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We examine the electromagnetic properties of the A(1232) resonance within the self-consistent chiral
quark-soliton model. In particular, we present the A form factors of the vector-current Gy (Q?), G, (0?),
and G,;,(Q?) for a momentum-transfer range of 0 = Q% = 1 GeV>. We apply the symmetry-conserving
quantization of the soliton and take 1/N, rotational corrections into account. Values for the magnetic
moments of all decuplet baryons as well as for the N — A transition are given. Special attention is also

given to the electric quadrupole moment of the A.
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I. INTRODUCTION

The hadron spectrum can be ordered by flavor-SU(3)
multiplets where the low lying baryons are assigned to
either an octet or a decuplet with spin 1/2 and 3/2,
respectively. The main focus of this work is the hyper-
charge +1 state of the decuplet, the A. Even though the A
is the first excitation of the proton and rather isolated from
other resonances, due to its short lifetime many of its
properties are not yet experimentally determined with
accurate precision. This is reflected in the poor experimen-
tal knowledge of the magnetic moment of the A which is
listed by the Particle Data Group as pp++ = 3.7-7.5uy
and par = (2.7719(stat) = 1.5(syst) = 3(theor)) my,
where uy = e/2My is the nucleon magneton [1]. The
former value is extracted from the reaction 7' p —
7t py,e.g. [2,3], and the latter one from the process yp —
pm’y' [4]. The study of the transition process of the
nucleon to the A can be used to gain additional information
about the NA system. This process is characterized by a
magnetic dipole and an electric quadrupole transition mo-
ment which are, in [5], extracted as puyy = 3.46 = 0.03uy
and Qya = —(0.0846 + 0.0033)e fm?, respectively. Apart
from the A, experimental data on electromagnetic proper-
ties of decuplet baryons only exist for the magnetic mo-
ment of the 1~ baryon wqg- = (—2.02 = 0.05)uy [1].

On the theoretical side, the A was investigated within
many different frameworks. In the case of SU(6) symmetry
the A magnetic moment is predicted to be up = Qapt ),
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with Q, being the charge of the A and u, the magnetic
moment of the proton, which yields a value of pp++ =
5.58uy [6]. Other approaches include quark models [7—
13], large N, and soliton models [14-16], lattice QCD
calculations [17-20], QCD sum rules, and chiral perturba-
tion theory [21-26]. Very recently lattice QCD calculations
of electromagnetic form factors of the A up to a momen-
tum transfer of Q% < 2.5 GeV? were presented in [27]. In
addition, large N, relations which connect the magnetic
moments of the octet and the electric quadrupole moments
of the NA transition to the moments of the A can be found
in [28-30]. In the present work we investigate the electro-
magnetic form factors of the A*(1232) in the framework of
the self-consistent chiral quark-soliton model (YQSM)
assuming isospin symmetry. In particular, we calculate
the charge (Ggy), electric quadrupole (Gg,), and magnetic
dipole (G,;;) form factors of the A* up to a momentum
transfer of 0 = Q? = 1 GeV?2. We also present values for
the magnetic moments of all decuplet baryons as well as
for the N — A transition. In the yQSM baryons are seen as
certain SU(3) rotations of a classical soliton, therefore
having the same origin. The quantization of these rotations
allows only SU(3) multiplets with zero triality, hence the
octet and decuplet appear naturally. Because of this, the
XxQSM is able to describe various observables of various
baryons within the same set of parameters. These parame-
ters are fixed by reproducing mesonic experimental data,
letting the constituent quark mass be the only free parame-
ter in the baryon sector. Since we cannot take an exact form
of the momentum-dependent constituent quark mass, we
use the value of M = 420 MeV which is known to repro-
duce very well the experimental data [31-35]. The regu-
larization behavior of the momentum dependence is
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mimicked by the proper-time regularization. The cutoff
parameter and the averaged current quark mass are then
fixed for a given M to the pion decay constants f . and m,
respectively. The model parameters used in the present
work are the same as in previous works [34—42]; no addi-
tional readjusting for different observables was done.
Given that, the yQSM, with model parameters fixed in
the meson sector and natural inclusion of octet and dec-
uplet baryons, provides a unique framework with predic-
tive power.

In the past the yQSM was applied successfully to the
octet baryon (axial) vector form factors [32-37,39], and
parton and antiparton distributions [43-50]. Furthermore,
the yQSM was also applied to observables of the antidecu-
plet pentaquarks [40-42,51-55]. The vector currents of
decuplet baryons at Q> = 0 were investigated in various
versions of the yQSM in the past: in the self-consistent
XQSM [56,57], in the yQSM version formulated in the
infinite momentum frame [58], and in the so-called model-
independent xQSM version [55]. Both self-consistent
XQSM calculations in the literature, which presented the
decuplet magnetic moments, were prior to the symmetry-
conserving quantization (SCQ) of the yQSM [59], which is
explicitly applied in this work and ensures the realization
of the Gell-Mann-Nishijima relation in the model.

The outline of this work is as follows. In Sec. II we give
the general, model-independent expressions for the observ-
ables in question. The given formulas at the end of this
section are suitable for calculation in the YQSM.
Section III then describes how these expressions are treated
in the model. Final results for the self-consistent yQSM are
given in Sec. IV. We summarize the work in Sec. V and give
more detailed expressions in the appendixes.

II. GENERAL FORMALISM

Our aim is to investigate the A(1232) electromagnetic
form factors and compare them to nucleon electromagnetic
form factors and the N — A magnetic transition moment in
the self-consistent SU(3) yQSM. For that, we will sum-
marize in this section the relevant model-independent defi-
nitions of these quantities. The form factors are defined
through the baryon matrix element of the vector current
where the virtual photon couples to the NN, NA, and AA
systems.

A. The ¥*NN vertex
The baryon matrix element of the vector current,
V#X(0) = W(0)y*W¥(0), between nucleon states is pa-
rametrized by two form factors, F;(Q?) and F,(Q?),
(N(p', sHIVEO)IN(p, 5))

O-MBqB
2My

— s)[Fl(Qz)w T iF,(0) ]u(p, . (D)

with g = p' — p, Q> = —¢?, u(p, s) as the nucleon spinor
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of mass M, momentum p, and third-spin component s. In
the Breit frame the Sachs form factors are defined as

Q2

2\ — 2\ _ 2

Ge(@) = F(Q) — 33 F2(07), o
GM(QZ) = Fl(QZ) + Fz(Qz),

which are projected out by the operations

Gele) = [ %"(N(p', )| reo|x(n3)) @
Gu(@") = 3my [ ‘Z—?jj]l;—zi

><<N<p’,%) V"(0)|N(pé>>- (4)

Note that in the Breit frame Q> = §* holds. The right-hand
side of these equations can be evaluated in the yQSM.

B. The y*NA vertex

We take the rest frame of the final A with momentum
p' = (M, 0) and mass M. The incoming nucleon has the
momentum p = (Ey, —¢) and energy Ey. For the y*NA
vertex we use the decomposition of [60,61] where the
baryon matrix element is written in terms of the Rarita-
Schwinger spinors u®(p, s) as

(3(r3) [0 ]¥(r3))
- i\Euﬁ<p', %)r W( ’. %) 5)

Lgu = G%A(Qz)g(%[# T GZI\E]A(Qz):KgM
+ Gé’A(Q2)K2M, (6)

with the magnetic dipole (GAN4A), electric quadrupole
(G¥*), and Coulomb quadrupole (G¥*) form factors.
The corresponding structures are

KM _ _3(MA + MN)
Br [(My + My)? + Q*12My

E,B,uO'TPO'qT’ (7)

6 :
Kg,u = _K%M + 4Mi|67|2 G,B(J'V)/PVQ'}/E,U,O'(ZSPZIQSVYS
My + M
% A N’

— ®)
N
My + M
KG, =307qNqplq* P, — q - Pq#]ws%,
N
)

with the momenta defined as P = 1(p’ + p), ¢ = p' — p,
and A~ '(¢?) = 4M3|4|*. We are interested in the magnetic
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transition moment of the N — A process and will again use
the projector 3 [ d4 | |2 * for which the term .’ch vanishes

and the above matrix element turns into

dQ q'eilﬁ . 1 1
3[477 i3l <A(”’2> V0 N<p’ 2)>
Ey + My My GYA(0?) — GYA(0Y)
i 2+ b [y + My + O]
1 GYA0?)
2My E, + MN]' (10)

For further calculations we note that the electromagnetic
N — A transition is dominated by the form factor G}
[exp. GNA/GYA = (=2.5=0.5%] [1], which justifies
neglecting the GY¥2(Q?) contribution. At the point Q% =

0 we therefore have
dQ q'e’ 1 1
SR () o )
,[47 llq | < (p 2 k( ) p 2 Q2:0
En(0) + My MA 2
2M My (M + My)

Gy 0), (11)

where the magnetic transition moment is related to GZAYIA (0)

by [61]
M
fya = ,/M—AG%A(O)MN, (12)
N
6  2M,

My M3 — M,ZVVMNGNA(O) (13)

Although we will denote the quadrupole moment in units
of fm? in this paper, it is understood that the electric
quadrupole moment is expressed in units of e fm?, with e
the electric charge.

The above equations now have a form which can be
investigated in the yQSM.

Ona =

C. The y*AA vertex

The baryon matrix element of the vector current,
V#(0) = W(0)y*W(0), between A states is parametrized
by four form factors:

AP, sHIVEO)A(p. )

— ~ sk * qaCIﬁ
- _Ma(l’/, S/){’}/MI:Flga,B + F3 (2MA)2]

[Fégaﬁ Fy (;]]‘(f‘;z]}uﬂ(p, s). (14

14
o’’q,

+i
2M,

The electric charge and quadrupole form factors Ggg, Gg»
and magnetic dipole and octupole form factors Gy, Gy3
are defined in the Breit frame by
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Gpy(Q%) = (1 + 7)[F; — 7F;]

(15)

+ %T)[FT —7F5] — %7‘(1

Gp(Q%) = [Fy — F;] = 3(1 + 7)[F; — 7F;]  (16)

Gy (0% = (1 +4n)[F; + F31 = 27(1 + 7)[F; + Fj),

7)

Gu3(Q?) = [Fy + F3] —5(1 + [F5 + Fi],  (18)

with 7 = W We will concentrate in this work on the form
factors Gy, GEQ, and G, and postpone the discussion on
G5 for future work. Taking the third-spin components for
both A as s = +3/2, the zeroth component of the matrix
element, Eq. (14), yields

(o)

4
= Gp(0?) — T_\/;YZO(Q )G (0?),  (19)

which allows one to project on Ggy and G, using the

operations
Gu(@") = [ %(A(p’%) v0(0>|A(p,§)>, (20)
Grl0®) = - | dﬂq‘/;ii
><<A<p’,%) Y;O(Qq)vo(O)lA p,%)>. @1

Using the projector 3 ‘m q,le from the previous subsec-

tions on the A-matrix element Eq. (14) yields

dQ) q'e’ iy . 3
3[477 ilg* I<A(p’§) V(O)|A pﬁ))

1 . 1474
MA[[H T][F +Fl-r " 5[F3+F4]:|
1

= EGMI(Q2)~ (22)

Similar to the nucleon case the magnetic moment of the A
is defined by [61]

M
pa =2 GinOpy, (23)
A
and the electric quadrupole moment by

Op =

M2 Gp2(0). (24)

We will also denote Qp, like Oy, in the section before, in
units of fm?. The projectors which in the nucleon case
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project onto the electric and magnetic form factors, project
in the A case on the electric charge and magnetic dipole
form factors. We will investigate Eqs. (20)—(22) in the

YQSM.

III. FORM FACTORS IN THE CHIRAL
QUARK-SOLITON MODEL

We will now briefly describe how equations like
Egs. (3), (4), (11), and (20)—(22) are evaluated in the
SU(3) xQSM. For details we refer to Refs. [31-33]. The
main part of the form factors comes from the baryonic
matrix element

(B'(ph|T#X(0)B(p)) = (B'(p) W (0)O#¥¥(0)|B(p)),
(25)

where the explicit forms of the operator J#X =
W1 (0)O*¥W(0) (x being a flavor index) are given by the
projector in question,

J #X — 1 for the rotational Hamiltonian, (26)

0
Tux—, f 1o BP0y Y W(O)IB(p) for G,
@7

T j A0 (B'(p)| W1 (0)y°4°Y30(Q, ) W(O0)|B(p))
for Gp», (28)

dQ) - -

Frx— [ B0 X LT OIE(R)

for Gy, G2, Gy (29)
The matrix element, Eq. (25), will be treated in the path-
integral formalism with the following effective partition
function of the quark and chiral fields ¥ and U(x), respec-
tively:
Z, qsm = jD¢D¢TDUexp[— jd“x\lffiD(U)\lf]

= [ DUexp(-sualU). (30)

S.(U) = —N, TrlniD(U), (31)

D(U) = y*(iff — i — MUYs) = —id, + h(U) — 6m,

(32)
—m+m m-—m
dm=———"S941+——24%)\8
3 Y \/-3— Y
== Ml ’)/41 + Mg’y4)\8, (33)

where Tr represents the functional trace, N, the number of
colors, D the Dirac differential operator in Euclidean
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space, and m = diag(m, m, mg) = m + dm the current
quark mass matrix of the average of the up- and down-
quark masses and strange-quark mass, respectively. We
assume isospin symmetry. The SU(3) single-quark
Hamiltonian 4(U) is given by

h(U) = iy*y'o; — y*MUYs — y*m, (34)
Vs
U7s(x) = (Usu(()z)(x) (1)) (35)

Ugf](z) = exp(iy’ 77 (x))

1+ 75 1-— 75 +
= Usup) + ) USU(Z)’

(36)

where we use Witten’s embedding of the SU(2) field
U(x)sy() = exp(it'wr'(x)) into the SU(3). The 7'(x) de-
note the pion fields. We use the factor of N in Eq. (31) in
the large N, limit to integrate the chiral field in Eq. (30)
with the saddle-point approximation. For that, we have to
find the pion field that minimizes the action in Eq. (31).
Generally, the following Ansitze for the chiral field U(x)
and the baryon state |B) in Eq. (25) are made:

Uq;» = expliysin - 7P(r)] and
SU2 plivys (] 37)

1 .
B(p) = lim =i f PiePET}(x)]0),

with
_ 1 l—‘hl.“va ﬁlmﬁN
JB(X)—NV! p € cYpp, () P, by ().
(38)

The first equation assumes that the SU(2) field U has the
most symmetric form, a hedgehog form, with the radial
pion profile function P(r), while the last two take the
baryon state as an loffe-type current consisting of N,

valence quarks. The matrix I‘Z""bN ¢ carries the hypercharge
Y, isospin I, I5, and spin J, J; quantum numbers of the
baryon, and the b; and 3; denote the spin-flavor and color
indices, respectively.

Applying the above treatments to the baryonic matrix
element, Eq. (25) yields

(By(p)|T#X(0)|B;(p1)

= % lim e~ iP3(T/2)+ip}(T/2) fd3;/d3;eiﬁ,-z—iﬁ2~;/

T—o00
t T 2/ t r .
x[@UD«p Dyty (5. )T O~ 5.5
X exp[— f d4x¢TiD(U)¢/]. (39)
Finding the chiral-field configuration U, which minimizes

the action, corresponds to determining the profile function
P.. The configuration U.. is called the soliton. This is done
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by setting J#X(0) = 1 in Eq. (39). For large Euclidean
times, 7 — oo, the expression is proportional
to the nucleon correlation function from which we can
obtain the yQSM expression for the nucleon mass.
Solving numerically the equation of motion coming from
88/ 0P(r) = 0 (minimizing the yQSM nucleon energy)
in a self-consistent approach determines the function P,(r).

Rotations and translations of the soliton also minimize
the effective action and are written as

U(F 1) = A(DU.(X — Z(1)AT (1), (40)

where A(r) denotes a time-dependent SU(3) matrix and Z(r)
stands for the time-dependent translation of the center of
mass of the soliton in coordinate space. So far, we consid-
ered only the classical version of the yQSM which has to
be quantized. Suitable quantum numbers are now obtained
by quantizing the rotational zero mode. A detailed formal-
ism can be found in Refs. [31,33].

The Dirac operator of Eq. (32), written in terms of the
soliton U, and its zero modes, acquires the form

D(U) = T, AW[DWU,) + i) =TT T,

— iy* AT () smA ()T} A (1), (41)

where the T, denotes the translational operator and the
Q(r) represents the soliton angular velocity defined as

. ] . 1
Q= —iatd = —% THATAA)AT = 20,0 @2)

The standard way to proceed is to treat all three terms,
(1), T';f( n Tz, and &m, perturbatively by assuming a
slowly rotating and moving soliton and by regarding ém
as a small parameter. Generally, we expand Eq. (41) to the
first order in (#), 6m and to the zeroth order in T';L( T z(0)-

After introducing the collective baryon wave function on
the level of Eq. (39) as

(R:YIL) o Uy [ aaripa b
Vi A) = Jim —=e fd i'e? T (T )
X T [l , ()AT], 43)

and expanding the occurring fermionic determinant and
product of propagators and quantizing the soliton rotation,
we obtain the following collective Hamiltonian [62]:

Hcoll = Hsym + Hsb’ (44)

where Hyy, and Hg, represent the SU(3) symmetric and
symmetry-breaking parts, respectively,

1 & 1
H,.=M,+— >» JJ, +— J, I, 45
wm = Mot o 30Tt g B el 49)

1 ®) Y H®
Hy =—M + aDy(A) + BY + “=D.’(A)J..
sb e IESU(Z) a gg( ) B \/§ 81( ) i
(46)
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The M, denotes the mass of the classical soliton and /; and
K; are the moments of inertia of the soliton [31], of which
the corresponding expressions can be found in Ref. [63]
explicitly. The components J; denote the spin generators
and J,, correspond to the generalized SU(3) spin genera-
tors. 2512 is the SU(2) pion-nucleon sigma term. Dg? (A)

and Dg)(A) stand for the SU(3) Wigner D functions in the
octet representation, and Y is the hypercharge operator.
The parameters «, B, and 7y in the symmetry-breaking
Hamiltonian are

11 N, K, K,
@ =— —=MgSgyn — —=Mg—=, = Mg =23,
n'1\/§ 8<SU(2) \/g 812 B 812

K, K
y = —2J§M8<—1 - —2). (47)
L I

The collective wave functions of the Hamiltonian in
Eq. (44) can be found as SU(3) Wigner D functions in
representation R:

(AIR, B(YIL,, Y']J3))

— pRYIL)
- ‘I’(R*;Y’}h)(A)

= VAdm(R) (Y EDG (A 48)

Y’ is related to the eighth component of the angular veloc-
ity €. During the quantization process Y is constrained to
be Y/ = —N,./3 = —1. In fact, this constraint allows us to
have only SU(3) representations with zero triality.

The Hg, mixes the representations for the collective
baryon states which are treated by first-order perturbation
as

<BR’|HSb|BR>

[Bz) = |B}"™) — Z |BR’>m-

R'#R

(49)

From this, we obtain the collective wave functions for the
baryon octet and decuplet with the inclusion of a wave
function correction proportional to the strange-quark mass
as (other wave function corrections are listed in the appen-
dixes)

INg) = 18/, N) + Clo\/§|m1/2, N) + C27\/6|271/2» N),

(50)
15
[A1o) = 11035, A) + a27\/;|273/2, A)
5
+ a35 — |353/2, A>, (51)

Jia

L 1
clO _E a+§'y,
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L 5 L 1
ay =—glater) a35=—ﬂ<a—§

We turn now to the general expression Eq. (39) for a certain
operator [7#X(0), which we can now write in the form

(B' (Pl g1 (0)0#x 4 (0)|B(p))
- [ DA / Pz TTW (A GG W p(A)eSr,  (54)

'y). (53)

f Pz 7B GH(?)|B). (55)

We have again used the saddle-point approximation and
expanded the Dirac operator with respect to {) and ém to
the linear order and T';r(t)Tz(t) to the zeroth order, with

everything contained in the expression G#X(Z). The DA
and d°z arise from the zero modes due to summing over all
U, configurations which minimize the yQSM action. The
expression G#X(Z) contains the specific form factor parts
originating from the explicit choice of J#*(0). The ex-
pansion in () and ém provides the following structure of
the form factors in the yQSM:

Grm(Q?) = Gy (%) + G (0% + G ™ (0?)
+ G (02, (56)

where the first term corresponds to the leading order
(Q° mY), the second one to the first 1/N, rotational cor-
rection (Q', m?), the third to the linear m, corrections
coming from the operator, and the last one to the linear
m, corrections coming from the wave function corrections,
respectively.

In the yQSM Hamiltonian of Eq. (34), the constituent
quark mass M would, in general, be momentum dependent,
introducing a natural regularization scheme for the diver-
gent quark loops in the model. However, the inclusion of a
momentum-dependent constituent quark mass is not
straightforward, and in the present framework, the standard
way to proceed is to take the quark mass as a free, constant
parameter and to introduce an additional regularization
scheme. The value of M = 420 MeV is known to repro-
duce very well experimental data [31-35] together with the
proper-time regularization. In the meson sector the cutoff
parameter and m are then fixed for a given M to the pion
decay constants f, and m,, respectively. Proceeding to the
baryon sector does not require any more new parameters.
Throughout this work the strange current quark mass is
fixed to mg, = 180 MeV. We want to emphasize that all

|
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TABLE I. Moments of inertia and mixing coefficients for M =

420 MeV.

I L K K, 2.y
(fm) (fm) (fm) (fm) (MeV) ¢y ¢y axy  ass

1.06 048 042 026 41 0.037 0.019 0.074 0.018

these model parameters are the same as in previous works
[34-42]; no additional readjusting for different observables
was done. The numerical results for the moments of inertia
and mixing coefficients are summarized in Table I for M =
420 MeV. In the case of the form factors, we apply the
symmetry-conserving quantization as found in [59].

A. The Y*NN vertex in the yQSM

We give now the final expressions for Egs. (3) and (4)
evaluated in the yQSM on the basis of Eq. (54). We use
Refs. [31-33]. The projector contracts the Lorentz index,
and an average over the momentum-transfer orientation
gives rise to spherical Bessel functions jo(|g||Z]) where,
in the Breit frame, Q> = |G|> holds. The electric and
magnetic form factors are obtained by choosing in
Eq. (39) J#(0) as

T #(0) 5wt 5050w, (57)

T #(0) Wt 0z yi i, (58)

according to Eqgs. (3) and (4).
The electric and magnetic form factors in the yQSM
read, finally,

X=8/2
2\/-G (Q°), (59)

X=8(2
2\/—GM (0°),

Ge(0) = 3 G0 +
Gu(0) = 3Gl (0% +

with the expressions

GX(0?) = [ P2jol1112) [ JA(BA)GEG)AIB), (60)

Gi(e) = my [ ’l(l"fl”f') [aingserais)
61)

The electric and magnetic densities are given by

Gr(2) = ng\ng(a 12 WANGOE —D 81, 1,G) — =M, DICE) - MDD, G)

V3

4MDEDY 3, (2) (62)

—MSDQSS)D@)C(*) L I

41 MDY DS 1,(2) — 4M8D§§)Dfi)5<1(2)
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and
5E) = —V3DH QD) — = ~ DO, X, () + V3 duys DI, X (3) + D<8>Q @ + = K m D% X, )
m\Z o\Z \/_I ng 1z 7, dab3 xb’ a2\ z 71—883
1
- 1 -
- 243 I—;MSngijbdab3X2(z) + 2\/§[MID§§3) + ﬁMSDgg Df}]mo( ) — 7§MSD§§> DHM, (2)
+ 2BMgDE DY) d s M, (3). (63)
l
Since M, and Mg are proportional to my, all terms con- 2 1 1 1 + O, 70
taining M, and Mg are m, corrections in the present My + My M—N 1+ 5o o M_N (70)
approach. The expressions B(Z2), ..., M,(Z) are presented
in the append1xes The Wl%ner D functlons depend on the
rotation A, e.g. DY X = D ¢(A), and expressions such as My — 1+ ON?) 1)
\/MN ©

f dA(B'|AYD®)(AX(A|B) (64)
are evaluated as described in the appendixes. The value for
the nucleon mass My in front of Eq. (61) is taken as the
value given by the classical soliton mass, i.e. by the mass of
the nucleon in the yQSM, which is heavier than the ex-
perimental mass [31] by a factor of 1.36 .

B. The y*NA vertex in the yQSM

We now investigate Eq. (11) in the yQSM. In order to
evaluate the left-hand side of Eq. (11) in the yQSM, we

had to take limN, — oo,
dQ q'e® 1 1
m 3 =11 V.0) | N p, =
N—»oo f477 ilg?| < ( 2) H )l (p 2)> I 0?=0
Gy (0)

Ey0) + My My

= li — , 65
Nclll'lw 2My My (My + My) (63)
. M
fya = Nhglw,/M—A GYAO) . (66)
¢ N

In the whole yQSM approach, we do not take any N 2 and
also not all N.! corrections into account. Corrections
coming from the translational zero mode in Eq. (41) or
vibrations of the classical soliton U, were not considered.
According to this, we could rewrite the factors on the right-
hand side of Eq. (66) as follows:

22

P _
Ey = My +—=—+ O(N?), 67
N N 2MN ( c ) ( )
En(0) + My
SN DTN 4
My O(N.?), (68)
MA MN+2?;] 3

The expression of Eq. (66) then reads

dQ) giei3 1 1
N~w3f477 l|q|2< ( ’5) Vk(0)|N<p’§)>|Q2_o

— - NA
MNG (0), (72)

pna = Gy O)my. (73)

The corresponding yQSM expression is then given by

1 — 1 _
GNA 0) = _GNA/\/73 0) + _GNA/\/fg 0 )
PO =G0+ =G0

|61||Z| 02=0

% / dA<A<§)|A>§,)(4(Z)<A|N<%)>, (75)

where the density Gy,(Z) is the same as in Eq. (61) since the
projectors in Egs. (4) and (11) are the same. The only 1/N.,
corrections which are taken into account on the level of
Eq. (54) are those originating from G(Z) but not from the
expression ¢'4%. This is connected to the fact that we just
expand Eq. (41) to the zeroth order in TI( [)T -~ In the case

of the rest frame of the A, we have for §> the expressions

(74)

— My~ Ey?+ Q2= Q* + OW;2),  (76)
lal = o2 + o). 77)

This means that in the present formalism the |G| entering in

Eq. (74) is actually ¥/O%. Applying the above large N,
arguments means that we neglect all 1/N, corrections
besides those coming from the rotational frequency (£2)
expansion of Eq. (41). After having done this, we put N, =
3 in order to get finite numerical results.
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C. The y*AA vertex in the yQSM

For the A electromagnetic form factors we again use the
Breit frame with Q% = §? and

—GXO 5(02), (78)

Gro(Q?) ——GXO*(Q2) o

1 _ 1 _
Gp(0?) = 56k 302 + ﬁ?% (0%, (79)

WGX H0Y). (80)

The calculation of the form factor G5 requires the evalu-
ation of densities beyond the ones derived in this work, and
we therefore postpone the discussion of this form factor for
future studies.

The projector of the electric charge form factor of the A
is the same as for the nucleon case; hence we can use

Eq. (60) with
610 = [@zitalizn{a(3) A(3)) o

The A magnetic dipole form factor, Eq. (22), and magnetic
moment have the prefactors

G (0% = —G* o+

¥(2)

1 1 1 1

— = 82
My MN—i—% My 1+ O(N;?)’ (82)
My My 1
—_— = 83
My My 1+ ON?) (83)
and therefore give in the yQSM the expressions
71gllZD .
o= [ M) o
e N FEN
(84)
pa = Gy (0)py. (85)

The densities GX(Z) and G7,(Z) are the same as in Egs. (60)
and (61) since the projectors in Egs. (3) and (20) and
Eqgs. (4) and (22) are the same, respectively.

The projector on Gp, is different. The electric quadru-
pole form factor reads, in terms of Eq. (54),

GL(0%) = f qu\/: [ dz3el?
<(a() [ra@ogran|a(z))  eo

which after performing the integral over d(}, gives

PHYSICAL REVIEW D 79, 094025 (2009)
k-
G5, (0% = 67503 [d 4]2( ’) fdQ

X <A® | wmzomggowzn

:())

with r=1Z] and k=1|gl. The expression
[Va7Y50(Q.)G*(2)] = GX(Z) shall illustrate the yQSM
form factor density, which we obtain when we choose the
operator [7#(0) in Eq. (39) as

T #(0) B A7Ys(0Q,)y Y0V, (88)

according to Eq. (21).

Since G, is extracted out from the zeroth component of
the vector current, the Lorentz structure is the same as for
the form factor Gg. Hence, we can construct the Gp,
XQSM form factor density from the expression for Gp.
For the form factor G, we will not take any m, corrections
coming from the operator into account, and we start from
the SU(3) expression of G, which reads

GL(QY) = [ Pjo111zD [ JAB'|AYGEG)AIB), (89)

with the density

GLE) = ng‘gza(z) - z{i otz

21
—2f5e o,
5B = 91006, () — 5 T sian(e,) 6 ()06, (),
IO =3 5 L Glrngl 07,6

e,7g, N

1 . o

+ ZZRE»(SW e,)(nl7TIm)p 1 (2)071 b, (2),
I 1
FCIZ(Z) B Zsz(): £,0 — &,

+ % D Rslen, smo)¢,ﬁ,o(2)0¢n(2)<n|m0>.

(n°|v>¢$<z>o¢no<z>

The choice of J#(0) defines the operator O in the densities
B, I,, I,, which in the case of the form factor G is O =
¥%y% = 1 and in the case of G, it is O = /47 Y4((),).
The density B originates from the zeroth-order Q0 in the
rotation-velocity expansion of Eq. (41), whereas I, I, are
the first rotational ! corrections. The Q! corrections are
also referred to as 1/N, corrections. In the case of the
operator O = +/47Y,,(€Q,), the corresponding densities
B(Z) and I,(Z) are identically zero.

The final expression in the yQSM for the form factor
G, is found to be

094025-8
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GL(0%) = Ilsziw'l[w“) - D718
1
x [ ar “f('lf'? i), (90)

with the density

Z 1

n#v N v

X (A", G| {VAmY, ® 7, }(rllAY, G¥)

1
+ 5 ZR3(8W 8r;1)(_)(;'170"’

n,m

(=)0 (A%, G¥lIm 1A%, ")

6
N—C-IIE2(V) =

X (A", G"||T(||A™, G™XA™, G™||r)
X {N47Y, ® 1, }(r||A", G"), 1)

where the sum over the third grand spins of the basis states
in Appendix E are already taken. The whole Gy, form
factor originates from the rotational corrections and there-
fore scales as 1/N, and vanishes in the large N, limit.

The same density also occurs in the yQSM expression
for the N — A transition form factor ratios Rpgy =
—GNA(0)/GYA(0) = E2/M1 and Ry = C2/M1 ~
GY2(0)/GYA(0) in [38]. The final results of that yQSM
SU(3) analysis are E2/M1 = —1.4% and C2/MI1 =
—1.8%, for which we can write

078 ~ E2/M1 _E2 _ 1 [drg[rjp(1g1n]T g ()
BT T3 [ar(dnTaG)

92)

by using the formulas presented in [38]. Inserting the
density I,z (r) of this work reproduces the 0.78. In addi-
tion, we can also reproduce the values for M£? presented in
[64] by using the expressions of that work with the density
.I]Ez(r) of this work.

IV. RESULTS AND DISCUSSION

We now present and discuss the final results of this work.
We have calculated the electromagnetic form factors Gy,
Gp», and Gy, of A(1232) and compared them to the form
factors G and G, of the nucleon. We also considered the
magnetic transition moment of the process N — A and
gave numerical values for all other decuplet magnetic
moments. All results are achieved by using the self-
consistent SU(3) yQSM. In this formalism the constituent
quark mass M is the only free parameter with a standard
value M = 420 MeV. Numerical parameters are fixed as
described in Sec. III and are exactly the same as in the
works [34—42]. With the numerical parameters of Table I,
the yQSM yields masses of the octet and decuplet baryons
in units of MeV, as in Ref. [42]:

PHYSICAL REVIEW D 79, 094025 (2009)
My = 1001(939), M, = 1124(1116),
My =1179(1189), Mz = 1275(1318),
My =1329(1232),  Ms. = 1431(1385),
M= = 1533(1530), Mg = 1635(1672),

where the numbers in the parentheses are the experimental
values of the Particle Data Group [1]. The yQSM values
were obtained by first calculating the hypercharge
splittings with Eq. (44) and afterwards starting from the
experimental octet mass center, Mg = (M, + Ms)/2 =
1151.5 MeV.

In general, for the observables investigated in this work a
change of the constituent quark mass between the values in
the range M = (400-450) MeV affect the numerical val-
ues of the observables by 4%. We therefore present only
final results for M = 420 MeV.

We will first discuss the values of the form factors at the
point Q> = 0 and afterwards their Q> dependence up to
0% =1 GeV>.

The magnetic moments are obtained from Eqgs. (59),
(74), and (80),

Gy (0 [GX*0+—G”0] 94

u(0) = | Gy ~(0) 73O (0) (94)
for which we can rewrite Eq. (63) in the following simple
form:

GX(0) = f dABIAGY, + GLPOKAIB),  (95)

A

g]/\t; D( ) + W2d q3DXpJ + W3 \/_Df§.13, (96)

Gxtope) _ 1 § ®p® 1 p&p®
gy =w,—= N dpi3DypDg; +w 5(DX3D88 + DX8D83)
+ we(DEIDY — DYDY). 97)

All magnetic constants in this work can be reproduced
(within accuracy) by using the values of Table II and the
matrix elements of Appendix F. In the case of flavor-SU(3)
symmetry, only the parameters w;, w,, and ws contribute,
whereas wy, ws, and wg are m, corrections coming from
the operator; wave function corrections contribute via |B)
with the parameters w;, w,, and w;. Since the right-hand

TABLE II. Magnetic parameters for Eq. (97). The parameters
are for a constituent quark mass of M = 420 MeV and a mass of
MYPM =939 - 1.36 MeV in Eq. (61), as described in the text.
The density M, is proportional to m.

Wi %) W3 Wy Ws Wg

—12.94 (with M,)
—13.64 (HO jvl())

713 516 —1.31 —0.78 0.07
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TABLE III.

PHYSICAL REVIEW D 79, 094025 (2009)

Magnetic moments of the decuplet in the self-consistent yQSM for M = 420 MeV. All numbers are given with the

inclusion of flavor-SU(3) symmetry-breaking effects. The flavor-SU(3) symmetric value of this work is given by wgio = 2.470 ot x-
The yQSM )~ magnetic moment agrees well with the experimental value given by the Particle Data Group of uqg- = (—2.02 =
0.05) iy [1]. The mass factor of Eq. (61) is M¥®™ =939 - 1.36 MeV, as described in the text.

u/n.m. AtH AT A° A~ i 3% o E% El Q-
This work 4.85 2.35 —0.14 —2.63 2.47 —0.02 —2.52 0.09 —2.40 —-2.29
XQSM ’98 [57] 4.73 2.19 —0.35 —2.90 2.52 —0.08 —2.69 0.19 —2.48 —=2.27

sides of Egs. (61), (74), (84), and (90) are model equations,
we also take the model value for the nucleon mass, which is
by a factor of 1.36 larger than the experimental value,

MYPM =939 - 1.36 MeV.

As in [57] we can write the magnetic moments of the
decuplet baryons in flavor-SU(3) symmetry by the simple
formula

(98)

1 1 1
Mplo = wi = swy — w3 |QioJ3 4N,

12 2 2
where O is the charge of the decuplet baryon and J5 its
third-spin component. The numerical value of this equa-
tion, given later [Eq. (99)], is close to the model-
independent analysis in [57] and comparable to the one
in [55]. The xQSM analysis of [56,57] gave, in
flavor-SU(3), a decuplet magnetic moment of 2.23 -
Qiomy- Even though the numerical value of the present
work is close, there are differences in its determination. As
explicitly mentioned in [57], the so-called SCQ technique
[59] was not applied and the magnetic moment of 2.23 -
Qo 1s normalized to the experimental nucleon mass in
Eq. (60). The SCQ has as a consequence that it decreases
Mg, like gi in [35] compared to [65], but the normalization
to the nucleon mass, as it comes out in the self-consistent
XQSM, enhances wp. The final numerical value for the
decuplet SU(3) symmetric magnetic moment with J; =
3/2, the application of SCQ, and normalization to the

soliton nucleon mass (M}{,QSM =939 1.36 MeV) is

M;‘SSM =247 Qopmn-

99

For the above number we used the values of Table II. Our

final results for the magnetic moments by including
flavor-SU(3)-breaking effects are summarized in
Table III. The m, corrections of this work are more mod-
erate compared to the results in [57]. This is also a con-
sequence of the SCQ. The SCQ has a significant impact on
the parameter w, and therefore alters the ratio of the wave
function to operator corrections in this work compared to
[57]. For the wave function corrections, the factor a,; is
numerically dominant and the magnetic moment correc-
tions originating from it are sensitive to w;. However, in
general, the m, corrections in this work are maximal 8%
for the charged baryons. The m, corrections in this work
have the same sign as in [56] which is not always the case
by comparing with [57].

Magnetic moments for the nucleon, the N — A, and A*
are discussed in more detail in Table IV. Since the yQSM
uses the large N, approximation, to some extent the large
N, relations of [28] should be fulfilled. The relations given
in that paper are exact up to the order O(N.?). In the
present approach of the yQSM, there are two reasons
why this relations should not be exactly fulfilled. First, in
order to achieve numerical values the transition back to
N, = 3 is done. Second, not all N,'! corrections are taken
into account; e.g. corrections from the translational zero
mode are not considered. Generally, also for other decuplet
magnetic moments in the yQSM of Table III, the large N,
relations of [28],

s — pa- =Hw, — p,) + ON?), (100)
mar = ppo = A, = p,) + ON?), (101)
psi = ws, =5y —ps) F OV, (102)

TABLE IV. Magnetic moments of the nucleon, the N-A transition, and the A* in the self-consistent YQSM for M = 420 MeV. The
second column corresponds to the leading order in rotation, whereas the third and fourth columns are linear rotational and m;
corrections, respectively. The last column gives experimental data taken from [1,4,5,66] with the uncertainty of w,+ =
(2.7719(stat) + 1.5(syst) =+ 3(theo)) uy. The normalization in Eq. (61) is taken as M,)(,QSM =939 - 1.36 MeV for all given observables,
as described in the text. The values for the large N, relations are given by using the yQSM values, where in the case of u,+, the u o
contribution is omitted.

wlun] Qo Qo+l QO+ 5m! Large N, relations Experiment

“y 1.25 2.46 244 2.79

. —-0.93 -1.63 —1.68 -1.91

| anl 1.38 2.56 2.72 pan = J5(mp = p,) = 2.91 3.46 = 0.03

At 1.16 2.47 2.35 par =3, — p,) =247 2.7 = 11560 = 1 56550
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PHYSICAL REVIEW D 79, 094025 (2009)

TABLE V. Table of proton and A* parameters for the dipole (dip) and exponential (exp) form factor fits, Egs. (108) and (109). The
numbers in parentheses corresponds to (1) using normalization of MXQSM = 1232-1.36 MeV in Eq. (84) and (2) using an
exponential-type form factor. The self-consistent yQSM calculation for G, is best reproduced by a dipole-type form factor, while
the numbers for A3, in the case of the lattice results are for an exponential-type form factor.

AR/(GeV?)  GL(0)  AR/(GeV?)  Ajy/(GeV?) Gin(0) A/ (GeV?)
XQSM 0.614 2438 0.716 0.585 2.354[3.089]" 0.7364P[0.490]°*P
Quenched Wilson 1.101 2.635 0.978¢*p
Dynamical Ny = 2 Wilson 1.161 2.344 1.022%%p
Hybrid 1.126 3.101 0.895¢*p
Experiment 0.523 2.793
tzo — pz = —3(uzo — pz-) + O(N?), (103)  can be written as

=10 =10

are satisfied up to 7%.

In the case of the N — A transition and the A form
factors, we made use of large N, arguments in Egs. (71)
and (83) for several mass-ratio factors, which lead to the
values, also presented in Tables IV and V, in the self-
consistent yQSM of

GYA((0) = 2.72, Una = 2.72up, (104)
Ga,(0) = 2.35, par = 2.35my. (105)

Keeping these mass-ratio factors, which are overall factors,
yields

GYA(0) = 2.30, na = 2.72un, (106)
G3,(0) = 3.09, was = 2.35my. (107)

The first treatment would correspond to neglecting all
1/N, corrections besides the rotational corrections, while
keeping the prefactors would correspond to keeping some
more 1/N, corrections but neglecting all model-based
1/N, corrections besides the rotational ones.

We will now discuss the A" electric and magnetic form
factors Gy and G, for Q> = 1 GeV?2.

The results of the self-consistent yQSM calculations for
the electric and magnetic form factors Gy, G4,, G4, , and
fol are best reproduced by a dipole-type form factor

GEm(0)

+ 0> \2'
1+5)

Gpu(Q?) = (108)

In Table V we present the fitted parameter which reprodu-
ces the proton and A" electric and magnetic form factors
of Fig. 1. In the case of the lattice results [27], an
exponential-type form factor for G,

Gy (Q%) = Gy (0)e /M, (109)

parametrizes the lattice results best. We compare our re-
sults in Table V with those of [27].

The charge and magnetic dipole form factors of the
decuplet baryons in the case of flavor-SU(3) symmetry

G0 = 01 X [ Pjol1311Z)
1 .. 513 11,02
X | — +2 + -
[24 e ]
M i (gl1zl
Gy (0?) = Q9 X J3 X —= d32]1(:]7a)
12 IglIZ]

<[V -1 X1 0

_ lQJ(Z)]
2 I] ’

with Q,, the charge of the decuplet baryon and its third-
spin component J;, and M, the normalization of the
magnetic form factor. In the case of the neutral decuplet
baryons, the entire form factors for Gg, and Gy, even for
Q? > 0, are only due to strange-quark mass corrections.

For the proton the experimental value of the charge
radius is [(r2)F]"/? = 0.8750 = 0.0068 fm ((r})’ =
0.766 fm?) [1]. The charge radii of the proton and A" of
Gr and Gpg in the self-consistent yQSM with M =
420 MeV are, respectively,

(r2yp = 0.768 fm?,  (r2)5V8) =0.770 fm?,  (110)

(Pyar =079 fm?, (2)3U% = 0.813 fm?, (111)

and the magnetic radii for G,,(Q?) and G,;,(Q?) are

(Pop = 0656 fm?, (259 = 0.665 fm?, (112)

(Fpa- = 0.634 fm% (3300 = 0.658 fm?, (113)
where the index SU(3) indicates the value in the case of
flavor-SU(3) symmetry. The above radii are calculated by
differentiating the yQSM form factor expression, i.e. ex-
plicitly integrating the yQSM form factor densities.
Alternatively, one could calculate the radii by using the
dipole fit due to (r%,,) = 12/A%,, for which the values
only differ by a maximum of 1%.
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Electric and magnetic form factors of the A™, A% A~ and the nucleon in the self-consistent XQSM. The form factors of the

A*™ are roughly, by an overall factor of 2, larger than those for the A™ and are not explicitly shown. The G%g and Gf,,ol for Q* > 0 are
entirely due to m, corrections and are therefore smaller compared to the neutron G,. For all magnetic form factors MI’\(,QSM =
939 - 1.36 MeV is used in Eq. (61) apart from the yQSM graph in the lower-right panel, where we also take MXQSM = 1232
1.36 MeV and indicate the normalization by [Mya)]. In the last two figures we compare our final results for the A™ form factors G
and G, with those of the lattice results in [27].

094025-12



ELECTROMAGNETIC PROPERTIES OF THE ...

In Fig. 1 we compare the final yQSM results for the A™
form factors Gy and G,,; with those of the lattice calcu-
lation [27]. The yQSM form factors drop faster with
increasing Q2. In the case of the yQSM, it is known that
the Q? dependence of the experimental data of the electric
and magnetic form factors for both nucleons is very well
reproduced [31]. In the lattice work [67] the nucleon iso-
vector form factor F~"(Q?) for pion masses ranging from
m, =775 MeV down to m, = 359 MeV was calculated.
It was found that the form factor becomes steeper by low-
ering the pion mass. Still, for a value of m, = 359 MeV
the results of [67] are above the experimental values. The
minimal value of m,, in Ref. [27] for the form factors G,
and Gy, of the A", Fig. 1, is m, = 353 MeV and also
does not fall off as fast as the yQSM results. This can also
be seen by the fact that the lattice results are best repro-
duced by an exponential-type form factor while the yQSM
are more of a dipole-type form factor. The A magnetic
moment is presented in the range of w,+ = (1.58-1.91)uy
in the pion-mass range m,. = (353-400) MeV. The value
of the present yQSM calculation is pa+ = 2.35uy.

Recently, a first dynamical lattice QCD calculation [20]
of the A and )~ magnetic dipole moments was also
performed using a background field method. The calcula-
tion for ()~ was done at the physical strange-quark mass,
with the result wo- = —1.93(8)uy in very good agree-
ment with the experimental number. The A has been
studied at the smallest pion-mass value m, = 366 MeV
with the result wa+ = 2.40(6) .

We will now discuss the results for the A" electric
quadrupole form factor Gg,. In Fig. 2 we present the final
results and compare them with the recent lattice calcula-
tions in [27]. As already mentioned in Sec. III C the form

0.00 : _

—0.40 +
—080F
ci@/ ——————— Val. Quark Contr. |
Q)S —1.20 - - - Sea Quark Contr.
160 — Final Result
—2.00
0.00 0.25 0.50 0.75 1.00
Q% (GeV?)

PHYSICAL REVIEW D 79, 094025 (2009)

factor G, in the yQSM is only due to rotational correc-
tions which are seen as 1/N, corrections. In the large N,
limit the yQSM leads to a vanishing form factor. In the left
panel of Fig. 2 we decomposed the form factor into its
contributions coming from the valence and sea quarks. The
sea contribution gives the most sizable part of the form
factor. This behavior is also seen in Ref. [64] where the
electric quadrupole moment Qy, was investigated in the
SU(2) yQSM. The density I, (r) also contributes to the
NA transition in [64]. Figure 2 shows the same behavior of
valence and sea quark contributions for G, as Fig. 1 in
Ref. [64] for the quantity Qya- In the case of the yQSM,
we had to introduce a regularization scheme for the sea
quark contribution, which was the proper-time regulariza-
tion. The fact that the sea quarks give the dominant part of
the form factor could result in a sensibility of the yQSM
Gp, to the applied regularization scheme. An analogous
situation is met, and well known, in the case of the 2
form factor in [68,69]. In this work we do not investigate
the regularization dependence of the form factor Gp,, and
we give all final results for applying the proper-time
regularization.

For the parametrization of this form factor we prefer
a dipole-type fit, Eq. (108). In Table VI we summarize
the parameters which reproduce the self-consistent yQSM
calculation and compare them to the results of the
lattice calculation of [27]. In the case of the electric
quadrupole form factor, the lattice results are more diver-
gent. Again, the yQSM result falls off faster in the region
0= Q?=0.50 GeV?> compared to all three lattice
results, but compares well to the quenched Wilson and
hybrid action results for 0.50 GeV? = Q% =1 GeV?,
respectively.

0.0

—0.4
—-0.8
—1.2
s —1.6
& / D Ian
= ) - yn. Wilson
(;LS -2.0 y ———Quenched Wilson
—24F / - - Hybrid
—92.8F /// — XQSI\I []\/[N]
/ -—-- YQSM [MA]
—3.2H
36k
0.00 0.25 0.50 0.75 1.00
Q2 (GeV?)

FIG. 2. The electric A™ quadrupole form factor G, in the self-consistent yQSM and comparison to the lattice results of [27]. The
left panel shows the form factor decomposed into its valence and sea quark contributions while the right panel compares the final result
with those of the lattice calculation. In the right panel we took M,){,QSM =939 - 1.36 MeV and MXQSM = 1232 - 1.36 MeV one time

each for the mass in Eq. (90).
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TABLE VL

PHYSICAL REVIEW D 79, 094025 (2009)

Table for fit parameters of the form factor G,. The indices “dip” and ‘“‘exp” correspond to fitting with a dipole- or

exponential-type form factor, Eqs. (108) and (109). A dipole-type form factor reproduces the self-consistent yQSM calculation more

accurately than an exponential fit.

xQSM Quenched Wilson Dynamical Wilson Hybrid
G2, (0) —2.145 -0.810 —0.784 —-1.851
A%z /(GeV?) 0.3694P[0.268]°*P 0.696%*P 1.938¢p 0.542¢%p

In Ref. [29] a relation in the large N, limit is found
which connects the quadrupole moment of the N — A
transition Qy, to the quadrupole moment Q4 of the A,

22

Oy = TQPN + O(N;?). (114)
Reference [5] extracted the value of
Ona = —(0.0846 + 0.0033) fm?, (115)

which gives, with the above large N,. relation,
0y = (—0.048 * 0.002) fm?.

The final result of this work in the self-consistent yQSM is

G (0
XPM — Ez§ ) — _0.0509 fm2,
MA

(116)

which agrees well with the above estimation. From the left
panel in Fig. 2 we see that for the electric quadrupole
moment, proportional to G, (0), the sea quark contribution
dominates the valence quark contribution. Furthermore,
one can expect the sea quark contribution to have a broader
spatial distribution than the one for the valence quarks.
This in turn leads to a steeper Q° dependence of the
contribution to G, of sea quarks as compared with valence
quarks. This is evidenced in the present calculation as
shown in Fig. 2.

In the yQSM work [64] the authors presented an electric

quadrupole transition moment of Qy, = —0.020 fm?.
Also for this quantity, the main contribution comes from
the sea quarks. The small value of Qy, = —0.020 fm? in

[64] is in contrast with Qya = —(0.0846 * 0.0033) fm?
from [66] and the relative large electric A quadrupole

moment QZ(?SM = —0.0509 fm? of this work. We can

reproduce, with the density Iz, (r) of this work, the values
given in [64]. The discrepancy of the above numbers could
be due to a possible breakdown of the approximation & -
R <« 1 performed in [64], with k being the photon mo-
mentum at Q% = 0 of the y*NA process and R being the
nucleon charge radius. This remains to be investigated in
future studies.

In [70] the A* electric quadrupole moment is estimated

to QP = —0.032 fm*(—0.119 fm?) by using a con-

stituent quark model, once with configuration mixings and
no exchange current and once with an exchange current but
no configuration mixing, respectively. A recent light cone
QCD sum rule calculation [71] obtained an electric quad-
rupole moment of Q,+ = —(5.8 *+ 1.45)10~* fm?. Our
value of QZ‘?SM = —0.0509 fm? is more comparable to
the constituent quark model results.

V. SUMMARY

In the present work we investigated, in the framework of
the self-consistent SU(3) yQSM, the electromagnetic form
factors of the vector current for decuplet baryons. We
explicitly take the symmetry-conserving quantization, lin-
ear 1/N, rotational, and linear strange-quark mass correc-
tions into account. Earlier self-consistent SU(3) yQSM
results only calculated the decuplet magnetic moments
and did not apply the symmetry-conserving quantization.
Numerical parameters of the model are fixed in the meson
sector as described at the end of Sec. IIl. The only free
parameter of the yQSM for the baryon sector is the con-
stituent quark mass. All these parameters were fixed by
previous studies and were also used in the present work. No
additional readjusting is done. With these parameters, the
general way to calculate observables in the model is to
determine the eigenvalues of the yQSM Hamiltonian nu-
merically by using a self-consistent pion-field profile, the
soliton. These eigenvalues are then used for determining all
observables in the yQSM.

In particular, we calculated the form factors Ggy, Gy,
and G, for the A" up to a momentum transfer of Q% =
1 GeV? and magnetic moments for all decuplet baryons
and the N — A transition. In general, all yQSM form
factors are best reproduced by a dipole-type fit.

Experimental data for decuplet magnetic moments are
available for the A** with pu++ = 3.7-7.5uy [1], the At
with pp+ = (2.7719(stat) = 1.5(syst) = 3(theor)) uy [4],
and for the Q™ with uqg- = (—2.02 = 0.05)uy. The
present work yields values of wp++ = 4.85uy, pma+ =
2.35uy, and wo- = —2.29uy, which are in good agree-
ment with the experimental ones. The N — A magnetic
transition moment was extracted in [5] as uy, = 3.46 =
0.03y, whereas this work yields a value of uy =
2. 72 y. Other yQSM results for decuplet magnetic mo-
ments are summarized in Table III.
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The final results for the magnetic dipole and electric
charge form factors are presented in Fig. 1. In the yQSM
the A™ radii of these form factors, (r%) = 0.794 fm? and
(r,) = 0.634 fm?, are comparable to the ones of the pro-
ton, (r%) = 0.768 fm? and (r3,) = 0.656 fm?, keeping in
mind that we take for both baryons the same classical
soliton configuration. The experimental value for the pro-
ton electric radius is (%) = 0.766 fm>.

We also presented the electric quadrupole form factor of
the A*. The value G, (0) is directly proportional to the A
electric quadrupole moment for which we found a value of
Qa = —0.0509 fm?. The electric quadrupole moment and
the electric quadrupole form factor appear in the model
entirely as 1/N, corrections arising from the expansion in
the rotation velocity of the soliton. Hence, in the large N..
limit the model leads to a vanishing form factor and mo-
ment. In addition, a decomposition into the valence and sea
quark contributions of the electric quadrupole form factor,
Fig. 2, shows that the main contribution originates from the
sea quarks. Furthermore, one can expect the sea quark
contribution to have a broader spatial distribution than
the one for the valence quarks. This in turn leads to a
steeper Q? dependence of the contribution to G, of sea
quarks as compared with valence quarks which is explicitly
seen in the present calculation.
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APPENDIX A: MODEL-INDEPENDENT
QUANTITIES

We use the Breit frame in which the incoming p and
outgoing p’ momenta are defined as

q q
F= E’ P = E’ e
P ( 2) P ( 2)
*=-¢=7
q = 1g1(0, sinf cos ¢, sinf sing, cosH)

q=10,9),
(AD)

with g*> = 4(E*> — M?). We use the Rarita-Schwinger
spin-3/2 spinor

u*(p, s) = ZC(li\/ﬁ)/sz)s,ea(p, Mu(p,s’) with
As!

E+M[ ¢
2M \ Zb '

E+M 7S

u(p, s) =

PHYSICAL REVIEW D 79, 094025 (2009)
The spin-1 vector e“(p, A) is defined by A = *+1, 0,

e*(p, A) = (e,\ : p,é)\ + 2 (e,\~p)) with

M M(p° + M)
[—1 0
. . .
i1 = 3 —i |, eo=101}|
\ 0 1 (A2)
[ 1
. .
e_| = 5 1

\ 0

The final and initial A states for the third-spin components
read

uP(p, +3) = u(p, +3)eP(p, +1), (A3)

uf(p, +9) = Bu(p, +9e?(p.0) + 5u(p, ~HeP (p, +1)
(Ad)

For the zeroth component of the vector current,
(AG)IV°[AEB)), we obtain, by using the Breit frame,

a(p', s")y'u(p, s) = 8y,; (A5)

. 2
e*“(p', 1)gapeP(p, 1) = —1 — 37 + (3cos?6 — 1)%,

2

_ . q
M(Pl’ S/)O'OVun(p, S) = _lmas’s;

1+ (A6)

e**(p', )gqqpeP(p, 1) = 4M*7
1
X [1 - 5(300320 - 1)],
with 7 = Q%/(4M?).

For the spatial component of the vector current
(A|V,|N), we obtain, by using the rest frame of the A,

EBkO'TPho = M(S'Bbébksqs’ (AT)
eﬂavyPVQ'yEkoatSPQMQB = EBO'V)/PquEkO'O(SMqS
— M28Bb[6bké2 _ qbqk]. (AS)
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APPENDIX B: yQSM ELECTRIC DENSITIES

The electric densities of Eq. (62) are
1
BE) = piD¢u(2) — 5 Dsign(e,) ¢ (2) b, (2),

(Z)_E Z

£,78,

1 Il @r6,@) + §ZR3<en, &)l Im) bl (D)7 6,3,

2|~ hZ‘H 62|~

2(Z) - _Z s <}’l0|‘U>¢ (Z)¢n (Z + ZRS(EVD € 0)¢Ilo(z)¢n(z)<n|m0>

c g0 N n m°

@)= 3 B2 b, (E)nly vy + Ez<n|yo|m>¢,t,(z)sb,l(zz’)Rs(ean, £

eg,7e, N v

%KI(Z) =% > <v|7 Tl @) rie, ) + - Z<n|7 7lmyph (D)7 DR (8,, £,0),

g, 7€, N n m

—— D@1y’ lv) + ZZRS(SW £,0) 10 (D) (2l ¥ ImO).

n

1 N
FC.’]CQ(Z) _ZSZS

n

The vectors {n| are eigenstates of the yQSM Hamiltonian /(U) which are a linear combination of the eigenstates {(n°| of the
Hamiltonian H(1) [72].

APPENDIX C: yQSM MAGNETIC DENSITIES

The operator for the magnetic form factors in the yQSMis O, = y°[Z X y]; = ¥°[Z X 71,0, and the magnetic densities
of Eq. (63) are

3 200 = WIDK0y @ mikEllv) + S VIG, TTlIEH0: @ ik EIn R e,

N%X (@) = Sg_s “Wl12)0,ElIn)nll7|lv) +%ZR5(8W ) (=)= Cn(nl| 7 |ImXml12)0,(ZlIn),

Nic 2<z>=828n <n°||z>{ol®n}o<z||v><v|n°>+z:fzs(sn,s WZGy F TmOlI20, ® 7}oGlInn | m®),
NiCQ1<z>=Z“f“(8’< Yol 1200, ® 7} Gllv)wlimln) + 5 nzm:m(an £) ()5~ Gl 2)

X {0, ® 71} Zllm)(ml||7|n),

T MD = 3 IO, ® ro(Ellnaly o) = 5 T Roles, £,V2G,,  Haly im0, @ 7iloCEln),
c e FE, N v n,m

TMEA = T (%l N0, E) — 5 3 Rale, e,) ()0 ally [ Imynl10 Elln),
c g, #e, N v n,m

 MalD) = L GlIEN0) © ruGElIn Xy 1) = 3 Ra(ers 0,06y ¥ KnlIZNO: © milo(Elln)nlym).

(CDH
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APPENDIX D: REGULARIZATION FUNCTIONS

The regularization functions are defined as

1 o
R (e,) = —=—=¢, —ue_“s%,

D1
27 " Jyne Ju O
R, o) = [ dus o e
Ens Em) = u ,
2 /A2 2+/Tu &g, — €y
(D2)
o du E%M —_ e—a,znu
R (e £0) = —— Lerom —e ot
s(en en) = 2\/_ 1/A2«/_[ €2, — &2
__SnE‘”&*+'8m€_”8a]' (D3)
Sm + 871
1 [ 1 (- a)—ae?
R4(8n, Sm) = — du doae &t a)—aenu
21 1/A? 0
g,(1 — a) — ag, (D)
Ja(l — a)
| si .
R S(Sn: sm) = _ w’ (D5)
2 €, — €
1 — s .
R (e, e,) — L SESiE(E) gy

sn_gm

APPENDIX E: REDUCED MATRIX ELEMENTS
FOR {\/ 477Y2 ® Tl}l

We use the basis of [72] where the isospin 7 and total
angular momentum j are coupled to the grand spin G =
T+Hj(G=1+ys),

0) =11 =G;j =G + 5 GGy), (EL)
1) =1l =G;j=G—5GGs), (E2)
|2>=|l=G+1;j=G+%;GG3>, (E3)
13)=11=G - 1;j =G - 5GG3). (E4)

The reduced matrix elements for the operator {/47Y, ®
71} in the density J g, (r), Eq. (90), are as follows (with

the notation {n||[{/47Y, ® 7,}||m)):

PHYSICAL REVIEW D 79, 094025 (2009)

A%G)=(-)G+2

¢m+nm+n

1
DG +2)2G + 3)

AYG) = (—)G(2G + 4)\/(2G m

’ 1
BO(G) = (_)3 m,

(G+2)
1 =
B(G) \/2(2G + 1)(2G + 3)
G +2)
0 — _ _
O =6-Waes+ v
| _ GG+ 122G +4)
G =( )3\/(2G + 1)(2G + 3)’
G
1 — (—
DGy =1 )3\/2(2G + 1D(2G + 3)
¢r=c¢' | oGy 11G) PG) 136
0(G)I A%(G) B°G) 0 0
(1(G)] B°(G) c%(G) 0 0
2(G)| 0 0 AG)  BG)
36| 0 0 BG)  CG)
G"=G"+1 | |0(G+ 1)) [I(G+ 1) [2(G+ 1)) [3(G+ 1))
0(G)| 0 0 B'G)  AYG)
(1(G)| 0 0 cG) D)
2(G)| B'(G) AY(G) 0 0
3B(G)| CcY(G) D' (G) 0 0

APPENDIX F: MATRIX ELEMENTS

The baryon matrix elements, such as (B’ ID%)IB), are
evaluated by using the SU(3) group algebra [73,74]

dimR’
I 1pn _ (1/2)Y1+ 5, (_ 1)(1/2)Y,+S;
(B Dy ()1BR) = | G (CDIH S (1)
R’ R
o x 0
R/ n R,
X ,
_Y_;Sl - S/3 m —YSS - S3

(FI)

with Q = YII;. The (--
Gordan coefficients.

The wave function corrections, Eq. (49), for the other
decuplet baryons are

|B1o) = 11052, B) + a%,1275 5, B) + a%513555, B), (F2)

-) denote the SU(3) Clebsch-

094025-17



LEDWIG, SILVA, AND VANDERHAEGHEN PHYSICAL REVIEW D 79, 094025 (2009)

with the mixing coefficients 1. Magnetic part
5/JTa We take the abbreviation dab3D J =dD,J, and the
vl ; /2 2577 matrix element for the magnetic form factors of the dec-
a =a , al. = a F3 uplet baryons read as follows, with |By) =
S e 715 B ‘
0 24/5/7 Leading order

in the bases [A, X5, B, Q.

(AIDFIA) = (S1oIDF 1T 10) = (EIDFIE o) = (QUIDFIQ) = ~13LS;
<A|D(3§;)S3|A> <210|D )S31300) = <~10|ngsx|~1o> <Q|D )551Q) = I 4\/—52
(AldD3J|A) = (S 10ldD3J1310) = (B oldD3J |2 9) = (QldD3J Q) = I, 5 S5
(AIDFIA) = (S,0DFIS10) = (F10 DY 1510 = (QIDFIQ) = —¥ L4 fis,
(AIDEYS51A) = (310|D§Y 8512 10) = (E10| Dy S312,10) = (QUUDGY S51Q) = Y§S;
<A|dD8~]|A> = <2To|stJ|ETo> <~1o|dD8-]|~1o> = <Q|dDSJ|Q> = Y% 71353

Wave function corrections

1

QIDY10Y = QDY J51Q) = (QldDJ1Qy =0,  (QIDE|Q) = —dbs, 08

51 5 1
8
(QID§ >53|Q>=s3a§5E 35 (QdDy10) = 51/105 ab,.

A A
8 8
Dg,%) I3S3[—a3; g\/% - a3 %\/i] D§s3) Ss[af; %\/— - as3; 2\/_]
8 8
DYy, 1,S5[—afy 3 — at 14f5] p&, Sl 545 + ak 34/5)
dDs3J 1355~ \/;"57 a%s\/_] dDgJ 83l \/T()“27 \/%"35]

10 l()
D%) IS3[—af; 5~ ass é\/sT] Dg) Ss[as; %\/1 - ajs ﬁ]
Dg;)% I3S;[—af; 2\/— + afs 3415 D(s?S3 Silag; 3 + afs g\/;
dDs3J LSy[— a5, — 152\/_035] dDgJ 53[5027\/,% - %\/%“?5]
i i
DY) 1383 —ab; 5\/:_ a%%\/z] D) S3[a§7é\/;— a3s 3yamo]
DY, L;S[—a%; 6\/_+ ats 310! DS, Si“%%\ﬁ + ags 14_5\/:]

dDyJ 1385 — ﬁ“zn/; - E\/%ass] dDgJ 53[12\/7“27 7 Vzl azs)

Operator corrections DgSS)Dg = Dng

A 0 =5 )
p®p¥ =831 5 —S305 % — 8315 1k 0
DYDY — 831313 —I 5 — 8315 15 0
Déi)Dggb)daH =830 %Jg _5313%\/§ —S8315 %ﬁ 0
Dy Dy 53355 S5y ~Ss b Syl
DD oy S3&; —83 4 ~S3 3 ~ S5
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The A state |A) is explicitly [A) =

[ 1

4J7 276\/7 352(
5

__g 2712 354
51 1 /1

aag\ﬁ \P ]

8 (8) 11(8)

(AIDF|AY = +a27 4\/~ 51354‘/74 (AIDPDP|A) =

15 /1 1 (8) 1 (8)

—a4l=ta

16\/; 27 8 \/7 35 8 ’ <A|D8aD |A> 8
51 1

AT | = A D(s)D(S) A==

“274\/; 354\/; (A0 Dy 14) = 56

(1]
(2]

(3]

PHYSICAL REVIEW D 79, 094025 (2009)

2. Electric part

(AID%A) =

AP 1A = 1]

(AIDY) 7,18y = 13

(AID® J;1A) =

31
AIDE T |AY = -2 ——
(AlDg, 7, 1A) S A

|A(I5, S3)), and the matrix elements for the electric form factor read

13 1
gy
8413

5 1
Ny S
42\[3
11
28V3

(AID®DB|A) =
(AIDPDP|A) =
(AIDDR1A) =

_13

(F4)
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