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We examine the electromagnetic properties of the �ð1232Þ resonance within the self-consistent chiral

quark-soliton model. In particular, we present the � form factors of the vector-current GE0ðQ2Þ, GE2ðQ2Þ,
and GM1ðQ2Þ for a momentum-transfer range of 0 � Q2 � 1 GeV2. We apply the symmetry-conserving

quantization of the soliton and take 1=Nc rotational corrections into account. Values for the magnetic

moments of all decuplet baryons as well as for the N �� transition are given. Special attention is also

given to the electric quadrupole moment of the �.
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I. INTRODUCTION

The hadron spectrum can be ordered by flavor-SUð3Þ
multiplets where the low lying baryons are assigned to
either an octet or a decuplet with spin 1=2 and 3=2,
respectively. The main focus of this work is the hyper-
charge þ1 state of the decuplet, the �. Even though the �
is the first excitation of the proton and rather isolated from
other resonances, due to its short lifetime many of its
properties are not yet experimentally determined with
accurate precision. This is reflected in the poor experimen-
tal knowledge of the magnetic moment of the � which is
listed by the Particle Data Group as ��þþ ¼ 3:7–7:5�N

and ��þ ¼ ð2:7þ1:0
�1:3ðstatÞ � 1:5ðsystÞ � 3ðtheorÞÞ�N ,

where �N ¼ e=2MN is the nucleon magneton [1]. The
former value is extracted from the reaction �þp !
�þp�, e.g. [2,3], and the latter one from the process �p !
p�0�0 [4]. The study of the transition process of the
nucleon to the� can be used to gain additional information
about the N� system. This process is characterized by a
magnetic dipole and an electric quadrupole transition mo-
ment which are, in [5], extracted as�N� ¼ 3:46� 0:03�N

andQN� ¼ �ð0:0846� 0:0033Þe fm2, respectively. Apart
from the �, experimental data on electromagnetic proper-
ties of decuplet baryons only exist for the magnetic mo-
ment of the �� baryon ��� ¼ ð�2:02� 0:05Þ�N [1].

On the theoretical side, the � was investigated within
many different frameworks. In the case of SUð6Þ symmetry
the � magnetic moment is predicted to be �� ¼ Q��p,

with Q� being the charge of the � and �p the magnetic

moment of the proton, which yields a value of ��þþ ¼
5:58�N [6]. Other approaches include quark models [7–
13], large Nc and soliton models [14–16], lattice QCD
calculations [17–20], QCD sum rules, and chiral perturba-
tion theory [21–26]. Very recently lattice QCD calculations
of electromagnetic form factors of the � up to a momen-
tum transfer of Q2 � 2:5 GeV2 were presented in [27]. In
addition, large Nc relations which connect the magnetic
moments of the octet and the electric quadrupole moments
of the N� transition to the moments of the � can be found
in [28–30]. In the present work we investigate the electro-
magnetic form factors of the�þð1232Þ in the framework of
the self-consistent chiral quark-soliton model (�QSM)
assuming isospin symmetry. In particular, we calculate
the charge (GE0), electric quadrupole (GE2), and magnetic
dipole (GM1) form factors of the �þ up to a momentum
transfer of 0 � Q2 � 1 GeV2. We also present values for
the magnetic moments of all decuplet baryons as well as
for the N � � transition. In the �QSM baryons are seen as
certain SUð3Þ rotations of a classical soliton, therefore
having the same origin. The quantization of these rotations
allows only SUð3Þ multiplets with zero triality, hence the
octet and decuplet appear naturally. Because of this, the
�QSM is able to describe various observables of various
baryons within the same set of parameters. These parame-
ters are fixed by reproducing mesonic experimental data,
letting the constituent quark mass be the only free parame-
ter in the baryon sector. Since we cannot take an exact form
of the momentum-dependent constituent quark mass, we
use the value of M ¼ 420 MeV which is known to repro-
duce very well the experimental data [31–35]. The regu-
larization behavior of the momentum dependence is
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mimicked by the proper-time regularization. The cutoff
parameter and the averaged current quark mass are then
fixed for a givenM to the pion decay constants f� and m�,
respectively. The model parameters used in the present
work are the same as in previous works [34–42]; no addi-
tional readjusting for different observables was done.
Given that, the �QSM, with model parameters fixed in
the meson sector and natural inclusion of octet and dec-
uplet baryons, provides a unique framework with predic-
tive power.

In the past the �QSM was applied successfully to the
octet baryon (axial) vector form factors [32–37,39], and
parton and antiparton distributions [43–50]. Furthermore,
the �QSMwas also applied to observables of the antidecu-
plet pentaquarks [40–42,51–55]. The vector currents of
decuplet baryons at Q2 ¼ 0 were investigated in various
versions of the �QSM in the past: in the self-consistent
�QSM [56,57], in the �QSM version formulated in the
infinite momentum frame [58], and in the so-called model-
independent �QSM version [55]. Both self-consistent
�QSM calculations in the literature, which presented the
decuplet magnetic moments, were prior to the symmetry-
conserving quantization (SCQ) of the�QSM [59], which is
explicitly applied in this work and ensures the realization
of the Gell-Mann-Nishijima relation in the model.

The outline of this work is as follows. In Sec. II we give
the general, model-independent expressions for the observ-
ables in question. The given formulas at the end of this
section are suitable for calculation in the �QSM.
Section III then describes how these expressions are treated
in the model. Final results for the self-consistent �QSM are
given in Sec. IV.We summarize the work in Sec. Vand give
more detailed expressions in the appendixes.

II. GENERAL FORMALISM

Our aim is to investigate the �ð1232Þ electromagnetic
form factors and compare them to nucleon electromagnetic
form factors and the N � �magnetic transition moment in
the self-consistent SUð3Þ �QSM. For that, we will sum-
marize in this section the relevant model-independent defi-
nitions of these quantities. The form factors are defined
through the baryon matrix element of the vector current
where the virtual photon couples to the NN, N�, and ��
systems.

A. The ��NN vertex

The baryon matrix element of the vector current,

V��ð0Þ ¼ ��ð0Þ���ð0Þ, between nucleon states is pa-
rametrized by two form factors, F1ðQ2Þ and F2ðQ2Þ,

hNðp0; s0ÞjV�ð0ÞjNðp; sÞi

¼ �uðp0; sÞ
�
F1ðQ2Þ�� þ iF2ðQ2Þ�

��q�
2MN

�
uðp; sÞ; (1)

with q ¼ p0 � p, Q2 ¼ �q2, uðp; sÞ as the nucleon spinor

of massMN , momentum p, and third-spin component s. In
the Breit frame the Sachs form factors are defined as

GEðQ2Þ ¼ F1ðQ2Þ � Q2

4M2
N

F2ðQ2Þ;

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ;
(2)

which are projected out by the operations

GEðQ2Þ ¼
Z d�q

4�

�
N

�
p0;

1

2

���������V0ð0Þ
��������N

�
p;

1

2

��
; (3)

GMðQ2Þ ¼ 3MN

Z d�q

4�

qi�ik3

ij ~q2j2

�
�
N

�
p0;

1

2

���������Vkð0Þ
��������N

�
p;

1

2

��
: (4)

Note that in the Breit frameQ2 ¼ ~q2 holds. The right-hand
side of these equations can be evaluated in the �QSM.

B. The ��N� vertex

We take the rest frame of the final � with momentum
p0 ¼ ðM�; 0Þ and massM�. The incoming nucleon has the
momentum p ¼ ðEN;� ~qÞ and energy EN . For the ��N�
vertex we use the decomposition of [60,61] where the
baryon matrix element is written in terms of the Rarita-
Schwinger spinors u�ðp; sÞ as�

�

�
p0;

1

2

���������V�ð0Þ
��������N

�
p;

1

2

��

¼ i

ffiffiffi
2

3

s
�u�
�
p0;

1

2

�
���u

�
p;

1

2

�
; (5)

��� ¼ GN�
M ðQ2ÞKM

�� þGN�
E ðQ2ÞKE

��

þGN�
C ðQ2ÞKC

��; (6)

with the magnetic dipole (GN�
M ), electric quadrupole

(GN�
E ), and Coulomb quadrupole (GN�

C ) form factors.

The corresponding structures are

KM
�� ¼ �3ðM� þMNÞ

½ðM� þMNÞ2 þQ2�2MN

����	P�q	; (7)

KE
�� ¼ �KM

�� þ 6

4M2
�j ~qj2

���
�P
q������p
0
�q�i�

5

�M� þMN

MN

; (8)

K C
�� ¼ 3��1ðq2Þq�½q2P� � q � Pq��i�5 M� þMN

MN

;

(9)

with the momenta defined as P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 � p,

and��1ðq2Þ ¼ 4M2
�j ~qj2. We are interested in the magnetic
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transition moment of theN ! � process and will again use

the projector 3
R d�q

4�
qi�ik3

ij ~qj2 for which the termKC
�k vanishes

and the above matrix element turns into

3
Z d�

4�

qi�ik3

ij ~q2j
�
�

�
p0;

1

2

���������Vkð0Þ
��������N

�
p;

1

2

��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þMN

2MN

s
2ðM� þMNÞ

�
M�

MN

GN�
M ðQ2Þ �GN�

E ðQ2Þ
½ðM� þMNÞ2 þQ2�

þ 1

2MN

GN�
E ðQ2Þ

En þMN

�
: (10)

For further calculations we note that the electromagnetic
N ! � transition is dominated by the form factor GN�

M

[exp. GN�
E =GN�

M ¼ ð�2:5� 0:5Þ%] [1], which justifies
neglecting the GN�

E ðQ2Þ contribution. At the point Q2 ¼
0 we therefore have

3
Z d�

4�

qi�ik3

ij ~q2j
�
�

�
p0;

1

2

���������Vkð0Þ
��������N

�
p;

1

2

����������Q2¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENð0Þ þMN

2MN

s
M�

MN

2

ðM� þMNÞG
N�
M ð0Þ; (11)

where the magnetic transition moment is related to GN�
M ð0Þ

by [61]

�N� ¼
ffiffiffiffiffiffiffiffi
M�

MN

s
GN�

M ð0Þ�N; (12)

QN� ¼ � 6

MN

2M�

M2
� �M2

N

ffiffiffiffiffiffiffiffi
M�

MN

s
GN�

E ð0Þ: (13)

Although we will denote the quadrupole moment in units
of fm2 in this paper, it is understood that the electric
quadrupole moment is expressed in units of e fm2, with e
the electric charge.

The above equations now have a form which can be
investigated in the �QSM.

C. The ���� vertex

The baryon matrix element of the vector current,

V�ð0Þ ¼ ��ð0Þ���ð0Þ, between � states is parametrized
by four form factors:

h�ðp0; s0ÞjV�ð0Þj�ðp; sÞi
¼ � �u�ðp0; s0Þ

	
��

�
F�
1g�� þ F�

3

q�q�

ð2M�Þ2
�

þ i
��
q

2M�

�
F�
2g�� þ F�

4

q�q�

ð2M�Þ2
�

u�ðp; sÞ: (14)

The electric charge and quadrupole form factors GE0, GE2

and magnetic dipole and octupole form factors GM1, GM3

are defined in the Breit frame by

GE0ðQ2Þ ¼ ð1þ 2
3	Þ½F�

1 � 	F�
2� � 1

3	ð1þ 	Þ½F�
3 � 	F�

4�;
(15)

GE2ðQ2Þ ¼ ½F�
1 � 	F�

2� � 1
2ð1þ 	Þ½F�

3 � 	F�
4�; (16)

GM1ðQ2Þ ¼ ð1þ 4
5	Þ½F�

1 þ F�
2� � 2

5	ð1þ 	Þ½F�
3 þ F�

4�;
(17)

GM3ðQ2Þ ¼ ½F�
1 þ F�

2� � 1
2ð1þ 	Þ½F�

3 þ F�
4�; (18)

with 	 ¼ Q2

4M2
�

. Wewill concentrate in this work on the form

factors GE0, GE2, and GM1 and postpone the discussion on
GM3 for future work. Taking the third-spin components for
both � as s ¼ þ3=2, the zeroth component of the matrix
element, Eq. (14), yields�

�

�
p0;

3

2

���������V0ð0Þ
���������

�
p;

3

2

��

¼ GE0ðQ2Þ � 	
2

3

ffiffiffiffiffiffiffi
4�

5

s
Y20ð�qÞGE2ðQ2Þ; (19)

which allows one to project on GE0 and GE2 using the
operations

GE0ðQ2Þ ¼
Z d�q

4�

�
�

�
p0;

3

2

���������V0ð0Þ
���������

�
p;

3

2

��
; (20)

GE2ðQ2Þ ¼ �
Z

d�q

ffiffiffiffiffiffiffi
5

4�

s
3

2

1

	

�
�
�

�
p0;

3

2

���������Y�
20ð�qÞV0ð0Þ

���������
�
p;

3

2

��
: (21)

Using the projector 3
R

d�
4�

qi�ik3

ij ~q2j from the previous subsec-

tions on the �-matrix element, Eq. (14) yields

3
Z d�

4�

qi�ik3

ij ~q2j
�
�

�
p0;

3

2

���������Vkð0Þ
���������

�
p;

3

2

��

¼ 1

M�

��
1þ 4

5
	

�
½F�

1 þ F�
2� � 	

1þ 	

2

4

5
½F�

3 þ F�
4�
�

¼ 1

M�

GM1ðQ2Þ: (22)

Similar to the nucleon case the magnetic moment of the �
is defined by [61]

�� ¼ MN

M�

GM1ð0Þ�N; (23)

and the electric quadrupole moment by

Q� ¼ 1

M2
�

GE2ð0Þ: (24)

We will also denote Q�, like QN� in the section before, in
units of fm2. The projectors which in the nucleon case
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project onto the electric and magnetic form factors, project
in the � case on the electric charge and magnetic dipole
form factors. We will investigate Eqs. (20)–(22) in the
�QSM.

III. FORM FACTORS IN THE CHIRAL
QUARK-SOLITON MODEL

We will now briefly describe how equations like
Eqs. (3), (4), (11), and (20)–(22) are evaluated in the
SUð3Þ �QSM. For details we refer to Refs. [31–33]. The
main part of the form factors comes from the baryonic
matrix element

hB0ðp0ÞjJ ��ð0ÞjBðpÞi ¼ hB0ðp0Þj�yð0ÞO���ð0ÞjBðpÞi;
(25)

where the explicit forms of the operator J �� ¼
�yð0ÞO���ð0Þ (� being a flavor index) are given by the
projector in question,

J �� ! 1 for the rotational Hamiltonian; (26)

J �� !
Z d�

4�
hB0ðp0Þj�yð0Þ�0�0�ð0ÞjBðpÞi for GE;

(27)

J �� !
Z

d�qhB0ðp0Þj�yð0Þ�0�0Y�
20ð�qÞ�ð0ÞjBðpÞi

for GE2; (28)

J �� !
Z d�

4�
hB0ðp0Þj�yð0Þ�0½ ~q� ~��z�ð0ÞjBðpÞi

for GM;G
N�
M ;GM1: (29)

The matrix element, Eq. (25), will be treated in the path-
integral formalism with the following effective partition
function of the quark and chiral fields � and UðxÞ, respec-
tively:

Z�QSM ¼
Z

DcDc yDU exp

�
�
Z

d4x�yiDðUÞ�
�

¼
Z

DU expð�Seff½U�Þ; (30)

SeffðUÞ ¼ �Nc Tr lniDðUÞ; (31)

DðUÞ ¼ �4ði@6 � m̂�MU�5Þ ¼ �i@4 þ hðUÞ � �m;

(32)

�m ¼ � �mþms

3
�41þ �m�msffiffiffi

3
p �4�8

¼ M1�
41þM8�

4�8; (33)

where Tr represents the functional trace, Nc the number of
colors, D the Dirac differential operator in Euclidean

space, and m̂ ¼ diagð �m; �m;msÞ ¼ �mþ �m the current
quark mass matrix of the average of the up- and down-
quark masses and strange-quark mass, respectively. We
assume isospin symmetry. The SUð3Þ single-quark
Hamiltonian hðUÞ is given by

hðUÞ ¼ i�4�i@i � �4MU�5 � �4 �m; (34)

U�5ðxÞ ¼ U
�5

SUð2ÞðxÞ 0
0 1

� �
; (35)

U
�5

SUð2Þ ¼ expði�5	i�iðxÞÞ

¼ 1þ �5

2
USUð2Þ þ 1� �5

2
Uy

SUð2Þ; (36)

where we use Witten’s embedding of the SUð2Þ field
UðxÞSUð2Þ ¼ expði	i�iðxÞÞ into the SUð3Þ. The �iðxÞ de-
note the pion fields. We use the factor of Nc in Eq. (31) in
the large Nc limit to integrate the chiral field in Eq. (30)
with the saddle-point approximation. For that, we have to
find the pion field that minimizes the action in Eq. (31).
Generally, the following Ansätze for the chiral field UðxÞ
and the baryon state jBi in Eq. (25) are made:

USU2 ¼ exp½i�5n̂ � ~	PðrÞ� and

jBðpÞi ¼ lim
x4!�1

1ffiffiffiffi
Z

p eip4x4
Z

d3 ~xei ~p� ~xJyBðxÞj0i;
(37)

with

JBðxÞ ¼ 1

Nc!
�
b1...bNc
B "�1...�Nc c �1b1ðxÞ � � � c �NcbNc

ðxÞ:
(38)

The first equation assumes that the SUð2Þ field U has the
most symmetric form, a hedgehog form, with the radial
pion profile function PðrÞ, while the last two take the
baryon state as an Ioffe-type current consisting of Nc

valence quarks. The matrix �
b1...bNc
B carries the hypercharge

Y, isospin I, I3, and spin J, J3 quantum numbers of the
baryon, and the bi and �i denote the spin-flavor and color
indices, respectively.
Applying the above treatments to the baryonic matrix

element, Eq. (25) yields

hB2ðp2ÞjJ ��ð0ÞjB1ðp1i
¼ 1

Z
lim
T!1e

�ip4
2
ðT=2Þþip4

1
ðT=2Þ Z d3 ~x0d3 ~xei ~p1� ~x�i ~p2� ~x0

�
Z

DUDc yDc JB0

�
T

2
; ~x0
�
J ��ð0ÞJyB

�
�T

2
; ~x

�

� exp

�
�
Z

d4xc yiDðUÞc
�
: (39)

Finding the chiral-field configurationUc, which minimizes
the action, corresponds to determining the profile function
Pc. The configuration Uc is called the soliton. This is done
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by setting J ��ð0Þ ¼ 1 in Eq. (39). For large Euclidean
times, T ! 1, the expression is proportional
to the nucleon correlation function from which we can
obtain the �QSM expression for the nucleon mass.
Solving numerically the equation of motion coming from
�Seff=�PðrÞ ¼ 0 (minimizing the �QSM nucleon energy)
in a self-consistent approach determines the function PcðrÞ.

Rotations and translations of the soliton also minimize
the effective action and are written as

Uð ~x; tÞ ¼ AðtÞUcð ~x� ~zðtÞÞAyðtÞ; (40)

where AðtÞ denotes a time-dependent SUð3Þmatrix and ~zðtÞ
stands for the time-dependent translation of the center of
mass of the soliton in coordinate space. So far, we consid-
ered only the classical version of the �QSM which has to
be quantized. Suitable quantum numbers are now obtained
by quantizing the rotational zero mode. A detailed formal-
ism can be found in Refs. [31,33].

The Dirac operator of Eq. (32), written in terms of the
soliton Uc and its zero modes, acquires the form

DðUÞ ¼ TzðtÞAðtÞ½DðUcÞ þ i�ðtÞ � _Ty
zðtÞTzðtÞ

� i�4AyðtÞ�mAðtÞ�Ty
zðtÞA

yðtÞ; (41)

where the TzðtÞ denotes the translational operator and the

�ðtÞ represents the soliton angular velocity defined as

� ¼ �iAy _A ¼ � i

2
TrðAy _A��Þ�� ¼ 1

2
���

�: (42)

The standard way to proceed is to treat all three terms,

�ðtÞ, _Ty
zðtÞTzðtÞ, and �m, perturbatively by assuming a

slowly rotating and moving soliton and by regarding �m
as a small parameter. Generally, we expand Eq. (41) to the

first order in �ðtÞ, �m and to the zeroth order in _Ty
zðtÞTzðtÞ.

After introducing the collective baryon wave function on
the level of Eq. (39) as

c ðR;YII3Þ
ðR�;Y0JJ3ÞðAÞ :¼ lim

T�1
1ffiffiffiffi
Z

p e�p40T=2
Z

d3 ~u0ei ~p0� ~u0 ð�b1...bNc
B Þ�

��Nc

l¼1½’y
v;bl

ð ~u0ÞAy�; (43)

and expanding the occurring fermionic determinant and
product of propagators and quantizing the soliton rotation,
we obtain the following collective Hamiltonian [62]:

Hcoll ¼ Hsym þHsb; (44)

where Hsym and Hsb represent the SUð3Þ symmetric and

symmetry-breaking parts, respectively,

Hsym ¼ Mc þ 1

2I1

X3
i¼1

JiJi þ 1

2I2

X7
a¼4

JaJa; (45)

Hsb ¼ 1

�m
M1�SUð2Þ þ �Dð8Þ

88 ðAÞ þ �Y þ �ffiffiffi
3

p Dð8Þ
8i ðAÞJi:

(46)

TheMc denotes the mass of the classical soliton and Ii and
Ki are the moments of inertia of the soliton [31], of which
the corresponding expressions can be found in Ref. [63]
explicitly. The components Ji denote the spin generators
and Ja correspond to the generalized SUð3Þ spin genera-

tors. �SUð2Þ is the SUð2Þ pion-nucleon sigma term. Dð8Þ
88 ðAÞ

and Dð8Þ
8i ðAÞ stand for the SUð3Þ Wigner D functions in the

octet representation, and Y is the hypercharge operator.
The parameters �, �, and � in the symmetry-breaking
Hamiltonian are

� ¼ 1

�m

1ffiffiffi
3

p M8�SUð2Þ � Ncffiffiffi
3

p M8

K2

I2
; � ¼ M8

K2

I2

ffiffiffi
3

p
;

� ¼ �2
ffiffiffi
3

p
M8

�
K1

I1
� K2

I2

�
: (47)

The collective wave functions of the Hamiltonian in
Eq. (44) can be found as SUð3Þ Wigner D functions in
representation R:

hAjR; BðYII3; Y0JJ3Þi
¼ �

ðR;YII3Þ
ðR�;Y0JJ3ÞðAÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðRÞ

p
ð�ÞJ3þY0=2DðRÞ�

ðY;I;I3Þð�Y0;J;�J3ÞðAÞ: (48)

Y0 is related to the eighth component of the angular veloc-
ity �. During the quantization process Y0 is constrained to
be Y0 ¼ �Nc=3 ¼ �1. In fact, this constraint allows us to
have only SUð3Þ representations with zero triality.
The Hsb mixes the representations for the collective

baryon states which are treated by first-order perturbation
as

jBRi ¼ jBsym
R i � X

R0�R

jBR0 i hBR0 jHsbjBRi
MðR0Þ �MðRÞ : (49)

From this, we obtain the collective wave functions for the
baryon octet and decuplet with the inclusion of a wave
function correction proportional to the strange-quark mass
as (other wave function corrections are listed in the appen-
dixes)

jN8i ¼ j81=2; Ni þ c10
ffiffiffi
5

p j101=2; Ni þ c27
ffiffiffi
6

p j271=2; Ni;
(50)

j�10i ¼ j103=2;�i þ a27

ffiffiffiffiffiffi
15

2

s
j273=2;�i

þ a35
5ffiffiffiffiffiffi
14

p j353=2;�i; (51)

with

c10 ¼ � I2
15

�
�þ 1

2
�

�
; c27 ¼ � I2

25

�
�� 1

6
�

�
;

(52)
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a27 ¼ � I2
8

�
�þ 5

6
�

�
; a35 ¼ � I2

24

�
�� 1

2
�

�
: (53)

We turn now to the general expression Eq. (39) for a certain
operator J ��ð0Þ, which we can now write in the form

hB0ðp0Þjc yð0ÞO��c ð0ÞjBðpÞi
¼
Z

DA
Z

d3zei ~q�~z��
B0 ðAÞG��ð~zÞ�BðAÞeSeff ; (54)

¼
Z

d3zei ~q�~zhB0jG��ð~zÞjBi: (55)

We have again used the saddle-point approximation and
expanded the Dirac operator with respect to � and �m to

the linear order and _Ty
zðtÞTzðtÞ to the zeroth order, with

everything contained in the expression G��ð~zÞ. The DA
and d3z arise from the zero modes due to summing over all
Uc configurations which minimize the �QSM action. The
expression G��ð~zÞ contains the specific form factor parts
originating from the explicit choice of J ��ð0Þ. The ex-
pansion in � and �m provides the following structure of
the form factors in the �QSM:

GE;MðQ2Þ ¼ Gð�0;m0
s Þ

E;M ðQ2Þ þGð�1;m0
s Þ

E;M ðQ2Þ þGðm1
s Þ;op

E;M ðQ2Þ
þGðm1

s Þ;wf
E;M ðQ2Þ; (56)

where the first term corresponds to the leading order
ð�0; m0

sÞ, the second one to the first 1=Nc rotational cor-
rection ð�1; m0

sÞ, the third to the linear ms corrections
coming from the operator, and the last one to the linear
ms corrections coming from the wave function corrections,
respectively.

In the �QSM Hamiltonian of Eq. (34), the constituent
quark massM would, in general, be momentum dependent,
introducing a natural regularization scheme for the diver-
gent quark loops in the model. However, the inclusion of a
momentum-dependent constituent quark mass is not
straightforward, and in the present framework, the standard
way to proceed is to take the quark mass as a free, constant
parameter and to introduce an additional regularization
scheme. The value of M ¼ 420 MeV is known to repro-
duce very well experimental data [31–35] together with the
proper-time regularization. In the meson sector the cutoff
parameter and �m are then fixed for a given M to the pion
decay constants f� andm�, respectively. Proceeding to the
baryon sector does not require any more new parameters.
Throughout this work the strange current quark mass is
fixed to ms ¼ 180 MeV. We want to emphasize that all

these model parameters are the same as in previous works
[34–42]; no additional readjusting for different observables
was done. The numerical results for the moments of inertia
and mixing coefficients are summarized in Table I forM ¼
420 MeV. In the case of the form factors, we apply the
symmetry-conserving quantization as found in [59].

A. The ��NN vertex in the �QSM

We give now the final expressions for Eqs. (3) and (4)
evaluated in the �QSM on the basis of Eq. (54). We use
Refs. [31–33]. The projector contracts the Lorentz index,
and an average over the momentum-transfer orientation
gives rise to spherical Bessel functions j0;1ðj ~qjj~zjÞ where,
in the Breit frame, Q2 ¼ j ~qj2 holds. The electric and
magnetic form factors are obtained by choosing in
Eq. (39) J �ð0Þ as

J �ð0Þ!E �y�0�0�; (57)

J �ð0Þ!M�y�0zi�j�ij3�; (58)

according to Eqs. (3) and (4).
The electric and magnetic form factors in the �QSM

read, finally,

GEðQ2Þ ¼ 1

2
G

�¼3
E ðQ2Þ þ 1

2
ffiffiffi
3

p G
�¼8
E ðQ2Þ;

GMðQ2Þ ¼ 1

2
G

�¼3
M ðQ2Þ þ 1

2
ffiffiffi
3

p G
�¼8
M ðQ2Þ;

(59)

with the expressions

G�
EðQ2Þ ¼

Z
d3zj0ðj ~qjj ~zjÞ

Z
dAhB0jAiG�

Eð~zÞhAjBi; (60)

G�
MðQ2Þ ¼ MN

Z
d3z

j1ðj ~qjj ~zjÞ
j ~qj~zj

Z
dAhB0jAiG�

Mð~zÞhAjBi:
(61)

The electric and magnetic densities are given by

G�
Eð~zÞ ¼ Dð8Þ

�8

ffiffiffi
1

3

s
Bð~zÞ � 2

I1
Dð8Þ

�i JiI1ð~zÞ � 2

I2
Dð8Þ

�aJaI2ð~zÞ � 2ffiffiffi
3

p M1D
ð8Þ
�8Cð~zÞ �

2

3
M8D

ð8Þ
88D

ð8Þ
�8Cð~zÞ þ 4

K1

I1
M8D

ð8Þ
8i D

ð8Þ
�i I1ð ~zÞ

þ 4
K2

I2
M8D

ð8Þ
8aD

ð8Þ
�aI2ð~zÞ � 4M8D

ð8Þ
8i D

ð8Þ
�iK1ð~zÞ � 4M8D

ð8Þ
�aD

ð8Þ
8aK2ð~zÞ (62)

TABLE I. Moments of inertia and mixing coefficients forM ¼
420 MeV.

I1
(fm)

I2
(fm)

K1

(fm)

K2

(fm)

��N

(MeV) c10 c27 a27 a35

1.06 0.48 0.42 0.26 41 0.037 0.019 0.074 0.018

LEDWIG, SILVA, AND VANDERHAEGHEN PHYSICAL REVIEW D 79, 094025 (2009)

094025-6



and

G�
Mð ~zÞ ¼ � ffiffiffi

3
p

Dð8Þ
�3Q0ð~zÞ � 1ffiffiffi

3
p 1

I1
Dð8Þ

�8J3X1ð~zÞ þ
ffiffiffi
3

p 1

I1
dab3D

ð8Þ
�bJaX2ð~zÞ þ

ffiffiffi
1

2

s
1

I1
Dð8Þ

�3Q1ð~zÞ þ 2ffiffiffi
3

p K1

I1
M8D

ð8Þ
83D

ð8Þ
�8X1ð~zÞ

� 2
ffiffiffi
3

p K2

I2
M8D

ð8Þ
8aD

ð8Þ
�bdab3X2ð~zÞ þ 2

ffiffiffi
3

p �
M1D

ð8Þ
�3 þ

1ffiffiffi
3

p M8D
ð8Þ
88D

ð8Þ
�3

�
M0ð~zÞ � 2ffiffiffi

3
p M8D

ð8Þ
83D

ð8Þ
�8M1ð~zÞ

þ 2
ffiffiffi
3

p
M8D

ð8Þ
�aD

ð8Þ
8bdab3M2ð~zÞ: (63)

Since M1 and M8 are proportional to ms, all terms con-
taining M1 and M8 are ms corrections in the present
approach. The expressions Bð~zÞ; . . . ;M2ð~zÞ are presented
in the appendixes. The Wigner D functions depend on the
rotation A, e.g. Dð�Þ

�3 ¼ Dð�Þ
�3 ðAÞ, and expressions such asZ

dAhB0jAiDð8Þ
�3ðAÞhAjBi (64)

are evaluated as described in the appendixes. The value for
the nucleon mass MN in front of Eq. (61) is taken as the
value given by the classical soliton mass, i.e. by the mass of
the nucleon in the �QSM, which is heavier than the ex-
perimental mass [31] by a factor of 1.36 .

B. The ��N� vertex in the �QSM

We now investigate Eq. (11) in the �QSM. In order to
evaluate the left-hand side of Eq. (11) in the �QSM, we
had to take limNc ! 1,

lim
Nc!13

Z d�

4�

qi�ik3

ij ~q2j
�
�

�
p0;

1

2

���������Vkð0Þ
��������N

�
p;

1

2

����������Q2¼0

¼ lim
Nc!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENð0Þ þMN

2MN

s
2
M�

MN

GN�
M ð0Þ

ðM� þMNÞ ; (65)

�N� ¼ lim
Nc!1

ffiffiffiffiffiffiffiffi
M�

MN

s
GN�

M ð0Þ�N: (66)

In the whole �QSM approach, we do not take anyN�2
c and

also not all N�1
c corrections into account. Corrections

coming from the translational zero mode in Eq. (41) or
vibrations of the classical soliton Uc were not considered.
According to this, we could rewrite the factors on the right-
hand side of Eq. (66) as follows:

EN ¼ MN þ ~p2

2MN

þOðN�2
c Þ; (67)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ENð0Þ þMN

2MN

s
¼ 1þOðN�2

c Þ; (68)

M�

MN

¼ MN þ 3
2I1

MN

¼ 1þ 3

2I1MN

¼ 1þOðN�2
c Þ; (69)

2

M� þMN

¼ 1

MN

1

1þ 3
2I1MN

¼ 1

MN

þOðN�2
c Þ; (70)

ffiffiffiffiffiffiffiffi
M�

MN

s
¼ 1þOðN�2

c Þ: (71)

The expression of Eq. (66) then reads

lim
Nc!13

Z d�

4�

qi�ik3

ij ~qj2
�
�

�
p0;

1

2

���������Vkð0Þ
��������N

�
p;

1

2

����������Q2¼0

¼ 1

MN

GN�
M ð0Þ; (72)

�N� ¼ GN�
M ð0Þ�N: (73)

The corresponding �QSM expression is then given by

GN�
M ð0Þ ¼ 1

2
GN��¼3

M ð0Þ þ 1

2
ffiffiffi
3

p GN��¼8
M ð0Þ; (74)

GN��
M ð0Þ ¼ MN

Z
d3z

j1ðj ~qjj~zjÞ
j ~qjj~zj

��������Q2¼0

�
Z

dA

�
�

�
1

2

�
jAiG�

Mð~zÞhAjN
�
1

2

��
; (75)

where the densityG�
Mð ~zÞ is the same as in Eq. (61) since the

projectors in Eqs. (4) and (11) are the same. The only 1=Nc

corrections which are taken into account on the level of
Eq. (54) are those originating from Gð~zÞ but not from the

expression ei ~q�~z. This is connected to the fact that we just

expand Eq. (41) to the zeroth order in _Ty
zðtÞTzðtÞ. In the case

of the rest frame of the �, we have for ~q2 the expressions

~q 2 ¼ ðM� � ENÞ2 þQ2 ¼ Q2 þOðN�2
c Þ; (76)

j ~qj ¼
ffiffiffiffiffiffi
Q2

q
þOðN�2

c Þ: (77)

This means that in the present formalism the j ~qj entering in
Eq. (74) is actually

ffiffiffiffiffiffi
Q2

p
. Applying the above large Nc

arguments means that we neglect all 1=Nc corrections
besides those coming from the rotational frequency (�)
expansion of Eq. (41). After having done this, we putNc ¼
3 in order to get finite numerical results.

ELECTROMAGNETIC PROPERTIES OF THE . . . PHYSICAL REVIEW D 79, 094025 (2009)

094025-7



C. The ���� vertex in the �QSM

For the � electromagnetic form factors we again use the
Breit frame with Q2 ¼ ~q2 and

GE0ðQ2Þ ¼ 1

2
G�¼3

E0 ðQ2Þ þ 1

2
ffiffiffi
3

p G�¼8
E0 ðQ2Þ; (78)

GE2ðQ2Þ ¼ 1

2
G

�¼3
E2 ðQ2Þ þ 1

2
ffiffiffi
3

p G
�¼8
E2 ðQ2Þ; (79)

GM1ðQ2Þ ¼ 1

2
G�¼3

M1 ðQ2Þ þ 1

2
ffiffiffi
3

p G�¼8
M1 ðQ2Þ: (80)

The calculation of the form factor GM3 requires the evalu-
ation of densities beyond the ones derived in this work, and
we therefore postpone the discussion of this form factor for
future studies.

The projector of the electric charge form factor of the �
is the same as for the nucleon case; hence we can use
Eq. (60) with

G
�
E0ðQ2Þ ¼

Z
d3zj0ðj ~qjj ~zjÞ

�
�

�
3

2

���������G�
Eð~zÞ

���������
�
3

2

��
: (81)

The �magnetic dipole form factor, Eq. (22), and magnetic
moment have the prefactors

1

M�

¼ 1

MN þ 3
2I1

¼ 1

MN

1

1þOðN�2
c Þ ; (82)

MN

M�
¼ MN

MN

1

1þOðN�2
c Þ ; (83)

and therefore give in the �QSM the expressions

G
�
M1ðQ2Þ ¼ MN

Z
d3z

j1ðj ~qjj ~zjÞ
j ~qjj ~zj

�
�

�
3

2

���������G�
Mð~zÞ

���������
�
3

2

��
;

(84)

�� ¼ GM1ð0Þ�N: (85)

The densities G�
Eð~zÞ and G�

Mð ~zÞ are the same as in Eqs. (60)
and (61) since the projectors in Eqs. (3) and (20) and
Eqs. (4) and (22) are the same, respectively.

The projector on GE2 is different. The electric quadru-
pole form factor reads, in terms of Eq. (54),

G�
E2ðQ2Þ ¼ �

Z
d�q

ffiffiffiffiffiffiffi
5

4�

s
3

2

1

	

Z
dz3ei ~q�~z

�
�
�

�
3

2

���������½Y�
20ð�qÞG0�ð~zÞ�

���������
�
3

2

��
; (86)

which after performing the integral over d�q gives

G
�
E2ðQ2Þ ¼ 6

ffiffiffi
5

p
M2

�

Z
drr4

j2ðk � rÞ
k2r2

Z
d�z

�
�
�

�
3

2

���������½
ffiffiffiffiffiffiffi
4�

p
Y20ð�zÞG0�ð ~zÞ�

���������
�
3

2

��
;

(87)

with r ¼ j~zj and k ¼ j ~qj. The expression

½ ffiffiffiffiffiffiffi
4�

p
Y20ð�zÞG0�ð~zÞ� ¼ G0�

E2ð ~zÞ shall illustrate the �QSM
form factor density, which we obtain when we choose the
operator J �ð0Þ in Eq. (39) as

J �ð0Þ!E2�y ffiffiffiffiffiffiffi
4�

p
Y20ð�zÞ�0�0�; (88)

according to Eq. (21).
SinceGE2 is extracted out from the zeroth component of

the vector current, the Lorentz structure is the same as for
the form factor GE. Hence, we can construct the GE2

�QSM form factor density from the expression for GE.
For the form factorGE2 wewill not take anyms corrections
coming from the operator into account, and we start from
the SUð3Þ expression of GE, which reads

G
�
EðQ2Þ ¼

Z
d3zj0ðj ~qjj ~zjÞ

Z
dAhB0jAiG�

Eð~zÞhAjBi; (89)

with the density

G�
Eð~zÞ ¼ Dð8Þ

�8

ffiffiffi
1

3

s
Bð~zÞ � 2

	
Ji
2I1

; Dð8Þ
�j



I ij
1 ð~zÞ

� 2

	
Ja
2I2

; Dð8Þ
�a



I2ð~zÞ;

1

Nc

Bð~zÞ ¼ y
vð~zÞOvð~zÞ � 1

2

X
n

signð"nÞy
n ð~zÞOnð~zÞ;

1

Nc

I ij
1 ð~zÞ ¼

1

2

X
"n�"v

1

"n � "v
hvj	ijniy

n ð~zÞO	jvð ~zÞ

þ 1

4

X
n;m

R3ð"n; "mÞhnj	ijmiy
mð~zÞO	jnð~zÞ;

1

Nc

I2ð~zÞ ¼ 1

4

X
"
n0

1

"n0 � "v

�
n0jviy

vð~zÞOn0ð~zÞ

þ 1

4

X
n;m0

R3ð"n; "m0Þy
m0ð~zÞOnð~zÞhnjm0

�
:

The choice ofJ �ð0Þ defines the operatorO in the densities
B, I1, I2, which in the case of the form factor GE is O ¼
�0�0 ¼ 1 and in the case of GE2 it is O ¼ ffiffiffiffiffiffiffi

4�
p

Y20ð�zÞ.
The density B originates from the zeroth-order �0 in the
rotation-velocity expansion of Eq. (41), whereas I1, I2 are
the first rotational �1 corrections. The �1 corrections are
also referred to as 1=Nc corrections. In the case of the

operator O ¼ ffiffiffiffiffiffiffi
4�

p
Y20ð�zÞ, the corresponding densities

Bð ~zÞ and I2ð ~zÞ are identically zero.
The final expression in the �QSM for the form factor

GE2 is found to be
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G�
E2ðQ2Þ ¼ 12

I1
ffiffiffi
2

p M2
�hB0j½3Dð8Þ

�3J3 �Dð8Þ
�i Ji�jBi

�
Z

drr4
j2ðj ~qjrÞ
j ~qj2r2 I1E2ðrÞ; (90)

with the density

6

Nc

I1E2ðrÞ ¼
X
n�v

1

"n � "v
ð�ÞGmhAv;Gvjj	1jjAn;Gni

� hAn;Gnjjrif ffiffiffiffiffiffiffi
4�

p
Y2 � 	1g1hrjjAv;Gvi

þ 1

2

X
n;m

R3ð"n; "mÞð�ÞGn�Gm

� hAn;Gnjj	1jjAm;GmihAm;Gmjjri
� f ffiffiffiffiffiffiffi

4�
p

Y2 � 	1g1hrjjAn;Gni; (91)

where the sum over the third grand spins of the basis states
in Appendix E are already taken. The whole G�

E2 form

factor originates from the rotational corrections and there-
fore scales as 1=Nc and vanishes in the large Nc limit.

The same density also occurs in the �QSM expression
for the N �� transition form factor ratios REM ¼
�GN�

E ð0Þ=GN�
M ð0Þ ¼ E2=M1 and RSM ¼ C2=M1	

GN�
C ð0Þ=GN�

M ð0Þ in [38]. The final results of that �QSM
SUð3Þ analysis are E2=M1 ¼ �1:4% and C2=M1 

�1:8%, for which we can write

0:78 
 E2=M1

C2=M1
¼ E2

C2
¼ 1

3

R
dr @

@r ½rj2ðj ~qjrÞ�I1E2ð ~xÞR
drj2ðj ~qjrÞI1E2ð ~xÞ ;

(92)

by using the formulas presented in [38]. Inserting the
density I1E2ðrÞ of this work reproduces the 0.78. In addi-
tion, we can also reproduce the values forME2 presented in
[64] by using the expressions of that work with the density
I1E2ðrÞ of this work.

IV. RESULTS AND DISCUSSION

We now present and discuss the final results of this work.
We have calculated the electromagnetic form factors GE0,
GE2, and GM1 of �ð1232Þ and compared them to the form
factors GE and GM of the nucleon. We also considered the
magnetic transition moment of the process N ! � and
gave numerical values for all other decuplet magnetic
moments. All results are achieved by using the self-
consistent SUð3Þ �QSM. In this formalism the constituent
quark mass M is the only free parameter with a standard
value M ¼ 420 MeV. Numerical parameters are fixed as
described in Sec. III and are exactly the same as in the
works [34–42]. With the numerical parameters of Table I,
the �QSM yields masses of the octet and decuplet baryons
in units of MeV, as in Ref. [42]:

MN ¼ 1001ð939Þ; M� ¼ 1124ð1116Þ;
M� ¼ 1179ð1189Þ; M	 ¼ 1275ð1318Þ;
M� ¼ 1329ð1232Þ; M�� ¼ 1431ð1385Þ;
M	� ¼ 1533ð1530Þ; M� ¼ 1635ð1672Þ;

(93)

where the numbers in the parentheses are the experimental
values of the Particle Data Group [1]. The �QSM values
were obtained by first calculating the hypercharge
splittings with Eq. (44) and afterwards starting from the
experimental octet mass center, M8 ¼ ðM� þM�Þ=2 ¼
1151:5 MeV.
In general, for the observables investigated in this work a

change of the constituent quark mass between the values in
the range M ¼ ð400–450Þ MeV affect the numerical val-
ues of the observables by 4%. We therefore present only
final results for M ¼ 420 MeV.
We will first discuss the values of the form factors at the

point Q2 ¼ 0 and afterwards their Q2 dependence up to
Q2 ¼ 1 GeV2.
The magnetic moments are obtained from Eqs. (59),

(74), and (80),

GMð0Þ ¼ 1

2

�
G

�¼3
M ð0Þ þ 1ffiffiffi

3
p G

�¼8
M ð0Þ

�
; (94)

for which we can rewrite Eq. (63) in the following simple
form:

G
�
Mð0Þ ¼

Z
dAhB0jAi½Ĝ�

M þ Ĝ�ðopcÞ
M �hAjBi; (95)

Ĝ �
M ¼ w1D

ð8Þ
�3 þ w2dpq3D

ð8Þ
�pĴq þ w3

1ffiffiffi
3

p Dð8Þ
�8Ĵ3; (96)

Ĝ�ðopcÞ
M ¼ w4

1ffiffiffi
3

p dpq3D
ð8Þ
�pD

ð8Þ
8q þ w5ðDð8Þ

�3D
ð8Þ
88 þDð8Þ

�8D
ð8Þ
83 Þ

þ w6ðDð8Þ
�3D

ð8Þ
88 �Dð8Þ

�8D
ð8Þ
83 Þ: (97)

All magnetic constants in this work can be reproduced
(within accuracy) by using the values of Table II and the
matrix elements of Appendix F. In the case of flavor-SUð3Þ
symmetry, only the parameters w1, w2, and w3 contribute,
whereas w4, w5, and w6 are ms corrections coming from
the operator; wave function corrections contribute via jBi
with the parameters w1, w2, and w3. Since the right-hand

TABLE II. Magnetic parameters for Eq. (97). The parameters
are for a constituent quark mass ofM ¼ 420 MeV and a mass of

M
�QSM
N ¼ 939 � 1:36 MeV in Eq. (61), as described in the text.

The density M0 is proportional to ms.

w1 w2 w3 w4 w5 w6

�12:94 (with M0) 7.13 5.16 �1:31 �0:78 0.07�13:64 (no M0)
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sides of Eqs. (61), (74), (84), and (90) are model equations,
we also take the model value for the nucleon mass, which is
by a factor of 1.36 larger than the experimental value,

M
�QSM
N ¼ 939 � 1:36 MeV.
As in [57] we can write the magnetic moments of the

decuplet baryons in flavor-SUð3Þ symmetry by the simple
formula

�B10 ¼ � 1

12

�
w1 � 1

2
w2 � 1

2
w3

�
Q10J3�N; (98)

where Q10 is the charge of the decuplet baryon and J3 its
third-spin component. The numerical value of this equa-
tion, given later [Eq. (99)], is close to the model-
independent analysis in [57] and comparable to the one
in [55]. The �QSM analysis of [56,57] gave, in
flavor-SUð3Þ, a decuplet magnetic moment of 2:23 �
Q10�N . Even though the numerical value of the present
work is close, there are differences in its determination. As
explicitly mentioned in [57], the so-called SCQ technique
[59] was not applied and the magnetic moment of 2:23 �
Q10�N is normalized to the experimental nucleon mass in
Eq. (60). The SCQ has as a consequence that it decreases
�B, like g

3
A in [35] compared to [65], but the normalization

to the nucleon mass, as it comes out in the self-consistent
�QSM, enhances �B. The final numerical value for the
decuplet SUð3Þ symmetric magnetic moment with J3 ¼
3=2, the application of SCQ, and normalization to the

soliton nucleon mass (M
�QSM
N ¼ 939 � 1:36 MeV) is

��QSM

B10 ¼ 2:47 �Q10�N: (99)

For the above number we used the values of Table II. Our

final results for the magnetic moments by including
flavor-SUð3Þ-breaking effects are summarized in
Table III. The ms corrections of this work are more mod-
erate compared to the results in [57]. This is also a con-
sequence of the SCQ. The SCQ has a significant impact on
the parameter w1, and therefore alters the ratio of the wave
function to operator corrections in this work compared to
[57]. For the wave function corrections, the factor a27 is
numerically dominant and the magnetic moment correc-
tions originating from it are sensitive to w1. However, in
general, the ms corrections in this work are maximal 8%
for the charged baryons. The ms corrections in this work
have the same sign as in [56] which is not always the case
by comparing with [57].
Magnetic moments for the nucleon, the N � �, and �þ

are discussed in more detail in Table IV. Since the �QSM
uses the large Nc approximation, to some extent the large
Nc relations of [28] should be fulfilled. The relations given
in that paper are exact up to the order OðN�2

c Þ. In the
present approach of the �QSM, there are two reasons
why this relations should not be exactly fulfilled. First, in
order to achieve numerical values the transition back to
Nc ¼ 3 is done. Second, not all N�1

c corrections are taken
into account; e.g. corrections from the translational zero
mode are not considered. Generally, also for other decuplet
magnetic moments in the �QSM of Table III, the large NC

relations of [28],

��þþ ���� ¼ 9
5ð�p ��nÞ þOðN�2

c Þ; (100)

��þ ���0 ¼ 3
5ð�p ��nÞ þOðN�2

c Þ; (101)

��þ
10
����

10
¼ 3

2ð��þ ����Þ þOðN�2
c Þ; (102)

TABLE III. Magnetic moments of the decuplet in the self-consistent �QSM for M ¼ 420 MeV. All numbers are given with the
inclusion of flavor-SUð3Þ symmetry-breaking effects. The flavor-SUð3Þ symmetric value of this work is given by �B10 ¼ 2:47Q10�N .
The �QSM �� magnetic moment agrees well with the experimental value given by the Particle Data Group of ��� ¼ ð�2:02�
0:05Þ�N [1]. The mass factor of Eq. (61) is M�QSM

N ¼ 939 � 1:36 MeV, as described in the text.

�=n:m: �þþ �þ �0 �� �þ
10 �0

10 ��
10 	0

10 	�
10 ��

This work 4.85 2.35 �0:14 �2:63 2.47 �0:02 �2:52 0.09 �2:40 �2:29
�QSM ’98 [57] 4.73 2.19 �0:35 �2:90 2.52 �0:08 �2:69 0.19 �2:48 �2:27

TABLE IV. Magnetic moments of the nucleon, the N-� transition, and the �þ in the self-consistent �QSM forM ¼ 420 MeV. The
second column corresponds to the leading order in rotation, whereas the third and fourth columns are linear rotational and ms

corrections, respectively. The last column gives experimental data taken from [1,4,5,66] with the uncertainty of ��þ ¼
ð2:7þ1:0

�1:3ðstatÞ � 1:5ðsystÞ � 3ðtheoÞÞ�N . The normalization in Eq. (61) is taken asM�QSM
N ¼ 939 � 1:36 MeV for all given observables,

as described in the text. The values for the large Nc relations are given by using the �QSM values, where in the case of ��þ , the ��0

contribution is omitted.

�½�N� �0 �0þ1 �0þ1 þ �m1
s Large Nc relations Experiment

�p 1.25 2.46 2.44 2.79

�n �0:93 �1:63 �1:68 �1:91
j��Nj 1.38 2.56 2.72 ��N ¼ 1ffiffi

2
p ð�p ��nÞ ¼ 2:91 3:46� 0:03

��þ 1.16 2.47 2.35 ��þ 
 3
5 ð�p ��nÞ ¼ 2:47 2:7� 1:15ðstatÞ � 1:5ðsystÞ
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�	0
10
��	�

10
¼ �3ð�	0 ��	�Þ þOðN�2

c Þ; (103)

are satisfied up to 7%.
In the case of the N �� transition and the � form

factors, we made use of large Nc arguments in Eqs. (71)
and (83) for several mass-ratio factors, which lead to the
values, also presented in Tables IV and V, in the self-
consistent �QSM of

GN�
M ð0Þ ¼ 2:72; �N� ¼ 2:72�N; (104)

G�þ
M1ð0Þ ¼ 2:35; ��þ ¼ 2:35�N: (105)

Keeping these mass-ratio factors, which are overall factors,
yields

GN�
M ð0Þ ¼ 2:30; �N� ¼ 2:72�N; (106)

G�þ
M1ð0Þ ¼ 3:09; ��þ ¼ 2:35�N: (107)

The first treatment would correspond to neglecting all
1=Nc corrections besides the rotational corrections, while
keeping the prefactors would correspond to keeping some
more 1=Nc corrections but neglecting all model-based
1=Nc corrections besides the rotational ones.

We will now discuss the �þ electric and magnetic form
factors GE0 and GM1 for Q

2 � 1 GeV2.
The results of the self-consistent �QSM calculations for

the electric and magnetic form factors Gp
E, G

p
M, G

�þ
E0 , and

G�þ
M1 are best reproduced by a dipole-type form factor

GE;MðQ2Þ ¼ GE;Mð0Þ
ð1þ Q2

�2
E;M

Þ2
: (108)

In Table V we present the fitted parameter which reprodu-
ces the proton and �þ electric and magnetic form factors
of Fig. 1. In the case of the lattice results [27], an
exponential-type form factor for GM1,

GM1ðQ2Þ ¼ GM1ð0Þe�Q2=�2
M1 ; (109)

parametrizes the lattice results best. We compare our re-
sults in Table V with those of [27].

The charge and magnetic dipole form factors of the
decuplet baryons in the case of flavor-SUð3Þ symmetry

can be written as

GE0ðQ2Þ ¼ Q10 �
Z

d3zj0ðj ~qjj~zjÞ

�
�
1

24
Bð~zÞ þ 5

8

I1ð~zÞ
I1

þ 1

4

I2ð~zÞ
I2

�
;

GM1ðQ2Þ ¼ Q10 � J3 �M�

12

Z
d3z

j1ðj ~qjj ~zjÞ
j ~qjj ~zj

�
� ffiffiffi

3
p

Q0ð ~zÞ � 1

2

X1ð~zÞ
I1

þ
ffiffiffi
3

p
2

X2ð ~zÞ
I2

�
ffiffiffi
1

2

s
Q1ð ~zÞ
I1

�
;

with Q10 the charge of the decuplet baryon and its third-
spin component J3, and M� the normalization of the
magnetic form factor. In the case of the neutral decuplet
baryons, the entire form factors for GE0 and GM1, even for
Q2 > 0, are only due to strange-quark mass corrections.
For the proton the experimental value of the charge

radius is ½hr2EiP�1=2 ¼ 0:8750� 0:0068 fm (hr2EiP 

0:766 fm2) [1]. The charge radii of the proton and �þ of
GE and GE0 in the self-consistent �QSM with M ¼
420 MeV are, respectively,

hr2EiP ¼ 0:768 fm2; hr2EiSUð3Þ
P ¼ 0:770 fm2; (110)

hr2Ei�þ ¼ 0:794 fm2; hr2EiSUð3Þ
�þ ¼ 0:813 fm2; (111)

and the magnetic radii for GMðQ2Þ and GM1ðQ2Þ are
hr2MiP ¼ 0:656 fm2; hr2MiSUð3Þ

P ¼ 0:665 fm2; (112)

hr2Mi�þ ¼ 0:634 fm2; hr2MiSUð3Þ
�þ ¼ 0:658 fm2; (113)

where the index SUð3Þ indicates the value in the case of
flavor-SUð3Þ symmetry. The above radii are calculated by
differentiating the �QSM form factor expression, i.e. ex-
plicitly integrating the �QSM form factor densities.
Alternatively, one could calculate the radii by using the
dipole fit due to hr2E;Mi ¼ 12=�2

E;M for which the values

only differ by a maximum of 1%.

TABLE V. Table of proton and �þ parameters for the dipole (dip) and exponential (exp) form factor fits, Eqs. (108) and (109). The

numbers in parentheses corresponds to (1) using normalization of M
�QSM
� ¼ 1232 � 1:36 MeV in Eq. (84) and (2) using an

exponential-type form factor. The self-consistent �QSM calculation for GM1 is best reproduced by a dipole-type form factor, while
the numbers for �2

M1 in the case of the lattice results are for an exponential-type form factor.

�2
E=ðGeV2Þ Gp

Mð0Þ �2
M=ðGeV2Þ �2

E0=ðGeV2Þ G�þ
M1ð0Þ �2

M1=ðGeV2Þ
�QSM 0.614 2.438 0.716 0.585 2:354½3:089�1Þ 0:736dip½0:490�exp
Quenched Wilson 1.101 2.635 0:978exp

Dynamical Nf ¼ 2 Wilson 1.161 2.344 1:022exp

Hybrid 1.126 3.101 0:895exp

Experiment 0.523 2.793
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FIG. 1. Electric and magnetic form factors of the �þ, �0, ��, and the nucleon in the self-consistent �QSM. The form factors of the
�þþ are roughly, by an overall factor of 2, larger than those for the �þ and are not explicitly shown. The G�0

E0 and G
�0

M1 for Q
2 > 0 are

entirely due to ms corrections and are therefore smaller compared to the neutron GM. For all magnetic form factors M�QSM
N ¼

939 � 1:36 MeV is used in Eq. (61) apart from the �QSM graph in the lower-right panel, where we also take M
�QSM
� ¼ 1232 �

1:36 MeV and indicate the normalization by ½MNð�Þ�. In the last two figures we compare our final results for the �þ form factors GE0

and GM1 with those of the lattice results in [27].
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In Fig. 1 we compare the final �QSM results for the �þ
form factors GE0 and GM1 with those of the lattice calcu-
lation [27]. The �QSM form factors drop faster with
increasing Q2. In the case of the �QSM, it is known that
the Q2 dependence of the experimental data of the electric
and magnetic form factors for both nucleons is very well
reproduced [31]. In the lattice work [67] the nucleon iso-
vector form factor Fp�n

1 ðQ2Þ for pion masses ranging from

m� ¼ 775 MeV down to m� ¼ 359 MeV was calculated.
It was found that the form factor becomes steeper by low-
ering the pion mass. Still, for a value of m� ¼ 359 MeV
the results of [67] are above the experimental values. The
minimal value of m� in Ref. [27] for the form factors GE0

and GM1 of the �þ, Fig. 1, is m� ¼ 353 MeV and also
does not fall off as fast as the �QSM results. This can also
be seen by the fact that the lattice results are best repro-
duced by an exponential-type form factor while the �QSM
are more of a dipole-type form factor. The � magnetic
moment is presented in the range of��þ ¼ ð1:58–1:91Þ�N

in the pion-mass range m� 
 ð353–400Þ MeV. The value
of the present �QSM calculation is ��þ ¼ 2:35�N .

Recently, a first dynamical lattice QCD calculation [20]
of the � and �� magnetic dipole moments was also
performed using a background field method. The calcula-
tion for �� was done at the physical strange-quark mass,
with the result ��� ¼ �1:93ð8Þ�N in very good agree-
ment with the experimental number. The � has been
studied at the smallest pion-mass value m� ¼ 366 MeV
with the result ��þ ¼ 2:40ð6Þ�N .

We will now discuss the results for the �þ electric
quadrupole form factor GE2. In Fig. 2 we present the final
results and compare them with the recent lattice calcula-
tions in [27]. As already mentioned in Sec. III C the form

factor GE2 in the �QSM is only due to rotational correc-
tions which are seen as 1=Nc corrections. In the large Nc

limit the �QSM leads to a vanishing form factor. In the left
panel of Fig. 2 we decomposed the form factor into its
contributions coming from the valence and sea quarks. The
sea contribution gives the most sizable part of the form
factor. This behavior is also seen in Ref. [64] where the
electric quadrupole moment QN� was investigated in the
SUð2Þ �QSM. The density I1E2ðrÞ also contributes to the
N� transition in [64]. Figure 2 shows the same behavior of
valence and sea quark contributions for GE2 as Fig. 1 in
Ref. [64] for the quantity QN�. In the case of the �QSM,
we had to introduce a regularization scheme for the sea
quark contribution, which was the proper-time regulariza-
tion. The fact that the sea quarks give the dominant part of
the form factor could result in a sensibility of the �QSM
GE2 to the applied regularization scheme. An analogous
situation is met, and well known, in the case of the ��N

form factor in [68,69]. In this work we do not investigate
the regularization dependence of the form factor GE2, and
we give all final results for applying the proper-time
regularization.
For the parametrization of this form factor we prefer

a dipole-type fit, Eq. (108). In Table VI we summarize
the parameters which reproduce the self-consistent �QSM
calculation and compare them to the results of the
lattice calculation of [27]. In the case of the electric
quadrupole form factor, the lattice results are more diver-
gent. Again, the �QSM result falls off faster in the region
0 � Q2 � 0:50 GeV2 compared to all three lattice
results, but compares well to the quenched Wilson and
hybrid action results for 0:50 GeV2 � Q2 � 1 GeV2,
respectively.

FIG. 2. The electric �þ quadrupole form factor GE2 in the self-consistent �QSM and comparison to the lattice results of [27]. The
left panel shows the form factor decomposed into its valence and sea quark contributions while the right panel compares the final result

with those of the lattice calculation. In the right panel we took M
�QSM
N ¼ 939 � 1:36 MeV and M

�QSM
� ¼ 1232 � 1:36 MeV one time

each for the mass in Eq. (90).
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In Ref. [29] a relation in the large Nc limit is found
which connects the quadrupole moment of the N � �
transition QN� to the quadrupole moment Q� of the �,

Q�þ ¼ 2
ffiffiffi
2

p
5

Qp�þ þOðN�2
c Þ: (114)

Reference [5] extracted the value of

QN� ¼ �ð0:0846� 0:0033Þ fm2; (115)

which gives, with the above large Nc relation,

Q�þ ¼ ð�0:048� 0:002Þ fm2:

The final result of this work in the self-consistent �QSM is

Q�QSM

�þ ¼ GE2ð0Þ
M2

�

¼ �0:0509 fm2; (116)

which agrees well with the above estimation. From the left
panel in Fig. 2 we see that for the electric quadrupole
moment, proportional toGE2ð0Þ, the sea quark contribution
dominates the valence quark contribution. Furthermore,
one can expect the sea quark contribution to have a broader
spatial distribution than the one for the valence quarks.
This in turn leads to a steeper Q2 dependence of the
contribution toGE2 of sea quarks as compared with valence
quarks. This is evidenced in the present calculation as
shown in Fig. 2.

In the �QSMwork [64] the authors presented an electric
quadrupole transition moment of QN� ¼ �0:020 fm2.
Also for this quantity, the main contribution comes from
the sea quarks. The small value of QN� ¼ �0:020 fm2 in
[64] is in contrast with QN� ¼ �ð0:0846� 0:0033Þ fm2

from [66] and the relative large electric � quadrupole

moment Q
�QSM

�þ ¼ �0:0509 fm2 of this work. We can

reproduce, with the density I1E2ðrÞ of this work, the values
given in [64]. The discrepancy of the above numbers could
be due to a possible breakdown of the approximation k �
R � 1 performed in [64], with k being the photon mo-
mentum at Q2 ¼ 0 of the ��N� process and R being the
nucleon charge radius. This remains to be investigated in
future studies.

In [70] the �þ electric quadrupole moment is estimated

to QimpðexcÞ
�þ ¼ �0:032 fm2ð�0:119 fm2Þ by using a con-

stituent quark model, once with configuration mixings and
no exchange current and once with an exchange current but
no configuration mixing, respectively. A recent light cone
QCD sum rule calculation [71] obtained an electric quad-
rupole moment of Q�þ ¼ �ð5:8� 1:45Þ10�4 fm2. Our

value of Q
�QSM

�þ ¼ �0:0509 fm2 is more comparable to

the constituent quark model results.

V. SUMMARY

In the present work we investigated, in the framework of
the self-consistent SUð3Þ �QSM, the electromagnetic form
factors of the vector current for decuplet baryons. We
explicitly take the symmetry-conserving quantization, lin-
ear 1=Nc rotational, and linear strange-quark mass correc-
tions into account. Earlier self-consistent SUð3Þ �QSM
results only calculated the decuplet magnetic moments
and did not apply the symmetry-conserving quantization.
Numerical parameters of the model are fixed in the meson
sector as described at the end of Sec. III. The only free
parameter of the �QSM for the baryon sector is the con-
stituent quark mass. All these parameters were fixed by
previous studies and were also used in the present work. No
additional readjusting is done. With these parameters, the
general way to calculate observables in the model is to
determine the eigenvalues of the �QSM Hamiltonian nu-
merically by using a self-consistent pion-field profile, the
soliton. These eigenvalues are then used for determining all
observables in the �QSM.
In particular, we calculated the form factors GE0, GM1,

and GE2 for the �þ up to a momentum transfer of Q2 �
1 GeV2 and magnetic moments for all decuplet baryons
and the N � � transition. In general, all �QSM form
factors are best reproduced by a dipole-type fit.
Experimental data for decuplet magnetic moments are

available for the �þþ with��þþ ¼ 3:7–7:5�N [1], the�þ
with ��þ ¼ ð2:7þ1:0

�1:3ðstatÞ � 1:5ðsystÞ � 3ðtheorÞÞ�N [4],

and for the �� with ��� ¼ ð�2:02� 0:05Þ�N . The
present work yields values of ��þþ ¼ 4:85�N , ��þ ¼
2:35�N , and ��� ¼ �2:29�N , which are in good agree-
ment with the experimental ones. The N �� magnetic
transition moment was extracted in [5] as �N� ¼ 3:46�
0:03�N , whereas this work yields a value of ��N ¼
2:72�N . Other �QSM results for decuplet magnetic mo-
ments are summarized in Table III.

TABLE VI. Table for fit parameters of the form factor GE2. The indices ‘‘dip’’ and ‘‘exp’’ correspond to fitting with a dipole- or
exponential-type form factor, Eqs. (108) and (109). A dipole-type form factor reproduces the self-consistent �QSM calculation more
accurately than an exponential fit.

�QSM Quenched Wilson Dynamical Wilson Hybrid

G�þ
E2 ð0Þ �2:145 �0:810 �0:784 �1:851

�2
E2=ðGeV2Þ 0:369dip½0:268�exp 0:696exp 1:938exp 0:542exp
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The final results for the magnetic dipole and electric
charge form factors are presented in Fig. 1. In the �QSM
the �þ radii of these form factors, hr2Ei ¼ 0:794 fm2 and
hr2Mi ¼ 0:634 fm2, are comparable to the ones of the pro-
ton, hr2Ei ¼ 0:768 fm2 and hr2Mi ¼ 0:656 fm2, keeping in
mind that we take for both baryons the same classical
soliton configuration. The experimental value for the pro-
ton electric radius is hr2Ei 
 0:766 fm2.

We also presented the electric quadrupole form factor of
the �þ. The value GE2ð0Þ is directly proportional to the �
electric quadrupole moment for which we found a value of
Q� ¼ �0:0509 fm2. The electric quadrupole moment and
the electric quadrupole form factor appear in the model
entirely as 1=Nc corrections arising from the expansion in
the rotation velocity of the soliton. Hence, in the large Nc

limit the model leads to a vanishing form factor and mo-
ment. In addition, a decomposition into the valence and sea
quark contributions of the electric quadrupole form factor,
Fig. 2, shows that the main contribution originates from the
sea quarks. Furthermore, one can expect the sea quark
contribution to have a broader spatial distribution than
the one for the valence quarks. This in turn leads to a
steeper Q2 dependence of the contribution to GE2 of sea
quarks as compared with valence quarks which is explicitly
seen in the present calculation.
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APPENDIX A: MODEL-INDEPENDENT
QUANTITIES

We use the Breit frame in which the incoming p and
outgoing p0 momenta are defined as

p0 ¼
�
E;

~q

2

�
; p ¼

�
E;� ~q

2

�
; q ¼ ð0; ~qÞ;

Q2 ¼ �q2 ¼ ~q2;

q ¼ j ~qjð0; sin� cos; sin� sin; cos�Þ
(A1)

with ~q2 ¼ 4ðE2 �M2Þ. We use the Rarita-Schwinger
spin-3=2 spinor

u�ðp; sÞ ¼ X
�;s0

Cð3=2Þs
1�ð1=2Þs0e

�ðp; �Þuðp; s0Þ with

uðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EþM

2M

s
s

~�� ~p
EþMs

 !
:

The spin-1 vector e�ðp; �Þ is defined by � ¼ �1, 0,

e�ðp; �Þ ¼
�
ê� � ~p
M

; ê� þ ~p � ðê� � ~pÞ
Mðp0 þMÞ

�
with

êþ1 ¼
ffiffiffi
1

2

s �1

�i

0

0
BB@

1
CCA; ê0 ¼

0

0

1

0
BB@

1
CCA;

ê�1 ¼
ffiffiffi
1

2

s 1

�i

0

0
BB@

1
CCA:

(A2)

The final and initial � states for the third-spin components
read

u�ðp;þ3
2Þ ¼ uðp;þ1

2Þe�ðp;þ1Þ; (A3)

u�ðp;þ1
2Þ ¼

ffiffi
2
3

q
uðp;þ1

2Þe�ðp; 0Þ þ
ffiffi
1
3

q
uðp;�1

2Þe�ðp;þ1Þ:
(A4)

For the zeroth component of the vector current,
h�ð32ÞjV0j�ð32Þi, we obtain, by using the Breit frame,

�uðp0; s0Þ�0uðp; sÞ ¼ �s0s;

e��ðp0; 1Þg��e�ðp; 1Þ ¼ �1� 2

3
	þ ð3cos2�� 1Þ 	

3
;

(A5)

�uðp0; s0Þ�0
q
uðp; sÞ ¼ �i
q2

2M
�s0s;

e��ðp0; 1Þq�q�e�ðp; 1Þ ¼ 4M2	
1þ 	

3

�
�
1� 1

2
ð3cos2�� 1Þ

�
;

(A6)

with 	 ¼ Q2=ð4M2Þ.
For the spatial component of the vector current

h�jVkjNi, we obtain, by using the rest frame of the �,

��k�	P�q	 ¼ M��b�bksqs; (A7)

���
�P
q��k���p
0
�q� ¼ ���
�P
q��k�0�Mq�

¼ M2��b½�bk ~q2 � qbqk�: (A8)
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APPENDIX B: �QSM ELECTRIC DENSITIES

The electric densities of Eq. (62) are

1

Nc

Bð~zÞ ¼ y
vð~zÞvð~zÞ � 1

2

X
n

signð"nÞy
n ð~zÞnð~zÞ;

1

Nc

I1ð~zÞ ¼ 1

2

X
"n�"v

1

"n � "v
hvj	ijniy

n ð ~zÞ	ivð~zÞ þ 1

4

X
n;m

R3ð"n; "mÞhnj	ijmiy
mð~zÞ	inð~zÞ;

1

Nc

I2ð~zÞ ¼ 1

4

X
"
n0

1

"n0 � "v
hn0jviy

vð~zÞn0ð~zÞ þ
1

4

X
n;m0

R3ð"n; "m0Þy
m0ð~zÞnð~zÞhnjm0i;

1

Nc

Cð~zÞ ¼ X
"n�"v

1

"n � "v
y

vð ~zÞnð~zÞhnj�0jvi þ 1

2

X
n;m

hnj�0jmiy
mð ~zÞnð~zÞR5ð"n; "mÞ;

1

Nc

K1ð~zÞ ¼ 1

2

X
"n�"v

1

"n � "v
hvj�0	ijniy

n ð~zÞ	ivð~zÞ þ 1

4

X
n;m

hnj�0	ijmiy
mð~zÞ	inð~zÞR5ð"n; "mÞ;

1

Nc

K2ð~zÞ ¼ 1

4

X
"
n0

1

"n0 � "v
y

vð ~zÞn0ð~zÞhn0j�0jvi þ 1

4

X
n;m

R5ð"n; "m0Þy
m0ð~zÞnð~zÞhnj�0jm0i:

The vectors hnj are eigenstates of the �QSMHamiltonian hðUÞwhich are a linear combination of the eigenstates hn0j of the
Hamiltonian Hð1Þ [72].

APPENDIX C: �QSM MAGNETIC DENSITIES

The operator for the magnetic form factors in the �QSM isO1 ¼ �0½~z� ~��3 ¼ �5½~z� ~��10, and the magnetic densities
of Eq. (63) are

1

Nc

Q0ð~zÞ ¼ hvjj~zifO1 � 	1g0h~zjjvi þ
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gn þ 1

p hnjj ~zifO1 � 	1g0h ~zjjniR1ð"nÞ;

1

Nc

X1ð~zÞ ¼
X

"n�"v

1

"n � "v
ð�ÞGnhvjj~ziO1h~zjjnihnjj	1jjvi þ 1

2

X
n;m

R5ð"n; "mÞð�ÞGm�Gnhnjj	1jjmihmjj~ziO1h~zjjni;

1

Nc

X2ð~zÞ ¼
X
"
n0

1

"n0 � "v
hn0jj~zifO1 � 	1g0h~zjjvihv j n0i þ X

n;m0

R5ð"n; "m0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm þ 1

p hm0jj ~zifO1 � 	1g0h ~zjjnihn j m0i;

1

Nc

Q1ð~zÞ ¼
X
"n

signð"nÞ
"n � "v

ð�ÞGnhnjj~zifO1 � 	1g1h~zjjvihvjj	1jjni þ 1

2

X
n;m

R4ð"n; "mÞð�ÞGm�Gnhnjj ~zi

� fO1 � 	1g1h~zjjmihmjj	1jjni;
1

Nc

M0ð~zÞ ¼
X

"n�"v

1

"n � "v
hvjj~zifO1 � 	1g0h~zjjnihnj�0jvi � 1

2

X
n;m

R2ð"n; "mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm þ 1

p hnj�0jmihmjj ~zifO1 � 	1g0h ~zjjni;

1

Nc

M1ð~zÞ ¼
X

"n�"v

1

"n � "v
ð�ÞGnhnjj�0	1jjvihvjj~ziO1h ~zjjni � 1

2

X
n;m

R2ð"n; "mÞð�ÞGm�Gnhnjj�0	1jjmihmjj~ziO1h~zjjni;

1

Nc

M2ð~zÞ ¼
X
"
n0

1

"n0 � "v
hvjj~zifO1 � 	1g0h~zjjn0ihn0j�0jvi � X

n;m0

R2ð"n; "m0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gm þ 1

p hm0jj~zifO1 � 	1g0h~zjjnihnj�0jm0i:

(C1)
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APPENDIX D: REGULARIZATION FUNCTIONS

The regularization functions are defined as

R 1ð"nÞ ¼ � 1

2
ffiffiffiffi
�

p "n
Z 1

1=�2

duffiffiffi
u

p e�u"2n ; (D1)

R 2ð"n; "mÞ ¼
Z 1

1=�2
du

1

2
ffiffiffiffiffiffiffi
�u

p "me
�u"2m � "ne

�u"2n

"n � "m
;

(D2)

R 3ð"n; "mÞ ¼ 1

2
ffiffiffiffi
�

p
Z 1

1=�2

duffiffiffi
u

p
�
1

u

e�"2nu � e�"2mu

"2m � "2n

� "ne
�u"2n þ "me

�u"2m

"m þ "n

�
; (D3)

R4ð"n; "mÞ ¼ 1

2�

Z 1

1=�2
du

Z 1

0
d�e�"2nuð1��Þ��"2mu

� "nð1� �Þ � �"mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� �Þp ; (D4)

R 5ð"n; "mÞ ¼ 1

2

sign"n � sign"m
"n � "m

; (D5)

R 6ð"n; "mÞ ¼ 1� signð"nÞsignð"mÞ
"n � "m

: (D6)

APPENDIX E: REDUCED MATRIX ELEMENTS
FOR f ffiffiffiffiffiffiffi

4�
p

Y2 � �1g1
We use the basis of [72] where the isospin 	 and total

angular momentum j are coupled to the grand spin G ¼
	þ j (j ¼ lþ s),

j0i ¼ jl ¼ G; j ¼ Gþ 1
2;GG3i; (E1)

j1i ¼ jl ¼ G; j ¼ G� 1
2;GG3i; (E2)

j2i ¼ jl ¼ Gþ 1; j ¼ Gþ 1
2;GG3i; (E3)

j3i ¼ jl ¼ G� 1; j ¼ G� 1
2;GG3i: (E4)

The reduced matrix elements for the operator f ffiffiffiffiffiffiffi
4�

p
Y2 �

	1g1 in the density I1E2ðrÞ, Eq. (90), are as follows (with

the notation hnjjf ffiffiffiffiffiffiffi
4�

p
Y2 � 	1g1jjmi):

A0ðGÞ ¼ ð�ÞðGþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2G

ð2Gþ 1ÞðGþ 1Þ

s
;

A1ðGÞ ¼ ð�ÞGð2Gþ 4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð2Gþ 1Þð2Gþ 2Þð2Gþ 3Þ

s
;

B0ðGÞ ¼ ð�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ð2Gþ 1Þ

s
;

B1ðGÞ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGþ 2Þ

2ð2Gþ 1Þð2Gþ 3Þ

s
;

C0ðGÞ ¼ ðG� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Gþ 2Þ

ðGÞð2Gþ 1Þ

s
;

C1ðGÞ ¼ ð�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðGþ 1Þð2Gþ 4Þ
ð2Gþ 1Þð2Gþ 3Þ

s
;

D1ðGÞ ¼ ð�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G

2ð2Gþ 1Þð2Gþ 3Þ

s
:

Gm ¼ Gn j0ðGÞi j1ðGÞi j2ðGÞi j3ðGÞi
h0ðGÞj A0ðGÞ B0ðGÞ 0 0

h1ðGÞj B0ðGÞ C0ðGÞ 0 0

h2ðGÞj 0 0 A0ðGÞ B0ðGÞ
h3ðGÞj 0 0 B0ðGÞ C0ðGÞ
Gm ¼ Gn þ 1 j0ðGþ 1Þi j1ðGþ 1Þi j2ðGþ 1Þi j3ðGþ 1Þi
h0ðGÞj 0 0 B1ðGÞ A1ðGÞ
h1ðGÞj 0 0 C1ðGÞ D1ðGÞ
h2ðGÞj B1ðGÞ A1ðGÞ 0 0

h3ðGÞj C1ðGÞ D1ðGÞ 0 0

APPENDIX F: MATRIX ELEMENTS

The baryon matrix elements, such as hB0jDð8Þ
�3jBi, are

evaluated by using the SUð3Þ group algebra [73,74]

hB0
R0 jDn

�mðAÞjBRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimR0

dimR

s
ð�1Þð1=2ÞY0

sþS0
3ð�1Þð1=2ÞYsþS3

�X
�

R0 n R�

Q0 � Q

 !

� R0 n R�

�Y0
sS

0 � S03 m �YSS� S3

 !
;

(F1)

with Q ¼ YII3. The ð� � �Þ denote the SUð3Þ Clebsch-
Gordan coefficients.
The wave function corrections, Eq. (49), for the other

decuplet baryons are

jB10i ¼ j103=2; Bi þ aB27j273=2; Bi þ aB35j353=2; Bi; (F2)
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with the mixing coefficients

aB27 ¼ a27

ffiffiffiffiffiffiffiffiffiffiffi
15=2

p
2ffiffiffiffiffiffiffiffi
3=2

p
0

0
BBB@

1
CCCA; aB35 ¼ a35

5=
ffiffiffiffiffiffi
14

p
2
ffiffiffiffiffiffiffiffi
5=7

p
3
ffiffiffiffiffiffiffiffiffiffiffi
5=14

p
2
ffiffiffiffiffiffiffiffi
5=7

p

0
BBB@

1
CCCA; (F3)

in the bases ½�;��
10;	

�
10;��.

1. Magnetic part

We take the abbreviation dab3D
ð8Þ
�bJa ¼ dD�J, and the

matrix element for the magnetic form factors of the dec-
uplet baryons read as follows, with jB10i ¼
jB10ðY; I3; S3Þi:
Leading order

h�jDð8Þ
33 j�i ¼ h�10jDð8Þ

33 j�10i ¼ h	10jDð8Þ
33 j	10i ¼ h�jDð8Þ

33 j�i ¼ �I3
1
6S3

h�jDð8Þ
38 S3j�i ¼ h�10jDð8Þ

38 S3j�10i ¼ h	10jDð8Þ
38 S3j	10i ¼ h�jDð8Þ

38 S3j�i ¼ I3
1
4

ffiffi
1
3

q
S3

h�jdD3Jj�i ¼ h�10jdD3Jj�10i ¼ h	10jdD3Jj	10i ¼ h�jdD3Jj�i ¼ I3
1
12 S3

h�jDð8Þ
83 j�i ¼ h�10jDð8Þ

83 j�10i ¼ h	10jDð8Þ
83 j	10i ¼ h�jDð8Þ

83 j�i ¼ �Y 1
4

ffiffi
1
3

q
S3

h�jDð8Þ
88 S3j�i ¼ h�10jDð8Þ

88 S3j�10i ¼ h	10jDð8Þ
88 S3j	10i ¼ h�jDð8Þ

88 S3j�i ¼ Y 1
8S3

h�jdD8Jj�i ¼ h��
10jdD8Jj��

10i ¼ h	�
10jdD8Jj	�

10i ¼ h�jdD8Jj�i ¼ Y 1
8

1ffiffi
3

p S3

Wave function corrections

h�jDð8Þ
33 j�i ¼ h�jDð8Þ

38 J3j�i ¼ h�jdD3Jj�i ¼ 0; h�jDð8Þ
83 j�i ¼ �aB35S3

ffiffiffiffiffiffiffiffi
1

105

s
;

h�jDð8Þ
88 S3j�i ¼ S3a

B
35

5

2

ffiffiffiffiffiffi
1

35

s
; h�jdD8Jj�i ¼ � 5

2
S3

ffiffiffiffiffiffiffiffi
1

105

s
aB35:

� �

Dð8Þ
33 I3S3½�aB27

5
9

ffiffiffiffi
1
30

q
� aB35

1
15

ffiffiffiffi
1
14

q
� Dð8Þ

83 S3½aB27 5
6

ffiffiffiffi
1
10

q
� aB35

1
2

ffiffiffiffi
1
42

q
�

Dð8Þ
38 J3 I3S3½�aB27

5
6

ffiffiffiffi
1
10

q
� aB35

1
2

ffiffiffiffi
1
42

q
� Dð8Þ

88 J3 S3½aB27 15
4

ffiffiffiffi
1
30

q
þ aB35

5
4

ffiffiffiffi
1
14

q
�

dD3J I3S3½� 5
18

ffiffiffiffi
1
30

q
aB27 � 1

6a
B
35

ffiffiffiffi
1
14

q
� dD8J S3½ 512

ffiffiffiffi
1
10

q
aB27 � 5

4

ffiffiffiffi
1
42

q
aB35�

��
10 ��

10

Dð8Þ
33 I3S3½�aB27

1
6 � aB35

1
6

ffiffiffiffi
1
35

q
� Dð8Þ

83 S3½aB27 1
3

ffiffi
1
3

q
� aB35

ffiffiffiffiffiffi
1
105

q
�

Dð8Þ
38 S3 I3S3½�aB27

3
2

ffiffi
1
3

q
þ aB35

5
2

ffiffiffiffiffiffi
1
105

q
� Dð8Þ

83 S3 S3½aB27 1
2 þ aB35

5
2

ffiffiffiffi
1
35

q
�

dD3J I3S3½� 1
12a

B
27 � 5

12

ffiffiffiffi
1
35

q
aB35� dD8J S3½16aB27

ffiffi
1
3

q
� 5

2

ffiffiffiffiffiffi
1

105

q
aB35�

	�
10 	�

10

Dð8Þ
33 I3S3½�aB27

7
9

ffiffi
1
6

q
� aB35

1
3

ffiffiffiffi
1
70

q
� Dð8Þ

83 S3½aB27 1
6

ffiffi
1
2

q
� aB35

3
2

ffiffiffiffiffiffi
1
210

q
�

Dð8Þ
38 S3 I3S3½�aB27

7
6

ffiffi
1
2

q
þ aB35

5
2

ffiffiffiffiffiffi
1
210

q
� Dð8Þ

88 S3 S3½aB27 3
4

ffiffi
1
6

q
þ aB35

15
4

ffiffiffiffi
1
70

q
�

dD3J I3S3½� 7
18a

B
27

ffiffi
1
6

q
� 5

6

ffiffiffiffi
1
70

q
aB35� dD8J S3½ 112

ffiffi
1
2

q
aB27 � 15

4

ffiffiffiffiffiffi
1
210

q
aB35�

Operator corrections Dð8Þ
88D

ð8Þ
83 ¼ Dð8Þ

83D
ð8Þ
88

� ��
10 	�

10 �

Dð8Þ
88D

ð8Þ
33 �S3I3

5
126 �S3I3

1
42 �S3I3

1
126 0

Dð8Þ
83D

ð8Þ
38 �S3I3

5
126 �I3

1
42 �S3I3

1
126 0

Dð8Þ
8aD

ð8Þ
3bdab3 �S3I3

11
126

ffiffi
1
3

q
�S3I3

5
42

ffiffi
1
3

q
�S3I3

19
126

ffiffi
1
3

q
0

Dð8Þ
83D

ð8Þ
88 S3

1
28

ffiffi
1
3

q
S3

1
42

ffiffi
1
3

q
�S3

1
28

ffiffi
1
3

q
�S3

1
7

ffiffi
1
3

q
Dð8Þ

8aD
ð8Þ
8bdab3 S3

5
84 �S3

1
63 �S3

5
84 �S3

1
14
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2. Electric part

The � state j�i is explicitly j�i ¼ j�ðI3; S3Þi, and the matrix elements for the electric form factor read

h�jD8
38j�i ¼ I3

�
1

4

ffiffiffi
1

3

s
� a�27

5

6

ffiffiffiffiffiffi
1

10

s
þ a�35

1

2

ffiffiffiffiffiffi
1

42

s �
; h�jDð8Þ

8i D
ð8Þ
3i j�i ¼ I3

13

84

ffiffiffi
1

3

s
;

h�jDð8Þ
3i Jij�i ¼ I3

�
� 5

8
� a�27

25

12

ffiffiffiffiffiffi
1

30

s
� a�35

1

4

ffiffiffiffiffiffi
1

14

s �
; h�jDð8Þ

8aD
ð8Þ
3a j�i ¼ �I3

5

42

ffiffiffi
1

3

s
;

h�jDð8Þ
3aJaj�i ¼ I3

�
� 1

4
þ a�27

5

6

ffiffiffiffiffiffi
1

30

s
þ a�35

1

2

ffiffiffiffiffiffi
1

14

s �
; h�jDð8Þ

88D
ð8Þ
38 j�i ¼ �I3

1

28

ffiffiffi
1

3

s
;

h�jDð8Þ
88 j�i ¼

1

8
þ a�27

15

4

ffiffiffiffiffiffi
1

30

s
þ a�35

5

4

ffiffiffiffiffiffi
1

14

s
; h�jDð8Þ

8i D
ð8Þ
8i j�i ¼

17

56
;

h�jDð8Þ
8i Jij�i ¼ � 15

16

ffiffiffi
1

3

s
þ a�27

25

8

ffiffiffiffiffiffi
1

10

s
� a�35

15

8

ffiffiffiffiffiffi
1

42

s
; h�jDð8Þ

8aD
ð8Þ
8a j�i ¼

15

28
;

h�jDð8Þ
8aJaj�i ¼ � 3

8

1ffiffiffi
3

p � a�27
5

4

ffiffiffiffiffiffi
1

10

s
þ a�35

15

4

ffiffiffiffiffiffi
1

42

s
; h�jDð8Þ

88D
ð8Þ
88 j�i ¼

9

56
:

(F4)
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