. (40), that with this parametriza-
tion of �2

H evaluated at mv ¼ mf, the gluino condensate

may be expressed at order Oðm3
fÞ as [48]:

h �qqi ¼ 1

12V

X
i

	
mf þ �mi

�2
i þ ðmf þ �miÞ2



: (54)

Note that the normalization factor n5;i drops out of this

relation.
We may then compare the result of Eq. (54) to the

analogous continuum expression obtained from operator:

6Dþmf þmres þ cswT
a
adj	��F

a
�� þ . . . ; (55)

which is extracted from the Symanzik effective Lagrangian
defined in Eq. (24), and where we have used the identity
ðTa

adjÞbc ¼ fabc. Assuming irrelevant operators appearing

in Eq. (24) and consequently Eq. (55) are negligible, the
form of Eq. (54) allows us to interpret the parameters �i as
the four-dimensional eigenvalues of i 6D, and �mi as an
effective residual mass attributed to the ith eigenvalue on
a given background gauge field configuration. We may
furthermore estimate the eigenvalue density 
0ð�;mgÞ for
the ensemble via the formula:


0ð�;mgÞ � �Nð�Þ
V � ��� Nconf

; (56)

where �Nð�Þ is the number of eigenvalues within the
interval � and �þ �� obtained from measurements on
Nconf gauge field configurations.
Close to the continuum and chiral limits, we expect for

the lowest lying modes that the distribution of �mi values
will be localized around the value for mres, and that the
fluctuations in �mi aroundmres are controlled by the size of
finite lattice spacing artifacts. If on the other hand irrele-
vant operators in Eq. (24) are non-negligible, the interpre-
tation of the fit parameters n5;i, �i, and �mi becomes less

clear. The valence Ls dependence will no longer reveal
itself only in the parameter �mi, but also in the parameters
�i and n5;i, due to the presence of the chiral symmetry

breaking dimension five operators whose coefficients are
controlled by the size of the fifth dimension. Hence, �i

obtained from Eq. (53) may no longer be identified as an
eigenvalue i 6D, but rather of some more complicated op-
erator involving higher order terms in the lattice spacing.

III. THERMALIZATION AND
AUTOCORRELATIONS

For each 83 � 8 ensemble, a total of 700 to 1000 tra-
jectories were generated starting from an ordered configu-
ration, where all gauge link fields were set to unity. For
these ensembles, equilibrium was achieved within the first
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250 trajectories. Approximately 1500 to 3000 trajectories
were generated for the 163 � 32 ensembles from an or-
dered start and thermalization was achieved within the first
500 to 700 trajectories. Specific thermalization times for
these ensembles are indicated in Tables III and IV.
Measurements of observables were made using uncorre-
lated configurations which were generated thereafter. A
plot of the gluino condensate time history is shown for a
variety of couplings and Ls values in Figs. 1 and 2 on
163 � 32 lattices.

In order to correctly assess the statistical errors associ-
ated with various observable measurements, we first deter-
mine the integrated correlation time �int associated with the
observable O. This may be obtained from the normalized
autocorrelation function 
ð�Þ, defined by


ð��Þ ¼ 1

N � ��

XN���

�¼1

ðO� � �OÞðO�þ�� � �OÞ
	2

O

; (57)

where

�O ¼ 1

N

XN
�¼1

O�; 	2
O ¼ 1

N

XN
�¼1

ðO� � �OÞ2: (58)

The integrated correlation time associated with the observ-
able is computed using

�intð�maxÞ ¼ 1

2
þ X�max

�¼1


ð�Þ: (59)

Figs. 3 and 4 show the dependence of the autocorrelation
function associated with the gluino condensate and average
plaquette, respectively. The exponential correlation time
can be estimated from the value of �� at which 
ð��Þ �
e�1. The integrated correlation time as a function of �max is
plotted for these same observables in Figs. 5 and 6.
Because the gluino condensate was measured using a
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FIG. 1 (color online). Gluino condensate as a function of
trajectory number for 163 � 32 lattices with � ¼ 2:3 and mf ¼
0:02.
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FIG. 3 (color online). Autocorrelation function associated with
the gluino condensate for 163 � 32 lattices with � ¼ 2:3 and
mf ¼ 0:02. The dashed line indicates the location of e�1.

0 500 1000 1500 2000 2500 3000
Trajectory number

0.004

0.005

0.006

0.007

G
lu

in
o 

co
nd

en
sa

te

β = 2.3
β = 2.353
β = 2.4

FIG. 2 (color online). Gluino condensate as a function of
trajectory number for 163 � 32 lattices with Ls ¼ 28 and mf ¼
0:02.
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FIG. 4 (color online). Autocorrelation function associated with
the average plaquette for 163 � 32 lattices with � ¼ 2:3 and
mf ¼ 0:02. The dashed line indicates the location of e�1.
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stochastic estimator, one might expect decorrelation of this
observable to occur relatively quickly in comparison to the
average plaquette. However, the tmax dependence of the
integrated correlation time suggest that longer correlations
are merely obscured by the presence of random noise.

To better understand the correlations, we block our data
with block size NB and consider the NB dependence of the
errors on each observable. In Figs. 7 and 8 we plot the error
as a function of block size for the gluino condensate and
average plaquette. We find that for the gluino condensate,
the decorrelation time is indeed much longer than what is
implied by Fig. 3. Based on these considerations, we
determine the gluino condensate and plaquette using a
block size NB ¼ 50, where measurements have been
made on every trajectory. For measurements of the static
quark potential, we use a block sizeNB ¼ 4, where Wilson

loops have been measured on every fifth trajectory. Unless
otherwise noted, all other ensemble averages were per-
formed using measurements made on every five
trajectories.

IV. MEASUREMENTS, ANALYSIS, AND RESULTS

A. Residual mass

Measurements of the residual mass where obtained from
RðtÞ using Eq. (35) with wall gluino sources. The residual
mass was computed from a constant fit of RðtÞ over the
plateau region: 10–21. Fit results may be found in
Table VII and in Fig. 9. In the large Ls limit, the residual
mass is expected to behave as

mres ¼ a0
e�a1Ls

Ls

þ a2
Ls

; (60)

where the exponential term is a perturbative contribution
which comes from extended modes above the mobility
edge [50]. The L�1

s contribution to mres may be attributed
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FIG. 5 (color online). Integrated correlation time associated
with the gluino condensate for 163 � 32 lattices with � ¼ 2:3
and mf ¼ 0:02.
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FIG. 6 (color online). Integrated correlation time associated
with the average plaquette for 163 � 32 lattices with � ¼ 2:3
and mf ¼ 0:02.
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FIG. 7 (color online). Gluino condensate error as a function of
block size for 163 � 32 lattices with � ¼ 2:3 and mf ¼ 0:02.
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FIG. 8 (color online). Average plaquette error as a function of
block size for 163 � 32 lattices with � ¼ 2:3 and mf ¼ 0:02.
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to lattice dislocations and is proportional to the density of
near unit modes of the five-dimensional transfer matrix.
For these simulations, the residual mass is roughly 5–20
times that of the input gluino mass. Figure 10 shows a plot
of the residual mass as a function of the coupling. The
strong coupling dependence of mres suggests that the dis-
location contribution to the residual mass dominates over
that of the perturbative part.

Figure 11 shows the dependence of the residual mass on
Ls at fixed coupling and mf. For � ¼ 2:3 and mf ¼ 0:02,

we fit the residual mass as a function of Ls using the
functional form of Eq. (60). Fits were performed for a
variety of different fit ranges in order to estimate the
systematic errors associated with the fit. Results may be
found in Table VIII. These fits yield a negative value for the
coefficient a0, which is inconsistent with the naı́ve expec-
tation that a0 should be positive. The naı́ve expectation,
however, assumes that we are simulating the theory at
couplings which are sufficiently close to the continuum
limit so that the low energy identity Eq. (30) holds.
Provided the underlying assumptions made in the calcula-
tion of m0

resðmfÞ are correct, one possible explanation for a

negative value for a0 is that higher order contributions to

TABLE VII. Fit results for the residual mass which was ex-
tracted from RðtÞ for 163 � 32 lattices. The column labeled
‘‘Time Range’’ indicates the plateau region over which the
RðtÞ was fit.

� Ls mf

Time

Range

�2=Degrees
of Freedom mres

2.3 16 0.01 10–21 63:8=11 0.18682(13)

0.02 10–21 15:0=11 0.18939(12)

0.04 10–21 17:2=11 0.19223(13)

20 0.01 10–21 10:8=11 0.17151(14)

0.02 10–21 35:1=11 0.17340(14)

0.04 10–21 49:4=11 0.17680(13)

24 0.01 10–21 13:4=11 0.15807(13)

0.02 10–21 18:4=11 0.15906(15)

0.04 10–21 19:8=11 0.16367(13)

28 0.01 10–21 28:6=11 0.14685(13)

0.02 10–21 25:5=11 0.14834(13)

0.04 10–21 111:7=11 0.15283(13)

32 0.02 10–21 5:1=11 0.13905(14)

40 0.02 10–21 23:2=11 0.12397(14)

48 0.02 10–21 29:1=11 0.11225(16)

2:35�3 16 0.02 10–21 45:5=11 0.14071(19)

28 0.02 10–21 42:5=11 0.10269(18)

2.4 16 0.02 10–21 9:5=11 0.10082(15)

28 0.02 10–21 24:6=11 0.06513(17)

6 8 10 12 14 16 18 20 22 24 26
Time

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R

Ls = 16
Ls = 20
Ls = 24
Ls = 28
Ls = 32
Ls = 40
Ls = 48

FIG. 9 (color online). R as a function of time for 163 � 32
lattices with � ¼ 2:3 and mf ¼ 0:02. Solid lines indicate the

value of m0
resðmfÞ obtained from a constant fit to data, as given in

Table VII.
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FIG. 10 (color online). Residual massm0
resðmfÞ as a function of

� for 163 � 32 lattices with mf ¼ 0:02.
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FIG. 11 (color online). Residual mass as a function of Ls for
163 � 32 lattices with � ¼ 2:3 and mf ¼ 0:02. Solid curves

represent fit results obtained for a variety of different Ls ranges.
Details of the fits may be found in Table VIII.
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Eq. (24) have contaminated our estimate of the residual
mass obtained from Eq. (35).

B. Static potential

Here we describe the analysis of our static potential
measurements. To begin, we first determined the plateau
region of Eq. (36) over which excited state contamination
becomes negligible by investigating the effective potential
Eq. (37) as a function of distance for a variety of time slice
values. Figures 12–14, show the distance dependence of
Vðx; tÞ for each of the three values of �, and with Ls ¼ 16
and mf ¼ 0:02. For � ¼ 2:3, we take the plateau region to

be the time range 4–8, whereas for � ¼ 2:35�3 and 2.4 we
use the ranges 5–9 or 5–10. For fixed distances jxj, the
Wilson loops were then fit as a function of time to Eq. (36)
within the previously determined time interval. Finally the
extracted potentials VðxÞ were fit as a function of distance
to the Cornell potential given by Eq. (38). Table IX pro-
vides the fit results and respective errors which were
determined by a jackknife analysis. Systematic errors in
this fitting procedure may be estimated by varying the
upper and lower limits of the fit ranges. These yield varia-

tions in the Sommer scale, however, which are compa-
rable—if not smaller than—the statistical errors.
Figure 15 shows a plot of the static potential at the three

different values of the coupling; the corresponding fit
parameters may be found in Table IX. From 	 and � we
determine the Sommer scale defined by Eq. (39).5 As
indicated in Table IX, the Sommer scale ranges from
between r0 � 3:3 for � ¼ 2:3 and r0 � 5:2 for � ¼ 2:4.
Our static potential results provide evidence that the theory
is confining, which is consistent with expectations.
Figure 16 shows a plot of r0 as a function of mf þ
m0

resðmfÞ � mg for � ¼ 2:3. From this plot it appears

TABLE VIII. Fit results for the residual mass as a function of
Ls for 163 � 32 lattices with � ¼ 2:3 and mf ¼ 0:02. The

column labeled by ‘‘Ls Range’’ indicates the range of Ls values
used in the fit. The parameters a0, a1, and a2 are defined in
Eq. (60).

� Ls Range mf

�2=Degrees
of Freedom a0 a1 a2

2.3 16–48 0.02 53:5=4 �6:20ð3Þ 0.0275(4) 7.03(5)

20–48 5:9=3 �6:37ð7Þ 0.0236(7) 7.43(10)

24–48 2:2=2 �6:30ð5Þ 0.0255(11) 7.24(12)
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FIG. 12 (color online). Effective static potential Veffðx; tÞ as a
function of distance jxj at fixed time t for a 163 � 32 lattice with
� ¼ 2:3, Ls ¼ 16, and mf ¼ 0:02.
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FIG. 13 (color online). Effective static potential Veffðx; tÞ as a
function of distance jxj at fixed time t for a 163 � 32 lattice with
� ¼ 2:35�3, Ls ¼ 16, and mf ¼ 0:02.
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FIG. 14 (color online). Effective static potential Veffðx; tÞ as a
function of distance jxj at fixed time t for a 163 � 32 lattice with
� ¼ 2:4, Ls ¼ 16, and mf ¼ 0:02.

5Measurements of the Sommer scale were performed in col-
laboration with I. Mihailescu.
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that the Sommer scale has little discernible gluino mass
dependence at the current level of statistics.

C. Gluino condensate

In this section we describe the chiral limit extrapolation
of the gluino condensate. This extrapolation requires tak-
ing both the Ls ! 1 and mf ! 0 limits in some fashion.

We begin by discussing the former.
For fixed mf, we fit the gluino condensate defined in

Eq. (40) as a function of Ls using the best available,
theoretically motivated fit formula:

b0 þ b1
e�b2Ls

Ls

; (61)

which is based upon the functional dependence of mres on
Ls. Note, however, that the dislocation contribution to mres

which appears in Eq. (60) is absent in Eq. (61). The reason
for this omission may be understood by observing that the
chiral condensate is dominated by contributions from UV
modes, whereas the dislocation term appearing inmres may

TABLE IX. Static potential fit parameters for a subset of 163 � 32 lattices. The column labeled by ‘‘Time Range’’ indicates the time
window over which Wilson loops were fit at fixed distances in order to extract the potential. The column labeled by ‘‘Distance Range’’
indicates the distance window over which the potential was fit.

� Ls mf Time Range Distance Range V0 � 	 r0

2.3 16 0.02 4–8
ffiffiffi
2

p
–6 0.511(10) 0.176(10) 0.132(2) 3.344(21)

0.02 4–8
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.483(17) 0.140(23) 0.137(4) 3.319(22)

0.02 4–8
ffiffiffi
3

p
–6 0.501(18) 0.161(23) 0.134(4) 3.339(23)

0.04 4–8
ffiffiffi
2

p
–6 0.524(15) 0.185(14) 0.129(3) 3.376(29)

0.04 4–8
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.516(26) 0.178(33) 0.130(5) 3.381(32)

0.04 4–8
ffiffiffi
3

p
–6 0.534(26) 0.200(32) 0.127(5) 3.359(31)

20 0.02 4–8
ffiffiffi
2

p
–6 0.511(13) 0.174(13) 0.134(4) 3.322(47)

0.02 4–8
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.480(44) 0.132(54) 0.139(11) 3.306(77)

0.02 4–8
ffiffiffi
3

p
–6 0.483(41) 0.136(49) 0.138(10) 3.309(71)

0.04 4–8
ffiffiffi
2

p
–6 0.532(15) 0.197(15) 0.131(4) 3.327(31)

0.04 4–8
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.485(26) 0.136(31) 0.140(5) 3.291(31)

0.04 4–8
ffiffiffi
3

p
–6 0.507(27) 0.163(32) 0.135(5) 3.316(34)

24 0.02 4–8
ffiffiffi
2

p
–6 0.522(19) 0.182(18) 0.132(4) 3.340(38)

0.02 4–8
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.504(32) 0.158(39) 0.135(7) 3.330(41)

0.02 4–8
ffiffiffi
3

p
–6 0.511(31) 0.166(38) 0.134(6) 3.322(41)

0.04 4–8
ffiffiffi
2

p
–6 0.524(15) 0.185(14) 0.129(3) 3.376(29)

0.04 4–8
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.516(26) 0.178(33) 0.130(5) 3.359(31)

0.04 4–8
ffiffiffi
3

p
–6 0.534(26) 0.200(33) 0.127(5) 3.381(32)

2:35�3 16 0.02 5–9
ffiffiffi
2

p
–6 0.543(13) 0.202(13) 0.077(3) 4.324(64)

0.02 5–9
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.550(23) 0.218(32) 0.077(4) 4.313(76)

0.02 5–9
ffiffiffi
3

p
–6 0.569(23) 0.240(23) 0.074(4) 4.379(80)

2.4 16 0.02 5–9
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2

p
–6 0.528(7) 0.191(7) 0.053(2) 5.254(67)
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p
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0.02 5–10
ffiffiffi
3

p
–

ffiffiffiffiffiffi
29

p
0.532(12) 0.196(16) 0.053(2) 5.257(71)
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–6 0.539(11) 0.205(15) 0.051(2) 5.306(68)
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FIG. 15 (color online). Static potential as a function of dis-
tance for 163 � 32 lattices with Ls ¼ 16 and mf ¼ 0:02. The

solid curves represent fits to the potential given in Table IX and
dashed lines indicate 1	 error bars for the corresponding values
for the Sommer scale obtained from Eq. (39).
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predominantly be attributed to low energy phenomena
[51].

Before considering the chiral limit extrapolation of the
condensate we investigate the Ls dependence of the gluino
condensate for � ¼ 2:3 and a fixed input gluino mass
mf ¼ 0:02. The primary purpose of this investigation is

two-fold. First, we would like to test our assumptions
leading to Eq. (61) by checking that the fit value for b2 is
consistent with that of a1 obtained in Eq. (60). Second, we
wish to ascertain the systematic errors associated with an
Ls ! 1 extrapolation of the condensate, which come from
the limited range of Ls values used in the fit. Results of our
fits to Eq. (61) are provided in Table X and Fig. 17. From
these fit results we conclude that the fit over the Ls range
16–28 overestimates the Ls ! 1 value of the chiral con-
densate at fixedmf by approximately 25% compared to our

most reliable estimates which are obtained from the fit
ranges 20–48 and 24–48. We find large variations in the
parameter b2 with the Ls fit range; however, the results are
within a factor of 2 of a1 obtained from the residual mass
extrapolations.

As an alternative approach, one may consider a linear
extrapolation of the gluino condensate as a function of the
residual mass, as was performed in [36], in order to obtain

an Ls ! 1 value for the condensate at fixed mf. However,

such an approach assumes the same functional dependence
on Ls for both the condensate and the residual mass. While
indeed for sufficiently large Ls, each of these quantities
will scale as L�1

s and such a scenario may be achieved, for
the values of Ls used in this study, it is believed that the
chiral condensate is dominated by a UV divergent term
which is proportional to the perturbative contribution to the
residual mass. Here, we compare the results of a linear
extrapolation of the condensate as a function of the residual
mass using the three data points which lie closest to the
Ls ¼ 1 limit (i.e., Ls ¼ 32, 40, and 48). Results from this
linear extrapolation are plotted in Fig. 18 and yield a
condensate value of 0.00197(4) at mf ¼ 0:02. Also plotted

in Fig. 18 are parametric plots of the gluino condensate as a
function of the residual mass using Eqs. (60) and (61), and
the fit parameters obtained in Tables VIII and IX.
Specifically we use the Ls range 24–48 fit parameters for
mres and the Ls range 24–48 and 28–48 fit parameters for
the condensate. A linear extrapolation of the condensate as
a function of the residual mass yields a value which under-
estimates our Ls extrapolation by approximately 100–
150%.

TABLE X. Fit results for gluino condensate as a function of Ls for 163 � 32 lattices with
� ¼ 2:3 and mf ¼ 0:02. The column labeled by ‘‘Ls Range’’ indicates the range of Ls values

used in the fit. The parameters b0, b1, and b2 are defined in Eq. (61).

� Ls Range mf �2=Degrees of Freedom b0 b1 b2

2.3 16–28 0.02 0:1=1 0.004994(53) 0.1057(18) 0.0370(20)

16–32 1:9=2 0.004939(39) 0.1040(14) 0.0350(15)

16–40 26:8=3 0.004758(20) 0.0989(7) 0.0289(7)

16–48 62:9=4 0.004650(16) 0.0962(5) 0.0255(5)

20–48 14:8=3 0.004529(29) 0.0897(9) 0.0204(10)

24–48 1:9=2 0.004392(62) 0.0839(18) 0.0154(19)
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FIG. 16 (color online). Sommer scale as a function of mf þ
m0

resðmfÞ � mg for 163 � 32 lattices with � ¼ 2:3.
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FIG. 17 (color online). Gluino condensate as a function of Ls

for 163 � 32 lattices with � ¼ 2:3 and mf ¼ 0:02. Solid curves

represent fit results obtained for a variety of different Ls ranges.
Details of the fits may be found in Table X.
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Finally we consider the chiral limit extrapolation of the
condensate. Such an extrapolation may be achieved by
considering the individual Ls and mf dependence of the

condensate, as was considered in [31]. Here, we perform
chiral limit extrapolations of the gluino condensate at a
single lattice spacing (� ¼ 2:3) using two different limit
orders. First, we perform a linear mf ! 0 extrapolation of

the gluino condensate at fixed Ls using the formula:

c0 þ c1mf; (62)

followed by an Ls ! 1 extrapolation of the mf ¼ 0 result

using Eq. (61). We believe that this approach is more
transparent than, for instance, a linear extrapolation of
the condensate as a function of mres (followed by a linear
mf ! 0 extrapolation), and most importantly, it correctly

accounts for the functional form of Eq. (61).
Following the double extrapolation procedure outlined

above, we obtain an unrenormalized value for the gluino
condensate in the chiral limit at finite lattice spacing.

Results from these fits are tabulated in Tables XI and XII
and plotted in Figs. 19 and 20 and yield the chiral limit
value of 0.00320(9) for the condensate. Chiral extrapola-
tions have also been performed by reversing the order of
limits and yield consistent results with comparable statis-
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FIG. 18 (color online). Gluino condensate as a function of the
residual mass for 163 � 32 lattices with � ¼ 2:3 andmf ¼ 0:02.

The two curves labeled ‘‘parametric’’ represent curves obtained
from the fit results obtained in Tables VIII and IX. The fit
parameters used for the residual mass are the same, and given
by the Ls range 24–48. Parameters used for the condensate are
indicated on the plot. The curve labeled ‘‘linear’’ represents a
linear extrapolation of the Ls ¼ 32, 40, and 48 results.

TABLE XI. Fit results for gluino condensate as a function of
mf for 163 � 32 lattices with � ¼ 2:3. The column labeled by

‘‘mf Range’’ indicates the range of mf values used in the fit. The

parameters c0 and c1 are defined in Eq. (62).

� Ls mf Range

�2=Degrees
of Freedom c0 c1

2.3 16 0.01–0.04 40:6=1 0.0070544(51) 0.07915(19)

20 0:7=1 0.0058979(55) 0.08073(19)

24 0:8=1 0.0051697(49) 0.08177(18)

28 0:5=1 0.0046770(51) 0.08279(18)

TABLE XII. Fit results for the mf ¼ 0 extrapolated value of
the gluino condensate as a function of Ls for 16

3 � 32 lattices
with � ¼ 2:3. The column labeled by ‘‘Ls Range’’ indicates the
range of Ls values used in the fit. The parameters b0, b1, and b2
are defined in Eq. (61).

� Ls Range mf

�2=Degrees
of Freedom b0 b1 b2

2.3 16–28 0 0:07=1 0.00320(9) 0.1051(24) 0.0334(27)
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FIG. 19 (color online). Gluino condensate as a function of mf

for 163 � 32 lattices with � ¼ 2:3. Solid curves represent fit
results which are obtained from Table XI.
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tical error bars. The fits of the condensate as a function of
Ls were performed over a fit range 16–28 and, as such, we
expect our chiral limit result to overestimate the true
answer by approximately 25%, as was found for our ex-
tended Ls fits at � ¼ 2:3 and mf ¼ 0:02, which are de-

scribed above. We have performed additional fits using
other, phenomenologically motivated fit formulas to de-
scribe the Ls dependence of the gluino condensate [e.g.,
Eq. (61), without the L�1

s prefactor in the second term].
Such fits yield an approximate 20% variation in the chirally
extrapolated value of the gluino condensate as compared to
that obtained by using Eq. (61).

D. Spectrum of the Hermitian DWF Dirac operator

Here we study the eigenvalues and eigenvectors of the
Hermitian DWF Dirac operator. The primary purpose of
this study is to establish to what degree the five dimen-
sional theory reproduces the correct four-dimensional,
continuum low energy physics and to obtain an indepen-
dent measure of the residual mass and gluino condensate.
To achieve this aim, we measure the lowest 64 eigenvalues
and eigenvectors of the Hermitian DWF Dirac operator on
83 � 8 lattices using the method of Kalkreuter-Simma
(KS) [52]. In this method, the Hermitian matrix D2

H is first
diagonalized using a modified Rayleigh-Ritz diagonaliza-
tion procedure, where we have exploited the relationship
between degenerate eigenvectors��H

and�c
�H

in order to

eliminate any unnecessary minimizations of the Ritz func-
tional. Subsequently, the matrix DH is diagonalized using
Jacobi’s method within the subspace obtained from diago-
nalizing D2

H. These steps are then iterated until specified
stopping criteria have been achieved. A detailed descrip-
tion of the procedure used to diagonalize DH and the
stopping criteria may be found in [53]. For our purposes,
the process was considered converged when the change in
the eigenvalues between iterations was less than 1� 10�7.
We check this choice by increasing the stopping condition
to 1� 10�10 on a test configuration and determined that
eigenvalues changed by at most 0.02% over the range of
eigenvalues considered.

The eigenvectors of DH obtained from the KS method
are ordered such that the magnitude of �H are ascending
with eigenvector number. In all of the analysis that follows
we use only the first 60 of the 64 eigenvalues obtained,
since the last few may be unreliable [53]. Since there is a
two-fold degeneracy in the spectrum due to Eq. (44), this
yields a total of 30 nondegenerate eigenvectors and eigen-
values. All measurements in this work were performed on
83 � 8 lattices with � ¼ 2:3 and a sea gluino mass mf ¼
0:02. In physical units, the lowest 60 eigenvalues for a
typical configuration range roughly between 0 �
r0j�Hj & 0:07 for the ensembles and valence masses
under consideration.

The lowest 60 eigenvectors were used to compute the
matrix elements of the physical gamma matrix �s defined

in Eq. (52), as well as to determine the localization of wave
functions in the fifth dimension, which may be character-
ized by N �H

ðsÞ as defined in Eq. (51). Figures 21 and 22

show the results of these calculations for a representative
background gauge field configuration in the ensemble:
� ¼ 2:3, Ls ¼ 24, and mf ¼ 0:02, with mv ¼ 0:02. As

may be seen in these figures, the eigenvectors are expo-
nentially localized on both boundaries of the fifth dimen-
sion and alternate with increasing �H. The near-diagonal
nature of �s confirms that the low-lying eigenvectors ofDH

are near chiral modes; however, these states are not nec-
essarily near-zero modes of DH. We find that in every
instance
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FIG. 21 (color online). Four-dimensional norms N ðsÞ associ-
ated with the first eight eigenfunctions of DH, measured on a
typical background gauge field configuration generated on an
83 � 8 lattice with � ¼ 2:3, Ls ¼ 24, and mf ¼ mv ¼ 0:02.
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sgn ð�HÞ ¼ sgnðh�Hj�sj�HiÞ; (63)

which is entirely consistent with continuum predictions in
the regime where � <mg, according to Eq. (46).

Next we study the mv dependence of �
2
H and attempt to

extract the residual mass and chiral condensate for the � ¼
2:3, Ls ¼ 16, 20 and 24, and mf ¼ 0:02 ensembles.

Eigenvalues were computed for five values of mv, ranging
from �0:16 to �0:12, on a total of 150 gauge configura-
tions. After appropriately reordering eigenvalues in order
to account for possible level crossings, we fit the lowest 60
eigenvalues of D2

H as a function of mv to Eq. (53) and
extract the parameters n5;i, �i, and �mi for each eigenvec-

tor. Figure 23 shows a plot of the fit results for the lowest 20
eigenvalues on a representative background field configu-
ration for Ls ¼ 24. As may be seen in this plot, for a
typical eigenvector, the splitting of ��H pairs due to the
finite lattice spacing effects appear comparable to the
spacings between adjacent eigenvectors. As a qualitative
measure, we conclude that the lattice spacing is not suffi-
ciently small for the emergence of this continuum behavior
of the Dirac spectrum.

In Fig. 24 we plot the distribution of �mi values at fixed
eigenvalue number for the Ls ¼ 24 ensemble. Identifying
the peak of the distribution of �mi values with the residual
mass relies on an assumption that the spectrum of DH is in
some sense continuumlike. Unfortunately due to the lack
of eigenvalue pairing, such interpretation is somewhat
obscured. For the lowest eigenvalue, the mean of the
distribution appears consistent with the value of mres ob-
tained from Eq. (35); however, for larger eigenvalues, the
mean increases in magnitude.

In Fig. 25 we plot the values of �i versus �mi for all
60� 150 eigenvalues, which were extracted from fits to
Eq. (53) for the Ls ¼ 24 ensemble. At low energies, it is
evident that we are in a regime where �i & �mi, which is

consistent with our findings for the structure of �s in
Fig. 22. If the distribution of �mi is highly peaked about
mres, one may in principle tune mv � �mres such that
mg < � and expect off-diagonal pairing to emerge in the

matrix elements of �s. An attempt to produce off-diagonal
pairing of �s by tuning mv � �m0

resðmfÞ was unsuccess-
ful, but is likely due to the fact that off-diagonal pairing in
�s may only occur when the � eigenvalues of DH are
paired. In Fig. 26 we plot N �H

ðsÞ for the same configu-

ration as in Fig. 21, however, with mv ¼ �0:25. Figure 27
displays the corresponding matrix elements of �s for this
configuration. From the first plot, we see that the lowest
lying wave functions are no longer strongly localized on
the fifth dimension boundaries. As such, the diagonal
structure of �s in Fig. 27 disappears for the lowest few
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FIG. 23 (color online). Lowest 10 eigenvalues of D2
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typical background gauge field configuration generated on an
83 � 8 lattice with � ¼ 2:3, Ls ¼ 24, and mf ¼ 0:02. Solid

lines represent results from a fit to Eq. (53).
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modes, although off-diagonal pairing is not very evident
either.

In Fig. 28 we plot the density of four-dimensional ei-
genvalues 
0ð�;mgÞ for Ls ¼ 16, 20, and 24, which have

been extracted from 60� 150 eigenvalue measurements
using Eq. (53). The distribution exhibits a relatively con-
stant region between � � 0:15 and 0.25, and a depleted
region between � � 0 and 0.15 which may be attributed to
finite volume effects. Contrary to continuum expectations,
there is no visible peak at � ¼ 0, which one would nor-
mally attribute to near-zero modes. If such a peak were to
exist, it may be that its height is suppressed due to a finite

bin size ��, which is too large. From Fig. 23, however, it
appears that the number of zero modes is few, suggesting
that there is perhaps little topology change and that we are
primarily within the zero topological charge sector of the
theory. This observation is consistent with the findings of
[31], where fluctuations in the condensate as a function of
MD time where studied as a possible indicator of topology
change. In that study, no large spikes in evolution of the
condensate (which would correspond to the presence of
zero modes) were observed for the same choice of parame-
ters. Yet in light of the fact that the residual mass is so large
in these simulations, it may also be that the fermions
simply provide a poor measure of topology. To make a
more definitive statement regarding the topic, it would be
interesting and beneficial to study the gauge fields directly
instead.
In principle one may extract an estimate of 
0

effð0; mgÞ
from the constant region of the eigenvalue density, com-
pute the condensate, and finally perform an mg ! 0 ex-

trapolation. But for the current choice of simulation
parameters, the low-lying spectrum appears to be too heav-
ily distorted by the large residual mass for such an analysis
to be reliable. We may still extract some useful information
from the eigenvalue density, however. In our analysis of the
chiral extrapolation of the gluino condensate described in
Sec. IVC, we assumed that the Ls dependent contribution
to the condensate was dominated by UV modes. We may
check this assumption, by computing the contribution to
Eq. (40) from modes in the interval: 0-�, using our fit
values for �i and �mi and Eq. (54) with mv ¼ mf. In

Fig. 29, we plot the integrated condensate as a function
of the upper limit value � for Ls ¼ 16, 20, and 24. The
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ated with the first eight eigenfunctions of DH, measured on a
typical background gauge field configuration generated on an
83 � 8 lattice with � ¼ 2:3, Ls ¼ 24, mf ¼ 0:02, and mv ¼
�0:25.
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contribution to the condensate from modes j�jr0 & 0:8 is
approximately 1=3 of the total value for each choice of Ls,
which is consistent with our assumptions.

Finally for completeness, Fig. 30 provides a histogram
of n5 values extracted from the �2

HðmvÞ fits for the � ¼
2:3, Ls ¼ 24, and mf ¼ 0:02 ensemble, where it is evident

that n5 is strongly peaked at approximately n5 � 0:16.

V. CONCLUSION

We have performed dynamical numerical simulations of
N ¼ 1 SYM theory on 83 � 8 and 163 � 32 lattices using

domain wall fermions with several goals in mind: to estab-
lish a lattice scale, assess the size of chiral symmetry
breaking effects at finite Ls, and understand the degree to
which DWFs are correctly reproducing the desired contin-
uum physics at low energy. In part, these efforts were
motivated by the necessity to establish benchmarks for
future studies. As such, our work consists of a variety of
basic measurements on 163 � 32 lattices, including mea-
surements of the static potential, residual mass and gluino
condensate. We buttress these results by analyzing the
eigenvalues and eigenvectors of the Hermitian DWF
Dirac operator on 83 � 8 lattices, from which an indepen-
dent estimate of the residual mass and chiral condensate
may in principle be extracted. We briefly summarize each
of our measurements and results below.
We have presented results for the residual mass, which

have been obtained using two different methods. The first
approach utilized a low energy identity relating the wall
pseudoscalar density to the midpoint pseudoscalar density
and assumptions about the decomposition of connected
and disconnect parts of various pseudoscalar correlators.
Using this approach we obtained residual masses which
were approximately 5–20 times larger than the input gluino
mass mf. A second approach for obtaining mres, based

upon the mv dependence of the eigenvalues of D2
H, gave

inconclusive yet qualitatively consistent results for the
residual mass. On an eigenvalue by eigenvalue basis, chiral
symmetry breaking shifts in mf were comparable, if not

larger than the value formres obtained in the first approach.
The limited success of the second method in determining a
precise value for the residual mass may be attributed to
large finite lattice spacing artifacts.
The static potential for fundamental representation

sources was determined using standard techniques for
three different values of the coupling. The potential exhib-
its characteristics indicative of confinement. From the
static potential we obtain estimates of the Sommer scale,
which range from approximately r0 � 3:3 at � ¼ 2:3 to
r0 � 5:3 at � ¼ 2:4.
We study properties of the low energy eigenvalues of the

Hermitian DWF Dirac operator in an effort to understand
to what degree the desired low energy physics is repro-
duced by the DWF formalism. By studying the profile of
the wave functions as a function of the fifth dimension
coordinate, we have established that the low energy modes
are indeed localized on the right and left boundaries of the
fifth direction. And, the matrix elements of the physical
chirality operator �s are consistent with the presence of a
large gluino mass compared to the typical low energy
eigenvalues of i 6D.
We have performed a chiral extrapolation of the gluino

condensate at a fixed value of the lattice spacing, � ¼ 2:3.
The chiral extrapolation of the condensate was performed
in a variety of different ways in order to elucidate some of
the systematic errors inherent with the extrapolation. For
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the parameters under consideration we find that various
extrapolation procedures yield, at best, a value of the
condensate which is reliable to approximately 25%. We
attempt to provide an independent measurement of the
gluino condensate from our studies of the Dirac spectrum.
However, given the current large values of the residual
mass, a reliable estimate of the gluino condensate from
the Banks-Casher relation was not possible.

Finally, we come to the general conclusion that there is,
at present, no evidence to suggest that our simulations are
not in the same universality class as SYM at nonzero
gluino mass. However, additional simulations will be re-
quired at far smaller residual masses and weaker couplings
in order to achieve a more reliable measure of the quanti-
ties discussed in this paper. Reducing the residual mass
may be achieved with a variety of approaches; the simplest
approach is to increase the size of the fifth dimension. This
method for reducing the residual mass becomes costly,
however, once the dislocation term appearing in Eq. (60)
dominates over the perturbative contribution to the residual
mass. Alternatives to this approach, which may be more
efficient, include going to weaker coupling, or using an
improved action such as the DBW2 [54], Iwasaki [55,56],
or auxiliary determinant [57] action. The latter action
combines the Gap DWF method of [58,59] with the ap-
proach of [60] in order to suppress the residual mass while
still maintaining adequate topological tunneling. Such con-
siderations will be left to a future study. Finally we em-
phasis that scaling analysis at weaker coupling is essential
in order to truly understand the effects of finite lattice
spacing on observables, and whether or not the gluino
condensate survives the continuum limit.
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APPENDIX: CORRELATORS INVOLVING
MAJORANA FERMIONS

In N ¼ 1 SYM, the fundamental fermionic degrees of
freedom are Majorana fermions rather than Dirac fermi-
ons. As a result, correlation functions written in terms of
propagator contractions may differ from that of conven-

tional QCD. Here we briefly review the construction of
some of the basic observables studied in the paper,
although for simplicity we limit the majority of the dis-
cussion to four dimensions. Generalization of the results to
the specific case of DWFs will be considered at the end of
this section.
To begin with, consider the generic Majorana fermion

path integral:

Gð2NÞ ¼ 1

�

Z
½dc �e�ð1=2Þc TMcGi1...i2Nc i1 . . . c i2N ; (A1)

where the indices ik for k ¼ 1; . . . ; 2N collectively repre-
sent space-time coordinate (x), spin (�), and color (c), and
summation over these indices is implied. Because of the
anticommuting nature of the variables c , components of
Gi1...i2N which are symmetric under the interchange of any

two indices will not contribute to Gð2NÞ. The Majorana
matrixM is related to the Dirac operatorD4 via the relation
M � CD4, where C is the charge conjugation matrix
whose properties in four dimension are given in Eq. (9).
We allow the Dirac operator and G to depend on back-
ground field configurations and, as such, so may the nor-
malization factor �. By definition we choose � such that

Gð0Þ � 1, and so it follows that � ¼ PfðMÞ. Expectation
values of operators involving the fermion fields c in the

full gauge theory are given by gauge averages over Gð2NÞ
with the probability measure�e�SG , where SG is the gauge
action.
The path integral given by Eq. (A1) may be evaluated in

a standard fashion, and yields

Gð2NÞ ¼ Gi1...i2N�i1...i2N ; (A2)

where

�i1...i2N ¼ Pf

M�1
i1;i1

. . . M�1
i1;iN

..

. . .
. ..

.

M�1
iN;i1

. . . M�1
iN;iN

0
BB@

1
CCA (A3)

is the Pfaffian constructed from Majorana propagators
M�1 ¼ ½D4��1Cy, which start and end on the points
i1 . . . i2N in all possible combinations. Note that since the
matrix M is antisymmetric, the diagonal matrix elements
of the propagator vanish.
As an example of how this result may be applied, con-

sider the two important cases N ¼ 1 and N ¼ 2, for which

Gð2Þ ¼ Gi1i2M
�1
i1i2

;

Gð4Þ ¼ Gi1i2i3i4ðM�1
i1i2

M�1
i3i4

�M�1
i1i3

M�1
i2i4

þM�1
i1i4

M�1
i2i3

Þ:
(A4)

In the case of the condensate �h �c c i defined in Eq. (40),
we have

G i1i2 �
1

12V
�x1;x2C�1;�2

�c1;c2 ; (A5)
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which according to the expression for Gð2Þ in Eq. (A4)
yields

1

12V

X
x

TrSðx; xÞ (A6)

prior to gauge averaging. Here, S ¼ ½D4��1 is the Dirac
propagator and the trace is taken over both spin and color.
In the case of the pseudoscalar correlator hPðxÞPðx0Þi,
where PðxÞ ¼ �c ðxÞ�5c ðxÞ, we have

Gi1i2i3i4 � �x1;x�x2;x�x3;x
0�x4;x

0 ðC�5Þ�1;�2

� ðC�5Þ�3;�3
�c1;c2�a3;a3 ; (A7)

which according to the expression for Gð4Þ in Eq. (A4)
yields

2Tr½Sðx; x0Þ�5Sðx0; xÞ�5� � Tr½Sðx; x0Þ�5�Tr½Sðx0; xÞ�5�;
(A8)

prior to gauge averaging. Note that the connected and

disconnected parts of this correlator, as defined in
Eq. (32), correspond to the single and double trace terms,
respectively.
While the results presented here pertain to the four-

dimensional theory, they may easily be generalized to the
case of DWFs, where the interpolating gluino fields qðxÞ
are expressed in terms of the fields �ðx; sÞ at the fifth
dimension boundary, according to Eq. (11). Specifically
the results for the gluino condensate and pseudoscalar
correlator given by Eqs. (A6) and (A8) remain valid with
the simple replacement S ! Sq, where

Sqðx; x0Þ ¼ P�D�1
x;0;x0;Ls�1P� þ P�D�1

x;0;x0;0Pþ

þ PþD�1
x;Ls�1;x0;Ls�1P� þ PþD�1

x;Ls�1;x0;0Pþ;

(A9)

and D is the DWF Dirac operator defined in Eq. (3).
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