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In this paper we study the breaking of chiral symmetry with nonconfining powerlike potentials. The

region of allowed exponents is identified and, after the previous study of confining (positive exponent)

potentials, we now specialize in shorter range nonconfining potentials, with a negative exponent. These

nonconfining potentials are close to the Coulomb potential, and they are also relevant as corrections to the

linear confinement, and as models for the quark potential at the deconfinement transition. The mass-gap

equation is constructed and solved, and the quark mass, the chiral angle, and the quark energy are

calculated analytically with an exponent expansion in the neighborhood of the Coulomb potential. It is

demonstrated that chiral symmetry breaking occurs, but only the chiral invariant false vacuum and a

second nontrivial vacuum exist. Moreover chiral symmetry breaking is led by the ultraviolet part of the

potential, with no infrared enhancement of the quark mass. Thus the breaking of chiral symmetry driven

by nonconfining potentials differs from the one lead by confining potentials.
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I. INTRODUCTION

The problem of the spontaneous chiral symmetry break-
ing (�SB) is one of the QCD cornerstones. While �SB
driven by a confining potential has been studied in detail,
we now explore the effect of shorter range nonconfining
power-law potentials in �SB.

Continuing the well-defined mathematical problem of
studying �SB driven by power-law potentials [1] VðrÞ ¼
�K0

1þ�r�, we now specialize in negative exponents �<
0. For different values of �, we find numerically chirally
noninvariant possible vacua of the theory, solutions to the
corresponding mass-gap equation. We exploit the potential
model for QCD [1], whose origins can be traced back to
QCD in the truncated Coulomb gauge and which is proven
to be successful in studies of the low-energy phenomena in
QCD [2]. This class of models can be indicated as Nambu
and Jona-Lasinio type models [3] with the current-current
quark interaction and the corresponding form factor com-
ing from the bilocal gluonic correlator. A standard approxi-
mation in such models is to neglect the retardation and to
approximate the gluonic correlator by an instantaneous
potential of a certain form.

There are two different motivations to study �SB driven
by a class of nonconfining potentials, the corrections to
�SB due to nonconfining potentials, and �SB at the de-
confinement transition. Notice that the quark-antiquark
static potential computed in lattice QCD has clearly two
distinct components, the confining potential (linearlike)
and the shorter range Coulomb-like potential. In particular
the shorter Coulomb-like range part of the quark-antiquark
static potential may be more complicated than a pure ��

r

Coulomb potential. There are at least two different
Coulomb potentials, the perturbative Coulomb which in-
cludes logarithmic corrections and the Luscher Coulomb
due to the confining string fluctuations [4]. Moreover the

matching of these two Coulomb potentials and of the long
range linear potential may also be described by a non-
confining potential. Thus potentials in the neighborhood
of a pure Coulomb potential, with � � 1, may also be
phenomenologically relevant. Moreover, at the deconfine-
ment, say at the deconfinement phase transition of QCD
[5], or at a large number of flavors as in walking techni-
color [6], the confining potential vanishes and it is then
relevant to study the impact of potentials, shorter range
than the confining potential, in the spontaneous �SB. To
illustrate that different potentials may be relevant, in Fig. 1
we show different finite temperature T free energies com-
puted in lattice QCD [7–11] by Kakzmarek et al. Notice
that here we only address chiral symmetry breaking at zero
T, nevertheless the present work may also be used as a
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FIG. 1 (color online). We show examples of nonconfining
potentials, in particular, the T > Tc lattice QCD data for the
free energy F1, thanks to [7–11] Olaf Kaczmarek et al. The solid
line represents the T ¼ 0 static quark-antiquark potential.
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starting point for the study of �SB at finite T or at finite �,
where confinement is lost.

The problem of instability of the chirally invariant vac-
uum for powerlike confining potentials, i. e. for positive
exponents, has already been studied thoroughly in the
middle of 1980s by the Orsay group [12–15] and such an
instability was proved for the range 0 � �< 3. For nu-
merical studies, the harmonic oscillator type potential � ¼
2 was chosen by these authors, as well as by the Lisbon
group [16–18] and the Dubna [19] group, and a set of
results for the hadronic properties was obtained in the
framework of the given model. Adler and Davis, the
Lisbon group, the Zagreb group, and the Rayleigh group
also studied the linear potential many years ago [20–23].

Recently Bicudo and Nefediev [1] solved the mass-gap
equations for 0 � � � 2 explicitly, and demonstrated that
the chiral angle, the vacuum energy density, and the chiral
condensate are smooth slow functions of the form of the
confining potential, so that the results obtained for the
potential of a given form—the linear confinement being
the most justified and phenomenologically successful
choice [4,20–23]—have a universal nature for any quark-
quark kernels of such a type. Following the set of recent
publications devoted to possible multiple solutions for the
chirally noninvariant vacuum in QCD [24] (see also [25]
where a similar conclusion was made in a different ap-
proach), Bicudo and Nefediev also addressed the question
of replica existence for various power laws r�, and found
that for the whole range of allowed powers 0 � � � 2,
replica solutions do exist similarly to the case of � ¼ 2
studied in detail in [12].

This prompted us to extend the Coulomb potential with
other negative exponents, and to study in detail its contri-
bution to �SB. In Sec. II we extend the mass-gap equation
for power-law potentials with negative exponents. In
Sec. III we study analytically the mass-gap equation. In
Sec. IV we solve algebraically the mass-gap equation in
the chiral limit. Since the Coulomb potential leads to
ultraviolet divergences, in Sec. V we briefly address the
renormalization of the quark mass and of the quark energy.
In Sec. VI we conclude.

II. THE MASS-GAP EQUATION FOR THE POWER-
LAW POTENTIALS

We now derive the mass-gap equation for the power-law
potentials. This extends the derivation of Bicudo and
Nefediev [1] for positive exponents �.

The chiral model which we use for our studies is given
by the Hamiltonian with the current-current interaction
parametrized by the bilocal correlator Kab

��

H ¼
Z

d3x �c ðx; tÞð�i� � rÞc ðx; tÞ

þ 1

2

Z
d3xd3yJa�ðx; tÞKab

��ðx� yÞJb�ðy; tÞ; (1)

where the quark current is Ja�ðx; tÞ ¼ �c ðx; tÞ��
�a

2 c ðx; tÞ
and the gluonic correlator is approximated by a density-
density potential

Kab
��ðx� yÞ ¼ g�0g�0

�ab

4
3

V0ðjx� yjÞ; (2)

where the denominator 4
3 normalizes the Gell-Mann matrix

contribution to the mass-gap equation. We now study the
class of potentials with

V0ðjrjÞ ¼ ��K0
�þ1jrj�; (3)

where the only dimensional parameter of the model is the
strength of the confining force K0.
Previously Bicudo and Nefediev [1] studied the power-

law confining potentials, using the notation K0
�þ1jxj�,

adequate for the study of positive exponents, in particular,
for the class of confining potentials 0 � � � 2, including
the linear and the harmonic oscillator potentials. The re-
sults of Bicudo and Nefediev are show in Fig. 2.
Here we specialize in shorter range potentials, with a

negative exponent. Since the Coulomb potential is fre-
quently noted��=r, with dimensionless �, we now adopt
the notation of Eq. (3), where the exponent is denoted �.
Another difference to the previous work of Bicudo and
Nefediev [1] is the sign of the potential. While the confin-
ing potentials are attractive, it is necessary to have a
negative sign for the nonconfining potential for the poten-
tial to be attractive, and for the existence of bound states in
the spectrum.
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FIG. 2 (color online). We show the dynamical masses mðpÞ,
solutions of the mass-gap equation with zero bare mass m0 ¼ 0,
computed as in Bicudo and Nefediev [1]. The different solutions
correspond to the positive exponents (from left and bottom to
right and top) � ¼ 0:1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, and
1.9. Notice that the dynamical mass vanishes in the limit of � !
0. The masses are a function of the momentum p and dimen-
sionless units of K0 ¼ 1 are used. Also notice that the confining
potentials enhance the masses in the IR.
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The relativistic invariant Dirac-Feynman propagators
[15] can be decomposed in the quark and antiquark
Bethe-Goldstone propagators [18], used in the formalism
of nonrelativistic quark models,

SDiracðk0;kÞ ¼ i

k6 �mþ i	

¼ i

k0 � EðkÞ þ i	

X
s

usu
y
s �

� i

�k0 � EðkÞ þ i	

X
s

vsv
y
s �;

usðkÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ S

2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� S

2

s
k̂ ��

�
usð0Þ;

vsðkÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

1þ S

2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� S

2

s
k̂ ��

�
vsð0Þ;

¼ �i�2u
�
sðkÞ;

(4)

where the vector � is a Dirac matrix, not to be confused
with the parameter � of the potential. � is also a Dirac
matrix, and not the exponent of the potential as it is in the
remainder of this paper. We also define

SðkÞ ¼ sin’ðkÞ ¼ mðkÞDðkÞ
CðkÞ ¼ cos’ðkÞ ¼ kDðkÞ
DðkÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þmðkÞ2p ;

(5)

where ’ is the chiral angle and finally mðkÞ is the aim of
this paper, the constituent quark mass.

In the noncondensed vacuum, the quark mass is equal to
the current quark mass m0. In the physical vacuum, the
constituent quark massmðkÞ is a variational function which
is determined by the mass-gap equation. We illustrate in
Fig. 2 examples of solutions, for the positive exponents
� � 0.

There are three equivalent methods to derive the mass-
gap equation for the true and stable vacuum, where con-
stituent quarks acquire the constituent mass [26]. One
method consists in assuming a quark-antiquark 3P0 con-

densed vacuum, and in minimizing the vacuum energy
density. A second method consists in rotating the quark
and antiquark fields with a Bogoliubov-Valatin canonical
transformation to diagonalize the terms in the Hamiltonian
with two quark or antiquark second quantized fields. A
third method consists in solving the Schwinger-Dyson
equations for the propagators. Any of these methods leads
to the same mass-gap equation and quark dispersion rela-
tion. Here we replace the propagator of Eq. (4) in the
Schwinger-Dyson equation

0¼ uys ðkÞ
�
kk̂ ��þm0��

Z dw0

2


d3k0

ð2
Þ3 i
~Vðk� k0Þ

�X
s0

�
uðk0Þs0uyðk0Þs0
w0 �Eðk0Þ þ i	

� vðk0Þs0vyðk0Þs0
�w0 �Eðk0Þ þ i	

��
vs00 ðkÞ

EðkÞ ¼ uys ðkÞ
�
kk̂ ��þm0��

Z dw0

2


d3k0

ð2
Þ3 i
~Vðk� k0Þ

�X
s0

�
uðk0Þs0uyðk0Þs0
w0 �Eðk0Þ þ i	

� vðk0Þs0vyðk0Þs0
�w0 �Eðk0Þ þ i	

��
usðkÞ;

(6)

where again � is a Dirac matrix, and not the exponent of
the potential as it is in the remainder of this paper. The
mass-gap equation and the quark energy are finally

0 ¼ þSðpÞBðpÞ � CðpÞAðpÞ; (7)

EðpÞ ¼ þSðpÞAðpÞ þ CðpÞBðpÞ; (8)

where

AðpÞ ¼ mc þ 1

2

Z d3k

ð2
Þ3
~Vðp� kÞSðkÞ

BðpÞ ¼ pþ 1

2

Z d3k

ð2
Þ3
~Vðp� kÞðp̂ � k̂ÞCðkÞ:

(9)

Using the Bogoliubov-Valatin transformation, the
Hamiltonian (1) splits into the vacuum energy, the qua-
dratic and the quartic parts in terms of the quark creation/
annihilation operators. For the vacuum energy density one
has

Evac½’� ¼ 1

Vol
h0jTH½’�j0i

¼ � g

2

Z d3p

ð2
Þ3 ð½AðpÞ þm0�SðpÞ
þ ½BðpÞ þ p�CðpÞÞ; (10)

where Vol is the three-dimensional volume; the degeneracy
factor g counts the number of independent quark degrees
of freedom

g ¼ ð2sþ 1ÞNCNf; (11)

with s ¼ 1
2 being the quark spin; the number of colorsNC is

put to three, and the number of light flavorsNf is two. Thus

we find that g ¼ 12.
To arrive at the mass-gap equation, we compute the

Fourier transform of the potential. To regularize the infra-
red (IR) part of the potential, a modified version of the
potential (3) [12] is convenient for � � �1,

V0ðrÞ ¼ ��K0
�þ1jrj�e�mjrj; (12)

where m plays the role of the regulator for the infrared
behavior of the interaction, but the limit m ! 0 is under-
stood. We get for the Fourier transform
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~VðkÞ ¼ ��
Z

d3rK0
�þ1jrj�e�mre�ik:r

¼ ��
4


k

Z 1

0
drK0

�þ1r�þ1e�mr sinkr

¼ ��
4


jkj
K0

�þ1�ð�þ 2Þ sin½ð�þ 2Þ arctanjkjm �
ðk2 þm2Þð�þ2Þ=2

! þ�
4
K0

�þ1�ð�þ 2Þ sin
�2
jkj3þ�

; (13)

where the Fourier transform only exists for �>�2. For
smaller exponents the Fourier transform is ultraviolet
divergent.

For the generalized powerlike potential (12), the angular
integrals necessary to compute the intermediate functions
AðpÞ and BðpÞ are,

I0 ¼
Z 1

�1
d! ~Vðk2 þ k02 � 2!kk0Þ

¼ þ�4
K0
�þ1�ð�þ 2Þ sin
�

2

�
�
� 2

ð1þ �Þ
1

2kk0

�
1

jkþ k0j1þ�
� 1

jk� k0j1þ�

��
;

I1 ¼
Z 1

�1
d! ~Vðk2 þ k02 � 2!kk0Þ!

¼ þ�4
K0
�þ1�ð�þ 2Þ sin
�

2

�
�

2

ð1þ �Þ
1

2kk0

�
1

jkþ k0j1þ�
þ 1

jk� k0j1þ�

�

þ 4

ð�1þ �Þð1þ �Þ
1

ð2kk0Þ2

�
�

1

jkþ k0j�1þ�
� 1

jk� k0j�1þ�

��
; (14)

and we get

C ¼ þ�
K0

�þ1

2

�ð1þ �Þ sin
�

2

AðpÞ ¼ m0 þ C
Z 1

�1
k2dk

�
1

pk

�
1

jp� kj1þ�

��
mðkÞDðkÞ

BðpÞ ¼ pþ C
Z 1

�1
k2dk

�
1

pk

�
þ 1

jp� kj1þ�

�

þ 1

p2k2

�
� 1

jp� kj�1þ�

��
kDðkÞ; (15)

where, for the sake of convenience, we continued the
integral to the negative values of k assuming that mðpÞ is
an even function, as it would happen in 1þ 1 dimensions.

Consequently, the mass-gap Eq. (7) takes the form of a
nonlinear integral equation for the constituent mass mðpÞ

mðpÞ ¼ m0 þ
Z 1

�1
dkC

1

p3
DðkÞ

�
þ
�

pk

jp� kj1þ�

�
� ½pmðkÞ � kmðpÞ�
� 1

ð�1þ �Þ
�

1

jp� kj�1þ�

�
kmðpÞ

�
(16)

and this is the main object of our studies.

III. ANALYTICAL PROPERTIES OF THE
MASS-GAP EQUATION

We now analyze dimensionally the mass-gap equation,
and study possible infrared (IR) and ultraviolet (UV)
divergences.
In Sec. II the possible exponents � are already limited to

�>�2, since in Eq. (13) the Fourier transform of the
potential does not exist for smaller exponents. Now we
address in a dimensional analysis the stability of a possible
nontrivial vacuum. Let us assume that a solution mðkÞ
exists, minimizing the vacuum energy. Then we arbitrarily
rescale the solution

mðkÞ ! mð�kÞ (17)

and, if the vacuum energy does not have an absolute
minimum for � ¼ 1, the vacuum is unstable and thus our
assumption was wrong. We may now simply evaluate the
vacuum energy as a function of the dimensionless factor �.
We get from Eq. (10)

E vacð�Þ ¼ c1�
4 þ c2m0�

3 þ c3K0
�þ1���þ3; (18)

the vacuum energy density, with a dimension of the fourth
power of momentum. In Eq. (18), the ci are constants,
equal to the different integrals in the vacuum energy den-
sity (10). Thus, in the chiral limit which is the one matter-
ing here, the kinetic energy density scales like �4. We can
show that c1 is positive, and this prevents the vacuum from
being UV unstable, providing the potential term has a
smaller scaling power than the kinetic energy density.
Thus for �>�1 there may be a solution. The nicer case
is the one of the linear potential where the Evacð�Þ has a
perfect Mexican hat shape. For �<�1, the potential al-
ways wins the kinetic term, moreover for an attractive
potential we can show that the constant c3 is negative,
and thus the vacuum is unstable. For the Coulomb case
� ¼ �1 both terms scale equally and there is either a
trivial solution mðkÞ ¼ 0 if the c3 < c1 or the vacuum is
unstable if c1 > c3. Thus we show that there may be a
stable and nontrivial mðkÞ> 0 solution to the mass-gap
equation only for �>�1. Since the present paper is
specialized in negative exponents, we are interested in
solving the mass-gap equation for �1<�< 0.
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In the present case of a negative exponent �, we now
show that the gap equation (7) is IR finite. Notice that in the
mass-gap equation any possible IR divergence may only
occur in the two denominators with a power of jp� kj.
The second denominator 1

jp�kj�1þ� is clearly IR finite since

the exponent 1� �> 1. The first denominator 1
jp�kj1þ�

tends to an IR divergence when � ! 0, however this
divergence is canceled by the numerator pmðkÞ � kmðpÞ.
Thus the mass-gap equation (7) for negative exponents is
quite different from the mass-gap with positive exponents,
where an exact cancellation of the IR divergences of these
two different terms would occur, but nevertheless would be
technically harder to implement in the mass-gap equation.

In the present case of IR finiteness, we now focus in the
UV sector of the equation. In what concerns the UV limit,
each separate term in the integrand of the mass-gap equa-
tion (7) may be UV divergent in the limit of � ! �1,
when the integrand momentum k tends to �1. To study
whether the UV divergences cancel, it is convenient to
perform momenta expansions in the integrand. There are
two different expansions of interest, one where the mo-
mentum in the integrals is much larger than the external
momentum, corresponding to the limit of jkj 	 jpj, where
the mass is not limited. A second possible limit is the one
of k, p 	 m when we are interested in large external
momenta, and we assume that the mass is limited. We start
by expanding the integrand in the limit when k

p ! 0.

In order to utilize as much as possible the cancellations
of UV divergences of the different terms in the mass-gap
equation, we not only sum all the terms but also return to a
momentum integral from 0 to 1. Then, if IðkÞ is the
integrand of the mass-gap equation (16), for the expansion
in k

p of the mass independent terms we get

IðkÞ þ Ið�kÞ ¼ �

2

�ð2þ �Þ sin
�

2

K0
1þ�DðkÞ
jkj1þ�

�
�
2

3
½ð3þ �ÞmðpÞ � 3mðkÞ�

þ 1

15
ð3þ �Þð2þ �Þ

� ½ð5þ �ÞmðpÞ � 5mðkÞ�p
2

k2
þ o

�
p4

k4

��
:

(19)

Thus, at leading order in k
p , the mass-gap equation (16) can

be rewritten as

C 0 ¼ �K0
1þ�

2

�ð2þ �Þ sin
�

2

2

3

m0 ¼ mðpÞ �
Z 1

0
dkC0

DðkÞ
jkj1þ�

½ð3þ �ÞmðpÞ � 3mðkÞ�:
(20)

Equation (20) is UV divergent for � � �1 but it is indeed

UV finite for �1<�< 0, and thus we can proceed with
the search of its solution.

IV. ALGEBRAIC SOLUTION OF THE MASS-GAP
EQUATION IN THE CHIRAL LIMIT

We now utilize algebraic methods to solve the mass-gap
equation. We first set the mass-gap equation in a form close
to an eigenvalue equation and show that the eigenvalues of
this equation are real. The solutions of the mass-gap equa-
tion are the roots of the linearized eigenvalue equation, and
this provides a fast convergence to the solution. We provide
the solution in the limit where the UV contribution leads
the mass-gap equation.
We consider the chiral limit of m0 ! 0. We first address

the mass-gap equation in three momentum dimensions.
The three-dimensional mass-gap equation (7) can be re-
written as

0 ¼
�

1

DðpÞ
�
DðpÞmðpÞ

þ
�
1

2

Z d3k

ð2
Þ3
~Vðp� kÞðp̂ � k̂Þ kDðkÞ

pDðpÞ
�
DðpÞmðpÞ

�
�
� 1

2

Z d3k

ð2
Þ3
~Vðp� kÞ

�
DðkÞmðkÞ (21)

and this is similar to a three-dimensional-like algebraic
quasilinear equation with a symmetric matrix for a vector
DðkÞmðkÞ, since the integrand only depends on the distance
p� k.
To solve the mass-gap equation, we start by fixing the

denominator functions DðkÞ inside the square brackets ½ �
of Eq. (21), with our best initial guess. Then we apply the
eigenvalue method to the resulting matrix equation.
Clearly, the eigenvalues are real since the matrix is real
and symmetric. A solution of the mass gap exists when the
matrix has a root. In Eq. (21) we have three matrices. The
first one is the identity and has positive eigenvalues grow-
ing with the mass function mðpÞ. The other two matrices
have eigenvalues with little dependence on the mass func-
tionmðkÞ. If, in the limit of vanishingmðkÞ, there are one or
more negative eigenvalues, then when we increase the
mass mðkÞ, the first matrix increases and eventually it is
able to cancel the negative eigenvalues of the second plus
third matrices. In that case we find the desired roots, and
we solve the mass-gap equation. The number of solutions
is equal to the number of negative eigenvalues of the matrix
computed in the massless limit.
To actually solve the mass-gap equation it is more

convenient to solve the radial momentum version (one-
dimensional) of the mass-gap equation. For the one-
dimensional mass-gap we can start from Eq. (16), and
rewrite it is a symmetric form,
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0 ¼
�

1

DðpÞ
�
DðpÞpmðpÞ þ

Z 1

�1
dk

C
p3

k
DðkÞ
DðpÞ

�
�
þ pk

jp� kj1þ�
þ 1

ð�1þ �Þ
� 1

jp� kj�1þ�

�
DðpÞpmðpÞ

þ
�Z 1

�1
dkC

�1

jp� kj1þ�

�
DðkÞkmðkÞ; (22)

and again, in particular, we have two terms, one fully
diagonal and another explicitly symmetric since it only
depends on the diagonal distance jp� kj. Thus the matrix
is Hermitian, and the eigenvalue equation now applies to a
vector DðkÞkmðkÞ. Again, the number of solutions is equal
to the number of negative eigenvalues of the matrix com-
puted in the massless limit of DðkÞ ! 1

k .

We now solve the mass-gap equation in the limit where
it is led by the UV contribution. From the UV-led mass-gap
Eq. (20) we get the matrix equation

0 ¼
�
1�

Z 1

0
dkC0

DðkÞ
jkj1þ�

ð3þ �Þ
�
mðpÞ

þ
�Z 1

0
dkC0

DðkÞ
jkj1þ�

3

�
mðkÞ: (23)

Let us consider that we discretize the momenta, for in-
stance in a lattice of N points, where the correct solution is
found in the limit N ! 1. Then the mass-gap equation
(23) is a N � N matrix equation. In this case the corre-
sponding matrix is not symmetric, but actually we can find
the eigenvalues exactly and show that they are real, since
one of the matrices is a constant and the other is a projector.

In particular, the eigenvalue equation applies to the
vectors mðkÞ. The first term in Eq. (23), proportional to
mðpÞ, is constant and is thus proportional to the identity
matrix. The term integrating in mðkÞ does not depend on p
and thus it is a projector on a constant vector m1ðpÞ ¼
const.

This implies that one eigenvector, say �1ðpÞ, of the N �
N matrix is constant,

�1 ¼
�
1�

Z 1

0
dkC0

DðkÞ
jkj1þ�

ð3þ �Þ
�

þ
�Z 1

0
dkC0

DðkÞ
jkj1þ�

3

�

¼
�
1�

Z 1

0
dkC0

DðkÞ
jkj1þ�

�

�
: (24)

And, since in the projector all the lines of the discretized
matrix are identical, the matrix has N � 1 linear depen-
dences and this implies that all the other N � 1 eigenvec-
tors �iðpÞ, for i > 1, are canceled by the projector, and thus
all their eigenvalues are identical, simply given by the

matrix proportional to the identity. The other eigenvalues
�iðpÞ, i > 1 canceled by the projector are

�i ¼
�
1�

Z 1

0
dkC0

DðkÞ
jkj1þ�

ð3þ �Þ
�
: (25)

Now, notice that C0 < 0 if we consider an attractive, i.e.
negative shorter range potential with ��< 0, and with a
negative � ’ �1, and leading us to

�1 � 1 ¼ �
Z 1

0
dkC0

DðkÞ
jkj1þ�

� < 1;

�i � 1 ¼ �
Z 1

0
dkC0

DðkÞ
jkj1þ�

ð3þ �Þ> 1:

(26)

Thus we can have one and only one root. The other
eigenvalues are positive (and quite large if the integral is
nearly UV divergent). Thus this differs from the confining
potentials where a whole tower of replicas was found by
Bicudo and Nefediev [1].
We now concentrate on the root to determine the con-

stant eigenvectorm that solves the mass-gap equation (20).
It is convenient to rename the exponent to � ¼ �1þ 	,
where we are interested in the exponent range of 0< 	<
1. The mass-gap equation is then

0 ¼ �1 ¼ 1�
Z 1

0
dkC0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
jkj	

¼ 1� C0ð�1þ 	Þm
�	�ð1�	

2 Þ�ð	2Þ
2

ffiffiffiffi



p ; (27)

and the solution is

m ¼
�
jC0jð1� 	Þ�ð

1�	
2 Þ�ð	2Þ
2

ffiffiffiffi



p
�
1=	

¼ K0

�
�
�ð1þ 	Þ

2

sin


ð1� 	Þ
2

1� 	
3
2

�ð1�	
2 Þ�ð	2Þ
2

ffiffiffiffi



p
�
1=	

¼ K0

�
�

3
	
� �

2þ 3�þ c ð12Þ
6


þ oð	Þ
�
1=	

¼ jK0j
�

�

3
	

�
1=	

e½��ð2þ3�þc ð1=2ÞÞ=ð6
Þþoð	Þ� (28)

and this diverges very fast in the limit of vanishing 	, but
for finite 	 it occurs that the negative � exponents indeed
produce chiral symmetry breaking.
The solution of Eq. (28) for the dynamical quark mass is

plotted in Fig. 3 as a function of 	. We find that a small but
finite mass m ’ 0:05K0, almost independent of 	, in the
range 0:15< 	< 0:9. For 	 ’ 1, corresponding to � ’ 0
the mass vanishes. The mass explodes for 	 ’ 0, close to
the Coulomb potential.
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V. BRIEF RENORMALIZATION OF THE QUARK
MASS AND ENERGY

Since the present framework of a power-law potential
offers a possible regularization of the Coulomb
potential divergences, which are expected to remain in
any deconfined version of QCD (see Fig. 1), we also briefly
sketch the renormalization of the quark energy and of the
quark mass. Different methods to renormalize the
Coulomb potential in the Coulomb gauge have been ap-
plied by Adler and Davis [20] and by Klabučar, Horvat,
Kekez, and Palle [22,27,28] using the counterterm method
and by Szczepaniak and Swanson [29] utilizing the simili-
tude method of Glazek and Wilson [30]. For more detail,
see these works. We now briefly outline how to renormal-
ize the quark mass and energy using the counterterm
method.

The quark mass is computed in Eq. (28); we now study
the quark energy. It is first convenient to write the mass-gap
equation (7) as

AðpÞ
mðpÞ ¼ BðpÞ

p
; (29)

and then we get for the quark energy (8)

EðpÞ ¼ DðpÞ½mðpÞAðpÞ þ pBðpÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðpÞ2 þ p2

q AðpÞ
mðpÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q 3

1� 	
: (30)

This shows that, if the quark mass is divergent in the
Coulomb limit of 	 ! 0, the quark energy is also
divergent.
Let us now assume that the quark mass can be made

small, since the light quarks u and v are quite close to the
chiral limit. This corresponds to a different mass over
momentum expansion from the one leading to Eq. (30).
We now use m 
 p, k and for simplicity we consider a
constant mðpÞ ¼ m. Including the current quark mass m0,
but with no counterterms yet, we get for the AðpÞ and BðpÞ
integrals

AðpÞ
m

¼ m0

m
þ C

Z 1

�1
k2dk

�
2

2pk

�
1

jp� kj1þ�

��
1

jkj

¼ m0

m
þ C

p	

2

1� 	
¼ m0

m
þ �

�
1


	
þ 1� �� logð pK0

Þ



þ oð	Þ
�

BðpÞ
p

¼ 1þ C
Z 1

�1
k2dk

�
2

2pk

�
þ 1

jp� kj1þ�

�

þ 4

ð�1þ �Þ
1

ð2pkÞ2
�
� 1

jp� kj�1þ�

��
k
1

jkj
1

p

¼ 1þ C
p	

4

ð1� 	Þð3� 	Þ

¼ 1þ 2�

3

�
1


	
þ 4� 3�� 3 logð pK0

Þ
3


þ oð	Þ
�
: (31)

Thus there are two divergences, contributing in the mass-

gap equation with AðpÞ
mðpÞ � BðpÞ

p and in the quark energy with
AðpÞ
mðpÞ þ BðpÞ

p . To cancel these divergences, we renormalize

the bare quark propagator, including counterterms in the
inverse propagator. In our notation, as used in Eq. (6), we
transform

kk̂ ��þm0� ! ð1� Z2Þk0 þ Z2kk̂ � �þ Zmm0�;

(32)

where � is a Dirac matrix, and not the exponent of the
potential as it is in the remainder of this paper. In Eq. (32),
Z2 is the wave function renormalization factor and Zm is
the mass renormalization factor. Notice that the present
framework, although relativistic, is not Lorentz invariant
and thus we have to renormalize separately the temporal
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0
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log m

FIG. 3 (color online). We show (a) the quark mass m and
(b) logðmÞ solution of the mass-gap equation in the chiral limit,
plotted as a function of the exponent 	, in dimensionless units of
K0 ¼ 1. We consider here � ¼ 
=12 as in the Luscher term [4]
computed in static lattice QCD potentials.
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and spatial components of the momentum in the propaga-
tor, splitting Z2 into Z0 and Z,

ð1� Z2Þk0 þ Z2kk̂ � � ! ð1� Z0Þk0 þ Zkk̂ ��: (33)

Since we only need two counterterms to renormalize our
two divergences, the simplest prescription consists in using
Z0 ¼ 1. Then the equations for A and B become

AðpÞ
m

¼ Zm

m0

m
þ �

�
1


	
þ 1� �� logð pK0

Þ



þ oð	Þ
�

BðpÞ
p

¼ Zþ 2�

3

�
1


	
þ 4� 3�� 3 logð pK0

Þ
3


þ oð	Þ
�
;

(34)

and thus the two divergences can be canceled separately. In
any case we may choose, to leading order,

m ¼ m0; (35)

since the mass divergence may be included in the renor-
malization factor Zm. Assuming that the relativistic kinetic

energy EðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is maintained, requiring

ðA=mÞ ¼ ðB=pÞ ¼ 1, we get for the renormalization fac-
tors

Zm ¼ ��




1

	
þ 1� �

1� �� logð pK0
Þ



þ oð	Þ

Z ¼ � 2�

3


1

	
þ 1� �

8� 6�� 6 logð pK0
Þ

9

þ oð	Þ:

(36)

The renormalization factors in Eq. (36) are not constant,
but it is standard to fix them at a given scale for the
momentum p in the logarithms. Actually, the mass is not
really a constant—this was just an approximation used to
simplify the integrals in Eq. (15)—and the mass mðpÞ runs
logarithmically with the momentum p as is well known
[20,22,27–30]. The proof that both m and E are finite is
sufficient to briefly show that the renormalization of the
Coulomb potential is possible with the regularization of-
fered by the power-law potentials.

Notice that, once the renormalization of the UV diver-
gences of the Coulomb potential has been achieved, we
may add a UV finite potential to the Coulomb one. Then
the current quark mass of the mass-gap equation due to the
UV finite potential is the renormalized mass as discussed
here. To simulate QCD with confinement, usually the
potential added is the linear potential. To simulate QCD
in a nonconfined phase, a power-law potential like the ones
studied here may substitute the linear potential.

To illustrate an application of the renormalization, let us
for instance consider a T ¼ 0 quark-antiquark potential as
in Fig. 1, fitted by a function

VðrÞ ¼ V0 � �

r
� �

ffiffiffiffiffiffi
K0

r

s
þ �r; (37)

where the ��
ffiffiffiffiffi
K0

r

q
potential improves a fit that would

include the linear and Coulomb potentials only. The UV
renormalization, as in Eq. (36), removes both the UV
divergences and the finite contribution of the Coulomb

potential (regularized with ��
K0

	

r1�	 ) to the mass-gap equa-

tion. The linear potential saturates when T > Tc and here
we do not include finite temperature effects which go

beyond our aim. One is then left with a potential ��
ffiffiffiffiffi
K0

r

q
,

belonging to the class of potentials of Eq. (3). In the chiral
limit, this leads to the same mass-gap equation of Eq. (16),
resulting finally in the dynamical mass generation depicted
in Fig. 3. Notice that, in this renormalized example, the
relevant part of Fig. 3 is the central and finite plateau
corresponding to 	 ¼ 0:5, equivalent to � ¼ �0:5.

VI. CONCLUSION

We study �SB driven by power-law potentials with a
negative exponent �< 0. These potentials are nonconfin-
ing. We extend a previous study performed for confining
potentials with a positive exponent [1]. In that study, chiral
symmetry already vanishes when � ! 0; nevertheless,
since the Coulomb potential is negative, it is natural to
reverse the sign of the potential, and then �SB may occur
for �< 0.
We work in momentum space and the existence of a

Fourier transform is limited to �>�2. Then, with a
dimensional analysis, we show that we may only have a
stable �SB vacuum for � � �1. Thus we study in detail
the nonconfining potentials with �1<�< 0, i.e. in the
exponent range limited by the Coulomb potential and the
logarithmic potential.
We find that �SB also occurs for the studied negative

exponent power-law potentials generating dynamically a
finite quark mass m.
Moreover we find qualitative differences to the mass

generated with confining potentials. First, we find one
and only one nontrivial solution of the mass-gap equation,
whereas for confining potentials an infinite tower [1] of
false, excited vacua, sometimes called replicas, is found.
Also, the solution found has an approximately constant
mass, as in Fig. 3, i.e. we find no IR enhancement of the
quark mass, whereas the confining potentials studied pre-
viously [1] produce a significant IR enhancement of the
quark mass, as in Fig. 2.
We also find an UV divergence of the dynamical mass

m, in the Coulomb potential limit of the exponent � !
�1, and we outline how to renormalize the quark mass and
energy, with the counterterm method.
This work may be a starting point for the study of�SB at

the deconfinement transition, say with finite T, finite �, or

P. BICUDO PHYSICAL REVIEW D 79, 094030 (2009)

094030-8



large NF. For instance, a potential of the form

V0ðrÞ ¼ ��

ffiffiffiffiffiffi
K0

r

s
; (38)

or with any other exponent � 2� � 1; 0½, is not confining
and yet it does produce chiral symmetry breaking. This
suggests that it would be interesting to study the properties
of the Goldstone bosons and of the remaining bosonic
spectrum with such a potential.

ACKNOWLEDGMENTS

The author is grateful to Alexei Nefediev for valuable
suggestions that motivated this work, and to Olaf
Kaczmarek for sharing the Lattice QCD static quark po-
tentials and energies. This work was partly funded by the
FCT Grant Nos. PDCT/FP/63923/2005 and POCI/FP/
81933/2007.

[1] P. J. A. Bicudo and A.V. Nefediev, Phys. Rev. D 68,
065021 (2003).

[2] P. Bicudo, S. Cotanch, F. Llanes-Estrada, P. Maris, E.
Ribeiro, and A. Szczepaniak, Phys. Rev. D 65, 076008
(2002).

[3] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961).

[4] M. Luscher and P. Weisz, J. High Energy Phys. 07 (2002)
049.

[5] T. DeGrand, Y. Shamir, and B. Svetitsky, arXiv:0809.2953.
[6] A. Belyaev, R. Foadi, M. T. Frandsen, M. Jarvinen, F.

Sannino, and A. Pukhov, Phys. Rev. D 79, 035006 (2009).
[7] M. Doring, K. Hubner, O. Kaczmarek, and F. Karsch,

Phys. Rev. D 75, 054504 (2007).
[8] K. Hubner, F. Karsch, O. Kaczmarek, and O. Vogt, Phys.

Rev. D 77, 074504 (2008).
[9] O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510

(2005).
[10] O. Kaczmarek and F. Zantow, arXiv:hep-lat/0506019.
[11] O. Kaczmarek and F. Zantow, Proc. Sci., LAT2005 (2006)

192.
[12] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys.

Lett. 134B, 249 (1984).
[13] A. Amer, A. Le Yaouanc, L. Oliver, O. Pene, and J.-C.

Raynal, Phys. Rev. Lett. 50, 87 (1983).
[14] A. Le Yaouanc, L. Oliver, O. Pene, and J.-C. Raynal, Phys.

Rev. D 29, 1233 (1984).

[15] A. Le Yaouanc, L. Oliver, S. Ono, O. Pène, and J. C.
Raynal, Phys. Rev. D 31, 137 (1985).

[16] P. Bicudo and J. E. Ribeiro, Phys. Rev. D 42, 1611 (1990);
42, 1625 (1990); 42, 1635 (1990).

[17] P. Bicudo, Phys. Rev. Lett. 72, 1600 (1994).
[18] P. Bicudo, Phys. Rev. C 60, 035209 (1999).
[19] Y. L. Kalinovsky, L. Kaschluhn, and V.N. Pervushin,

Phys. Lett. B 231, 288 (1989).
[20] S. L. Adler and A. C. Davis, Nucl. Phys. B244, 469 (1984).
[21] P. Bicudo, J. E. Ribeiro, and J. Rodrigues, Phys. Rev. C 52,

2144 (1995).
[22] R. Horvat, D. Kekez, D. Palle, and D. Klabucar, Z. Phys. C

68, 303 (1995).
[23] F. J. Llanes-Estrada and S. R. Cotanch, Phys. Rev. Lett. 84,

1102 (2000).
[24] P. Bicudo, A.N. Nefediev, and J. E. F. T. Ribeiro, Phys.

Rev. D 65, 085026 (2002).
[25] A. A. Osipov and B. Hiller, Phys. Lett. B 539, 76 (2002).
[26] P. Bicudo, Phys. Rev. D 74, 036008 (2006).
[27] D. Klabucar, R. Horvat, D. Kekez, and D. Palle, Fiz. B 3,

187 (1994).
[28] R. Horvat, D. Kekez, D. Palle, and D. Klabucar, Z. Phys. C

68, 303 (1995).
[29] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 55,

1578 (1997).
[30] S. D. Glazek and K.G. Wilson, Phys. Rev. D 48, 5863

(1993).

CHIRAL SYMMETRY BREAKING IN THE TRUNCATED . . . PHYSICAL REVIEW D 79, 094030 (2009)

094030-9


