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A hybrid meson is a quark-antiquark pair in which, contrary to ordinary mesons, the gluon field is in an

excited state. In the framework of constituent models, the interaction potential is assumed to be the energy

of an excited string. An approximate, but accurate, analytical solution of the Schrödinger equation with

such a potential is presented. When applied to hybrid charmonia and bottomonia, towers of states are

predicted in which the masses are a linear function of a harmonic oscillator band number for the quark-

antiquark pair. Such a formula could be a reliable guide for the experimental detection of heavy hybrid

mesons.
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I. INTRODUCTION

The gluon being a colored object, quantum chromody-
namics (QCD) allows the existence of exotic resonances,
such as glueballs or hybrid mesons. Glueballs are com-
posed of gluons only, while hybrid mesons contain a quark-
antiquark pair as well. In particular, the study of heavy
hybrid mesons is an active domain in theoretical and in
experimental particle physics. BELLE and BABAR have
already reported the discovery of several intriguing c �c- or
b �b-like resonances: One can quote the X(3872) [1], but
also the Y(4260) [2] and �ð10890Þ resonances [3], which
could be interpreted either as Q �Q hybrid mesons or as
Q �Qq �q tetraquarks—see Ref. [4] for a complete review.
Notice that Q (q) denotes a heavy (light) quark. Moreover,
one expects that future experiments like COMPASS,
BESIII, GLUEX, and PANDA should be very efficient in
the detection of heavy hybrid mesons, especially of c �c
type.

There are two possible descriptions of hybrid mesons:
First, a genuine three-body object made of a quark, an
antiquark and a constituent gluon; Second, a two-body
object made of a quark and an antiquark in the potential
due to the gluon field in an excited state. In the framework
of constituent models, it has been shown that these two
pictures of the same object are, to a large extent, equivalent
[5–7]. In this paper, we model the heavy hybrid meson as a
Q �Q pair within an excited gluon field.

In general, the string energy, and therefore the potential
energy between the static quark and antiquark in the ex-
cited gluon field is given by [8,9]

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ b

p
; (1)

where a is the usual string tension, while b ¼ 2�aK þ C
is a term exhibiting the string excitation number K and a
constant C. These values depend on the model adopted: a
pure string theory [8] or a more phenomenological ap-
proach [7,9]. In the present work, we choose the form
predicted in Ref. [7], K ¼ 2ng þ lg and C ¼ 3�a, which

is in very good agreement with lattice QCD for the stan-
dard value a ¼ 0:2 GeV2 [10,11]. Finally,

b ¼ 2�að2ng þ lg þ 3=2Þ; (2)

where ng and lg are, respectively, the radial and orbital

quantum numbers of the constituent gluon simulating the
excitation of the string. For the study of heavy hybrid
mesons, it is therefore very interesting to calculate the
eigenenergies of the Schrödinger equation governed by
the potential (1), or equivalently by the Hamiltonian

H ¼ p2

2�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ b

p
; (3)

where � ¼ mQm �Q=ðmQ þm �QÞ is the reduced mass and

where the parameter b is given by Eq. (2).
The aim of this report is to give an analytical expression

for the mass of a heavy hybrid meson in the picture of an
excited color field and to derive interesting physical con-
sequences. Our analytical method relies on the auxiliary
(or einbein) field method (AFM), which has proved to be
very powerful for such kinds of calculations [12,13]. The
application of the AFM to Hamiltonian (3) is presented in
Sec. II, leading to an analytical mass formula. Using this
formula, we show in Sec. III that it is possible to predict the
general behavior of the heavy hybrid meson masses as a
function of the quantum numbers of the system and search
for possible towers of states. Our results are summarized in

*claude.semay@umh.ac.be
†fabien.buisseret@umh.ac.be
‡silvestre@lpsc.in2p3.fr

PHYSICAL REVIEW D 79, 094020 (2009)

1550-7998=2009=79(9)=094020(6) 094020-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.094020


Sec. IV. The excellent accuracy of the AFM mass formula
is discussed in the Appendix through a comparison with
exact numerical results.

II. EIGENENERGIES

A. Analytical expression

Assuming that the potential (1) is the dominant interac-
tion in a heavy hybrid meson, the mass of this system is
Mhm ¼ mQ þm �Q þ E, where E is an eigenvalue of the

Hamiltonian (3). Using scaling laws (see Ref. [13]), di-
mensionless variables � and � can be defined as

E ¼
�
2a2

�

�
1=3

�ð�Þ; with � ¼ b

�
�

2a2

�
2=3

: (4)

�ð�Þ is an eigenvalue of the dimensionless Hamiltonian

h ¼ q2

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �

q
: (5)

Let us follow the general procedure of the AFM [12] in
order to find approximate expressions for the eigenvalues
of the Hamiltonian (5). We first choose an auxiliary func-
tion PðxÞ ¼ x2; the auxiliary field � is then defined by

� ¼ KðxÞ ¼ V 0ðxÞ
P0ðxÞ ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �

p : (6)

For the moment � is an operator, and Eq. (6) can be
inverted to give x as a function of �: x ¼ Ið�Þ. Explicitly,

Ið�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4�2
� �

s
: (7)

The AFM needs the definition of a Hamiltonian ~hð�Þ ¼
q2=4þ �PðxÞ þ VðIð�ÞÞ � �PðIð�ÞÞ. In our particular
case,

~hð�Þ ¼ q2

4
þ �x2 þ 1

4�
þ ��: (8)

If we choose the auxiliary field in order to extremize ~hð�Þ,
�~h=��j�¼�̂ ¼ 0, then the value of this Hamiltonian for
such an extremum is precisely the original Hamiltonian:
~hð�̂Þ ¼ h. Instead of considering the auxiliary field as an
operator, let us consider it as a real number. In this case, the

eigenenergies of ~h are exactly known for all ðn; lÞ quantum
numbers:

�ð�Þ ¼
ffiffiffiffiffiffiffiffiffi
N2�

p
þ 1

4�
þ ��; (9)

where, as usual, N ¼ 2nþ lþ 3=2 is the principal quan-
tum number of the state.

The philosophy of the AFM is very similar to a mean
field procedure. We first seek the value �0 of the auxiliary
field, which minimizes the energy @�ð�Þ=@�j�¼�0

, and

consider that the value �ð�0Þ is a good approximation of
the exact eigenvalue [12,13]. At this stage it is useful to

define the new variable

x0 ¼ N�1=3��1=2
0 (10)

and the parameter

Y ¼ 16�

3N4=3
: (11)

The minimization condition is now concerned with x0 and
results from the fourth order reduced equation

4x40 � 8x0 � 3Y ¼ 0: (12)

The solution of this equation can be obtained by standard
algebraic techniques. It looks like

x0 ¼ GðYÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
VðYÞp þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðVðYÞÞ�1=2 � VðYÞ

q
; (13)

with

VðYÞ ¼ ð2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ Y3

p
Þ1=3 � Yð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ Y3

p
Þ�1=3: (14)

Substituting this value into the expression of �ð�0Þ leads to
the analytical form of the searched eigenenergies, namely,

�AF ¼ �ð�0Þ ¼ 2

ffiffiffiffiffiffi
�

3Y

s �
G2ðYÞ þ 1

GðYÞ
�
: (15)

The problem is entirely solved.
As it is shown in Ref. [13], the same formula would be

obtained for the choice PðrÞ ¼ sgnð�Þr� with � >�2, but
with different forms for the quantity N. With the choice
� ¼ 2 made above, N ¼ 2nþ lþ 3=2. In this case, using
results from Ref. [14], it can be shown that formula (15)
gives an upper bound of the exact result. For � ¼ �1, N ¼
nþ lþ 1 and the formula gives a lower bound. The qual-
ities of these bounds are examined in the Appendix. It is
also shown in the Appendix that the expression

N ¼ Að�Þnþ lþ Cð�Þ; (16)

with Að�Þ and Cð�Þ defined by Eq. (A2), leads to an
analytical formula, which reproduces very accurately (up
to 1%) the exact results.

B. Asymptotic expansions

Equation (15) is complicated but quite accurate. In order
to get a better insight into this formula, it is interesting to
compute several limits:

lim
Y�1

�AF ¼
ffiffiffiffi
�

p þ Nffiffiffi
2

p
�1=4

� N2

16�
; (17)

lim
Y�1

�AF ¼ 3N2=3

24=3
þ �

22=3N2=3
� �2

3N2
: (18)

The first two terms in the right-hand side of Eq. (17) are the
solution of a harmonic potential, while Eq. (18) with � ¼
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0 corresponds to the solution of a linear interaction ob-
tained with the AFM [12].

For the lowest excited state of the gluon field (K ¼ 0)
and for physical values of the parameters (a �
0:15–0:20 GeV2, mc � 1:1 GeV, mb � 4:5 GeV), it
comes that � � 7–20. In this case, � is large enough for
the choiceN ¼ 2nþ lþ 3=2 to be relevant [see Eq. (A2)].
A harmonic oscillator band number B ¼ 2nþ l can thus
be introduced to label the states. We can further assume
that hybrid mesons withK ¼ 0 and B * 4 cannot be easily
produced and discriminated from the low-lying K ¼ 1
hybrids, which would lie in the same mass range. So in
the following, we will only consider that � 2 ½7; 20�, B �
4, and K ¼ 0. It is indeed more probable that hybrids with
the lowest possible excitation of the gluon field will be first
observed.

As we are interested in the study of towers of states, it
could be expected that the power expansion (18), valid for
large N, should be used. But,� is so large for heavy quarks
that it is actually not the case. For example, when � ¼ 20,
one has Y � 5 � 1 even with the large value N ¼ 10. By
comparing with accurate numerical solutions obtained for
the Hamiltonian h with the Lagrange mesh method [15], it
has been checked that the power expansion (17) is far
better. Moreover, the ratio of the third term over the second
one in this expansion is at most 10%. So with very good
approximation the eigenvalues of h are given by

�app ¼
ffiffiffiffi
�

p þ Bþ 3=2ffiffiffi
2

p
�1=4

: (19)

The approximate formula (19) only depends on B. This
exact degeneracy is actually broken by the nonharmonic
character of the Hamiltonian h, but the breaking is small: It
can be numerically checked that the maximal relative error
of Eq. (19) with respect to the exact values of �� ffiffiffiffi

�
p

is
around 10%. So, B is a relevant classification number.

C. Final mass formula

The Coulomb interaction must also play a role in heavy
hybrids, since heavy quarks are expected to orbit close to
each other and must feel strongly this short range interac-
tion. The Hamiltonian (5) might then be completed with
the potential �=x, where

� ¼ 	S

6

�
�2

4a

�
1=3

; (20)

	S being the strong coupling constant and the 1=6 factor
coming from color Casimir operator. Since 	S & 0:2 in the
heavy meson sector [6], it appears that � & 0:02–0:07. For
the large values of � considered here, the contribution of
the potential �=x can be computed in perturbation. Using
the AFM results, one obtains�

�

x

�
� 21=4�

�1=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ 3=2

p : (21)

This contribution is at most around 4% of �� ffiffiffiffi
�

p
for c �c

hybrids and 10% for b �b hybrids. So, in first approximation,
it is relevant to neglect the Coulomb interaction in the
search for towers of hybrid mesons.
Under these conditions, the mass of a hybrid meson is

given by

Mhm � mQ þm �Q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�aðK þ 3=2Þ

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðK þ 3=2Þp

vuut ðBþ 3=2Þ: (22)

For high excitation of the gluon field (K � 0), � increases
and the accuracy of the approximation (22) improves.
Using the AFM, an accurate mass formula for a ordinary
meson with just the linear confinement is given by [12]

Mom � mQ þm �Q þ 3

2

�
a2

�

�
1=3

�
�ffiffiffi
3

p nþ lþ
ffiffiffi
3

p
�

4

�
2=3

:

(23)

Notice that K ¼ 0 is not the ground state of the flux tube,
but rather its first excited level. The ground state simply
corresponds to b ¼ 0 in Eq. (1), that is a linear confining
potential, and leads to formula (23).

III. PHENOMENOLOGY

Some comments have to be done at this stage. The
Hamiltonian (3) describes a genuine heavy hybrid meson
(no mixing with other hadronic states) within a spin-
independent formalism. It will thus lead to qualitative
global predictions rather than to a detailed mass spectrum.
All spin effects are neglected but they should be weak for
heavy hybrids since they are proportional to 1=ðmQm �QÞ—
see, for example, Ref. [16] for a numerical check of that
point. We think however that such global predictions are
quite robust precisely because they do not depend on a fine-
tuned model. Nevertheless, it is important to wonder
whether our method will preferentially apply to some JPC

quantum numbers or not. Nonexotic quantum numbers,
like 1�� for example, must be examined very carefully
because such quantum numbers allow for a possibly strong
mixing with ordinary mesons. Such a mixing is by defini-
tion absent for exotic quantum numbers like
1�þ; 2þ�; 3�þ; . . . , although mixing with tetraquarks (or
even glueballs) cannot be excluded. To our knowledge, the
mixing between hybrid mesons and tetraquarks is far from
being well-known theoretically, and we will not discuss it
in the present work.
Let us first estimate the value of the our model’s pa-

rameters. The spin effects in mesons are minimal in the
1�� channel; it is thus relevant to fit the parameters by
requiring Eq. (23) to reproduce the radial trajectories of the
1�� c �c and b �bmesons. We first take a ¼ 0:2 GeV2 so that
potential (1) optimally fits the corresponding lattice QCD
data [6]. Then, it is readily seen in Fig. 1 that the experi-
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mental data are well described by settingmc ¼ 1:152 GeV
and mb ¼ 4:620 GeV—the �ð1SÞ is poorly reproduced
because of the neglect of the Coulomb term. Such values
are not unrealistic when compared to the PDG values of
1:27þ0:07

�0:11 GeV and 4:20þ0:17
�0:07 GeV [17], and quite common

in effective approaches.
As already said in the introduction, the status of the 1��

resonance Yð4260Þ is not clear yet. If it is an ordinary
meson, it should have S ¼ 1, n ¼ 3, and l ¼ 0 [18], and
Eq. (23) then leads to a mass of 4.512 GeV, quite far from
the experimental value. If it is a hybrid meson, the quantum
numbers must be S ¼ 1, n ¼ 0, and l ¼ 1 [19], and
Eq. (22) leads to a more similar mass of 4.239 GeV. But,
the repulsive Coulomb term would slightly decrease this
agreement. The ordinary meson interpretation for the 1��
resonance �ð10890Þ has been discarded in Ref. [3];
Eq. (22) is compatible with the hybrid meson picture since
it leads to a mass of 10.894 GeV for the corresponding
state. Our model does not disagree with a hybrid meson
assignment for both states, but no definitive conclusion can
be drawn at this stage, mainly because of the neglect of the
mixing with ordinary mesons.

We now propose a modus operandi to separate the
hybrid mesons from the ordinary ones. Let us first assume
that we have a sufficient amount of experimentally found
Q �Q-like resonances—this should be possible in a near
future thanks to the forthcoming experiments we men-
tioned in the introduction. Then, for each JPC state, one
has to find the lowest possible value of B that is compatible
with these quantum numbers in a hybrid meson picture. We
recall that P ¼ ð�1Þlþlg and C ¼ ð�1ÞlþSq �qþ1 in this case,
and that lg ¼ 0 when K ¼ 0. Once this step is achieved,

one can plot the experimental masses versus B. Our pre-

diction is that the hybrid mesons, or at least states that are
dominated by a hybrid meson component, will be located
along a straight line, while other states like ordinary me-
sons or tetraquarks will not (typically, for example, one has

Mom �mQ �m �Q / n2=3 and l2=3).

Formula (22) can be rewritten as follows for K ¼ 0:

MhmðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3=2

�
ffiffiffiffiffiffiffi
3�

p
vuut ðB� B0Þ þMhmðB0Þ: (24)

It is plausible that an exotic 1�þ hybrid meson, thus with
B ¼ 1, will be first discovered. Effective approaches as
well as lattice QCD indeed reach the conclusion that the
1�þ state is the lightest exotic Q �Q hybrid meson (see e.g.
Refs. [16,20]). Then, by setting B0 ¼ 1 and MhmðB0Þ ¼
M1�þ , Eq. (24) states that the first exotic states will be
located on a straight line, as schematically represented in
Fig. 2. Note that in our approach, the 1�þ c �c state lies
below the experimental estimation of the DD� threshold,
which is of about 4.3 GeV [17] (D� denotes the P-wave
excitation of the D meson).
The results of Eq. (24) can also be compared with lattice

QCD. Most of the efforts in lattice QCD were devoted to
the computation of the lowest-lying 1�þ hybrid meson
masses. We can quote: 4:420� 0:013 GeV [21], 4:369�
0:136 GeV [22], and 4:405� 0:038 GeV [23] for the 1�þ
c �c states, and 10:82� 0:08 GeV [24] and 10:977�
0:123 GeV [25] for the 1�þ b �b states. It is worth saying
that the 1�þ and 1�� b �b hybrid mesons are degenerate in
Ref. [24], showing the weakness of spin effects for systems
of bottom quarks. Equation (24) is in agreement with the
current estimations as shown in Fig. 2; it would be very
interesting that other masses become available in lattice

FIG. 2. Masses of exotic Q �Q hybrids versus the band number
B as predicted by formula (24) [circles and dashed lines].
Parameters of Fig. 1 are used. An explicit example of exotic
JPC trajectory is given; the lattice data of Refs. [21–25] are also
plotted for comparison (crosses).

FIG. 1. Comparison between experimental c �c and b �b radial
trajectories (full circles) and the predictions of Eq. (23) for a ¼
0:2 GeV2, mc ¼ 1:152 GeV, and mb ¼ 4:620 GeV.
Experimental data come from the PDG [17] and the quantum
numbers assignment of Ref. [26] for the c �c mesons is followed.
Dashed lines are plotted to guide the eyes.
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QCD in order to check whether they are located on the
straight lines we predict or not.

IV. CONCLUSION

Starting from a potential model of hybrid mesons, which
is in agreement with lattice QCD, we predict that the mass
of the lowest-lying genuine heavy hybrid mesons is a linear
function of the band number B ¼ 2nþ l, n, and l being the
quantum numbers of the quark-antiquark pair. The slope
and the intercept at the origin depend on the excitation
quantum number K of the gluon field. These heavy hybrid
mesons form towers of states organized as lines in plots
where the masses are presented versus the harmonic oscil-
lator band number. We believe that this property can be an
interesting tool to disentangle resonances that are domi-
nated by a heavy hybrid meson component from other
hadronic states in future experiments, just as the existence
of Regge trajectories is an important guide to identify light
mesons. Apart from experiment, an important check of the
present results would be the computation of higher-spin
exotic hybrid mesons on the lattice. We hope that such
results will be available in the future.
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APPENDIX: COMPARISON TO EXACT RESULTS

The AFM cannot give strong constraints on the depen-
dence of N in terms of ðn; lÞ. In particular, had we chosen
PðrÞ ¼ sgnð�Þr�, the better choice for N would have been
N ¼ Að�Þnþ lþ Cð�Þ, with the quantities Að�Þ and Cð�Þ
given in Ref. [12]. The square root potential

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �

p
ensures a smooth transition from a linear form (� ¼ 1
but in this case we have only approximate expressions) to
a quadratic form (� ¼ 2 and in this case the values are
exact) as � increases from 0 to 1.

The procedure we adopt is based on the following
points:

(i) We calculate the exact values ��nlð�Þ for 0 � n �
nmax, 0 � l � lmax and for a given set of � values.
This program is achieved using a very powerful

method known as the Lagrange mesh method (de-
scribed in detail in Ref. [15]). For our purpose, we
consider that nmax ¼ lmax ¼ 4 is a good choice. For
any calculated value, we have an accuracy better
than 10�5.

(ii) We calculate the approximate values �nlð�Þ using
Eq. (15) with Y given by Eq. (11) in which N is
deduced from Eq. (16), for the same set of � values.
Building the 
 square


ð�Þ ¼ 1

ðnmax þ 1Þðlmax þ 1Þ
Xnmax

n¼0

Xlmax

l¼0

ð��nlð�Þ

� �nlð�ÞÞ2; (A1)

0 20 40 60 80 100
1.8

1.825
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A
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1.5

C

FIG. 3. Best values of the coefficients Að�Þ and Cð�Þ to parameterize the eigenvalues of Hamiltonian (5): numerical fit with Eq. (A1)
[dots]; functions (A2) [solid line].

TABLE I. Comparison between the exact values ��nlð�Þ (2nd
line) and analytical approximate expressions �nlð�Þ for the
eigenvalues of Hamiltonian (5) with � ¼ 1. For each set ðn; lÞ,
the exact result is obtained by numerical integration. 3rd line:
approximate results are given by Eqs. (15) with Eqs. (11), (16),
and (A2); 1st line: upper bounds obtained with N ¼ 2nþ lþ
3=2; 4th line: lower bounds obtained with N ¼ nþ lþ 1.

l ¼ 0 l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

n ¼ 0 1.94 926 2.49 495 2.99 541 3.46 197 3.90 193

1.91 247 2.45 074 2.94 841 3.41 419 3.85 430

1.89 549 2.44 621 2.95 032 3.41 969 3.86 189

1.65 395 2.22 870 2.75 000 3.23 240 3.68 492

n ¼ 1 2.99 541 3.46 197 3.90 193 4.32 027 4.72 059

2.89 556 3.34 652 3.77 899 4.19 405 4.59 335

2.85 420 3.32 970 3.77 678 4.20 097 4.60 620

2.22 870 2.75 000 3.23 240 3.68 492 4.11 355

n ¼ 2 3.90 193 4.32 027 4.72 059 5.10 556 5.47 723

3.74 112 4.14 232 4.53 310 4.91 307 5.28 251

3.69 078 4.11 913 4.52 783 4.91 998 5.29 790

2.75 000 3.23 240 3.68 492 4.11 355 4.52 250

n ¼ 3 4.72 059 5.10 556 5.47 723 5.83 725 6.18 692

4.50 374 4.87 138 5.23 246 5.58 628 5.93 264

4.44 883 4.84 403 5.22 459 5.59 242 5.94 903

3.23 240 3.68 492 4.11 355 4.52 250 4.91 485

n ¼ 4 5.47 723 5.83 725 6.18 692 6.52 732 6.85 935

5.20 859 5.55 148 5.88 996 6.22 329 6.55 111

5.15 078 5.52 098 5.87 970 6.22 821 6.56 756

3.68 492 4.11 355 4.52 250 4.91 485 5.29 295
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we request the coefficients Að�Þ and Cð�Þ of N to
minimize this function. The obtained values are
represented by black dots in Figs. 3.

(iii) In order to obtain functions that are as simple as
possible, continuous in �, and which reproduce at
best the above calculated values, we choose hyper-
bolic forms and require a best fit on the set of the
sample. Explicitly, we find

Að�Þ ¼ 8�þ 102

4�þ 57
; Cð�Þ ¼ 30�þ 53

20�þ 39
: (A2)

These integers are rounded numbers whose magni-
tude is chosen in order to not exceed too much 100.
The corresponding values are plotted as continuous
curves in Figs. 3. They have been constrained to
exhibit the right behavior A ! 2 and C ! 3=2 for
very large values of �. Formulas (A2) give Að0Þ ¼
102=57 � 1:789 and Cð0Þ ¼ 53=39 � 1:359. These

values are such that Að0Þ � �=
ffiffiffi
3

p � 1:814 and

Cð0Þ � ffiffiffi
3

p
�=4 � 1:360, as expected from the re-

sults of Ref. [12] in the case of a nonrelativistic
linear potential.

Since our results are exact for � ! 1, one has obvi-
ously 
 ¼ 0 in this limit. The error is maximal for small
values of � but, over the whole range of � values, the
results given by our analytical expression can be consid-
ered as excellent. Just to exhibit a quantitative comparison,
we report in Table I the exact ��nlð�Þ and approximate

�nlð�Þ values obtained for � ¼ 1, a value for which the
corresponding potential is neither well approximated by a
linear one nor a harmonic one. As can be seen, our ap-
proximate expressions are better than 1% for any value of n
and l quantum numbers. Such a good description is general
and valid whatever the parameter � chosen.
The upper bounds obtained with PðrÞ ¼ r2 are far better

than the lower bounds computed with PðrÞ ¼ �1=r. This

is expected since the potential
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r2 þ b

p
is closer to a

harmonic interaction than to a Coulomb one. Better lower
bounds could be obtained with PðrÞ ¼ r. But, the exact
form of N is not known for this potential, except for l ¼ 0
for which N can be expressed in term of zeros of the Airy

function. With the approximate form N ¼ ð�= ffiffiffi
3

p Þnþ lþffiffiffi
3

p
�=4 [12,13], we have checked that results obtained are

good but the variational character cannot be guaranteed.
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