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Recently, realistic lattice QCD calculations with 2þ 1 flavors of domain wall fermions and the Iwasaki

gauge action have been performed by the RBC and UKQCD Collaborations. Here, results for the

bottomonium spectrum computed on their gauge configurations of size 243 � 64 with a lattice spacing

of approximately 0.11 fm and four different values for the light quark mass are presented. Improved lattice

nonrelativistic QCD is used to treat the b quarks inside the bottomonium. The results for the radial and

orbital energy splittings are found to be in good agreement with experimental measurements, indicating

that systematic errors are small. The calculation of the �ð2SÞ ��ð1SÞ energy splitting provides an

independent determination of the lattice spacing. For the most physical ensemble it is found to be a�1 ¼
1:740ð25Þð19Þ GeV, where the first error is statistical/fitting and the second error is an estimate of the

systematic errors due to the lattice nonrelativistic QCD action.

DOI: 10.1103/PhysRevD.79.094501 PACS numbers: 12.38.Gc, 14.40.Gx

I. INTRODUCTION

Bottomoniummesons, the bound states of bottom quark-
antiquark pairs, play an important role in the study of the
strong interactions. The spectrum of bottomonium is
known very well from experiment and there are many
different approaches to calculating it theoretically.
Lattice QCD provides a model-independent and accurate
way of doing this.

One of the most important steps toward realistic lattice
QCD calculations was the inclusion of dynamical light (u,
d, and s) sea quarks. For many quantities of phenomeno-
logical interest, lattice QCD now allows reliable nonper-
turbative calculations that were previously impossible. In
order to further control systematic errors and increase the
confidence in lattice results, it is crucial to consider several
different lattice actions and thereby test universality.

The RBC and UKQCD Collaborations have recently
started large-scale lattice QCD calculations [1–6] with
dynamical domain wall fermions and renormalization-
group-improved gauge actions. The domain wall fermion
action [7–9] has an approximate chiral symmetry that
becomes exact, even at finite lattice spacing, when the
extent Ls of the auxiliary fifth dimension is taken to
infinity. This leads to better control over the renormaliza-
tion of operators, a reduction of discretization errors, and
more reliable chiral extrapolations.

The gauge configurations created by the RBC and
UKQCD Collaborations have been made publicly avail-
able. In this work, the ensembles of size 243 � 64, Ls ¼ 16
described in detail in [4] were used to compute the spec-
trum of bottomonium. Chiral symmetry is not as important
for bottomonium as it is for light hadrons, but the calcu-
lations presented here nevertheless provide useful tests of
the recent lattice calculations by the RBC and UKQCD

Collaborations. In particular, they provide an independent
determination of the lattice spacing and a good way of
tuning the b quark mass. The value of the bare b quark
mass obtained here can also be used in lattice QCD calcu-
lations for heavy-light hadrons such as B mesons, which
are of considerable importance for the phenomenology of
weak decays and tests of the standard model.
The b quark has a mass larger than the inverse lattice

spacing, so that the standard lattice actions as used for light
quarks are not suitable to describe it. A preliminary calcu-
lation of the bottomonium spectrum on the RBC/UKQCD
gauge configurations using a relativistic heavy-quark ac-
tion was presented in [10]. Here, improved nonrelativistic
QCD (NRQCD) [11–13] is employed instead, following
closely the methods used in the calculation of the botto-
monium spectrum on the MILC gauge configurations in
[14] (these configurations use an improved staggered fer-
mion action for the sea quarks and a one-loop Symanzik-
improved gluon action).
The lattice calculation and analysis methods are de-

scribed in detail in Sec. II. The results for the tuning of
the b quark mass and tests of the dispersion relation are
given in Secs. III A and III B, respectively. In Sec. III C, the
results for the radial and orbital energy splittings as well as
the lattice spacing are presented, followed by the fine and
hyperfine structure in Sec. III D.

II. THE LATTICE CALCULATION

A. Lattice actions and parameters

The details of the domain wall fermion and Iwasaki
gauge actions as used by the RBC and UKQCD
Collaborations are given in [1]. Here, the gauge configu-
rations of size 243 � 64 as described in [4] were used.
These have Ls ¼ 16, � ¼ 2:13 and the strange quark
mass is ams ¼ 0:04. There are ensembles with four differ-
ent values for the degenerate light (up and down) quark*S.Meinel@damtp.cam.ac.uk
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mass aml, as shown in Table I. The ‘‘measurements’’ in
this work were started at the same molecular dynamics
(MD) time as in [4] to ensure complete thermalization.
Note however that the aml ¼ 0:005 and aml ¼ 0:01 en-
sembles have since been extended and the additional con-
figurations were included here. Measurements were
performed every 25 steps of MD time, as discussed further
in Sec. II C 4.

The lattice NRQCD action for the b quark is the same as
in the previous study of the bottomonium spectrum in [14],
with stability parameter n ¼ 2. The full details of the
action can be found in e.g. [15]. After the initial tuning,
which will be described in Sec. III, the bare b quark mass
was set to amb ¼ 2:536.

All couplings in the NRQCD action are set to their tree-
level values, but the action is tadpole improved [16], which
accounts for a large amount of the renormalization. The
mean link in Landau gauge u0L is used as the tadpole
improvement parameter; the values of u0L for the different
ensembles are listed in Table I.

The NRQCD action in use includes relativistic correc-
tion terms up to order Oðv4Þ where v is the internal speed
of the b quarks inside the meson. For bottomonium, one
has v4 � 0:01. The action is also tree-level Symanzik
improved. Systematic errors depend strongly on the ob-
servable under consideration and will be discussed indi-
vidually in Sec. III. However, finite-volume errors are
expected to be negligible in all cases due to the small
size of the bottomonium mesons.

B. Calculation of the meson two-point functions

As in [13], the heavy-heavy meson correlators with
momentum p were computed from

Cð�sk;�sc;p; t� t0Þ ¼ X
x1;x2

Tr½Gyðx1; t;x01; t0Þ�y
skðx1 � x2Þ

� ~Gscðx2; t;x01; t0Þ�e�ip½ðx1þx2Þ=2�; (1)

where t > t0 and

~Gscðx2; t; x01; t0Þ ¼
X
x0
2

Gðx2; t; x02; t0Þ�scðx01 � x02Þ

� eip½ðx01þx0
2
Þ=2�: (2)

In Eqs. (1) and (2), which are understood to be for a single
gauge configuration, G denotes the heavy-quark propaga-
tor which is 2� 2 matrix valued in spinor space and 3� 3
matrix valued in color space. The functions �sc=sk are the

‘‘smearing functions’’ at source and sink, respectively,
which are also 2� 2 matrix valued in spinor space. No
gauge links were included in �sc=sk; instead the gauge

configurations were fixed to the Coulomb gauge.
In Table II the bottomonium states considered in this

work are listed, together with their continuum quantum
numbers, smearing functions �ðrÞ and representations of
the octahedral group [17]. As can be seen in the table, all
representations are chosen to be different, so that no mix-
ing is expected here. The radial functions �nSðrÞ, �nPðrÞ,
and �nDðrÞ for the nth radially excited S-wave (L ¼ 0),
P-wave (L ¼ 1), and D-wave (L ¼ 2) states were taken
from the corresponding hydrogen atom wave functions and
are given in Table III. The same lattice representations
were used at source and sink but the radial smearing
functions were allowed to be different. The smearing pa-
rameters r0 (in lattice units) were set to 1.0 (1S), 0.8 (2S),
0.6 (3S), 0.5 (1P), 0.4 (2P), and 0.5 (1D), respectively.

Note that ~G in Eq. (2) can be computed efficiently by
using the function

�scðx01 � x02Þeip½ðx01þx02Þ=2� (3)

as the initial condition in the heavy-quark evolution equa-
tion. For some states it is computationally more convenient
to remove the Pauli matrix in �sc in the initial condition,
and instead include it explicitly in the trace in Eq. (1). In
this way, different spin directions can be obtained with a

single ~G.

TABLE I. The ensembles of RBC/UKQCD gauge configura-
tions used here.

aml u0L MD range (step) nconf

0.005 0.8439 915–8665 (25) 311

0.01 0.8439 1475–8525 (25) 283

0.02 0.8433 1800–3600 (25) 73

0.03 0.8428 1275–3050 (25) 72

TABLE II. The smearing functions �ðrÞ. See e.g. [17] for the irreducible representations of the octahedral group.

Name L S J P C Lattice rep. RPC �ðrÞ
�bðnSÞ 0 0 0 � þ A�þ

1 �nSðrÞ
�ðnSÞ 0 1 1 � � T��

1 �nSðrÞ�i

hbðnPÞ 1 0 1 þ � Tþ�
1 �nPðrÞri=r0

�b0ðnPÞ 1 1 0 þ þ Aþþ
1 �nPðrÞðr � �Þ=r0

�b1ðnPÞ 1 1 1 þ þ Tþþ
1 �nPðrÞðr� �Þi=r0

�b2ðnPÞ 1 1 2 þ þ Tþþ
2 �nPðrÞðri�j þ rj�iÞ=r0 (i � j)

�bðnDÞ 2 0 2 � þ T�þ
2 �nDðrÞrirj=r20 (i � j)

�2ðnDÞ 2 1 2 � � E�� �nDðrÞðrirj�k � rjrk�iÞ=r20 (i � j, k � j)
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Finally, note that on a finite lattice, the smearing func-
tions must satisfy the periodic boundary conditions. This
was ensured by setting the smearing functions to zero
outside a ball with radius R smaller than half the spatial
lattice dimension. In this way, the wrapping around the
lattice boundaries does not cause any problems. Since the
smearing functions decay exponentially with the separa-
tion between quark and antiquark, R can be chosen such
that the important features remain. To ensure symmetry,
the same cutoff radius must be taken at source and sink.

In order to increase statistics, the correlators (1) were
averaged over eight different spatial origins x01 located at
the corners of a cube with side length L=2 ¼ 12. In addi-
tion, four different source time slices t0 with an equal
spacing of 16 were used, thus leading to a total of 32
origins per configuration. Furthermore, the locations of
the origins on the lattice were shifted randomly from
configuration to configuration in order to decrease
autocorrelations.

C. Fitting and analysis details

1. Bayesian multiexponential fitting

After choosing a set of smearing functions �ðrÞ with
equal lattice representations but different radial functions
(e.g. 1S, 2S, and 3S), the square matrix of correlators
obtained by taking all combinations for source and sink
was computed.

The matrix of correlators hCð�sk;�sc;p; t� t0Þi was si-
multaneously fitted by a function of the form

Xnexp�1

n¼0

Anð�scÞA�
nð�skÞe�Enðt�t0Þ; (4)

where En is the energy of the nth state and Anð�Þ is the
(real) amplitude for this state to be created by the operator
with smearing function �ðrÞ.

To ensure the correct ordering of the states in terms of
their energy, the fit parameters were actually chosen to be
the logarithms of the energy differences between neighbor-
ing states (in lattice units)

lnðEnþ1 � EnÞ (5)

and the logarithm of the ground state energy, lnðE0Þ.
Furthermore, the amplitudes for the excited states were

written as

Anð�Þ ¼ A0
nð�ÞA0ð�Þ; (6)

taking the relative amplitudes A0
nð�Þ (for n � 1) and the

ground state amplitude A0ð�Þ as the fit parameters.
The Bayesian fitting method described in [18] was used,

where the �2 function is augmented by

�2 ! �2 þ �2
prior (7)

with the Gaussian prior

�2
prior ¼

X
i

ðpi � ~piÞ2
�2

~pi

: (8)

Here, fpig ¼ fA0ð�Þ; A0
nð�Þ; lnðE0Þ; lnðEnþ1 � EnÞg are the

fitting parameters, and the prior for each parameter pi is
given by its central value ~pi and width �~pi

.

The Bayesian method allows the inclusion of an arbi-
trary number of exponentials nexp in (4) and hence the

fitting in the full range of Euclidean time t� t0 between
source and sink. Here, only the points with t� t0 ¼ 0 were
excluded in the fits. The number of exponentials is in-
creased until the fit results and error estimates become
independent of nexp. This is demonstrated in Fig. 1.

In the following discussion of the prior choices f~pi; �~pi
g

we will distinguish between parameters for low-lying and
high-lying states. For example, in a 3� 3 matrix fit con-
taining sources optimized for the�ð1SÞ, �ð2SÞ, and�ð3SÞ
states, these three states will be referred to as low lying, as
their energies and amplitudes will be well determined by
the data, while higher excitations will be referred to as high
lying.
The prior widths for the parameters of the low-lying

states were chosen to be about 10 times larger than the
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FIG. 1 (color online). Fit results for the 3� 3matrix correlator
with the f�ð1SÞ;�ð2SÞ;�ð3SÞg smearings as a function of the
number of exponentials. The values of �2 divided by the number
of degrees of freedom are also shown. The results are for the
ensemble with aml ¼ 0:005.

TABLE III. The radial functions �ðrÞ.
State �ðrÞ
1S exp½�jrj=r0�
2S ½1� jrj=ð2r0Þ� exp½�jrj=ð2r0Þ�
3S ½1� 2jrj=ð3r0Þ þ 2jrj2=ð27r20Þ� exp½�jrj=ð3r0Þ�
1P exp½�jrj=ð2r0Þ�
2P ½1� jrj=ð6r0Þ� exp½�jrj=ð3r0Þ�
1D exp½�jrj=ð3r0Þ�
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resulting error estimates from the fit. This ensures that the
influence of the priors on these parameters is negligible.
Initial guesses for the central values were obtained from
unconstrained fits including only a small number of ex-
ponentials at large Euclidean time.

For the high-lying states, the priors for the logarithms of
the energy splittings between successive states, lnðEnþ1 �
EnÞ, were set to �1:4 (corresponding to about 400 MeV)
with a width of 1. The priors for the relative amplitudes
A0
nð�Þ of the high-lying states were set to zero with a width

of 5.

2. NRQCD energy shift

Because of the use of lattice NRQCD, where the heavy-
quark mass has been integrated out of the action, all
energies obtained from the fits are shifted,

E ¼ Ephys � 2C (9)

where C is approximately equal to the heavy-quark mass.
Since C is the same for all states, energy splittings are
unaffected by this shift.

The physical mass of a meson (and hence C) can be
calculated from the energy difference between its states
with p ¼ 0 and p � 0. Assuming the relativistic contin-
uum dispersion relation

EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
� 2C (10)

we obtain the kinetic mass

M ¼ Mkin � p2 � ½EðpÞ � Eð0Þ�2
2½EðpÞ � Eð0Þ� : (11)

With the improved lattice actions used in this work, the
continuum dispersion relation (10) was found to be an
excellent approximation for bottomonium at small lattice
momenta p. This will be demonstrated in Sec. III B.

3. Bootstrap method

When computing quantities that depend on more than
one fit result, such as the kinetic mass (11) or an energy
splitting obtained from independent fits, correlations be-
tween the different fit results must be taken into account. In
this work, the bootstrap method was employed to achieve
this. Note however that it must be modified for Bayesian
fitting [18] so that not only the data sets are resampled
randomly but also the central values ~pi of the priors in (8)
are drawn from Gaussian random distributions with widths
�~pi

for every fit.

The final quantity of interest is then computed for the
bootstrap ensemble of fit results, giving an approximate
probability distribution. In the end, the mean value and the
68% width of this distribution are quoted.

The bootstrap method was in fact not only used for
quantities depending on more than one fit parameter but

also to obtain the error estimates for individual fit parame-
ters. The number of bootstrap samples was taken to be 500.

4. Autocorrelations

The integrated autocorrelation time �int for the 12th time
slice of the pion correlator on the aml ¼ 0:005 ensemble
was found to be 10 to 15 steps of MD time in [4]. Therefore
only gauge configurations separated by 25 steps, which is
approximately equal to 2�int, were used here. However, the
autocorrelation time depends on the observable. The mea-
surements in this work were checked for residual autocor-
relations using the binning method.
Recall from Sec. II B that on each gauge configuration

meson correlators from 32 origins (8 origins on 4 source
time slices each) were computed. The data were always
averaged over the 8 origins on each source time slice, thus
leaving 4 data samples per configuration.
To estimate the autocorrelations between the different

gauge configurations, the data were also averaged over the
4 source time slices prior to the binning. Note that the
measurements already had an initial separation of 25 steps
in MD time, and hence the binning increases this to integer
multiples of 25.
Of course the binning reduces the number of data

samples available for the fit. To obtain a reliable estimate
of the data covariance matrix (see e.g. [18]), the number of
data samples should be much larger than the dimension of
this matrix. Thus, in the analysis of autocorrelations, fits
with only one smearing at source and sink and a small
fitting range, corresponding to a small data covariance
matrix, were considered.
No significant increases in the bootstrap errors were seen

for any of the ensembles, indicating that the separation of
25 steps of MD time gives sufficiently independent mea-
surements. Note that the origins of the meson correlators
were shifted randomly between gauge configurations.
Next, tests for autocorrelations between the data samples

from the four different source time slices were performed.
To this end the data were averaged into bins of 2 or 4 time
slices, without additional binning over gauge configura-
tions. Here, in some cases a slight increase in the bootstrap
errors was seen, at most 20%. Thus, for the measurements
in the remainder of this work the following conventions
were used: on the aml ¼ 0:005 and aml ¼ 0:01 ensembles
all 4 source time slices were binned together, except for the
3� 3 matrix correlator in the determination of the �ð3SÞ
energy. For the latter no binning over source time slices
was done; instead the error estimates from the fits were
corrected by 20% upward to be safe. For the aml ¼ 0:02
and aml ¼ 0:03 ensembles, which have about 4 times
fewer configurations, the �ð3SÞ state was not computed.
There, for the 2� 2 matrix correlators no binning over
source time slices was performed, again increasing the
error estimates by 20% upward instead. For the D-wave
correlators, only the 1D smearing function was included in
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the fits. Thus, the data covariance matrix was small and
binning over all 4 source time slices was used.

III. RESULTS

A. Tuning the bare b quark mass

The bare b quark mass, which is a free parameter in the
NRQCD action, was tuned nonperturbatively. It was ad-
justed such that the kinetic mass of the �bð1SÞ meson as
calculated on the lattice matches the experimental value of
9.389(5) GeV [19]. The tuning was done on the most chiral
(aml ¼ 0:005) ensemble of gauge configurations.

The kinetic mass was computed from (11), where the
smallest possible lattice momentum ajpj ¼ 1 � 2�=L was
used. As shown in the next section, the kinetic mass is very
stable and shows no significant dependence on p even for
much larger momenta. In order to increase statistics the
results were averaged over the different possibilities for the
direction of p.

The comparison with experiment of course requires the
knowledge of the lattice spacing, which was determined as
the ratio of the experimentally measured �ð2SÞ ��ð1SÞ
mass splitting, 0.56296(40) GeV [20], to the dimensionless
lattice result. This will be discussed in more detail in
Sec. III C.

The lattice results for aMkin and the �ð2SÞ ��ð1SÞ
splitting at the three different bare quark masses amb ¼
2:30, 2.45, and 2.60 are shown in Table IV. As can be seen,
the�ð2SÞ ��ð1SÞ splitting is very insensitive to the value
of the b quark mass. It is also expected to have much
smaller lattice discretization errors than the 1P� 1S split-
ting as discussed in the next section.

It was found that in the range considered here, the
dependence of the kinetic mass on the bare heavy-quark
mass is described very well by the linear relation

aMkin ¼ Aþ B � amb: (12)

A plot of aMkin as a function of amb is shown in Fig. 2. Fits
of Eq. (12) with the parameters A and Bwere performed on
500 bootstrap samples for the kinetic masses at amb ¼
2:30, 2.45, and 2.60. The resulting average fit parameters
were

A ¼ 0:489ð25Þ; B ¼ 1:956ð11Þ: (13)

To obtain a first result for the lattice spacing of the aml ¼
0:005 ensemble, the �ð2SÞ ��ð1SÞ mass splitting at

amb ¼ 2:45 was used, giving a�1 ¼ 1:736ð25Þ GeV (the
error is statistical/fitting only). Of course the b quark mass
was not yet tuned, but given the relative independence of
the �ð2SÞ ��ð1SÞ splitting on mb, the value of amb ¼
2:45 was sufficiently close to the physical value. The final
results for the lattice spacing obtained with the correct b
quark mass will be presented in Sec. III C.
Using the preliminary result for a�1, it follows that the

�bð1SÞ mass in lattice units must be tuned to be aMkin ¼
5:407ð77Þ. Inserting this into (12) and solving for amb

gives

amb ¼ 2:514ð36Þ: (14)

The error quoted here is statistical/fitting only and is
dominated by the uncertainty in the lattice result for the
�ð2SÞ ��ð1SÞ splitting.
All remaining calculations were actually performed with

amb ¼ 2:536. This was an earlier result and the fits have
been improved slightly since then. However it is still inside
the range of the new value (14).
For amb ¼ 2:536 the results were aMkin ¼ 5:449ð13Þ

and a�1 ¼ 1:740ð25Þ GeV. This gives Mkin ¼
9:48ð14Þ GeV which is compatible with the experimental
result of 9.389(5) GeV, confirming the successful tuning of
the heavy-quark mass.
Note that the lattice NRQCD action can be used for both

heavy-heavy mesons and heavy-light hadrons. Thus, the
result for the bare b quark mass obtained here will be
useful also in future calculations for heavy-light hadrons.

B. Speed of light

In order to examine how well the lattice data approxi-
mate the relativistic continuum dispersion relation (10), the
kinetic mass of the �bð1SÞ meson, defined by (11), was
also computed for larger lattice momenta ap ¼ n � 2�=L

TABLE IV. Results for tuning of the bare b quark mass in
lattice units. Errors are statistical/fitting only.

amb aMkinð�bÞ �ð2SÞ ��ð1SÞ
splitting

2.30 4.988(12) 0.3258(47)

2.45 5.281(13) 0.3242(46)

2.60 5.575(13) 0.3231(54)
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FIG. 2 (color online). The kinetic mass of the �bð1SÞ meson
plotted against the bare heavy-quark mass. Errors are statistical/
fitting only. The line shows the average over the bootstrap
ensemble of linear fit results.
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up to n2 ¼ 12. For these calculations, the local smearing
function �ðrÞ ¼ �r;0 was used at source and sink so that

multiple lattice momenta can be obtained with little com-
putational cost. For each value of n2, the results were
averaged over the possible directions of the vector n, and
all components of n were chosen to be less than or equal to
2.

The results are given in Table V, where also the NRQCD
energy shift, calculated as

C ¼ MkinðpÞ � Eð0Þ
2

; (15)

and for n2 > 1 the square of the ‘‘speed of light’’

c2 � ½EðpÞ � Eð0Þ þMkin;1�2 �M2
kin;1

p2
(16)

are shown. In Eq. (16), Mkin;1 denotes the kinetic mass

calculated with n2 ¼ 1. In the units used here, one should
have c2 ¼ 1. Deviations of c2 from 1 can be caused by
discretization errors in the NRQCD, gluon, and sea quark
actions and also by missing higher order relativistic cor-
rections in the NRQCD action. The NRQCD action is
highly improved at tree level, and so the most significant
errors one expects here are those caused by missing radia-
tive corrections.

As can be seen in the table, in the momentum range
considered here the kinetic mass shows no significant

dependence on p within the small statistical/fitting errors.
Correspondingly, c2 remains compatible with 1, with sta-
tistical/fitting errors less than 0.5%, indicating that the
effect of the errors mentioned above is small.
Analogous calculations for the �ð1SÞ meson have been

performed in [14] with the same NRQCD action but with
the Lüscher-Weisz gluon and the AsqTad sea quark action.
There, the deviation of c2 from 1 in the same momentum
range was also found to be compatible with 1 within
statistical errors of less than 1%.

C. Radial/orbital splittings and the lattice spacing

The lattice results for the various radial and orbital
energy splittings are listed in Table VI.
Systematic errors are known to be smallest for the spin-

averaged masses, defined as

hMi ¼
P
J
ð2J þ 1ÞMJ

P
J
ð2J þ 1Þ : (17)

However, in most cases not all of the states entering
Eq. (17) are known from experiment. For the 1S, 2S, and
3S masses in this section the J ¼ 1 states (�) are consid-
ered instead of the spin averages. Note that the J ¼ 0
S-wave states (�b) enter the spin-averaged masses only
with a weight of 1=4, and so the influence of systematic
errors in the hyperfine splittings is negligible here. For the
1P and 2P masses, the spin averages over the �b triplet
(J ¼ 0, 1, 2) states are used. The only experimentally
known D-wave state [21] is �2ð1DÞ with J ¼ 2, and this
state is therefore considered here.
In terms of the NRQCD power counting [12], radial and

orbital energy splittings are of order Oðv2Þ, where v is the
internal speed of the b quarks inside the heavy-heavy
meson. For bottomonium one has v2 � 0:1. The NRQCD
action in use includes all relativistic corrections of order
Oðv4Þ (at tree level), and hence the missing relativistic
corrections are of order Oðv6Þ. Naively this leads to rela-
tivistic errors for the radial and orbital splittings of
Oðv4Þ ¼ 1%. However, as discussed in [14], for energy
splittings one has to consider the difference between the
expectation values of the missing operators for the two

TABLE V. Kinetic mass, NRQCD energy shift, and the square
of the ‘‘speed of light’’ for various lattice momenta ap ¼ n �
2�=L, calculated on the aml ¼ 0:005 ensemble with amb ¼
2:536.

n2 aMkinð�bÞ aC c2

1 5.450(17) 2.5913(84) � � �
2 5.450(17) 2.5912(85) 1.000 03(85)

3 5.450(18) 2.5911(92) 1.000 1(16)

4 5.461(22) 2.597(11) 0.998 1(21)

5 5.457(20) 2.595(10) 0.998 7(24)

6 5.452(20) 2.592(10) 0.999 7(27)

8 5.454(22) 2.593(11) 0.999 3(35)

9 5.447(20) 2.590(10) 1.000 5(35)

12 5.445(21) 2.589(11) 1.000 9(42)

TABLE VI. Results for the radial and orbital energy splittings in lattice units. Errors are
statistical/fitting only.

aml ¼ 0:005 aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

�ð2SÞ ��ð1SÞ 0.3236(46) 0.3270(73) 0.330(18) 0.327(23)

�ð3SÞ ��ð1SÞ 0.517(21) 0.537(23) � � � � � �
h�bð1PÞi ��ð1SÞ 0.2589(30) 0.2572(22) 0.2628(57) 0.2613(61)

h�bð2PÞi ��ð1SÞ 0.478(30) 0.502(26) 0.511(39) 0.516(37)

h�bð2PÞi � h�bð1PÞi 0.219(29) 0.245(24) 0.248(35) 0.255(33)

�2ð1DÞ ��ð1SÞ 0.4080(46) 0.4194(42) 0.417(12) 0.426(12)

STEFAN MEINEL PHYSICAL REVIEW D 79, 094501 (2009)

094501-6



states. This leads to a reduction of the relativistic errors for
the 2S� 1S splitting to about 0.5%.

Additional systematic errors for the NRQCD action are
due to discretization errors and missing radiative correc-
tions (beyond tadpole improvement). Estimates of these
errors for the 2S� 1S and 1P� 1S splittings are given in
Table VII. They are taken to be equal to the estimates
obtained in [14] for exactly the same lattice NRQCD action
on the ‘‘coarse’’ MILC gauge configurations, which have a
lattice spacing (a�1 � 1:6 GeV) very similar to the en-
sembles considered here. The reader is referred to [14,22]
for the details. As can be seen in the table, systematic errors
are much smaller for the 2S� 1S splitting compared to the
1P� 1S splitting. This is due to the smaller difference in
the wave functions for the 2S and 1S states. The 2S� 1S
splitting thus allows a more reliable determination of the
lattice spacing.

Note that there are also discretization errors due to the
gluon and sea quark actions. These are difficult to quantify
at this stage as only data from one lattice spacing are
available. Gauge configurations with a smaller lattice spac-
ing are currently being generated by the RBC and UKQCD
Collaborations so that a more systematic analysis will
become possible in the future. In [4], a preliminary error
estimate of ða�QCDÞ2 � 4% for the calculations of light

hadron properties on the current ensembles was given. The
calculations performed here are different in that the do-
main wall action only enters via the sea quarks. The
Iwasaki gluon action [23,24] is renormalization group
improved and is therefore expected to have a better scaling
behavior than the unimproved Wilson action. However,
this depends on the observable considered; see e.g. [25]
for a scaling study of the critical temperature and glueball
masses. The stability of the speed of light demonstrated in
Sec. III B provides some evidence for the smallness of the
effect of gluon discretization errors for bottomonium.

For reference, the discretization errors in the 2S� 1S
and 1P� 1S splittings on the coarse MILC lattices due to
the Lüscher-Weisz gluon action were estimated in [14] to
be 0.5% and 1.7%, respectively. These errors are propor-
tional to the difference in the square of the wave function at
the origin, which is smaller between the 2S and 1S states.
The results for the inverse lattice spacings of the four

ensembles from both the �ð2SÞ ��ð1SÞ and the
h�bð1PÞi ��ð1SÞ splittings are listed in Table VIII. For
the most chiral ensemble the 2S� 1S splitting gives
a�1 ¼ 1:740ð25Þstatð19Þsyst GeV. No significant depen-

dence on the sea quark mass can be seen within the
statistical errors, and therefore no extrapolation was at-
tempted. For comparison, the RBC and UKQCD
Collaborations have obtained a�1 ¼ 1:729ð28Þstat in the
chiral limit, using the �� baryon mass [4]. This is con-
sistent with the results obtained here.
Next, the lattice spacing determinations from the 2S�

1S splitting were used to convert the other radial and
orbital splittings from Table VI to physical units. The
results are plotted in Fig. 3. Note that the individual results
for the lattice spacings of the different ensembles were
used.

TABLE VIII. Results for the inverse lattice spacing obtained from the �ð2SÞ ��ð1SÞ and
h�bð1PÞi ��ð1SÞ splittings. The first error given is statistical/fitting and the second is an
estimate of the systematic errors (relativistic, radiative, and discretization) due to the NRQCD
action. Systematic errors due to the gluon and sea quark actions are not included.

aml ¼ 0:005 aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

a�1
2S�1S (GeV) 1.740(25)(19) 1.722(38)(19) 1.708(92)(19) 1.72(12)(2)

a�1
1P�1S (GeV) 1.698(19)(65) 1.709(15)(65) 1.673(36)(64) 1.682(40)(64)

TABLE VII. Estimates of the systematic errors due to the
lattice NRQCD action for the 2S� 1S radial and 1P� 1S
orbital splittings [14].

2S� 1S 1P� 1S

Relativistic 0.5% 1.0%

Radiative 0.5% 1.7%

Discretization 0.8% 3.2%

Total 1.1% 3.8%
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FIG. 3 (color online). Radial and orbital energy splittings
compared to the experimental results (indicated by lines).
Errors are statistical/fitting only and include the uncertainty in
the determination of the lattice spacing. The 1S and 2S masses,
for which no error bars are shown, are not predictions of the
lattice calculation as these states are used to determine the lattice
scale and the overall energy shift.
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Overall, good agreement with experiment is seen. The
dependence on the light sea quark mass is found to be
weak. This is expected since the typical gluon momenta
inside the bottomonium are much larger than all the values
for the light quark masses used here. However, note that
large deviations between lattice results and experiment
were previously seen in quenched simulations (nf ¼ 0),

so the inclusion of 2þ 1 flavors of dynamical light quarks
is in fact very important. A comparison between quenched
and unquenched results can be found in [26].

D. Spin-dependent energy splittings

The spin-dependent energy splittings in bottomonium,
i.e. the fine and hyperfine structure, are of orderOðv4Þ and
hence any subleading corrections are missing in the
NRQCD action used here. Therefore, the relativistic errors
in these splittings are expected to be of order Oðv2Þ �
10%. The spin-dependent energy splittings also receive
radiative corrections of order Oð	sÞ, the strong coupling
constant at the scale set by the lattice spacing. This leads to
further systematic errors of the order of 20%, although
tadpole improvement reduces the problem. Finally, discre-
tization errors are also expected to be larger than for the
radial and orbital splittings, especially for the S-wave
hyperfine splitting as discussed later.

The results for the spin-dependent energy splittings in
lattice units are summarized in Table IX, where the errors
given are statistical/fitting only.

1. S-wave hyperfine structure

Figure 4 shows a plot of the �ð1SÞ � �bð1SÞ and
�ð2SÞ � �bð2SÞ energy splittings, where the previous lat-
tice spacing determinations from the 2S� 1S splittings
were used to convert to physical units.

The errors shown are statistical/fitting only but include
the uncertainty in the determination of the lattice spacing.
The latter in fact enters with a factor of 2 here, as discussed
in [22], due to the resulting uncertainty in the physical
heavy-quark mass (the hyperfine splitting is approximately

proportional to the inverse of that mass). The statistical
error in the 1S hyperfine splitting is then dominated by far
by this uncertainty, while the 2S hyperfine splitting has an
intrinsically higher statistical error as the state is radially
excited.
The �ð1SÞ � �bð1SÞ splitting has recently been mea-

sured by the BABAR Collaboration [19], who found
71:4þ2:3

�3:1ðstatÞ 	 2:7ðsystÞ MeV. This value is indicated in

Fig. 4. The lattice result in physical units for the aml ¼
0:005 ensemble is 52:5	 1:5ðstatÞ MeV, which is too
small by about 25%, in line with the large systematic errors
expected. Similarly to the radial and orbital splittings, little
dependence on the light sea quark mass is seen, which is
expected for the same reason as discussed there.
Note that in [14,22] a significant dependence on the

lattice spacing was found, with the result increasing toward
finer lattices, indicating that a substantial part of the de-
viation is due to discretization errors. The hyperfine split-

TABLE IX. Spin-dependent energy splittings in lattice units. Errors are statistical/fitting only.
Large systematic errors are expected as discussed in the text.

aml ¼ 0:005 aml ¼ 0:01 aml ¼ 0:02 aml ¼ 0:03

�ð1SÞ � �bð1SÞ 0.03017(14) 0.03033(16) 0.03102(36) 0.03145(38)

�ð2SÞ � �bð2SÞ 0.0137(30) 0.0120(48) 0.013(12) 0.018(16)

�b0ð1PÞ � h�bð1PÞi �0:0207ð20Þ �0:0206ð18Þ �0:0231ð36Þ �0:0175ð70Þ
�b1ð1PÞ � h�bð1PÞi �0:0049ð14Þ �0:0027ð19Þ �0:0059ð22Þ �0:0049ð41Þ
�b2ð1PÞ � h�bð1PÞi 0.0071(11) 0.0058(12) 0.0082(17) 0.0064(29)

hbð1PÞ � h�bð1PÞi �0:0026ð18Þ �0:0002ð21Þ �0:0014ð27Þ �0:0058ð42Þ
�b1ð1PÞ � �b0ð1PÞ 0.0158(18) 0.0176(25) 0.0173(40) 0.0126(77)

�b2ð1PÞ � �b1ð1PÞ 0.0120(23) 0.0088(31) 0.0137(38) 0.0113(68)

hbð1PÞ � �b1ð1PÞ 0.0023(16) 0.0027(16) 0.0044(35) �0:0009ð61Þ
�2ð1DÞ � �bð1DÞ 0.0011(21) �0:0012ð18Þ �0:0086ð70Þ �0:0050ð61Þ
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FIG. 4 (color online). S-wave hyperfine splittings [energies
relative to the �ð1SÞ and �ð2SÞ states, respectively] compared
to experiment. Errors are statistical/fitting only and include the
uncertainty in the determination of the lattice spacing, which
enters with a factor of 2. Large systematic errors are expected as
discussed in the text.
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ting is indeed expected to be sensitive to very short dis-
tances, as the spin-spin interaction potentials in simple
models contain a delta function at the origin (see e.g. [27]).

Finally, note that in [10], where a relativistic heavy-
quark action was used, the �ð1SÞ � �bð1SÞ splitting on
the same RBC/UKQCD gauge configurations was found to
be only 23:7	 3:7ðstatÞ MeV, a much larger deviation to
experiment than found here.

2. P-wave spin-dependent splittings

A plot of the 1P spin-dependent splittings, converted to
physical units using the previous 2S� 1S lattice spacing
results, is given in Fig. 5.

It shows the energy differences of the �b0ð1PÞ, �b1ð1PÞ,
�b2ð1PÞ, and hbð1PÞ states to the spin average of the triplet
h�bð1PÞi. The experimental results [20] for the triplet
states are also indicated in the plot; the hb states have not
yet been observed.

The lattice results are found to be in relatively good
agreement with experiment, even within the purely statis-
tical/fitting errors shown in the plot (those include the
uncertainty in the lattice spacing). This indicates that dis-
cretization errors may be smaller than for the S-wave
hyperfine splittings. Note that in simple potential models
the wave function at the origin is zero (cf. the smearing
functions in Table II) and hence the P-wave spin splittings
are expected to be not as sensitive to very short distances as
the S-wave hyperfine splittings.

The result for the experimentally unknown hbð1PÞ �
h�bð1PÞi splitting on the aml ¼ 0:005 ensemble is�4:5	
3:1 MeV, where the error quoted is statistical/fitting only
and includes the uncertainty from the determination of the
lattice spacing.

3. D-wave spin-dependent splittings

Here, only the �2ð1DÞ � �bð1DÞ splitting was calcu-
lated using the E�� and T�þ

2 representations, as these two

states do not mix and can be computed from the same
heavy-quark propagators.
The lattice results for the different ensembles are listed

in Table IX. On the aml ¼ 0:005 ensemble, the splitting in
physical units is found to be 1:8	 3:7 MeV where the
error given is statistical/fitting only and includes the un-
certainty from the determination of the lattice spacing. No
experimental results are available.

IV. CONCLUSION

In this paper, a comprehensive calculation of the botto-
monium spectrum with improved lattice NRQCD on the
RBC/UKQCD 243 � 64, Ls ¼ 16 gauge configurations
with 2þ 1 flavors of dynamical domain wall fermions
was presented. The results are similar to those obtained
in [14] with the same heavy-quark action from the coarse
MILC gauge configurations, which use the AsqTad fer-
mion action and the Lüscher-Weisz gluon action. In par-
ticular, good agreement with experiment was found for the
radial and orbital energy splittings, for which systematic
errors due to the NRQCD action are small. Furthermore, no
significant deviations of the speed of light from 1 in the
�bð1SÞ dispersion relation were found within the small
statistical errors. The calculations in this work provide
further evidence for the good properties of the domain
wall and Iwasaki actions employed by the RBC and
UKQCD Collaborations. By comparing the 2S� 1S radial
energy splitting to experiment, independent determinations
of the lattice spacings were performed, giving a�1 ¼
1:740ð25Þstatð19Þsyst GeV for the most chiral ensemble.

The results for the fine and hyperfine structure are ex-
pected to have larger systematic errors due to missing
radiative and relativistic corrections in the NRQCD action
as well as discretization errors. Nevertheless, relatively
good agreement with experiment was seen for the
P-wave fine structure, and the deviation to experiment in
the 1S hyperfine splitting was found to be much smaller
than for the previous result obtained from a relativistic
heavy-quark action in [10].
The calculations presented here are only for one lattice

spacing. A more systematic analysis of discretization er-
rors will be performed once new ensembles with a finer
lattice spacing are made available by the RBC and
UKQCD Collaborations.
Having obtained the bottomonium spectrum and the

bare heavy-quark mass in this work, the next step is to
perform calculations for heavy-light systems. Results for
the spectrum of heavy-light baryons and mesons with
domain wall valence quarks but with static heavy quarks
were recently presented in [28]. Heavy-light computations
with NRQCD heavy- and domain wall light valence quarks
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FIG. 5 (color online). P-wave spin splittings [energies relative
to the spin average of the �bð1PÞ states] compared to experi-
ment. Errors are statistical/fitting only and include the uncer-
tainty in the determination of the lattice spacing. Large
systematic errors are expected as discussed in the text.
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on the same RBC/UKQCD gauge field ensembles are
currently underway.
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