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We extend the study of lowest moments, hxi and hx2i, of the parton distribution function of the nucleon

to include those of the sea quarks; this entails a disconnected insertion calculation in lattice QCD. This is

carried out on a 163 � 24 quenched lattice with Wilson fermion. The quark loops are calculated with Z2

noise vectors and unbiased subtractions, and multiple nucleon sources are employed to reduce the

statistical errors. We obtain 5� signals for hxi for the u, d, and s quarks, but hx2i is consistent with

zero within errors. We provide results for both the connected and disconnected insertions. The perturba-

tively renormalized hxi for the strange quark at � ¼ 2 GeV is hxisþ�s ¼ 0:027� 0:006 which is consistent

with the experimental result. The ratio of hxi for s vs u=d in the disconnected insertion with quark loops is

calculated to be 0:88� 0:07. This is about twice as large as the phenomenologically fitted hxisþ �s

hxi �uþhxi �d from
experiments where �u and �d include both the connected and disconnected insertion parts. We discuss the

source and implication of this difference.
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I. INTRODUCTION

Recently, there has been a good deal of interest in the
study of sea quarks, both in theory and experiment. In such
studies, strange quarks play an important role in observ-
ables involving sea quarks. For more than a decade, in-
tensive studies have been made in measuring and
understanding the strangeness contribution to the nucleon
spin [1], the electromagnetic form factors [2–5], the
strangeness condensate [6], and the parton distribution
function in the nucleon [7–9]. Another important aspect
of studying strangeness content is to address the issue of
the NUTEV anomaly. The NUTEV experiment (�þ N !
�þ X) [10], which measures the Weinberg angle or weak
mixing angle, an important parameter in the Standard
Model of particle physics, finds a value which is 3 standard
deviations away from the world average value. One sug-
gestion to explain this discrepancy is the asymmetry in
strange and antistrange parton distribution [11,12], a non-
perturbative effect. Attempts by various theoretical models
to calculate the asymmetry give inconsistent results (some-
times with completely opposite signs) [12–16]. Also, phe-
nomenological extractions by CTEQ and NUTEV [17,18]
for leading order and next-to-leading order give different
results. Lattice QCD can assess this asymmetry from first
principles in terms of hx2is��s to address whether it is
strange or antistrange which is leading in large x. This
information will be helpful to constrain and analyze the
experimental data. Similarly, the first moment of the
strange parton distribution, hxisþ�s is not well known. It

ranges between 0.018 and 0.04 from the fitting of parton
distribution functions to experiments [8].
In the present work, we will study the first and second

moments of quark distribution for up, down and strange
quarks. The first moment provides the measure of the
symmetric contribution from parton and antiparton distri-
butions (qþ �q) and the second moment provides the mea-
sure of the asymmetry in parton and antiparton
distributions (q� �q). These moments have contributions
both from connected and disconnected insertions for up
and down quarks and only disconnected insertion for
strange quarks. Since lattice calculations on connected
insertions, for the first and second moments, have been
done before, this work is going to focus mainly on dis-
connected insertion contributions (particularly for strange
quarks) to the first and second moments, which has not
been attempted in lattice QCD.
This paper is organized as follows. We give the formal-

ism and lattice operators in Sec. II. The disconnected
insertion calculation is presented in Sec. III. The perturba-
tive renormalization is given in Sec. IV. Sec. V presents
numerical parameters and error studies of the noise esti-
mate. The results for both the disconnected insertions and
connected insertions are given in Sec. VI. Finally, we offer
a conclusion and some discussion in Sec. VII. Some details
of the three-point correlation functions are given in the
Appendices.

II. FORMALISM

In deep inelastic scattering [19], it is useful to consider
and analyze the moments of the structure function via the
operator product expansion (OPE) where, in the limit of
distance x! 0 or equivalently q! 1, the product of two*mpdeka@pa.uky.edu
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operators can be expanded in terms of local operators

lim
x!0

OiðxÞOjð0Þ ¼
X
k

cijkðx;�ÞOkð�Þ; (1)

where c’s are the Wilson coefficients.
The leading term for such an expansion has the lowest

twist, t ¼ 2. For unpolarized structure functions with vec-
tor currents J�, the twist-two operators for quarks have the
bilinear form

O ðnÞ�1����n

f ¼ �c f�
f�1ðiD$ Þ�2 � � � ðiD$ Þ�ngc f � traces;

(2)

where c f denotes the quark field operator for the flavor f,

D
$ ¼ 1

2 ð ~D�DQ Þ, and f� � �g stands for symmetrization of

the indices, �’s. The subtracted trace terms are propor-
tional to g�i�j , so that the operator is traceless on all pairs
of indices.

In the leading twist, the moments of structure functions
F1 and F2 can be written as

2
Z 1

0
dxxn�1F1ðx;Q2Þ ¼X

f

c1;nf ð�2=Q2; gð�ÞÞAn
fð�Þ;

Z 1

0
dxxn�2F2ðx;Q2Þ ¼X

f

c2;nf ð�2=Q2; gð�ÞÞAn
fð�Þ;

ðfor n � 2Þ (3)

where An
f is defined through the forward matrix elements

hPjOðnÞ�1����n

f jPi ¼ 2An
fP

�1 � � �P�n � traces: (4)

In the parton model, An
f has the interpretation as the (n�

1)th moment of the momentum fraction carried by the
quarks with flavor f at some scale �, i.e.

An
fð�Þ ¼

Z 1

0
dxxn�1½fðxÞ þ ð�1Þn �fðxÞ�; (5)

where fðxÞ is the quark distribution function and �fðxÞ is the
antiquark distribution function for the flavor f. We see that
the first moment (n ¼ 2) has the symmetric combination of
the quark and antiquark distribution and the second mo-
ment (n ¼ 3), due to the interference between the vector
and axial-vector part of the weak interaction current, has
the asymmetric combination of the quark and antiquark

distribution. Our goal is to compute the first and second
moments for up, down, and strange quarks.

A. Lattice operators

Lattice calculations are carried out in Euclidean path-
integral. Thus, we need to transform the twist-two opera-
tors from Minkowski space to Euclidean space. Following
the convention [20,21]

�ðMÞ0 ! �ðEÞ4 ; �ðMÞj ! i�ðEÞj ;

iDðMÞ0 ! �DðEÞ4 ; iDðMÞj ! �iDðEÞj ;
(6)

with the � matrices defined as

f��; ��g ¼ 2���; �5 ¼ �1�2�3�4;

��� ¼ 1

2i
½��; ���;

(7)

we can transform the twist-two operators in Eq. (2) to its
Euclidean counterpart by using the notation [22]

O ðnÞðEÞ
ðfÞ�1����n

 h�1�1
d�2�2

� � � d�n�n
OðMÞðnÞ�1����n

f ; (8)

where h�� ¼ diagði; i; i; 1Þ and d�� ¼
diagð�1;�1;�1; iÞ. We have also set aðMÞ0 ¼ aðMÞ4 for
any four vector, a. From now on we will consider
Euclidean operators only and drop the superscript, E.
Since the Euclidean signature is ðþ þþþÞ, the subtracted
trace terms are proportional to ��i�j

. To be specific, we use

the Pauli-Sakurai � matrix convention in our calculation.
We discretize our current operators by using the follow-

ing relations for right and left derivatives in lattice [23]

~D�c
LðxÞ ¼ 1

2a
½U�ðxÞc Lðxþ a�Þ

�Uy�ðx� a�Þc Lðx� a�Þ�; (9)

�c LðxÞDQ � ¼ 1

2a
½ �c Lðxþ a�ÞUy�ðxÞ

� �c Lðx� a�ÞU�ðx� a�Þ�; (10)

where a is the lattice spacing. For example, the two-index
operator, O��, can be written as

O��ðxÞ ¼ �

8a
½ �c ðfÞðxÞ��U�ðxÞc ðfÞðxþ a�Þ � �c ðfÞðxÞ��U

y
� ðx� a�Þc ðfÞðx� a�Þ þ �c ðfÞðx� a�Þ��U�ðx� a�Þc ðfÞðxÞ

� �c ðfÞðxþ a�Þ��U
y
� ðxÞc ðfÞðxÞ þ �c ðfÞðxÞ��U�ðxÞc ðfÞðxþ a�Þ � �c ðfÞðxÞ��U

y
�ðx� a�Þc ðfÞðx� a�Þ

þ �c ðfÞðx� a�Þ��U�ðx� a�Þc ðfÞðxÞ � �c ðfÞðxþ a�Þ��U
y
�ðxÞc ðfÞðxÞ�; (11)

where � ¼ �i for � ¼ 4, � ¼ 1, 2, 3; � ¼ þ1 for � ¼ � ¼ 1, 2, 3 and � ¼ �1 for � ¼ � ¼ 4. Similar expressions can
be obtained for the three-index operators.

Since in lattice QCD the continuous space-time space is described on a four-dimensional cubic lattice, the Oð4Þ
group in the continuum reduces to the hypercubic groupHð4Þ [24,25]. This implies that operators belonging to irreducible
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representations of Oð4Þ may transform in a reducible way
under Hð4Þ. This will allow them to mix with lower di-
mensional operators under renormalization. In order to
avoid such mixing, it is suggested to adopt the following
combination of operators which have minimal mixing (or
no mixing) [26–29]. For two-index operators (for hxi), we
choose O4iði ¼ 1; 2; 3Þ and ~O44 ¼ O44 � 1

3 ðO11 þO22 þ
O33Þ which does not suffer from any mixing [26,28]. The
best choice for three-index operator (for hx2i) is ~O4ii ¼
O4ii � 1

2 ðO4jj þO4kkÞ, where i; j; k ¼ 1; 2;
3ði � j � kÞ, which still suffers from some mixing
[26,29]. The matrix elements for these operators are

hPjOf
4ijPi ¼ �

2

2m
hxifþ �fEPi;

hPj ~Of
44jPi ¼

2

2m
hxifþ �fE

2;

hPj ~Of
4iijPi ¼

2

2m
hx2if� �fEp

2
i ;

(12)

where the 2m factor, withm being the nucleon mass, is due
to the normalization of the spinors with �uðp; sÞuðp; s0Þ ¼
�ss0 .

B. Two-point and three-point correlation functions

The proton two-point function we use (with the color
indices suppressed) is

G��
NNðt; ~pÞ ¼

X
~x

e�i ~p:ð ~x� ~x0Þh0jT½	�ð ~x; tÞ �	�ð ~x0; t0Þ�j0i;

(13)

where t is the nucleon sink time, and ~p is the momentum of
the nucleon. The interpolating fields [30–34] we use are

	�ðxÞ ¼ 
abcc
TðuÞa
� ðxÞðC�5Þ��c ðdÞb� ðxÞc ðuÞc� ðxÞ; (14)

�	 �0 ðxÞ ¼ �
def �c ðuÞf�0 ðxÞ �c ðdÞe� ðxÞð�5CÞ�� �c TðuÞd
� ðxÞ; (15)

where u and d stand for up and down quarks, respectively.
C ¼ �2�4, is the charge conjugation operator with the
Pauli-Sakurai � matrices. The letters, a; b; � � � , stand for
the color indices. The Greek letters, �;�; . . . , are the spin
indices.

Since we are interested only in nucleon with JP ¼ 1
2
þ,

we use the projection operator � ¼ 1
2 ð1þ m�

E0�
p
�4Þ [35] to

eliminate the contamination from negative parity S11 state.
Here m� and E0�

p are the mass and energy of the S11 state.

After applying the projection operator, we get the two-
point function as

Tr½�GNNðt; ~pÞ�¼ a6

ð2�Þ3 j
þj2 m

þ

E0þ
p

�
1þm�

E0�
p

E0þ
p

mþ

�
e�E0þ

p ðt�t0Þ

þ X
�¼þ;�

X1
nð�Þ¼1

e�Enð�Þ
p ðt�t0Þ ~fðnð�Þ; ~pÞ; (16)

where the superscript � ¼ þ, � represents positive (nega-
tive) parity states and

~fðnþ;�; ~pÞ ¼ N���
X
s

h0j	�ðx0Þjnþ;�; ~p; si

� hnþ;�; ~p; sj �	�ðx0Þj0i; (17)

N being the number of lattice points.
As a result, the projected two-point function with mo-

mentum ~p at large time separation, i.e. t� t0, will filter
out the excited states, leaving only the nucleon state re-
maining asymptotically

Tr½�GNNðt; ~pÞ����!ðt�t0Þ�1
�

a6

ð2�Þ3 j
þj2 m

þ

E0
p

�
1þ m�

E0�
p

E0þ
p

mþ

��

� e�E0þ
p ðt�t0Þ; (18)

where mþ and E0þ
p are the nucleon mass and energy,

respectively. � is the hopping parameter in the Wilson
fermion action. From now on, we will drop the superscript
þ.
The three-point function for any general operator O

(with color indices suppressed) is defined as

G��
NONðt2; t1; ~pf; ~piÞ
¼ X

~x2; ~x1

e�i ~pf:ð ~x2� ~x1Þe�i ~pi:ð ~x1� ~x0Þ

� h0jTð	�ð ~x2; t2ÞOð ~x1; t1Þ �	�ð ~x0; t0ÞÞj0i; (19)

where t ¼ t2 is the nucleon sink time, t ¼ t1 is the current
insertion time, t ¼ t0 is the nucleon source time, and ~pi

and ~pf are the initial and final momenta of the nucleon,

respectively. For forward matrix element, ~pf ¼ ~pi ¼ ~p. In

this case,

G��
NONðt2; t1; ~pÞ ¼

X
~x2; ~x1

e�i ~p:ð ~x2� ~x0Þ

� h0jTð	�ð ~x2; t2ÞOð ~x1; t1Þ �	�ð ~x0; t0ÞÞj0i:
(20)

The three-point functions can be classified according to
two different topologies of the quark paths [36–39] be-
tween the source and the sink of the proton—one is quark
line connected and the other is quark line disconnected.
The quark line connected part of the three-point function

in the path integral is represented diagrammatically in
Fig. 1(a). It needs to be stressed that it is not a Feynman
diagram in perturbation theory. We see that the nucleon
interpolating quark fields contract with the quark fields of
the current so that the quark lines flow continuously from
t ¼ t0 at the nucleon source to t ¼ t2 at the nucleon sink.
This is termed the connected insertion (C.I.). The quark
line disconnected part is represented diagrammatically in
Fig. 1(b). In this case, we see that the quark fields in the
current self contract to form a loop, which is disconnected
from the nucleon interpolating quark fields with regard to

MOMENTS OF NUCLEON’s PARTON DISTRIBUTION FOR . . . PHYSICAL REVIEW D 79, 094502 (2009)

094502-3



their quark lines. This is termed the disconnected insertion
(D.I.). Since the quarks are propagating in the gauge
background, if we were to consider a similar situation in
terms of Feynman diagrams in the perturbative approach, it
would involve gluon lines between the quark loop and the
nucleon propagator so that the corresponding Feynman
diagrams are connected in this sense. Indeed the corre-
sponding disconnected Feynman diagrams are subtracted
as the uncorrelated part in the definition of the discon-
nected insertion (D.I.) i.e.

GNONðD:I:Þ ¼ h	O �	i � hOih	 �	i; (21)

where 	 is the nucleon interpolation field. In the literature,
this disconnected insertion is sometimes referred to as the
‘‘disconnected diagram’’ which can cause some confusion.

The computation of the C.I. is relatively straight for-
ward. We shall use the sequential source technique [27,40–
42] to calculate it. This fixes the source point t0 and the
sink time slice t2. However, the computation of the D.I.
poses a major numerical challenge. The D.I. contains not
only the usual propagators from the source, x0, to any
point, x, but also the propagators from any insertion posi-
tion (x1) to any other lattice points. This amounts to
inverting the fermion matrix at each point of the lattice
to construct the all-to-all propagators. This entails inver-
sion of a million by million (� 163 � 24� 3� 4) sparse
matrix on a 163 � 24 lattice (3 and 4 are number of color
and spin indices) for each gauge configuration. This is
unattainable even by using the computing powers of to-
day’s supercomputers. Instead, we shall calculate with the
stochastic method. Specifically, we adopt the complex Z2

noise for the estimation with unbiased subtraction. The
detailed description of the method and the usefulness of
discrete symmetries will be presented in Sec. III A.

C. Ratios of correlation functions

In order to extract hxi and hx2i, we take the suitable ratios
of the three-point to two-point correlation functions. Since,
for the case of C.I., the nucleon sink time is fixed, and for
the case of D.I., the sink time is not fixed, the procedures

for extracting the matrix elements, after taking the ratios,
are different for the two cases.

1. Connected insertions

In view of the fact that the matrix elements of O4i,
between the equal momentum nucleon states, are propor-

tional to pi, and that of
~O4ii are proportional to p

2
i , and that

the momentum projection is folded in the sequential source
at the sink time t2 in the connected insertion calculation,
we have chosen only one momentum for the nucleon to be
pi ¼ 2�=La (the lowest available nonzero momentum)
along the x direction in order to reduce the computational
cost.
After inserting complete sets of physical states between

the interpolation fields and the operatorsO, we arrive at the
asymptotic relations for the following ratios of three- to
two-point functions at ðt1 � t0Þ � 1 and ðt2 � t1Þ � 1:

2�

pi

Tr½�GNO4iNðt2; t1; piÞ�
Tr½�GNNðt2; piÞ�

���!ðt1�t0Þ�1;ðt2�t1Þ�1 hxi: (22)

In practice, one takes a plateau in the insertion time, t1, to
define the asymptotic region.
Similarly, we get for the other two operators

2�E0
p

ðE0
pÞ2 � 1

3p
2
i

Tr½�GN ~O44N
ðt2; t1; piÞ�

Tr½�GNNðt2; piÞ�
���!ðt1�t0Þ�1;ðt2�t1Þ�1 hxi;

(23)

and

2�

p2
i

Tr½�GN ~O4iiN
ðt2; t1; piÞ�

Tr½�GNNðt2; piÞ�
���!ðt1�t0Þ�1;ðt2�t1Þ�1 hx2i: (24)

2. Disconnected insertions

As seen from Fig. 1(b), the calculation of the valence
quark propagators in the disconnected insertion is separate
from the loop calculation in each configuration; this means
that the momentum in the three-point function can be
chosen in the nucleon two-point functions independent of
the expensive loop calculation. For the present calculation,
we choose pi ¼ �2�=La for the three-point function for

the cases of O4i and
~O4ii, and zero momentum for ~O44.

In contrast to C.I., the sink time need not be fixed in D.I.
We can sum over the insertion time to gain more statistics
[43–46]. There are various methods by which the summa-
tion is performed [46–49]. All these methods, except in
[46], considered summation over insertion time up to or
beyond sink time. From Appendix A, we see that the
matrix elements for the twist-two operators are analytically
zero if t1 < t0 and t1 > t2. (It may not be zero for other
operators. Even then it will not contribute to the physical
quantity intended to be measured). So the summation out-
side the nucleon source and sink times will contribute to
unnecessary noise and possible contribution from higher

t0 t2

t

O

t1

(a)

t0 t2

t

O
×
t1

(b)

FIG. 1. Quark line diagrams of the three-point function in the
Euclidean path-integral formalism. (a) Connected insertion and
(b) disconnected insertion.
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states which are unrelated to the target matrix element.
Also, at the source and sink time it can have contributions
from the contact term. In view of the above, we shall take
the sum to be from (source time þ1) to (sink time �1)
[46]. According to the derivations in Appendix A 2 (see
Eq. (A10)), under the condition t2 � t0 � 1, we get for the
operator O4i

Xt2�1
t1¼t0þ1

2�

pi

Tr½GNO4iNðt2; t1; piÞ�
Tr½�GNNðt2; piÞ�

���!ðt2�t0Þ�1 hxi4it2 þ const

(25)

Similarly, for the other two operators, we get

Xt2�1
t1¼t0þ1

2�

E0
p

Tr½GN ~O44N
ðt2; t1; 0Þ�

Tr½�GNNðt2; 0Þ�
���!ðt2�t0Þ�1 hxi44t2 þ const;

(26)

and

Xt2�1
t1¼t0þ1

2�

p2
i

Tr½GN ~O4iiN
ðt2; t1; piÞ�

Tr½�GNNðt2; piÞ�
���!ðt2�t0Þ�1 hx2i4iit2 þ const:

(27)

III. DISCONNECTED INSERTION CALCULATION

The D.I. calculation is the most numerically intensive
part. We shall discuss the various aspects of the calculation
in more detail.

A. Discrete symmetries and transformations

Since the D.I. calculations are performed by using a
stochastic noise estimator, the signals for the current loop
are always noisy. We can reduce the errors by making good
use of some of the discrete symmetries, specifically parity,

�5 Hermiticity, and charge-�5 Hermiticity (CH transfor-
mation) [47,50–52].
By applying these symmetries and transformations, one

can then work out the effects of gauge averaging in order to
find out the correct part (e.g. even or odd parity, real or
imaginary part, etc.) of the two-point and three-point cor-
relation functions, current operators etc., and discard the
irrelevant part.

1. Two-point functions

Since in the case of D.I. the three-point functions are
constructed by multiplying the nucleon propagator with the
current loop in each gauge configuration [Fig. 1(b)], we
have the advantage of taking into account nucleon propa-
gators with equal and opposite momenta in order to in-
crease statistics. While doing so, we have to consider the
fact that such combinations have appropriate parity and
have appropriate real or imaginary part w.r.t. the loop. In
Table I, we show the effect of parity and CH transforma-
tions on various such combinations. We denote
Tr½�GNNðt; ~p;UÞ� to be the nucleon propagator on each
gauge configuration with momentum ~p.

2. Current loop

The outcome of the parity, �5 Hermiticity, and CH

transformations for the operators O4i,
~O44, and

~O4ii on
each gauge configuration are shown in Table II. The nota-
tion ‘‘Im’’ includes the factor i of the imaginary part of
each operator.

3. Correlations between the nucleon propagator
and the loop

When determining the correlation between the appro-
priate parts of the nucleon propagator and the loop, we

TABLE I. Table showing the outcome of the CH and parity transformations on the combinations of nucleon propagators with equal
and opposite momenta. Up is the parity transformed gauge link.

Nucleon Propagators CH Transformations Parity

Tr½�GNNðt; ~p;UÞ� Tr½�GNNðt;� ~p;U	Þ�	 Tr½�GNNðt;� ~p;UpÞ�
Tr½�GNNðt; ~p;UÞ� �fTr½�GNNðt; ~p;U	Þ� Odd

�Tr½�GNNðt;� ~p;UÞ� �Tr½�GNNðt;� ~p;U	Þ�g	
Tr½�GNNðt; ~p;UÞ� fTr½�GNNðt; ~p;U	Þ� Even

þTr½�GNNðt;� ~p;UÞ� þTr½�GNNðt;� ~p;U	Þ�g	

TABLE II. Table showing the outcome of the parity transformations, �5 Hermiticity and CH Transformations on current loops. L
stands for current loop and Im includes the factor i of the imaginary part.

Loops Parity �5 Hermiticity CH Transformations �5 Hermiticity & CH Transformations Combined

O4i Odd Imaginary ½L�U ¼ �½LU	 �	 Im½L�U ¼ Im½L�U	
O44 � 1

3 ðO11 þO22 þO33Þ Even Real ½L�U ¼ ½LU	 �	 Re½L�U ¼ Re½L�U	
O4ii � 1

2 ðO4jj þO4kkÞ Even Imaginary ½L�U ¼ ½LU	 �	 Im½L�U ¼ �Im½L�U	
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have to consider the three-point function as a whole. As an
example, if we consider two-point functions with both the
momenta�pi for the operatorO4i, then from Eq. (25), we
get

Xt2�1
t1¼t0þ1

�

pi

Tr½GNO4iNðt2; t1; piÞ� � Tr½GNO4iNðt2; t1;�piÞ�
Tr½�GNNðt2; piÞ�

¼ hxit2 þ const: (28)

So, for O4i which is odd in parity, one can explicitly
consider the odd combination of the nucleon propagators

in Table I, and similarly, the even combinations for ~O44 and
~O4ii, to reduce noise. According to the CH theorem
[47,50,51], the path integral for hOi in QCD is either real

or imaginary (except in the case with chemical potential).
It can be shown from Tables I and II that if we combine the
CH transformation of the nucleon propagators (with the
appropriate combination or parity) and the loop, the three-
point functions transform to the positive complex conju-
gate of themselves on the link U for all the 3 D.I. cases
considered here. This, according to the CH theorem,
means that the three-point functions are real. Since, by
using �5 Hermiticity we see that the loops are either real
or imaginary (Table II); one needs to multiply them with
only the real or imaginary part of the nucleon propagators
to make the three-point functions real. For example, the
left-hand side of Eq. (28) can be written as

1

2
½Tr½GNO4iNðt2; t1; piÞ� � Tr½GNO4iNðt2; t1;�piÞ��

¼ 1

2Ng

X
j

�
1

2
½Tr½�GNNðt; pi;U

jÞ� � Tr½�GNNðt;�pi;U
jÞ�� � ImðLoopÞUj ;

þ 1

2
½Tr½�GNNðt; pi;U

	jÞ� � Tr½�GNNðt;�pi;U
	jÞ�� � ImðLoopÞU	j

�

¼ 1

2Ng

X
j

ImfTr½�GNNðt; pi;U
jÞ� � Tr½�GNNðt;�pi;U

jÞ�g � ImðLoopÞUj ; (29)

where Ng is the number of gauge configurations. As illus-
trated above, one can exclude the real part of the nucleon
propagator and the real part of the loop for O4i operator
which contributes to noise with finite number of noise
vectors. The utilization of �5 Hermiticity and CH theorem
has been shown to reduce noise effectively in the loop
calculation of the quark angular momentum [47]. Similar
procedures can be applied to the other two operators. We
show in Table III the relevant parts of the nucleon propa-
gator(s) and the corresponding loop in each row which are
to be correlated on each gauge configuration.

B. Complex Z2 noise and unbiased subtraction method

As we mentioned in Sec. II B, it is a numerical challenge
to evaluate the quark loop. We shall adopt the complex Z2

noise with unbiased subtraction to calculate it.
The basic idea of the complex Z2 noise method [53] is

to construct L noise vectors, �1; �2 . . . . . .�L (each of

dimension N � 1), where �j ¼ f�j
1; �

j
2; . . .�

j
Ng, in order

to stochastically estimate the inversion of an N � N

matrix. Each element �j
n takes one of the four values,

1ffiffi
2
p f�1� ig, chosen independently with equal probability.

They have the properties of a white noise

h�ii ¼ lim
L!1

1

L

XL
n¼1

�n
i ¼ 0;

h�yi �ji ¼ lim
L!1

1

L

XL
n¼1

�yni �n
j ¼ �ij; �yi �i ¼ 1:

(30)

Then, the expectation value of the matrix element M�1ij is

obtained by solving for Xi in the matrix equations MX ¼
�, so that

E½M�1ij � ¼ h�yj Xii ¼
X
k

M�1ik h�yi �ki ¼ M�1ij : (31)

It has been shown [53–55] that the variance correspond-
ing to the estimator is given by

TABLE III. The relevant parts considered for D.I. calculations for the nucleon propagator and
the corresponding loops based on parity, �5 Hermiticity, and CH theorem.

Nucleon Propagators Loops

Im½Tr½�GNNðt; ~p;UÞ� � Tr½�GNNðt;� ~p;UÞ�� Im½O4i�
Re½Tr½�GNNðt; 0;UÞ�� Re½O44 � 1

3 ðO11 þO22 þO33Þ�
Im½12 ½Tr½�GNNðt; pi;UÞ� þ Tr½�GNNðt;�pi;UÞ��� Im½O4ii � 1

2 ðO4jj þO4kkÞ�
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�2
M ¼

1

L

XN
m�n

jM�1m;nj2; (32)

which is minimal, since it does not involve the positive
contribution from the diagonal matrix elements as do in
other type of noises, such as the Gaussian noise. It is in this
sense, Z2 noise is considered optimal [53–55]. Similarly,
one can show that ZðNÞ and Uð1Þ noises are also optimal.

It has been further shown that the off-diagonal matrix
element contributions to the variance in Eq. (32) can be
reduced by subtracting a judiciously chosen set of traceless

N � N matrices QðpÞ [47,52,55], which satisfyPN
n¼1 Q

ðpÞ
n;n ¼ 0; p ¼ 1; � � � ; P. Then the expectation value

is unchanged when M�1 is substituted with M�1 �P
P
p¼1 �pQ

ðpÞ (�p is a constant)

E½h�yðM�1 � XP
p¼1

�pQ
ðpÞÞ�i� ¼ TrM�1; (33)

while the variance becomes

�2
M ¼ Var

��
�y

�
M�1 � XP

p¼1
�pQ

ðpÞ
�
�

��

¼ 1

L

XN
m�n

								M�1m;n �
XP
p¼1

�pQ
ðpÞ
m;n

								
2

: (34)

So, with a judicious choice of traceless matrix, the variance
may be reduced when the off-diagonal matrix elements of

QðpÞ are correlated with those of M�1. This subtraction is
unbiased, because it does not change the expectation value
of the trace. The natural choice for the set of traceless
matrices is the hopping parameter expansion of the inverse
of the Wilson fermion matrix, M [55], given by

M�1 ¼ I þ �Dþ �2D2 þ �3D3 þ � � � ; (35)

where

Dx;y ¼
X4
�¼1
½ð1� ��Þ��Uab

� ðxÞ�x;y�a�

þ ð1þ ��Þ��Uyab� ðx� a�Þ�x;yþa��; (36)

which is off-diagonal in space-time.
In evaluating the quark loop, we shall consider the

following subtraction

h�yQ0½M�1 � ðI þ �Dþ �2D2 þ �3D3 þ . . .Þ��i
þ traces; (37)

where Q0 represent operators between the fermion fields in

O4i,
~O44, and

~O4ii. Traces may arise while combining the
operators Q0 with the hopping expansion in Eq. (35),
leading to nonzero traces at certain power(s) of D. In this
case, one needs to evaluate these traces and add them back
to cancel out those which are subtracted out in the noise
estimation. The details of the trace calculations for these
operators are given in Appendix B. Since the calculations
of traces are cumbersome for large loops, we will restrict
ourselves only up to �4D4 for two-index operators and
�3D3 for three-index operators. We shall now discuss these
trace terms here.

1. Traces for two-index operators O4i and O��

Since Q0 for O4i and O�� are point-split, the traces for

the first subtraction terms, i.e. TrðQ0IÞ, are zero. So we can
use it for subtraction. However, from Appendix B, we see
that the noise estimate is real for O4i while the exact loop
TrðQ0M�1Þ is imaginary (see Sec. III A). Similarly, the
noise estimate is imaginary for O�� while the exact loop

TrðQ0M�1Þ is real. Therefore, there is no use to include this
subtraction term. The subtraction with �2D2 and �4D4

terms in the hopping expansion are also traceless, since
the multiplication of Q0 to these terms does not lead to a
plaquette which is the lowest order in � that contributes to a
trace. On the other hand, the �D and �3D3 terms can lead
to a plaquette, thus can have nonzero traces. Since the
operators, O4i and O��, lead to different traces, we shall

consider them separately.
In the case of O4i, the contribution from the hopping

expansion terms �D, �2D2, �3D3 and �4D4 are traceless
(Appendix B). One does not have to worry about the
complication of having to add back the trace contributions.
But, O�� operator has nonzero traces when combined

with �D and �3D3 (see Appendix B for a full derivation).
The trace for the �D term is �

8a 96�V3, where V3 is the

three-volume of the lattice used, and � ¼ þ1 for� ¼ � ¼
1, 2, 3, and � ¼ �1 for � ¼ � ¼ 4. And, for �3D3 [see
Fig. 2(a)], it is

�

8a
32�3

X
~x1

X
m

X
�0��

Re½fU�0 ðx1 þ a�ÞUy�ðx1 þ a�0 ÞUy�0 ðx1ÞU�ðx1Þ þU�ðx1ÞUy�0 ðx1 þ a� � a�0 ÞUy�ðx1 � a�0 Þ

�U�0 ðx1 � a�0 Þ þU�ðx1 � a� þ a�0 ÞUy�0 ðx1ÞUy�ðx1 � a�ÞU�0 ðx1 � a�Þ þU�0 ðx1 � a�0 ÞUy�ðx1 � a�Þ
�Uy

�0 ðx1 � a� � a�0 ÞU�ðx1 � a� � a�0 Þgmm�: (38)

These traces need to be added as shown in Eq. (37).
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2. Traces for three-index operators

For the three-index operator, the noise estimator is real
for the first term, I. But from �5 Hermiticity we see that the

loop for ~O4ii is imaginary. Thus, it is not useful to consider
this term in subtraction. Up to �3D3, the only trace con-
tribution comes from the �2D2 term, which is (see
Appendix B for a full derivation)

1

24a2
16�2

X
~x1

�X
m

ImfUy4 ðx1 � aiÞUiðx1 � aiÞU4ðx1Þ

�Uyi ðx1 þ a4 � aiÞgmm

þX
m

ImfU4ðx1 � a4 þ aiÞUyi ðx1ÞUy4 ðx1 � a4Þ

�Uiðx1 � a4Þgmm

�
: (39)

The graphical representation for this trace is illustrated in
Fig. 2(b).

3. Numerical test

It is necessary to check that the analytical calculations
for trace for each subtraction term is correct. In order to do
that we have to calculate the subtraction terms exactly. We
did it on a smaller (44) lattice as described below.

From the matrix equation MX ¼ �, we have

X�y ¼ M�1��y

¼ ðI þ �Dþ �2D2 þ �3D3 þ �4D4 þ � � �Þ��y:
(40)

From Eq. (40) we see that we can exactly calculate M�1
i.e. each subtraction term, only if ��y is a unit matrix. By
choosing the following orthogonal set of vectors f�ig

f�ig ¼

8>>>>>><
>>>>>>:

1
0
0
..
.

..

.

0
BBBBBBB@

1
CCCCCCCA
;

0
1
0
..
.

..

.

0
BBBBBBB@

1
CCCCCCCA
;

0
0
1
..
.

..

.

0
BBBBBBB@

1
CCCCCCCA
; . . . ;

..

.

..

.

0
0
1

0
BBBBBBB@

1
CCCCCCCA

9>>>>>>=
>>>>>>;
; (41)

we obtain ��y ¼ 1
L

P
L
i �i�

y
i ¼ 1. Using these vectors,

we compute I; �D; �2D2; � � � for each operator. We have
found that our numerical results matched with those of
analytical expressions e.g. for O4i operator, the terms �D,
�2D2, �3D3, and �4D4 terms have no traces.

IV. RENORMALIZATION

The physical matrix elements, which are determined
from a linear extrapolation to the chiral limit, are extracted
in lattice units from the Monte Carlo calculation. In order
to relate to the experimental values, they have to be ex-
pressed in physical units and renormalized at a certain
scale. The renormalized operators, at a finite energy scale
�, are related to the bare lattice operators through the
renormalization constant

O ð�Þ ¼ ZOða�; gðaÞÞOðaÞ; (42)

where g is the bare coupling constant, which is equal to one
in our case. The renormalization constants, Z’s, are com-
puted by using perturbation theory. We will use the values
of Z factors, which are computed in [56] by using tadpole-
improved perturbation theory [57]. Since the experimental

results are often renormalized in the MS scheme, we will
also use the calculated Z factors matched to this scheme. In
the quenched approximation, the renormalization con-
stants are

ZOða�; g	Þ ¼ u0
unD0

�
1� g	2

16�2
CF

�
�O lnða�Þ þ BMS

O

þ ðnD � 1Þ8�2Z0

�
þOðg	4Þ

�
; (43)

(a) (b)

FIG. 2. Plaquette terms (a) for the operator O�� when �3D3 term is considered and (b) for O4ii when �2D2 term is considered.
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where

u0 ¼
�
1

3
TrUplaq

�
1=4

; g	2 ¼ g2

u40
;

CF ¼ 4

3
; Z0 ¼ 0:155;

(44)

and �O is the anomalous dimension of the operator, �BO is
the finite part of ZO, and nD is the number of covariant

derivative(s) in the operator. We list the values �O and �BMS
O

in Table IV for the three operators we consider.
Our inverse lattice spacing is determined to be 1=a ¼

1:74 GeV [47] by using nucleon mass. The value of u0 ¼
h13 TrUplaqi1=4 ¼ 0:88 is obtained from Ref. [58]. By using

all the relevant factors for a particular operator, we get the
renormalization factors at � ¼ 2 GeV (�2 ¼ 4 GeV2)
scale for the following operators as

O 4i: ZO4i
¼ 0:972; ~O44: ZO44

¼ 0:953;

~O4ii: ZO4ii
¼ 1:116:

(45)

Also, in the tadpole-improved mean-field approach,
there is a finite ma correction factor f for the Wilson
fermion in the case of fermion bilinear operators [44,58,59]

f ¼ emqa

8�c

1

h13 TrUplaqi1=4
; mqa ¼ ln

�
4�c

�
� 3

�
; (46)

with the critical �c ¼ 0:1568 [58]. The values of f for � ¼
0:154, 0.155, and 0.1555 (which are used for our calcula-
tions) are 0.972, 0.948, and 0.936, respectively.

V. NUMERICAL PARAMETERS AND ERROR
STUDIES

We use 500 gauge configurations on a 163 � 24 lattice
generated with Wilson action at � ¼ 6:0 in the quenched
approximation. They are produced by the pseudoheatbath
algorithm with 10 000 sweeps between consecutive con-
figurations. The values of the hopping parameter we have
used are � ¼ 0:154, 0.155 and 0.1555. For the discon-
nected insertion, we shall define two �’s for the quark
masses: �v for valence quarks, and �sea for sea quarks.

For the strange quark currents we have fixed �sea ¼ 0:154,
which is close to the strange quark mass as determined
from the  meson mass and kv takes the values of 0.154,
0.155, and 0.1555. The critical hopping parameter, �c ¼
0:1568 is obtained by a linear extrapolation to the zero pion
mass [58]. Using the nucleon mass to set the lattice spacing
at a ¼ 0:11 fm, the corresponding pion masses are 650(3),
538(4), and 478(4) MeV, and the nucleon masses are
1291(9), 1159(11), and 1093(13) MeV, respectively. We
have used Dirichlet boundary condition in the present
work. We should note that there is a large uncertainty in
determining the lattice spacing in the quenched approxi-
mation, as much as �20%. For example, using r0 ¼
0:5 fm to set the scale, the lattice spacing would be a ¼
0:09 fm. Thus, using this scale, the dimensionful quantities
will be shifted by �20%. Since we are calculating the
moments hxi and hx2i which are dimensionless, the results
we report here will not depend on the scale of the lattice
spacing except for the renormalization constant which has
an negligible difference between these two lattice spacings.
(i) For the connected insertion, we have chosen the

number of independently generated gauge configu-
rations to be 200, and for disconnected insertion it is
500. The maximum number of noise, used for DI, is
400 for each gauge configuration.

(ii) The error analysis has been performed by using the
jackknife procedure [60,61]. Since the computa-
tions for all the time slices and quark masses has
been performed using the same set of gauge con-
figurations, the data we obtain are correlated in
Euclidean time. The correlation among different
quantities are taken into account by constructing
the corresponding covariance matrices [62–64].
The error bars are obtained by using this method.
In order to extract various physical quantities, we
have used correlated least-	2 fits.

A. Error studies in DI

Since noise estimate plays an essential role for the case
of the disconnected insertion, we shall study the effect of
number of noise and gauge configurations on the error for
the signal we are extracting. We will present a few results
of such studies before discussing the results for the mo-
ments of the quark distribution.
The standard error due to the Z2 noise estimation of the

loop averaged over the gauge configurations is given by
[65–67]

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

g

Ng

þ �2
n

NnNg

vuut : (47)

where �2
g is the variance of the ensemble of gauge con-

figurations, �2
n is the variance coming from the noise

estimator, and Ng and Nn are number of gauge configura-

tions and noise estimator, respectively.

TABLE IV. The values of �O and BMS
O for all the three opera-

tors under consideration.

Operators �O BMS
O

O4i
16
3 1.279

~O44
16
3 2.561

~O4ii
25
3 �12:128
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To make sure that our results are generated correctly, we
verify that their errors are in conformity with Eq. (47) and
extract the standard deviations �g and �n from the existing

data with and without unbiased subtractions.
In Figs. 3(a) and 3(b), we plot the errors of the noise

estimation for the loop part of the currentO4i in Eq. (47) at
the time slice 14 against the number of gauge configura-
tions for 30, 100 and 400 noise without unbiased subtrac-
tion and with four subtraction terms (�D, �2D2, �3D3 and
�4D4), respectively. The errors on the errors are obtained
by using the double jackknife method on the data. After
fitting for �2

g and �2
n from Eq. (47), we see that all the

curves can be well described by Eq. (47). Similarly, we plot
the errors against the number of noises for 100, 250 and
500 gauge configurations without subtraction and with four
subtraction terms in Figs. 4(a) and 4(b) respectively. Again,

we see that the curves fit Eq. (47) well. A similar con-
clusion can be drawn for the other two operators. The
central values of the standard deviations, �g and �n along

with their errors are given in Table V for the cases with and
without subtractions. These values show that the standard
deviations for the gauge configuration and noise ensemble
are not of the same order. The standard deviation for noise
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FIG. 3 (color online). Errors of the noise estimation plotted against the number of configurations for different sets of noise vectors
for the loop part of the current, O4i at �v ¼ �sea ¼ 0:154 and insertion time, t1 ¼ 14 (a) without subtraction and (b) with four
subtraction terms.
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FIG. 4 (color online). Errors of the noise estimation plotted against the number of noise vectors for different sets of configurations
for the loop part of the current O4i at �v ¼ �sea ¼ 0:154 and insertion time, t1 ¼ 14 (a) without subtraction and (b) with four
subtraction terms.

TABLE V. Table for the values of standard deviations of gauge
configurations and noise for the current O4i without subtraction
and with four subtraction terms.

�gauge �noise

No Subtraction 0:204� 0:063 9:341� 0:301
With 4 Subtractions 0:205� 0:028 5:500� 0:201
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are, in fact, much higher than that for the gauge configu-
ration. Another point to note is that the standard deviation
�n for the noise is reduced by almost a half with 4-term
unbiased subtraction whereas �g remains the same.

B. Analysis for DI

As mentioned in Sec. II C 2, we have studied five differ-
ent methods of summation over insertion time by using the
operator O4i at �v ¼ �sea ¼ 0:154 shown in Fig. 5. In the
first method [48], we have performed the summation of the
current insertion starting and ending 4 time slices away
from each of the boundary. In our case, it would be from 5
to 20 [Fig. 5(a)]. In the second method [47], the summation
has been performed from the source to the sink time of the
nucleon propagator [Fig. 5(b)]. The third method is de-
scribed in [49] [Fig. 5(c)]. The fourth method is an addi-
tional study where the summation has been performed
from (source time þ1) to (sink time þ1) of the nucleon
propagator [Fig. 5(d)]. The fifth method used in [46] and
described in Sec. II C 2 [Fig. 6(a)]. In this method, the

summation has been performed from (source time þ1) to
(sink time �1) of the nucleon propagator. In the first,
second, fourth, and fifth methods, the slopes (given by
Eq. (25)) are fitted between the time slices 10 and 14 in
order to extract the signal. And in the third method, a
constant is fitted between 11 and 14. The values are pro-
vided in Table VI. We see that the all these methods are
consistent with each other. For our present work, we adopt
the fifth method.

C. Multiple sources for DI

In the case of D.I., we have the liberty of choosing quark
propagators at different source locations on the lattice with
much less overhead that the C.I. computation which in-
volves generating additional quark propagators using the
sequential source method. We correlate these nucleon
propagators at different source locations with the already
computed loop to increase statistics. We have used 1, 4,
and 16 different sources. This results in significant reduc-
tion of error bars which is presented in Sec. VI.
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FIG. 5 (color online). The ratio (D.I.) of the three-point to two-point functions at �v ¼ �sea ¼ 0:154 for the O4i operator is plotted
against the nucleon sink time (t2) by using four different methods: (a) summation of insertion time from 5 to 20, (b) summation of
insertion time from source to sink time, (c) method used in R. Lewis et al. [49], and (d) summation of insertion time from (source time
þ1) to (sink time þ1).
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VI. RESULTS

In this section, we will present results for the first and
second moments of nucleon’s parton distribution function
for both the disconnected insertion and the connected
insertion.

A. Disconnected insertions

The disconnected insertion [Fig. 1(b)] entails the corre-
lation between the quark loops with up, down, and strange

quark currents and the nucleon two-point propagators as
discussed in Sec. II B. We consider the up and down to
have the same mass so that their moments are the same.

1. First moments

First, we will discuss the results for the first moments
from the O4iði ¼ 1; 2; 3Þ operator for the case where the
valence quarks in the nucleon propagators and the sea
quark in the loop are the same. This is the case, when
extrapolated to the physical u=d quark mass would give the
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FIG. 6 (color online). The ratio of the three-point to two-point functions (summed over insertion time) for the O4i operator, for the
case with equal valence and sea quark masses, is plotted against the nucleon sink time (t2) at (a) �v ¼ �sea ¼ 0:154,
(b) �v ¼ �sea ¼ 0:155, and (c) �v ¼ �sea ¼ 0:1555. (d) is a linear extrapolation to the chiral limit for the first moment, hxiu;d,
(D.I.) of the up (down) quark which is plotted against mqa.

TABLE VI. Table for the values of hxi (D.I.) at �v ¼ �sea ¼ 0:154 for the O4i operator by using five different methods.

Methods Fitting Range No Subtraction 4 Subtractions

Summation from 5 to 20 10–14 0:011� 0:019 0:030� 0:012
Summation from source to sink time 10–14 0:007� 0:013 0:029� 0:009
R. Lewis et al. [49] 11–14 0:000� 0:012 0:027� 0:009
Summation from (source time þ1) to (sink time þ1) 10–14 �0:002� 0:014 0:026� 0:010
Current analysis 10–14 0:004� 0:012 0:028� 0:008
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disconnected insertion result for the u and d quarks. We
average over the three spatial directions on each configu-
ration. From now on, O4i stands for the average over 1, 2
and 3 directions.

We now consider the cases with equal valence and sea
quark masses, i.e. �v ¼ �sea ¼ 0:154, 0.155, and 0.1555 in
order to extrapolate to the chiral limit to obtain hxiuþ �u ¼
hxidþ �d ¼ hxiu;d (D.I.). In Figs. 6(a)–6(c) we plot the ratios

in Eq. (25) against the nucleon sink time t2. The insertion
time is summed from [source timeþ1] (i.e. t0 þ 1) to [sink
time�1] (i.e. t2 � 1). In these figures, we see that, after the
unbiased subtraction of four terms, there is a clear straight
line behavior starting from the time slice 10. On the other
hand, without the unbiased subtraction, there is not a clear
signal. In fact, they are consistent with zero slopes. Also,
the plots show that the error bars get reduced after sub-
traction by a factor of �1:5. To extract the values of hxiu;d
at each �v, we have performed a correlated fit of the slopes
between the time slices 10 and 14. It gives us the value of
the hxiu;d (D.I.) at the corresponding �v. The values of

hxiu;d (D.I.), along with their errors, are listed in Table VII.
In chiral perturbation theory, the first moment of hxi has

a leading nonanalytic behavior / m2
� lnðm2

�=�
2Þ and lead-

ing analytic behavior / m2
� [68–71]. Since our pion masses

are relatively heavy, we do not expect to be in the region
where the nonanalytic behavior is important. Furthermore,
our present calculation is based on the quenched approxi-
mation. In view of this and other systematic errors that we
have not taken into account, such as the large volume limit
and continuum limit, we shall take the conservative linear
extrapolation of hxiu;d to the chiral limit with the form Aþ
Bmqa [Fig. 6(d)]. This linear extrapolation will inevitably

introduce systematic errors. This issue will be dealt with
when the configurations with lighter quark masses are
available. We will certainly include the nonanalytic behav-
ior when the results from the PAC-CS 2þ 1-flavor dy-
namical clover fermion configurations are available with
lighter sea quark masses [72]. Before extrapolation, we
have converted the values of hxiu;d (D.I.) to those of

tadpole-improved values by using the factors in Eq. (46).

We did the similar analysis for the cases with 4 and 16
nucleon sources. Figure 7 shows the ratios between three-
point to two-point functions for all the sources with 4
subtractions, and Fig. 8(a) shows the linear extrapolation
to the chiral limit. In Table VII, we list the renormalized
and linearly extrapolated values (to the chiral limit) of
hxiu;d along with their errors. As stated in Eq. (45), the

renormalization factor for this operator is 0.972. We find
that the values for hxiu;d are about 3� away from zero for

one and four sources and more than 5� for 16 sources. We
consider this a solid affirmation that we have been able to
calculate the D.I. of hxiu;d via the noise method.

Next, we consider the strange quark loop. This time we
have fixed �sea ¼ 0:154 which corresponds to the strange
quark mass. In Figs. 9(a)–9(c), we have plotted the ratio in
Eq. (25) against the nucleon sink time by using the valence
quark masses at �v ¼ 0:154, 0.155, and 0.1555, respec-
tively. A similar procedure has been followed as for the up
(down) currents to obtain the slopes, which gives the values
of hxisþs. Again, from these figures, it is clear that if we do

TABLE VII. hxi (D.I.) for up (down) and strange quarks at various �’s and the linearly extrapolated results to the chiral limit with
different number of nucleon sources for O4i operator.

1 source (No sub) 1 source (4 sub) 4 sources (4 sub) 16 sources (4 sub)

hxiu;d (D.I.) �v ¼ �sea ¼ 0:154 0:004� 0:012 0:028� 0:008 0:013� 0:005 0:016� 0:003
�v ¼ �sea ¼ 0:155 0:009� 0:017 0:037� 0:012 0:018� 0:007 0:022� 0:004
�v ¼ �sea ¼ 0:1555 0:011� 0:022 0:044� 0:014 0:021� 0:008 0:025� 0:005
Linear Extrapolation 0:033� 0:058 0:056� 0:019 0:028� 0:011 0:032� 0:006

hxisþ�s (D.I.) �v ¼ 0:154, �sea ¼ 0:154 0:004� 0:012 0:028� 0:008 0:013� 0:005 0:016� 0:003
�v ¼ 0:155, �sea ¼ 0:154 0:005� 0:017 0:034� 0:011 0:016� 0:006 0:020� 0:004
�v ¼ 0:1555, �sea ¼ 0:154 0:004� 0:021 0:038� 0:014 0:017� 0:008 0:023� 0:004

Linear Extrapolation 0:005� 0:029 0:046� 0:018 0:021� 0:010 0:027� 0:006
hxisþ�s

hxiuþ �u
0:69� 0:64 0:85� 0:13 0:95� 0:18 0:88� 0:07
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FIG. 7 (color online). The ratio of the three-point to two-point
functions for the O4i operator is plotted against the nucleon sink
time (t2) at �sea ¼ 0:154 and �v ¼ 0:154 for 1, 4, and 16 sources
after 4 subtractions.
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FIG. 8 (color online). Linear extrapolation to the chiral limit for the first moment with 1, 4, and 16 nucleon sources (a) for hxiu;d
(D.I.), and (b) for hxisþs (D.I.).
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FIG. 9 (color online). The ratio of the three-point to two-point functions (summed over insertion time) for the O4i operator, for the
strange quark which is fixed at �sea ¼ 0:154, is plotted against the nucleon sink time (t2) at (a) �v ¼ 0:154 and �sea ¼ 0:154,
(b) �v ¼ 0:155 and �sea ¼ 0:154, and (c) �v ¼ 0:1555 and �sea ¼ 0:154. (d) is a linear extrapolation of the valence quarks to the chiral
limit for the first moment, hxisþs (D.I.) of the strange quarks, plotted against ð �mþmsÞa.
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not use unbiased subtraction, we will not see a signal. The
error bars get reduced after subtraction. The linear extrapo-
lation to the chiral limit is performed with the form Aþ
Bð �mþmsÞ where ð �mþmsÞ / m2

K, with �m being the aver-
age of the up and down quark masses and ms being the
strange mass. In Table VII, we have listed values of hxisþ�s

(D.I.) for different �v’s and fixed �sea. Also listed are the
linearly extrapolated values of hxisþ�s (D.I.) to the chiral
limit. Again, we find that the value for hxisþ�s is 4:5� away
from zero for 16 sources. We have also listed the ratio of
hxisþ�s (D.I.) to hxiuþ �u (D.I.) in Table VII. We see that the
ratio is close to 1 as expected [36]. We should point out the

TABLE VIII. Table for the values of hxi (D.I.) for up (down) and strange quarks at various kappa values and after linear extrapolation
to the chiral limit with different number of nucleon sources for the O44 � 1

3 ðO11 þO22 þO33Þ operator.
1 source (No sub) 1 source (4 sub) 4 sources (4 sub) 16 sources (4 sub)

hxiu;d (D.I.) �v ¼ �sea ¼ 0:154 0:045� 0:044 0:033� 0:040 0:025� 0:026 0:038� 0:020
�v ¼ �sea ¼ 0:155 0:075� 0:056 0:059� 0:053 0:032� 0:035 0:046� 0:027
�v ¼ �sea ¼ 0:1555 0:095� 0:065 0:073� 0:060 0:034� 0:042 0:049� 0:033
Linear Extrapolation 0:130� 0:081 0:095� 0:071 0:037� 0:050 0:058� 0:043

hxisþ�s (D.I.) �v ¼ 0:154, �sea ¼ 0:154 0:045� 0:044 0:033� 0:040 0:025� 0:026 0:038� 0:020
�v ¼ 0:155, �sea ¼ 0:154 0:067� 0:056 0:047� 0:050 0:026� 0:034 0:041� 0:027
�v ¼ 0:1555, �sea ¼ 0:154 0:087� 0:065 0:062� 0:057 0:026� 0:039 0:041� 0:033

Linear Extrapolation 0:114� 0:080 0:077� 0:068 0:026� 0:048 0:043� 0:042
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FIG. 10 (color online). The ratio of the three-point to two-point functions (summed over insertion time) of theO4ii � 1
2 ðO4jj þO4kkÞ

operator, for up (down), is plotted against the nucleon sink time t2 at (a) �v ¼ �sea ¼ 0:154, (b) �v ¼ �sea ¼ 0:155, and
(c) �v ¼ �sea ¼ 0:1555. (d) is the linear extrapolation to the chiral limit for the second moment, hx2iu;d (D.I.) of the up (down)

quarks, plotted against mqa.
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caveat that these results are based on the linear extrapola-
tion to the chiral limit which are subjected to systematic
corrections as mentioned above. The ratio is expected to be
less susceptible to the systematic errors except the chiral
extrapolation due to the nonanalytic terms. In view of the
fact that the lattice calculations of both the hxiuþd and
hxiu�d for the connected insertions at quark masses be-
tween the strange and the physical u=d mass are all larger
than the respective experimental results (see Table XII in
Sec. VI B), we expect the ratio of hxisþ �s (D.I.) to hxiuþ �u

(D.I.) for the physical u=d mass to be larger than that
obtained with a linear extrapolation to the chiral limit.

We have performed the same analysis for theO44 � 1
3 �

ðO11 þO22 þO33Þ operator as in the case of the O4i

operator. The only difference is that we have used the
nucleon with zero momentum in this case. But, due to
the subtraction of the spatial trace terms in the current, it
has significant numerical cancellations resulting in large
statistical errors [26,28]. The error bar of the slope is�3�
7 times larger than that of O4i operator. Because of this
large error, the signal is only�1� to 1:5� away from zero

shown in Table VIII. This happens for both hxisþ�s and
hxiu;d (D.I.) for this operator.

2. Second moments

We will now present the results for the second moments
obtained by using the current O4ii � 1

2 ðO4jj þO4kkÞði �
j � k; i; j; k ¼ 1; 2; 3Þ for up (down) and strange quarks
(see Figs. 10–13). We average over the results from the
three operators:O411 � 1

2 ðO422 þO433Þ,O422 � 1
2 ðO433 þ

O411Þ, and O433 � 1
2 ðO411 þO422Þ. So O4ii � 1

2 �ðO4jj þO4kkÞ will mean average over 1, 2 and 3 directions

from now on. In addition, we have used three subtraction
terms (�D, �2D2, and �3D3). For this operator, we have
performed the same analysis as for the operators for the
first moments, with the fitting done from t2 ¼ 11 to 14. The
values are presented in Table IX. Unfortunately, we did not
see any clear signal either for hx2iu;dð¼ hx2iu� �u ¼ hx2id� �dÞ
or for hx2is��s, even with unbiased subtractions and multi-
ples sources. The statistical errors are large and the error
bars overlap either with zero or the signal is at best 1� to
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FIG. 11 (color online). The ratio of the three-point to two-point functions (summed over insertion time) of theO4ii � 1
2 ðO4jj þO4kkÞ

operator, for strange quarks, is plotted against the nucleon sink time t2 at (a) �v ¼ 0:154 and �sea ¼ 0:154, (b) �v ¼ 0:155 and
�sea ¼ 0:154, and (c) �v ¼ 0:1555 and �sea ¼ 0:154. (d) is the linear extrapolation to the chiral limit for the second moment, hx2is�s
(D.I.), of the strange quarks, plotted against ð �mþmsÞa.
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1:5� away from zero for various nucleon sources. For the
best case (16 nucleon sources), the range for hx2iu;d is

[0.0035, 0.0127] and that for hx2is� �s is [0.0016, 0.0102].
We conclude that they are consistent with zero in the
present calculation.

B. Connected insertions

In this section, we will present the results for the first and
second moments for the case of connected insertions. We
will consider both up and down quark currents. Unlike in
D.I., they are different in the case of C.I. As stated earlier,
we consider nucleon momentum in the x-direction only
and we fix the nucleon sink time at t2 ¼ 16.

1. First moments

First, we will discuss the results for the first moments by
using the current O41 for up quarks. In Figs. 14(a)–14(c),
we plot the ratio in Eq. (22) against the current insertion
time t1 for �v ¼ 0:154, 0.155, and 0.1555, respectively. In
these figures, we see that there is a plateau region from the
time slice 9 to 13. To extract the values of hxiuþ �u (C.I.) at
each �v, we fit a constant between the time slice 9 to 13.
These values and the corresponding errors are listed in
Table X.
After obtaining hxiuþ �u (C.I.) at finite quark mass, we

then linearly extrapolate the valence quarks to the chiral
limit. Before extrapolation, we have converted the values
of hxiuþ �u (C.I.) to those of tadpole-improved values by
using the factors in Eq. (46). As in the case of hxiu;d (D.I.),
we have extrapolated with the form Aþ Bmqa. In Table X,
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FIG. 13 (color online). Linear extrapolation to the chiral limit for the second moment with 1, 4, and 16 nucleon sources (a) for
hx2iu;d, (D.I.), and (b) for hx2is�s (D.I.).
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FIG. 12 (color online). The ratio of the three-point to two-
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2 ðO4jj þO4kkÞ operator is plotted
against the nucleon sink time t2 at �v ¼ 0:154 and �sea ¼ 0:154
for 1, 4, and 16 sources after 3 subtractions.

TABLE IX. hx2i (D.I.) for up (down) and strange quarks at various �’s and the linearly extrapolated results to the chiral limit with
different number of nucleon sources.

1 source (No Sub) 1 source (4Sub) 4 sources (4Sub) 16 sources (4Sub)

hx2iu;d (D.I.) �v ¼ �sea ¼ 0:154 0:0020� 0:0060 0:0004� 0:0035 0:0018� 0:0021 0:015� 0:0011
�v ¼ �sea ¼ 0:155 0:0056� 0:0098 0:0043� 0:0620 0:0049� 0:0036 0:0031� 0:0020
�v ¼ �sea ¼ 0:1555 0:0122� 0:0133 0:0098� 0:0089 0:0092� 0:0052 0:0052� 0:0028
Linear Extrapolation 0:0195� 0:0213 0:0168� 0:0144 0:0150� 0:0084 0:0081� 0:0046

hx2is��s (D.I.) �v ¼ 0:154, �sea ¼ 0:154 0:0020� 0:0060 0:0004� 0:0035 0:0018� 0:0021 0:015� 0:0011
�v ¼ 0:155, �sea ¼ 0:154 0:0048� 0:0099 0:0033� 0:0061 0:0043� 0:0036 0:010� 0:0071
�v ¼ 0:1555, �sea ¼ 0:154 0:0086� 0:0134 0:0061� 0:0086 0:0071� 0:0050 0:0039� 0:0027

Linear Extrapolation 0:0132� 0:0210 0:0108� 0:0137 0:0113� 0:0079 0:0059� 0:0043
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we have listed the renormalized linearly extrapolated value
of hxiuþ �u (C.I.). As stated in Eq. (45), the renormalization
factor for this operator is 0.972.

Next, we consider the current for the down quark
[Figs. 15(a)–15(d)]. Similar procedure is followed as for
the up quarks to obtain the constants, which give the values
of hxidþ �d ’s. Again, the fitting is performed from the in-
sertion time 9 to 13. The values of hxidþ �d’s and their
corresponding errors are listed in Table X.

Now, we will consider the current O44 � 1
3 �

ðO11 þO22 þO33Þ for both up [Figs. 16(a)–16(d)] and
down quarks [Figs. 17(a)–17(d).] The fitting is performed
from the insertion time 9 to 11 for both up and down quark
currents. The values of the hxiuþ �u and hxidþ �d (C.I.) for this
operator, along with their errors, are listed in Table X. The
renormalization factor for this current is 0.953 as obtained
from Eq. (45).

2. Second moment

For the second moment, we consider the operatorO411�
1
2 ðO422 þO433Þ for both the up [Figs. 18(a)–18(d)] and
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FIG. 14 (color online). The ratio of the three-point to two-point functions (C.I.), with fixed sink time at t2 ¼ 16, for theO41 operator,
for up quarks, is plotted against the current insertion time (t1) at (a) �v ¼ 0:154, (b) �v ¼ 0:155, and (c) �v ¼ 0:1555. (d) is a linear
extrapolation to the chiral limit plotted against mqa.

TABLE X. Table for the values of hxi (C.I.) for up and down
quarks at various kappa values and after linear extrapolation to
the chiral limit for the O41 and O44 � 1

3 ðO11 þO22 þO33Þ
operators.

hxi41uþ �u (C.I.) �v ¼ 0:154 0:463� 0:014
�v ¼ 0:155 0:448� 0:021
�v ¼ 0:1555 0:432� 0:027

Linear Extrapolation 0:408� 0:038
hxi41

dþ �d
(C.I.) �v ¼ 0:154 0:193� 0:007

�v ¼ 0:155 0:179� 0:011
�v ¼ 0:1555 0:168� 0:014

Linear Extrapolation 0:148� 0:019
hxi44uþ �u (C.I.) �v ¼ 0:154 0:491� 0:013

�v ¼ 0:155 0:466� 0:019
�v ¼ 0:1555 0:458� 0:025

Linear Extrapolation 0:420� 0:035
hxi44

dþ �d
(C.I.) �v ¼ 0:154 0:224� 0:007

�v ¼ 0:155 0:209� 0:010
�v ¼ 0:1555 0:203� 0:013

Linear Extrapolation 0:181� 0:018
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down [Figs. 19(a)–19(d)] quarks. We did the similar analy-
sis as in the case of the first moments. The fitting is
performed from the insertion time 9 to 11 for both up
and down quark currents. The values of the hx2iu� �u and
hx2id� �d (C.I.) for this operator, along with their errors, are
listed in Table XI. The renormalization factor for this
current is 1.116 which we have obtained from Eq. (45).

We list our results in comparison with those from pre-
vious calculations in Table XII. Except for our calcula-
tions, other groups have averaged the results of the first

moments obtained from the two operators O41 and O44 �
1
3 ðO11 þO22 þO33Þ. As we can see, all the results agree

with each other within errors.
For the QCDSF calculations at � ¼ 5 GeV2 (second

column), the reported values of hxi are the averages of
two different procedures in [73,74], whereas, the result of
hx2i is obtained from [74]. For both procedures, two differ-
ent lattices (163 � 32 and 243 � 32) are used for several �
values. For the 163 � 32 lattice, the number of gauge
configurations involved is Oð1000Þ and for the 243 � 32
lattice, the number of gauge configurations involved is
Oð100Þ. All the calculations are performed for � ¼ 6:0.
For the calculations at � ¼ 4 GeV2 [75] (third column),
three � values, 0.155, 0.153, and 0.1515, are used on a
163 � 32 lattice. The number of independent gauge con-
figurations involved are 100, 600, and 400 at these �
values, respectively. All the calculations are performed
for � ¼ 6:0 by using standard Wilson action in quenched
approximation.
For the LHPC calculations at � ¼ 4 GeV2 (fourth col-

umn) [76], a 163 � 32 lattice is used for three � values. The
number of gauge configurations used are 200 at � ¼ 6:0
for each of the three �’s in quenched approximation. LHPC
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FIG. 15 (color online). The ratio of the three-point to two-point functions (C.I.), with fixed sink time at t2 ¼ 16, for theO41 operator,
for down quarks, is plotted against the current insertion time (t1) at (a) �v ¼ 0:154, (b) �v ¼ 0:155, and (c) �v ¼ 0:1555. (d) is a linear
extrapolation to the chiral limit plotted against mqa.

TABLE XI. Table for the values of hx2i411(C.I.) for up and
down quarks at various kappa values and after linear extrapola-
tion to the chiral limit for the O411 � 1

2 ðO422 þO433Þ operator.
hx2i411u� �u (C.I.) �v ¼ 0:154 0:128� 0:007

�v ¼ 0:155 0:124� 0:010
�v ¼ 0:1555 0:122� 0:013

Linear Extrapolation 0.117 � 0.018

hx2i411
d� �d

(C.I.) �v ¼ 0:154 0:0504� 0:0035
�v ¼ 0:155 0:0500� 0:0050
�v ¼ 0:1555 0:0532� 0:0066

Linear Extrapolation 0:0521� 0:0091
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calculations are also performed in full (unquenched) QCD
on a 163 � 32 lattice. Four different �’s are used at
� ¼ 5:6 for 200 SESAM configurations and three different
�’s are used at � ¼ 6:0 for 100 SCRI configurations.

From this comparison, we see that our results are com-
parable with other lattice calculations. But all the lattice
calculations for hxiu�d which involves only the C.I. seem to
be larger than the experimental result [83]. This is a well
known problem and is presumably due to the fact that

quark masses are still too heavy compared to the physical
ones [77,78].

VII. CONCLUSION AND DISCUSSION

We have calculated the first and second moments of the
proton’s parton distribution functions for both the con-
nected and disconnected insertions in lattice QCD. The
lattice calculations are carried out on quenched 163 � 24
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FIG. 16 (color online). The ratio of the three-point to two-point functions (C.I.), with fixed sink time at t2 ¼ 16, for the O44 � 1
3 �ðO11 þO22 þO33Þ operator, for up quarks, is plotted against the current insertion time t1 at (a) �v ¼ 0:154, (b) �v ¼ 0:155, and

(c) �v ¼ 0:1555. (d) is a linear extrapolation to the chiral limit plotted against mqa.

TABLE XII. Comparison of results for renormalized first and second moments (connected insertion) in the chiral limit with other
lattice calculations and phenomenology in MS scheme.

Moments

Kentucky

(quenched)

(�2 ¼ 4 GeV2)

QCDSF

(quenched)

(�2 ’ 5 GeV2)

QCDSF

(quenched)

(�2 ¼ 4 GeV2)

LHPC

(quenched)

(�2 ¼ 4 GeV2)

LHPC

(full QCD)

(�2 ¼ 4 GeV2)

Experiment

CTEQ3M

(�2 ¼ 4 GeV2)

hxi41uþ �u 0.408 (38) 0.410(34) 0.452 (26) 0.454 (29) 0.459 (29) 0.284

hxi44uþ �u 0.420 (35)

hxi41
dþ �d

0.148 (19) 0.180 (16) 0.189 (12) 0.203 (14) 0.190 (17) 0.102

hxi44
dþ �d

0.181 (18)

hx2i411u� �u 0.117 (18) 0.108 (16) 0.104 (20) 0.119 (61) 0.176 (63) 0.083

hx2i411
d� �d

0.052 (9) 0.036 (8) 0.037 (10) 0.029 (32) 0.031 (30) 0.025
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lattices with � ¼ 6:0 and quark masses which correspond
to pion masses of 650(3), 538(4) and 478(4) MeV, and
nucleon masses at 1291(9), 1159(11), and 1093(13) MeV,
respectively. The physical results are obtained from linear
extrapolation to the physical point (to the chiral limit). The
connected insertion results turn out to be consistent with
the previous quenched and full QCD calculations.

The calculation of the moments for the sea quark distri-
bution in the D.I. is carried out for the first time. With 400
Z2 noise, 500 gauge configurations, and with unbiased
subtractions and 16 nucleon sources, we are able to obtain
results with �5� signals for the first moments. The result
of hxis ¼ 0:027� 0:006 can be used to constrain hxis in the
phenomenological fitting of parton distribution functions
which is uncertain in the range 0:018< hxis < 0:04 [8].
More interestingly, we find that

hxisþ�s

hxiuþ �u

								D:I:
¼

R
dxxðsðxÞ þ �sðxÞÞR
dxxðuðxÞ þ �uðxÞÞ

								D:I:
¼ 0:88� 0:07;

(48)

which is about twice as large as the average phenomeno-
logical value from fitting the parton distribution functions
to experiments [8]

R
dxx½sðxÞ þ �sðxÞ�R
dxx½ �uðxÞ þ �dðxÞ� � 0:27� 0:67: (49)

This difference is understandable and has been anticipated
from the path-integral formulation of parton degrees of
freedom [36]. The ratio in the lattice calculation involves
u=d quarks in the disconnected insertion (quark loops)
[79], while the phenomenological ratio involves the �uðxÞ þ
�dðxÞ in the connected insertion as well. The discrepancy
suggests that the momentum carried by the �u= �d quarks are
roughly equally shared in the connected sea and the dis-
connected sea. The fact that there is antiquark in the
connected sea is demonstrated by the large �uðxÞ � �dðxÞ
difference from the Gottfried sum rule violation [37] which
cannot be accommodated by the small u and d difference
due to isospin breaking in the disconnected sea. The com-
bined Gottfried sum rule violation and the discrepancy of
the ratios in Eqs. (48) and (49) suggests the following form
for the antiparton distribution functions [36]:

�uðxÞ ¼ a0x
a1ð1� xÞa2 þ bux

b1ð1� xÞb2 ;
�dðxÞ ¼ a0x

a1ð1� xÞa2 þ bdx
b1ð1� xÞb2 ;

�sðxÞ ¼ asx
a1ð1� xÞa2 ;

(50)
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FIG. 17 (color online). The ratio of the three-point to two-point functions (C.I.), with fixed sink time at t2 ¼ 16, for the O44 � 1
3 �ðO11 þO22 þO33Þ operator, for down quarks, is plotted against the current insertion time t1 at (a) �v ¼ 0:154, (b) �v ¼ 0:155, and

(c) �v ¼ 0:1555. (d) is a linear extrapolation to the chiral limit plotted against mqa.

MOMENTS OF NUCLEON’s PARTON DISTRIBUTION FOR . . . PHYSICAL REVIEW D 79, 094502 (2009)

094502-21



-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 6  8  10  12  14  16  18  20
insertion time (t1)

sink time=16

κv=0.154

(a)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6  8  10  12  14  16  18  20
insertion time (t1)

sink time=16

κv=0.155

(b)

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6  8  10  12  14  16  18  20
insertion time (t1)

sink time=16

κv=0.1555

(c)

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.025  0.05  0.075
<x

2 > u 
(C

.I
.)

mq a

Chiral Extrapolation for <x2>u (C.I.)

(d)

FIG. 18 (color online). The ratio of the three-point to two-point functions (C.I.), with fixed sink time at t2 ¼ 16, for the O411 � 1
2 �ðO422 þO433Þ operator, for up quarks, is plotted against the current insertion time (t1) at (a) �v ¼ 0:154, (b) �v ¼ 0:155, and

(c) �v ¼ 0:1555. (d) is a linear extrapolation to the chiral limit plotted against mqa.
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FIG. 19 (color online). The ratio of the three-point to two-point functions (C.I.), with fixed sink time at t2 ¼ 16, for the O411 � 1
2 �ðO422 þO433Þ operator, for down quarks, is plotted against the current insertion time t1 at (a) �v ¼ 0:154, (b) �v ¼ 0:155, and

(c) �v ¼ 0:1555. (d) is a linear extrapolation to the chiral limit plotted against mqa.
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where the first terms are for the disconnected seas with
Pomeron exchanges so that a1 ��1 and the second terms
are from the connected sea with Reggeon exchanges so that
b1 ���R. The present lattice calculation suggests that as

a0

can be constrained to the ratio in Eq. (48). We should
emphasize that the current result is based on a quenched
lattice calculation with linear chiral extrapolation from
relatively heavy quarks. We should take it with a sizable
grain of salt. As far as phenomenological fittings are con-
cerned, the �uðxÞ � �dðxÞ has been taken into account which

has a small x behavior of �x�1=2 [80]. However, the
conventional ansatz �sðxÞ � �uðxÞ þ �dðxÞ used in recent fit-
tings [8,9] is obviously inadequate [36]. One needs to
differentiate the different small x behaviors in the con-
nected sea and disconnected sea and fit the �uðxÞ, �dðxÞ,
and �sðxÞ accordingly.

We have made an attempt to calculate hx2is to see if it is
sðxÞ or �sðxÞ which is leading in large x. Our result has a
tendency to be positive, similar to the experimental ten-
dency of s� ¼

R
dxxðsðxÞ � �sðxÞÞ being positive, but it is

consistent with zero within error. Wewill see if the signal is
stronger with the inclusion of 2þ 1 flavor dynamical
fermions.

So far, our results are obtained in the quenched approxi-
mation with relatively large quark masses and small vol-
ume. They are subjected to large systematic errors. We will
focus our attention next on the dynamical fermion calcu-
lation with 2þ 1 flavor dynamical clover fermion configu-
rations [81], and systematically move to smaller quark
masses, larger volumes, and the continuum limit [82].
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APPENDIX A: THREE-POINT CORRELATION
FUNCTIONS

1. General considerations

For the forward matrix elements, the three point-
function for any general operatorO (color and spin indices
suppressed) is defined as

G��
NONðt2; t1; ~pÞ ¼

X
~x2; ~x1

e�i ~p:ð ~x2� ~x0Þh0jTð	�ðx2ÞOðx1Þ

� �	�ðx0ÞÞj0i; (A1)

where t ¼ t2 is the nucleon sink time, t ¼ t1 is the current
insertion time, t ¼ t0 is the nucleon source time, and ~pi is
the momentum of the nucleon, respectively. We now con-
sider the following situations:
(i) When t2 > t1 > t0, we get

G��
NONðt2; t1; ~pÞ ¼

X
~x2; ~x1

e�i ~p:ð ~x2� ~x0Þ
X

n1; ~q1;s1

X
n2; ~q2;s2

h0j	�ðx2Þjn2; ~q2; s2ihn2; ~q2; s2jOðx1Þjn1; ~q1; s1ihn1; ~q1; s1j �	�ðx0Þj0i

¼ N2
X
s

e�E0þ
p ðt2�t0Þh0j	�ðx0Þj0þ; ~p; sih0þ; ~p; sjOðx0Þj0þ; ~p; sih0þ; ~p; sj �	�ðx0Þj0i

þ N2
X
s

e�E0�
p ðt2�t0Þh0j	�ðx0Þj0�; ~p; sih0�; ~p; sjOðx0Þj0�; ~p; sih0�; ~p; sj �	�ðx0Þj0i

þ X
�¼þ;�

½e�E0ð�Þ
p ðt2�t1Þe�E

1ð�Þ
p ðt1�t0ÞCð�Þð1Þ��ð ~pÞ þ e�E

1ð�Þ
p ðt2�t1Þe�E

0ð�Þ
p ðt1�t0ÞCð�Þð2Þð ~pÞ�

þ X
�;�0¼þ;�

X1
nð�Þ
1
;nð�

0 Þ
2
¼1
½e�E

n
ð�0Þ
2

p ðt2�t1Þe�E
n
ð�Þ
1

p ðt1�t0Þfð1Þ��ðnð�Þ1 ; nð�
0Þ

2 ; ~pÞ�; (A2)

where N is the number of lattice sites, and the superscript þ (� ) represents positive (negative) parity state.

Cð�Þð1Þ��ð ~pÞ ¼ N2h0j	�ðx0Þj0ð�Þ; ~p; sih0ð�Þ; ~p; sjOðx0Þj1ð�Þ; ~p; sih1ð�Þ; ~p; sj �	�ðx0Þj0i;
Cð�Þð2Þ��ð ~pÞ ¼ N2h0j	�ðx0Þj1ð�Þ; ~p; sih1ð�Þ; ~p; sjOðx0Þj0ð�Þ; ~p; sih0ð�Þ; ~p; sj �	�ðx0Þj0i;

fð1Þ��ðnð�Þ1 ; nð�
0Þ

2 ; ~pÞ ¼ N2
X
s

h0j	�ðx0Þjnð�
0Þ

2 ; ~p; sihnð�0Þ2 ; ~p; sjOðx0Þjnð�Þ1 ; ~p; sihnð�Þ1 ; ~p; sj �	�ðx0Þj0i:
(A3)

(ii) When t1 > t2 > t0, we get
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G��
NONðt2; t1; ~pÞ ¼ N2

X
n1;n2;s

e�E
n2
0
ðt1�t2Þe�E

n1
p ðt2�t0Þh0jOðx0Þjn2; ~0; sihn2; ~0; sj	�ðx0Þjn1; ~p; sihn1; ~p; sj �	�ðx0Þj0i

¼ 0: ½since, for a twist-two operator; h0jOðx0Þjn2; ~0; si ¼ 0� (A4)

(iii) When t2 > t0 > t1, we get

G��
NONðt2; t1; ~pÞ ¼ N2

X
n1;n2;s

e�E
n2
p ðt2�t0Þe�E

n1
0
ðt0�t1Þh0j	�ðx0Þjn2; ~p; sihn2; ~p; sj �	�ðx0Þjn1; ~0; sihn1; ~0; sjOðx0Þj0i

¼ 0: ½since, for a twist-two operator; hn1; ~0; sjOðx0Þj0i ¼ 0� (A5)

2. Ratios for disconnected insertion

We will show a sample calculation for extracting the disconnected first and second moments by considering the O ¼
O4i operator, where i ¼ 1, 2, 3. The calculation for the other operators will be similar. For this operator, we will use the
nucleon with one unit of lattice momentum in the i-th direction. First consider the first and the second terms of Eq. (A2)
only. Taking the trace with parity projection operator, ��� in Eq. (A2), we get

����½first termþsecond term ofEq:ðA2Þ�

¼N2
X
s

e�E0þ
p ðt2�t0Þ a3

ð2�Þ3=2
�
mþ

NE0þ
p

�
1=2

þ
a3

ð2�Þ3=2
�
mþ

NE0þ
p

�
1=2

þ	 �uþ�ð ~p;sÞ���uþ�ð ~p;sÞ mþ

�NE0þ
p

hxið�ip4Þpi

2mþ

þN2
X
s

e�E0�
p ðt2�t0Þ a3

ð2�Þ3=2
�
m�

NE0�
p

�
1=2

�
a3

ð2�Þ3=2
�
m�

NE0�
p

�
1=2

�	ð �u��ð ~p;sÞ�5Þ���ð�5u
��ð ~p;sÞÞ m�

�NE0�
p

hxi�ð�ip4Þpi

2m�

¼ a6

ð2�Þ3
mþ

E0þ
p

jþj2e�E0þ
p ðt2�t0Þ

�
1þm�

E0�
p

E0þ
p

mþ

�hxipi

2�
; (A6)

where hxiþ ¼ hxi is the first moment, hxi� is an unknown constant.
Wewill now sum Tr½�GNONðt2; t1; ~pÞ� over the current insertion time, t1, from an initial time, ti ¼ t0 þ 1, to a final time,

tf ¼ t2 � 1, so that, tf > ti > t0, where the nucleon source is at t0, and t2 is the sink time. Then, by using Eqs. (A2), (A3),

and (A6), we get

Xtf
t1¼ti

Tr½�GNO4iNðt2; t1; piÞ� ¼
Xtf
t1

���G��
NO4iN

ðt2; t1; ~pÞ

¼ Xtf
t1¼ti

a6

ð2�Þ3
m

E0þ
p

jj2e�E0
pðt2�t0Þ

�
1þ m�

E0�
p

E0þ
p

m

� hxipi

2�

þ X
�¼þ;�

½e�E0ð�Þ
p ðt2�t1Þe�E

1ð�Þ
p ðt1�t0Þ ~Cð�Þð1Þ4i ð ~pÞ þ e�E

1ð�Þ
p ðt2�t1Þe�E

0ð�Þ
p ðt1�t0Þ ~Cð�Þð2Þ4i ð ~pÞ�

þ X
�;�0¼þ;�

X1
nð�Þ
1
;nð�

0 Þ
2
¼1
½e�E

n
ð�0 Þ
2

p ðt2�t1Þe�E
n
ð�Þ
1

p ðt1�t0Þ ~fð1Þ4i ðnð�Þ1 ; nð�
0Þ

2 ; ~pÞ�: (A7)

Dividing by the two-point function, we get
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Xtf
t1¼ti

Tr½GNO4iNðt2; t1; ~pÞ�
Tr½�GNNðt2; ~pÞ� ¼

�hxipi

2�
t2 � hxipi

2�
ti þ k1k2 � k1k5 � ½k1k3 � k1k4�

X
�¼þ;�

e�ðE
1ð�Þ
p �E0ð�Þ

p Þðt2�t0Þ

þ k1
X

�0¼þ;�

X1
n0ð�0Þ¼1

e�ðEn0ð�0 Þ
p �E0ð�0 Þ

p Þðt2�t0Þg3ðn0ð�0Þ; ~pÞ
�

þ
�
1þ k1

X1
m¼1

�
� X

�¼þ;�

X1
nð�Þ¼1

e�ðEnð�Þ
p �E0

pÞðt2�t0Þ ~fðnð�Þ; ~pÞ
�
m
�
; (A8)

where

~fðnþ;�; ~pÞ ¼ N���
X
s

h0j	�ðx0Þjnþ;�; ~p; si

� hnþ;�; ~p; sj �	�ðx0Þj0i;

k1 ¼ a6

ð2�Þ3
m

E0
p

jj2
�
1þ m�

E0�
p

E0
p

m

�
ð¼ constantÞ;

k2 ¼
X

�¼þ;�

e�ðE
1ð�Þ
p �E0ð�Þ

p Þðti�t0Þ

1� e�ðE
1ð�Þ
p �E0ð�Þ

p Þ
~Cð�Þð1Þ4i ð¼ constantÞ;

k3 ¼
X

�¼þ;�

1

1� e�ðE
1ð�Þ
p �E0ð�Þ

p Þ
~Cð�Þð1Þ4i ð¼ constantÞ;

k4 ¼
X

�¼þ;�

eðE
1ð�Þ
p �E0ð�Þ

p Þðti�t0Þ

1� eðE
1ð�Þ
p �E0ð�Þ

p Þ
~Cð�Þð2Þ4i ð¼ constantÞ;

k5 ¼
X

�¼þ;�

1

1� eðE
1ð�Þ
p �E0ð�Þ

p Þ
~Cð�Þð2Þ4i ð¼ constantÞ;

g3ðnð�Þ; ~pÞ ¼
X

�¼þ;�

X1
nð�
0Þ

1
¼1

�
e�ðEnð�Þ

p �En
ð�0Þ
1

p Þðt0�tiÞ

�
~fð1Þ4i ðnð�

0Þ
1 ; nð�Þ; ~pÞ

1� eðEnð�Þ
p �En

ð�0 Þ
1

p Þ
�

~fð1Þ4i ðnð�Þ; nð�
0Þ

1 ; ~pÞ
1� eðE

n
ð�0 Þ
1

p �Enð�Þ
p Þ

�
:

(A9)

From Eq. (A8), we get

Xtf
t1¼ti

Tr½GNO4iNðt2; t1; ~pÞ�
Tr½�GNNðt2; ~pÞ�

���!ðt2�t0Þ�1 hxipi

2�
t2 þ const;

(A10)

where

const ¼ �hxipi

2�
ti þ k1k2 � k1k5: (A11)

APPENDIX B: UNBIASED SUBTRACTION

The set of traceless matrices is obtained from the hop-
ping parameter expansion of the inverse of the fermion
matrix M which is given by

S ¼ M�1 ¼ I þ �Dþ �2D2 þ �3D3 þ � � � ; (B1)

where

Dx;y ¼
X4
�¼1
½ð1� ��Þ��Uab

� ðxÞ�x;y�a�

þ ð1þ ��Þ��Uyab� ðx� a�Þ�x;yþa��; (B2)

x, y are space-time coordinates, �, � are spin indices, and
a, b are color indices. If for some currents, some powers of
D are not traceless, we make them traceless by subtracting
their traces from themselves. Now, we are going to calcu-
late the traces for all the three currents. We suppress the
argument U from each of the propagators for convenience.

1. Two-index operators

The disconnected part of O�� is given by

Loop ¼ �

8a

X
~x1

½Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ�

� Tr½SðfÞmnðx1 � a�; x1Þ��U
ynm
� ðx1 � a�Þ�

þ Tr½SðfÞmnðx1; x1 � a�Þ��U
nm
� ðx1 � a�Þ�

� Tr½SðfÞmnðx1; x1 þ a�Þ��U
ynm
� ðx1Þ� þ�$ ��;

(B3)

where � ¼ �i for � ¼ 4, � ¼ 1, 2, 3; � ¼ þ1 for � ¼
� ¼ 1, 2, 3 and � ¼ �1 for � ¼ � ¼ 4. Let us consider
the first term of the loop

�

8a

X
~x1

Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ�

’ �

8a

X
~x1

X
m;�

h�yx1;n;�Xx1þa�;m;�ið��Þ��Unm
� ðx1Þ½using noise�

¼ �

8a

X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�M

ð�1Þmk
�� ðx1 þ a�; zÞ

� �l
z;k;�ð��Þ��Unm

� ðx1Þ: (B4)

In Eq. (B4), we will substitute the hopping parameter
expansion ofM�1. Then, from Eq. (B4), the term becomes
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X
~x1

Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ�


X
~x1

X
m;�

1

L

XL
l¼1

�ly
x1;n;��

l
x1þa�;m;�ð��Þ��Unm

� ðx1Þ: (B5)

Similarly, if we consider the fourth term of the Loop in
Eq. (B3), we get

�

8a

X
~x1

Tr½SðfÞmnðx1; x1 þ a�Þ��U
ynm
� ðx1Þ�


 �

8a

X
~x1

X
m;�

1

L

XL
l¼1

�ly
x1þa�;n;��

l
x1;m;�ð��Þ��Uynm� ðx1Þ:

(B6)

Combining Eqs. (B5) and (B6), we find that

�

8a
½Tr½SðfÞmnðx1 þ a�; x1Þ��U

nm
� ðx1Þ�

� Tr½SðfÞmnðx1; x1 þ a�Þ��U
ynm
� ðx1Þ��

¼ �

8a

X
~x1

X
m;�

1

L

XL
l¼1

2 Im½�ly
x1;n;��

l
x1þa�;m;�ð��Þ��Unm

� ðx1Þ�:

(B7)

By considering similar combinations of other terms, we
can prove that for the O�� operator, the real part of the

loop is zero for the first term, I, and for the O4i operator,
the imaginary part is zero. So, we cannot consider the first
term, I. If we substitute M�1 by �2D2 and �4D4, the trace
is going to be zero, since there will be no plaquette term.
But if we substitute M�1 by �D and �3D3, there is a
possibility of having a nonzero trace. Since the operators,
O4i and O��, can have different traces (or, no traces), we

will consider them separately.
(i) First term of O4i:

�i
8a

X
~x1

Tr½SðfÞmnðx1 þ ai; x1Þ�4U
nm
i ðx1Þ�

’ �i
8a

X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�M

ð�1Þmk
�� ðx1 þ ai; zÞ

� �l
z;k;�ð�4Þ��Unm

i ðx1Þ: (B8)

If we substitute M�1ðx1 þ ai; zÞ in Eq. (B8) by �D,
the only nonvanishing term could be,

X4
�¼1
ð1þ ��Þ��Uyab� ðx� a�Þ�x;yþa�:

So we get

�i
8a

X
~x1

Tr½SðfÞmnðx1þai;x1Þ�4U
nm
i ðx1Þ�

’�i
8a

�
X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�

�X4
�¼1
ð1þ��Þ��Uymk

� ðx1þai�a�Þ�x1þai;zþa�

�

��l
z;k;�ð�4Þ��Unm

i ðx1Þ
¼�i

8a
�
X
~x1

X
m;�;k;�

�ðn;kÞð�;�Þð�4Þ��ð1þ�iÞ��Uymk
i ðx1ÞUnm

i ðx1Þ ðputting�¼ iÞ ¼ 0: (B9)

We now replace Mð�1Þ by �3D3, the nonvanishing terms could be

X
�0;�0;�

½fð1� ��0 Þð1þ ��0 Þð1þ ��Þg��fU�0 ðxÞUy�0 ðxþ a�0 � a�0 ÞUy�ðxþ a�0 � a�0 � a�Þgab�xþa�0�a�0 ;yþa�

þ fð1þ ��0 Þð1� ��0 Þð1þ ��Þg��fUy�0 ðx� a�0 ÞU�0 ðx� a�0 ÞUy�ðx� a�0 þ a�0 � a�Þgab�x�a�0þa�0 ;yþa�

þ fð1þ ��0 Þð1þ ��0 Þð1� ��Þg��fUy�0 ðx� a�0 ÞUy�0 ðx� a�0 � a�0 ÞU�ðx� a�0 � a�0 Þgab�x�a�0�a�0 ;y�a��:
(B10)

Let us consider the first term of Eq. (B10).

M. DEKA et al. PHYSICAL REVIEW D 79, 094502 (2009)

094502-26



�i
8a

X
~x1

Tr½SðfÞmnðx1 þ ai; x1Þ�4U
nm
i ðx1Þ�

¼ �i
8a

�3
X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�

X
�0;�0;�

½fð1� ��0 Þð1þ ��0 Þð1þ ��Þg��fU�0 ðx1 þ aiÞUy�0 ðx1 þ ai þ a�0 � a�0 Þ

�Uy�ðx1 þ ai þ a�0 � a�0 � a�Þgmk�x1þaiþa�0�a�0 ;zþa���l
z;k;�ð�4Þ��Unm

i ðx1Þ: (B11)

In order to have nonvanishing delta function, we must have either �0 ¼ �, �0 ¼ i; or �0 ¼ �0, � ¼ i; or �0 ¼ � ¼
�0 ¼ i. Let us take the case �0 ¼ �, �0 ¼ i. Then the first term of Eq. (B10) gives

�i
8a

�3
X
~x1

X
m;�;k;�

X
�0

�ðn;kÞð�;�Þð�4Þ��ð1� ��0 Þð1þ �iÞð1þ ��0 Þ��fU�0 ðx1 þ aiÞUyi ðx1 þ a�0 ÞUy�0 ðx1ÞgmkUnm
i ðx1Þ

¼ �i
8a

�3
X
~x1

X
m;�

X
�0
fð�4 � �4��0 Þð1þ �iÞð1þ ��0 Þ��fU�0 ðx1 þ aiÞUyi ðx1 þ a�0 ÞUy�0 ðx1ÞUiðx1Þgmm ¼ 0:

(B12)

For other two possibilities �0 ¼ �0, � ¼ i and �0 ¼ � ¼ �0 ¼ i, the trace for the spin part is zero due to the
multiplication of � matrices.
It can be shown that second and third terms of Eq. (B10) also have zero traces. In a similar manner, we can show that
other terms of the operator O4i also have zero trace.
Now, we will consider the operator, O��.

(ii) First term of O��:

�

8a

X
~x1

Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ� ’ �

8a

X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�M

ð�1Þmk
�� ðx1 þ a�; zÞ�l

z;k;�ð��Þ��Unm
� ðx1Þ;

(B13)

where � ¼ þ1 for � ¼ � ¼ 1, 2, 3 and � ¼ �1 for � ¼ � ¼ 4.
If we substitute M�1ðx1 þ a�; zÞ in Eq. (B13) by �D, the only nonvanishing term could be

X4
�¼1
ð1þ ��Þ��Uyab� ðx� a�Þ�x;yþa� :

So we get

�

8a

X
~x1

Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ�

’ �

8a
�
X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�

�X4
�¼1
ð1þ ��Þ��Uymk

� ðx1 þ a� � a�Þ�x1þa�;zþa�

�

� �l
z;k;�ð��Þ��Unm

� ðx1Þ
¼ �

8a
�
X
~x1

X
m;�;k;�

�ðn;kÞð��Þð��Þ��ð1þ ��Þ��Uymk
� ðx1ÞUnm

� ðx1Þ ðputting� ¼ �Þ ¼ �

8a
12�V3: (B14)

And, if we substitute M�1ðx1 þ a�; zÞ by �3D3, the nonvanishing terms could be
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�3
X

�0;�0;�
½fð1� ��0 Þð1þ ��0 Þð1þ ��Þg��fU�0 ðxÞUy�0 ðxþ a�0 � a�0 ÞUy�ðxþ a�0 � a�0 � a�Þgab�xþa�0�a�0 ;yþa�

þ fð1þ ��0 Þð1� ��0 Þð1þ ��Þg��fUy�0 ðx� a�0 ÞU�0 ðx� a�0 ÞUy�ðx� a�0 þ a�0 � a�Þgab�x�a�0þa�0 ;yþa�

þ fð1þ ��0 Þð1þ ��0 Þð1� ��Þg��fUy�0 ðx� a�0 ÞUy�0 ðx� a�0 � a�0 ÞU�ðx� a�0 � a�0 Þgab�x�a�0�a�0 ;y�a��:
(B15)

Let us consider the first term of Eq. (B15)

�

8a

X
~x1

Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ�

’ �

8a
�3
X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�

X
�0;�0;�

½fð1� ��0 Þð1þ ��0 Þð1þ ��Þg��fU�0 ðx1 þ a�ÞUy�0 ðx1 þ a� þ a�0 � a�0 Þ

�Uy�ðx1 þ a� þ a�0 � a�0 � a�Þgmk�x1þa�þa�0�a�0 ;zþa���l
z;k;�ð��Þ��Unm

� ðx1Þ: (B16)

In order to have nonvanishing delta function, we must have either �0 ¼ �, �0 ¼ �, or �0 ¼ �0, � ¼ �, or �0 ¼
� ¼ �0 ¼ �. Let us take the case �0 ¼ �, �0 ¼ �. Then the first term of Eq. (B15) gives

�

8a
�3
X
~x1

X
m;�;k;�

X
�0

�ðn;kÞð�;�Þð��Þ��ð1� ��0 Þð1þ ��Þð1þ ��0 Þ��fU�0 ðx1 þ a�ÞUy�ðx1 þ a�0 ÞUy�0 ðx1ÞgmkUnm
� ðx1Þ

¼ 8
�

8a
�3

X
~x1

X
m

X
�0��

fU�0 ðx1 þ a�ÞUy�ðx1 þ a�0 ÞUy�0 ðx1ÞU�ðx1Þgmm: (B17)

For other two possibilities �0 ¼ �0, � ¼ � and �0 ¼ � ¼ �0 ¼ �, the trace for the spin part is zero due to the
multiplication of � matrices. Let now us consider the second term of Eq. (B15). Then

�

8a

X
~x1

Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ�

’ �

8a
�3
X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�

X
�0;�0;�

½fð1þ ��0 Þð1� ��0 Þð1þ ��Þg��fUy�0 ðx1 þ a� � a�0 ÞU�0 ðx1 þ a� � a�0 Þ

�Uy�ðx1 þ a� � a�0 þ a�0 � a�Þgmk�x1þa��a�0þa�0 ;zþa���l
z;k;�ð��Þ��Unm

� ðx1Þ: (B18)

In order to have nonvanishing delta function, we must have either �0 ¼ �, � ¼ �0, or �0 ¼ �0, � ¼ �, or �0 ¼
� ¼ �0 ¼ �. Let us take the case �0 ¼ �, �0 ¼ �. Then the second term of Eq. (B15) gives

�

8a
�3
X
~x1

X
m;�;k;�

X
�0

�ðn;kÞð�;�Þð��Þ��fð1þ ��Þð1� ��0 Þð1þ ��0 Þg��fUy�ðx1ÞU�0 ðx1ÞUy�0 ðx1ÞgmkUnm
� ðx1Þ ¼ 0: (B19)

For other two possibilities �0 ¼ �0, � ¼ �, and �0 ¼ � ¼ �0 ¼ �, the traces for the spin part are zero due to the
multiplication of � matrices. Let us consider the third term of Eq. (B15). Then

�

8a

X
~x1

Tr½SðfÞmnðx1 þ a�; x1Þ��U
nm
� ðx1Þ�

¼ �

8a
�3

X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�

X
�0;�0;�

½fð1þ ��0 Þð1þ ��0 Þð1� ��Þg��fUy�0 ðx1 þ a� � a�0 ÞUy�0 ðx1 þ a� � a�0 � a�0 Þ

�U�ðx1 þ a� � a�0 � a�0 Þgmk�x1þa��a�0�a�0 ;z�a���l
z;k;�ð��Þ��Unm

� ðx1Þ: (B20)

In order to have nonvanishing delta function, we must have either �0 ¼ �, �0 ¼ �, or �0 ¼ �, � ¼ �0, or �0 ¼
� ¼ �0 ¼ �. Let us take the case �0 ¼ �, �0 ¼ �. Then the third term of Eq. (B15) gives
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X
~x1

X
m;�;k;�

X
�0

�ðn;kÞð�;�Þð��Þ��ð1þ ��0 Þð1þ ��Þð1� ��0 Þ��fUy�0 ðx1 þ a� � a�0 ÞUy�ðx1 � a�0 Þ

�U�0 ðx1 � a�0 ÞgmkUnm
� ðx1Þ

¼ �

8a
8�3

X
~x1

X
m

X
�0��

fUy
�0 ðx1 þ a� � a�0 ÞUy�ðx1 � a�0 ÞU�0 ðx1 � a�0 ÞU�ðx1Þgmm: (B21)

For other two possibilities �0 ¼ �, � ¼ �0, and �0 ¼ � ¼ �0 ¼ �, the traces for the spin part are zero due to the
multiplication of � matrices.
Doing similar calculations for other terms of O��, we get the trace for the �D term

Trace ¼ �

8a
2�½12V3 � ð�12V3Þ þ 12V3 � ð�12V3Þ� ¼ �

8a
96�V3; (B22)

and for the �3D3 term

Trace ’ �

8a
16�3

X
~x1

X
m

X
�0��

½½fU�0 ðx1 þ a�ÞUy�ðx1 þ a�0 ÞUy�0 ðx1ÞU�ðx1Þ þUy
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�U�0 ðx1 � a�0 ÞU�ðx1Þgmm� � ½�fU�0 ðx1 � a�ÞU�ðx1 � a� þ a�0 ÞUy�0 ðx1ÞUy�ðx1 � a�Þ
þUy

�0 ðx1 � a� � a�0 ÞU�ðx1 � a� � a�0 ÞU�0 ðx1 � a�0 ÞUy�ðx1 � a�Þgmm�
þ ½fU�0 ðx1 � a�ÞU�ðx1 � a� þ a�0 ÞUy�0 ðx1ÞUy�ðx1 � a�Þ þUy

�0 ðx1 � a� � a�0 ÞU�ðx1 � a� � a�0 Þ
�U�0 ðx1 � a�0 ÞUy�ðx1 � a�Þgmm�y � ½�fU�0 ðx1 þ a�ÞUy�ðx1 þ a�0 ÞUy�0 ðx1ÞU�ðx1Þ
þUy
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¼ �

8a
32�3

X
~x1

X
m

X
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þU�0 ðx1 � a�0 ÞUy�ðx1 � a�ÞUy�0 ðx1 � a� � a�0 ÞU�ðx1 � a� � a�0 Þgmm�: (B23)

2. Three-index operators

As in the case of two-index operator, we can show that the first term I of the hopping expansion for this operator is real.
But the loop part is imaginary. So, we can not consider the first term. If we substitute M�1 by �D and �3D3, the trace is
going to be zero, since there will be no plaquette terms. But if we substituteM�1 by �2D2, there is a possibility of nonzero
trace. One of the terms in the loop part of O4ii is

�1
24a2

Tr½SðfÞmnðx1 þ a4 þ ai; x1Þð�iÞfUnm0
4 ðx1ÞUm0m

i ðx1 þ a4Þ þUnm0
i ðx1Þ
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’ �1
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X
~x1

X
m;�;k;�

1

L

XL
l¼1

�ly
x1;n;�M

ð�1Þmk
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� ðUnm0
4 ðx1ÞUm0m

i ðx1 þ a4Þ þUnm0
i ðx1ÞUm0m

4 ðx1 þ aiÞÞ: (B24)

If we substitute Mð�1Þmk
�� by �2D2 term, the only nonvanishing term could be

X4
�0¼1

X4
�0¼1
½fð1þ ��0 Þð1þ ��0 Þg��fUy�0 ðx� a�0 ÞUy�0 ðx� a�0 � a�0 Þgab�x�a�0 ;yþa�0 �:

Therefore, we get
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Calculating all the other terms in a similar manner, we can show that

Trace ¼ �1
24a2
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