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We make a detailed study of the longitudinal polarization of hyperons and antihyperons in semi-

inclusive deep-inelastic lepton-nucleon scattering. We present the numerical results for spin transfer in

quark fragmentation processes, and analyze the possible origins for a difference between the polarization

for hyperon and that for the corresponding antihyperon. We present the results obtained in the case that

there is no asymmetry between sea and antisea distribution in the nucleon as well as those obtained when

such an asymmetry is taken into account. We compare the results with the available data such as those

from COMPASS and make predictions for future experiments including those at even higher energies such

as at eRHIC.
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I. INTRODUCTION

Because of the nonperturbative nature, our knowledge
on hadron structure and that on the fragmentation function
are still very much limited, in particular in the polarized
case. Deeply inelastic lepton-nucleon scattering is always
an ideal place for such study because, at sufficiently high
energy and momentum transfer, the factorization theorem
is applicable and the hard part is easy to be calculated.
Hyperon polarizations have been widely used for such
studies, since they can easily be determined by measuring
the angular distributions of the decay products. These
studies have attracted much attention in past years [see
e.g., [1–28] ]. Longitudinal polarizations of hyperons and
antihyperons in semi-inclusive deep-inelastic scattering
(SIDIS) have been studied both experimentally and theo-
retically. More recently, such studies have, in particular,
been extended to antihyperons. Special attention is paid to
the comparison of the results for hyperons with those for
the corresponding antihyperons. This is partly triggered by
the results of COMPASS collaboration at CERN which

seem to tell us that there is a difference between � and ��
polarization in semi-inclusive deep-inelastic lepton-
nucleon scattering [6,7]. A detailed study of such a differ-
ence can provide us useful information on the polarized
fragmentation function and the structure of the nucleon
sea. It might be considered as a signature of the existence
of a difference between the strange sea and antisea distri-
butions in nucleon as proposed in literature some time ago
[29–36]. It could also be a signature for a difference
between the spin transfer in quark and antiquark fragmen-
tation. On the other hand, it is also clear that the valence
quarks in nucleon and other known effects can also con-
tribute to such a difference. It is therefore important to
make a detailed and systematic analysis of the contribu-
tions from such known effects before we extract informa-
tion on the possible asymmetry between sea and antisea
distributions.

In this paper, we make such a systematic study of
longitudinal polarization of different hyperons and antihy-
perons in semi-inclusive deep-inelastic lepton-nucleon
scattering. We make a detailed analysis on the possible
origin(s) of the difference between hyperon and antihy-
peron polarization at COMPASS and even higher energies.
We clarify the different contributions and present the re-
sults obtained in the case that there is no asymmetry
between nucleon sea and antisea quark distributions as
well as those obtained when such an asymmetry is taken
into account. We make the calculations not only for � and
�� but also other hyperons and antihyperons in the same
JP ¼ ð1=2Þþ octet. We compare our results with the avail-
able data and make predictions for future experiments, in
particular at eRHIC [37]. These results can serve as a guide
to study the polarized fragmentation functions and will, in
particular, show whether, if yes how, a significant differ-
ence between sea and antisea quark distribution in the
nucleon can manifest itself in a difference between the
polarization of hyperon and that of the corresponding
antihyperon in SIDIS with a longitudinally polarized
beam.
The paper is organized as follows: After this Intro-

duction, in Sec. II, we summarize the general framework
for the calculations of the longitudinal polarization PH of
the hyperon H and P �H of the antihyperon �H based on
factorization theorem, and make a detailed analysis of
each factor used in the formulas. We present, in particular,
the model calculation results for spin transfer for a pure
quark fragmentation process and compare the results for
hyperons with those for antihyperons. In Sec. III, we
present the results obtained for hyperon and antihyperon
polarizations in reactions using polarized beam and unpo-
larized target for the case that there is no asymmetry
between the sea and antisea distributions in the nucleon
and those for the case that such an asymmetry is taken into
account. We also study the influence from the differences
in quark distributions as given by different sets of parame-
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trizations. In Sec. IV, we study the case that the lepton
beam is unpolarized but the nucleon is polarized and
present the results obtained using different parametriza-
tions of the polarized parton distributions. Finally, in
Sec. V, we give a short summary and discussion.

II. GENERAL FRAMEWORK FOR CALCULATING
PH AND P �H IN SIDIS

Deeply inelastic lepton-nucleon scattering at sufficiently
high energy and momentum transfer is one of the places
where factorization theorem is applicable and is tested with
high accuracies. According to the factorization theorem,
hadron production in the current fragmentation region of
SIDIS is a pure result of the fragmentation of the quark or
antiquark scattered by the incoming lepton. The cross
section is given as a convolution of quark distribution
function in the nucleon, the elementary lepton-parton scat-
tering, and the fragmentation function. We consider the
longitudinally polarized reaction in this paper and, for
definiteness, we consider e� þ N ! e� þHðor �HÞ þ X
as an example. The formulas can be extended to other
reactions in a straightforward way. To the leading order
in perturbation theory, the differential cross section for
e� þ N ! e� þH þ X is given by

d��H ;�e;�N
¼ X

f;�f

Z
dxdydzKðx; yÞ½qN;�N

f;�f
ðxÞd�̂eq

�e;�f
ðx; yÞ

�DH;�H

f;�f
ðzÞ þ ðqf $ �qfÞ�; (1)

where �e, �N , �f, and �H are, respectively, the helicities of

the electron, the incoming nucleon, the struck quark qf,

and the produced hyperon H; x is the usual Bjorken-x, y is

the fractional energy transfer from the electron to the
nucleon N in the rest frame of N; z is the fraction of
momentum of scattered qf carried by the produced hy-

peron H; and Kðx; yÞ is a kinematic factor which contains
the 1=Q4 due to the photon propagator and others (Q2 ¼
�q2 and q is the four momentum transfer). The sum over f
runs over all the different flavor of quarks or antiquarks.
Here, for clarity, we did not write out the scale dependence
of the parton distributions and fragmentation functions
explicitly. They are understood implicitly. We consider
only light quarks and antiquarks. Hence, both quark and
electron mass are neglected so that helicity in the elemen-
tary scattering process eq ! eq is conserved.
Equation (1) is the basis for calculating the cross section

of SIDIS both in the unpolarized and the polarized case.
We use this formula as the starting point for calculating the
polarizations of hyperons and antihyperons in SIDIS in the
following but discuss possible violation effects in Sec. II F.

A. The calculation formulas for PH and P �H

The polarization of H in e� þ N ! e� þHðor �HÞ þ X
is usually defined as

PHðzÞ �
d�þ;�e�N

� d��;�e�N

d�þ;�e�N
þ d��;�e�N

; (2)

for the case that both the beam and target are completely
polarized in the pure states with helicities �e and �N . In the
case that factorization theorem is valid, we can just insert
Eq. (1) into Eq. (2) and obtain the result for the polarization
of hyperon in e� þ p ! e� þH þ X with longitudinally
polarized electron beam and proton target as

PHðzÞ ¼
P

f e
2
f

R
dxdyKðx; yÞfPfðx; yÞ½qfðxÞ þ PbPTDLðyÞ�qfðxÞ��DH

f ðzÞ þ ðqf $ �qfÞgP
f e

2
f

R
dxdyKðx; yÞf½qfðxÞ þ PbPTDLðyÞ�qfðxÞ�DH

f ðzÞ þ ðqf $ �qfÞg
; (3)

where Pb and PT denote the longitudinal polarization of
the electron beam and nucleon target, respectively; ef is
the electric charge of quark qf, qfðxÞ and �qfðxÞ are the
unpolarized and polarized quark distribution functions,
Pfðx; yÞ is the polarization of the scattered quark qf,
DLðyÞ is the longitudinal spin transfer factor in the ele-
mentary scattering process eq ! eq and is defined as

DLðyÞ � d�̂eq
þþ � d�̂eq

þ�
d�̂eq

þþ þ d�̂eq
þ�

; (4)

which is only a function of y at the leading order in
perturbative QED; DH

f ðzÞ and �DH
f ðzÞ are the unpolarized

and polarized fragmentation functions that are defined as

DH
f ðzÞ � DH

f ðz;þÞ þDH
f ðz;�Þ; (5)

�DH
f ðzÞ � DH

f ðz;þÞ �DH
f ðz;�Þ; (6)

where the argumentþ or� denotes that the helicity of the
produced hyperon H is the same as or opposite to that
of the fragmenting qf. In the notation used in Eq. (1), they
are DH

f ðz;þÞ ¼ DH;þ
f;þ ðzÞ ¼ DH;�

f;� ðzÞ and DH
f ðz;�Þ ¼

DH;þ
f;� ðzÞ ¼ DH;�

f;þ ðzÞ. The integrations over x and y run
over the kinematic region determined by the corresponding
experiments.
Similarly for antihyperon �H in e� þ p ! e� þ �H þ X,

the polarization is given by
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P �HðzÞ ¼
P

f e
2
f

R
dxdyKðx; yÞfPfðx; yÞ½qfðxÞ þ PbPTDLðyÞ�qfðxÞ��D �H

f ðzÞ þ ðqf $ �qfÞgP
f e

2
f

R
dxdyKðx; yÞf½qfðxÞ þ PbPTDLðyÞ�qfðxÞ�D �H

f ðzÞ þ ðqf $ �qfÞg
: (7)

The physical significance of the expressions in Eqs. (3)
and (7) is very clear: In the denominator, besides some
kinematic factor, we have just the production rate of H or
�H. The appearance of the term proportional to PbPT is due
to the double spin asymmetry âLL in the elementary scat-
tering process eq ! eq which measures the difference
between �̂eq

þþ and �̂eq
þ�. The numerator shows explicitly

that the polarization of H or �H just comes from that of the
qf and/or �qf after the eq scattering. This can be seen more
clearly if we rewrite Eqs. (3) and (7) as

PHðzÞ ¼
X
f

Z
dxdy½Pfðx; yÞRH

f ðx; y; zjpolÞSHf ðzÞ

þ ðqf $ �qfÞ�; (8)

P �HðzÞ ¼
X
f

Z
dxdy½Pfðx; yÞR �H

f ðx; y; zjpolÞS �H
f ðzÞ

þ ðqf $ �qfÞ�; (9)

where RH
f ðx; y; zjpolÞ is the fractional contribution from qf

to the production of H in e� þ p ! e� þH þ X and is
given by

RH
f ðx; y; zjpolÞ ¼

e2fKðx; yÞ½qfðxÞ þ PbPTDLðyÞ�qfðxÞ�DH
f ðzÞP

f e
2
f

R
dxdyKðx; yÞf½qfðxÞ þ PbPTDLðyÞ�qfðxÞ�DH

f ðzÞ þ ðqf $ �qfÞg
; (10)

SHf ðzÞ is the polarization transfer in the fragmentation
process qf ! H þ X in the longitudinally polarized case
and is defined as

SHf ðzÞ � �DH
f ðzÞ=DH

f ðzÞ: (11)

We see that the polarization of H or �H, PHðzÞ or P �HðzÞ, is
just a weighted sum of SHf ðzÞ and SH�f ðzÞ for different flavor
f. The weights are products of Pfðx; yÞ, the polarization of
quark after the elementary scattering, and RH

f ðx; y; zjpolÞ,
the fractional contribution from qf to the production of H.
In fact, assuming the validity of factorization theorem,
fragmentation functions should be universal so that SHf ðzÞ

and SH�f ðzÞ are also universal. Different results for PHðzÞ
in different kinematic regions and/or different reactions
just originate from the differences in Pfðx; yÞ and
RH
f ðx; y; zjpolÞ.
The expression for the relative weight RH

f ðx; y; zjpolÞ
is much simpler if we have only beam or target polarized,
i.e., we have either PT ¼ 0 or Pb ¼ 0. In this case,
the term proportional to PbPT vanishes and we
have RH

f ðx; y; zjpolÞjPb¼0 ¼ RH
f ðx; y; zjpolÞjPT¼0 ¼

RH
f ðx; y; zjunpolÞ, which we simply denote by RH

f ðx; y; zÞ
and is given by

RH
f ðx; y; zÞ ¼

e2fKðx; yÞqfðxÞDH
f ðzÞP

f e
2
f

R
dxdyKðx; yÞ½qfðxÞDH

f ðzÞ þ �qfðxÞDH
�f
ðzÞ� : (12)

We see that RH
f ðx; y; zÞ is determined solely by the unpo-

larized quantities such as the unpolarized parton distribu-
tions and fragmentation functions.

The quark polarization is determined by the initial quark
and/or electron polarization and the spin transfer in the
elementary process. It is given by

Pfðx; yÞ ¼
PbDLðyÞqfðxÞ þ PT�qfðxÞ
qfðxÞ þ PbDLðyÞPT�qfðxÞ ; (13)

P �fðx; yÞ ¼
PbDLðyÞ �qfðxÞ þ PT��qfðxÞ
�qfðxÞ þ PbDLðyÞPT��qfðxÞ ; (14)

where the longitudinal spin transfer factor DLðyÞ in eq !
eq can be obtained using perturbative QED and, to the
leading order, is the same for eq ! eq and e �q ! e �q and is
given by

DLðyÞ ¼ 1� ð1� yÞ2
1þ ð1� yÞ2 ; (15)

which is positive for 0< y < 1, it equals to 0 for y ¼ 0,
increases monotonically with increasing y and reaches 1 at
y ¼ 1.
The results in Eqs. (13) and (14) have the following

features.
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(1) If the target is unpolarized, i.e. PT ¼ 0 but Pb � 0,
we have

Pfðx; yjPT ¼ 0Þ ¼ P �fðx; yjPT ¼ 0Þ ¼ PbDLðyÞ; (16)

which is only a function of y and is the same not only for
different flavors but also for quark and antiquark. We see

that the quark (antiquark) polarization in this case is com-
pletely known. This is a very good place to study the spin
transfer in fragmentation and/or the factors contained in
the fractional contributions to the production of H and �H.
The expression for hyperon polarization in this case be-
comes also simpler. It is given by

PHðzjPT ¼ 0Þ ¼
Z

dxdyPbDLðyÞ
X
f

½RH
f ðx; y; zÞSHf ðzÞ þ RH

�f
ðx; y; zÞSH�f ðzÞ�; (17)

P �HðzjPT ¼ 0Þ ¼
Z

dxdyPbDLðyÞ
X
f

½R �H
f ðx; y; zÞS �H

f ðzÞ þ R
�H
�f
ðx; y; zÞS �H

�f
ðzÞ�: (18)

For a fixed value of y, we have

PHðz; yjPT ¼ 0Þ ¼
Z

dxPbDLðyÞ
X
f

½RH
fyðx; y; zÞSHf ðzÞ þ RH

�fy
ðx; y; zÞSH�f ðzÞ�; (19)

RH
fyðx; y; zÞ ¼

e2fKðx; yÞqfðxÞDH
f ðzÞP

f e
2
f

R
dxKðx; yÞ½qfðxÞDH

f ðzÞ þ �qfðxÞDH
�f
ðzÞ� : (20)

If we now define SHepðz; yÞ � PHðz; yjPT ¼ 0Þ=PbDLðyÞ as in COMPASS measurements [6,7], we obtain that

SHepðz; yÞ ¼
X
f

Z
dx½RH

fyðx; y; zÞSHf ðzÞ þ RH
�fy
ðx; y; zÞSH�f ðzÞ�: (21)

We see that SHepðz; yÞ is just a weighted sum of SHf ðzÞ and SH�f ðzÞ, and the weights are determined by unpolarized quantities.
Denote

hRH
fyðy; zÞi �

Z
dxRH

fyðx; y; zÞ ¼
e2f

R
dxKðx; yÞqfðxÞDH

f ðzÞP
f e

2
f

R
dxKðx; yÞ½qfðxÞDH

f ðzÞ þ �qfðxÞDH
�f
ðzÞ� ; (22)

and we obtain

SHepðz; yÞ ¼
X
f

½hRH
fyðy; zÞiSHf ðzÞ þ hRH

�fy
ðy; zÞiSH�f ðzÞ�: (23)

In practice, one often deals with events in a given y interval, and one has

SHepðzÞ ¼
X
f

½hRH
fyintðzÞiSHf ðzÞ þ hRH

�fyint
ðzÞiSH�f ðzÞ�; (24)

hRH
fyintðzÞi ¼

e2f
R
dxdyKðx; yÞqfðxÞDH

f ðzÞP
f e

2
f

R
dxdyKðx; yÞ½qfðxÞDH

f ðzÞ þ �qfðxÞDH
�f
ðzÞ� : (25)

(2) If the beam is unpolarized but the target is polarized, i.e. Pb ¼ 0 but PT � 0, we have

Pfðx; yjPb ¼ 0Þ ¼ PT�qfðxÞ=qfðxÞ; (26)

P �fðx; yjPb ¼ 0Þ ¼ PT��qfðxÞ= �qfðxÞ; (27)

which is nothing else but the quark polarization before the eq scattering. This is just a result of helicity conservation. In this
case, we have
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PHðzjPb ¼ 0Þ ¼
P

f e
2
fPT

R
dxdyKðx; yÞ½�qfðxÞ�DH

f ðzÞ þ ��qfðxÞ�DH
�f
ðzÞ�

P
f e

2
f

R
dxdyKðx; yÞ½qfðxÞDH

f ðzÞ þ �qfðxÞDH
�f
ðzÞ� ; (28)

where the polarizations of hyperons and antihyperons are
determined by the polarizations of quarks and antiquarks in
nucleon, thus can be used to extract information on the
polarized quark distributions in nucleon.

(3) In the case that neither Pb nor PT is zero, i.e. both
electron beam and nucleon target are polarized, the polar-
ization of qf or �qf after the scattering with electron is

mainly determined by the beam electron polarization. It is
dominated by the spin transfer from the electron to the
scattered quark (antiquark). The influence from the target
polarization is relatively small. Aiming at studying either
fragmentation functions or quark distributions, this case
does not have much advantage compared to the cases (1)
and (2) mentioned above. We therefore concentrate on the
cases (1) and (2) in the following text of this paper.

From the discussions presented above, we see that there
are three factors, i.e., quark polarization, the relative
weights, and the fragmentation function are involved in
Eqs. (8)–(11) for final hyperon or antihyperon polarization.
We now discuss them further separately in the following.

B. The spin transfer factorDLðyÞ in eq ! eq scattering

This is one of the best known factors involved in Eqs. (3)
and (7). Since it is determined mainly by the electromag-
netic interaction, the spin transfer factor DLðyÞ in eq ! eq
scattering is calculable using perturbation theory in QED.
When next-leading order effects are taken into account,

perturbative QCD (pQCD) corrections are involved. The
result given in Eq. (15) is obtained at leading order in
perturbation theory. In this case, DLðyÞ is the same for
quark and antiquark, i.e.,

Deq!eq
L ðyÞ ¼ De �q!e �q

L ðyÞ: (29)

It is also the same for electron or positron. However, if we
consider next-leading order in QED, e.g., if we take two
photon exchange into account, the interference term leads
to a difference between quark and antiquark. It is also
obvious that next-leading order in QED is far away from
influencing the results at the accuracies of the data avail-
able. We consider only the leading order here.
Similarly, we also stick to leading order in perturbative

QCD. The next-to-leading order calculations are in princi-
ple straightforward but much involved (see e.g. [38]).
These results should be used consistently with the polar-
ized parton distributions functions and the polarized frag-
mentation functions. In view of our current knowledge on
the polarized fragmentation functions, we consider only
the leading order consistently in this paper.

C. The relative weights and the parton distributions

Using charge conjugation symmetry for the fragmenta-
tion functions, we have

R
�H
�f
ðx; y; zÞ ¼ e2fKðx; yÞ �qfðxÞDH

f ðzÞP
f e

2
f

R
dxdyKðx; yÞ½ �qfðxÞDH

f ðzÞ þ qfðxÞDH
�f
ðzÞ� : (30)

This is to compare with RH
f ðx; y; zÞ given in Eq. (12). We

see that the difference between qfðxÞ and �qfðxÞ is the only
source for the difference between RH

f ðx; y; zÞ and
R

�H
�f
ðx; y; zÞ.
One obvious source for the difference between qfðxÞ and

�qfðxÞ is the valence quark contribution. Although this

influences only u and d, it makes the ratio of the contribu-
tions from u, d, and s to H different from the correspond-
ing ratio for the contributions from �u, �d, and �s to �H. As we
will see clearly from Fig. 2 in the next subsection, SHf is

very much different for different f, and such a different
ratio leads to different PH and P �H.

Clearly, valence quark contributions are negligible at
very small x. We therefore expect that its influence be-
comes negligible at very high energies. Also, since the
influence is determined by the ratio of uðxÞ, dðxÞ and
sðxÞ, the results can be quite sensitive to the forms of the
parton distributions.

The unpolarized parton distribution functions qfðxÞ are
determined from unpolarized deep-inelastic scattering and
other related data from unpolarized experiments. There are
different sets available in the parton distribution function
library (PDFLIB [39]) package. Although the qualitative
features are all the same, there are differences in the fine
structure, which may influence the difference between

RH
f ðx; y; zÞ and R

�H
�f
ðx; y; zÞ and lead to different results in

PH and P �H. We will study this in the next sections.
Another source of the difference between qfðxÞ and

�qfðxÞ is the asymmetry in nucleon sea and antisea distri-

butions. The physical picture for such an asymmetry was
proposed [29–34] and models or parametrizations exist
[35,36]. This should be the dominant source for the differ-
ence between qfðxÞ and �qfðxÞ at very small x and can be

better studied at higher energies if it indeed leads to a

significant difference between RH
f ðx; y; zÞ and R

�H
�f
ðx; y; zÞ
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thus a significant difference between PHðzÞ and P �HðzÞ. We
will also make calculations for this case in Sec. III.

D. Spin transfer in fragmentation process

Spin transfer in fragmentation is defined in Eq. (11) and
is given by the polarized fragmentation functions �DH

f ðzÞ.
For explicitly, we only consider the fragmentation process
qf ! H þ X. We should note that, when writing the facto-

rization theorem in the way as given in Eq. (1), we assume
that the fragmentation function is defined inclusively for
the fragmentation process qf ! H þ X. It should include

all the contributions from all the decay processes including
strong as well as other decay processes. However, to study
the physics behind it, it is useful to divide it into the
directly produced part and the decay contributions. It has
been widely used in studying the fragmentation functions
in unpolarized processes and has been outlined in different
publications [11–18]. Here, for completeness, we summa-
rize the major equations in the following.

According to this classification, we write

DH
f ðzÞ ¼ DH

f ðz; dirÞ þDH
f ðz; decÞ; (31)

where the DH
f ðz; dirÞ and DH

f ðz; decÞ are the directly pro-

duced and decay contribution part, respectively. The decay
contribution can be calculated by

DH
f ðz; decÞ ¼

X
j

Z
dz0KH;Hj

ðz; z0ÞDHj

f ðz0Þ; (32)

where the kernel function KH;Hj
ðz; z0Þ is the probability for

Hj with the fractional momentum z0 to decay into aH with

fractional momentum z, and, e.g., for a two body decay
Hj ! H þM, it is given by

KH;Hj
ðz; z0Þ ¼ N

Ej

BrðHj ! H þMÞ�ðp:pj �mjE
�Þ;
(33)

where BrðHj ! HþMÞ is the decay branching ratio, N is

the normalization constant, and E� is the energy ofH in the
rest frame of Hj, and mj is the mass of Hj.

Similarly, in the polarized case, we have

�DH
f ðzÞ ¼ �DH

f ðz; dirÞ þ�DH
f ðz; decÞ; (34)

and the decay part is given by

�DH
f ðz; decÞ ¼

X
j

Z
dz0tDH;Hj

KH;Hj
ðz; z0Þ�DHj

f ðz0Þ; (35)

where tDH;Hj
is a constant called the decay spin transfer

which is independent of the Hj produced process, and is

e.g. discussed and given in Table 2 of Ref. [11].
We should note that, in Eqs. (32) and (35), when calcu-

lating different decay contributions, we have added the
contributions from different hyperon decays incoherently.

This is what one often does in calculating inclusive quan-
tities where the interferences are usually small because of
the small contributions from different channels to exactly
the same final state at exactly the same phase space points.

1. Modeling �DH
f ðz;dirÞ

Since fragmentation is a nonperturbative process, the
fragmentation function cannot be calculated using pertur-
bative QCD. At present, we have to invoke parametrization
and/or phenomenological models. There are already data
available [1–8] that can be used to extract information on
the polarized fragmentation functions �DH

f ðz; dirÞ but still
far away from giving a good control of the form of it. At
this stage, phenomenological models are quite useful, in
particular, in obtaining some guide for experiments. In this
connection, the model invoking calculation method ac-
cording to the origins of hyperon is very practical and
successful [9–18]. In this model, one classifies the directly
produced hyperons into the following two categories:
(A) those which contain the initial quark qf and

(B) those which do not contain the initial quark, i.e.,

DH
f ðz; dirÞ ¼ DHðAÞ

f ðzÞ þDHðBÞ
f ðzÞ; (36)

�DH
f ðz; dirÞ ¼ �DHðAÞ

f ðzÞ þ�DHðBÞ
f ðzÞ: (37)

It is assumed that those do not contain the initial quark are
unpolarized, so that

�DHðBÞ
f ðzÞ ¼ 0: (38)

The polarization then originates only from category (A)
and is given by

�DHðAÞ
f ðzÞ ¼ tFH;fD

HðAÞ
f ðzÞ; (39)

in which tFH;f is known as the fragmentation spin transfer

factor and is taken as a constant given by

tFH;f ¼ �Qf=nf; (40)

where �Qf is the fractional spin contribution of a quark

with flavor f to the spin of the hyperon, and nf is the

number of valence quarks of flavor f in H.
The model is very practical and useful for the following

reason: In the recursive cascade hadronization models,
such as Feynman-Field–type fragmentation models [40]
where a simple elementary process takes place recursively,

DHðAÞ
f ðzÞ and DHðBÞ

f ðzÞ are well defined and determined. In

such models, DHðAÞ
f ðzÞ is the probability to produce a first

rank H which is usually denoted by fHqf ðzÞ and is well

determined by unpolarized reaction data. Hence, the z
dependence �D given above is obtained completely from
the unpolarized fragmentation functions, which are empiri-
cally known. The only unknown is the spin transfer con-
stant tFH;f ¼ �Qf=nf. By using either the SU(6) wave
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function or polarized deep-inelastic lepton-nucleon scat-
tering data, one obtains two distinct expectations �Qf, the

so-called SU(6) and DIS expectations, see Table 1 of [11].
This approach has been applied to different hyperons/

antihyperons in different reactions such as eþe�, SIDIS
and pp collisions [9–18] and compared with data [1–8].
The current experimental accuracy does not allow one to
distinguish between the expectations for tFH;f based on the

SU(6) and DIS pictures. However, the z dependence of the
available data on � polarization is well described [11].

2. Numerical results for SHf ðzÞ
Using the definition given in Eq. (11) and (34), we

obtain the spin transfer for qf ! H þ X as

SHf ðzÞ ¼ SHf ðz; dirÞ þ SHf ðz; decÞ: (41)

In the model described above, we have

SHf ðz; dirÞ ¼ tFH;fA
H
f ðz; dirÞ; (42)

AH
f ðz; dirÞ ¼ fHqf ðzÞ=DH

f ðzÞ: (43)

If we do not consider successive decay, we have

SHf ðz; decÞ ¼
X
j

tFHj;f
tDH;Hj

AH
f;Hj

ðz; decÞ; (44)

AH
f;Hj

ðz; decÞ ¼
Z

dz0KH;Hj
ðz; z0ÞfHj

qf ðz0Þ=DH
f ðzÞ: (45)

We call AH
f ðz; dirÞ and AH

f;Hj
ðz; decÞ first rank contributions

and note that both of them are determined by the unpolar-
ized fragmentation functions. As an example, we calcu-
lated them using Lund fragmentation model [41] as
implemented in the Monte-Carlo event generator PYTHIA

[42]. The results are given in Fig. 1. Because isospin
symmetry is valid here, so we have relations such

as A�
u ðz; dirÞ ¼ A�

d ðz; dirÞ, A�þ
u ðz; dirÞ ¼ A��

d ðz; dirÞ,
A�0

u ðz; dirÞ ¼ A��
d ðz; dirÞ, etc. Hence, we only show the u

and s contributions to �, �þ, and �0. All the others from
u, d, and s quark to the JP ¼ ð1=2Þþ hyperons can be
obtained using such relations. We see, first of all, that the
decay contributions to� are large but those to� and� are
negligible. We also see that s-quark contributions are large
in general because those from u or d have strangeness
suppression, a well-known factor in fragmentation process.
Multiplying by the corresponding spin transfer factors

tFH;f and t
D
H;Hj

, we obtain the corresponding SHf ðzÞ as shown
in Fig. 2.
We see that, for different flavors, SHf ðzÞ differs very

much from each other not only because of the difference
in the first rank contributions as shown in Fig. 1, but also
because of the differences in the spin transfer factors tFH;f

and tDH;Hj
. As an example, we see S�

þ
u is positive and large

while S�
þ

s is negative and the magnitude is smaller than

S�
þ

u . We also note that isospin symmetry is valid here so
that we have a series of relations such as S�u ðzÞ ¼ S�d ðzÞ,
S�

þ
u ðzÞ ¼ S�

�
d ðzÞ, S�0

u ðzÞ ¼ S�
�

d ðzÞ, S�þ
s ðzÞ ¼ S�

�
s ðzÞ, and

S�
0

s ðzÞ ¼ S�
�

s ðzÞ.
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FIG. 1 (color online). First rank contributions AH
f ðz; dirÞ and

AH
f ðz; decÞ in quark fragmentation to the productions of different

hyperons as the functions of z. The results are extracted from the
eþe� process with

ffiffiffi
s

p ¼ 200 GeV using PYTHIA.
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FIG. 2 (color online). Spin transfer SHf ðzÞ in the fragmentation
process qf ! H þ X.
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3. Comparing SHf ðzÞ with S
�H
�f
ðzÞ

For the fragmentation function, the directly produced
part is controlled by strong interaction where charge con-
jugation symmetry is valid. Hence, we have

DH
f ðz; dirÞ ¼ D

�H
�f
ðz; dirÞ; (46)

�DH
f ðz; dirÞ ¼ �D

�H
�f
ðz; dirÞ: (47)

For the decay contributions, we have processes controlled
by strong or electromagnetic interactions. In these pro-
cesses, we still have charge conjugation symmetry so that
similar equations as given above are valid. However, there
are also weak decay processes that play a role. In a weak
process, charge conjugation symmetry may be violated.
There are a few weak decay processes that we need to take
into account and we can check them one by one.
Fortunately, for all the weak decay processes that give
significant contribution to the production of hyperons
(antihyperons) in our interest, no significant violation in
charge conjugation symmetry has been observed. We
therefore neglect the influence and have approximately that

DH
f ðzÞ ¼ D

�H
�f
ðzÞ; (48)

�DH
f ðzÞ ¼ �D

�H
�f
ðzÞ; (49)

We thus also have

SHf ðzÞ ¼ S
�H
�f
ðzÞ; (50)

SH�f ðzÞ ¼ S
�H
f ðzÞ: (51)

We see, under such circumstances, we expect no signifi-
cant difference between the spin transfer in quark frag-
mentation and that in antiquark fragmentation. A
significant difference between final hyperon and antihy-
peron polarization can only be from the difference between
Pfðx; yÞ and P �fðx; yÞ and/or that between RH

f ðx; y; zÞ and
R

�H
�f
ðx; y; zÞ. We recall that, in the case of PT ¼ 0,

Pfðx; yjPT ¼ 0Þ ¼ P �fðx; yjPT ¼ 0Þ ¼ PbDLðyÞ, the only

source for such a difference is the difference between

RH
f ðx; y; zÞ and R �H

�f
ðx; y; zÞ, which we discussed in Sec. II C.

As an example, we see that, in the model described in
Sec. II D 2,

SH�f ðzÞ ¼ S
�H
f ðzÞ ¼ 0; (52)

SHf ðzÞ ¼ S
�H
�f
ðzÞ

¼ tFH;fA
H
f ðz; dirÞ þ

X
j

tFHj;f
tDH;Hj

AH
f;Hj

ðz; decÞ: (53)

Charge conjugation symmetry is indeed valid here and the
numerical results are given in Fig. 2. We emphasize here
that, as can be seen from Fig. 2, for different flavor f, SHf ðzÞ
differs very much from each other. This makes the value of
the polarization of final hyperon sensitive to RH

f ðx; y; zÞ.
Hence, measuring PH is a good way to study the fine
behavior of RH

f ðx; y; zÞ.

E. A practical way of the calculations

As shown by Eqs. (8)–(10), the calculations of PH and/
or P �H involve the contributions from different flavor f and
�f, each of them is a convolution of quark distributions,
polarization fragmentation function, and other kinematic
factors originating from the eq scattering, etc. Using the
parton distributions from PDFLIB [39], the perturbative
calculation results for the differential cross section for
eq ! eq, and the parametrization for the fragmentation
functions, we can in principle calculate the contribution in
a straightforward manner. However, in view of the number
of different flavor f and �f involved, all the different decay
contributions and the difficulties and/or uncertainties in
obtaining the fragmentation functions, the calculations
are almost impossible without radical approximations.
On the other hand, all this information for unpolarized
reactions is implemented in the Monte-Carlo event gener-
ators such as LEPTO [43] so that the corresponding unpo-
larized cross section can be calculated conveniently using
such Monte-Carlo programs. Such Monte-Carlo event gen-
erators have been developed since the 1980s and have been
tested by enormous amount of unpolarized experiments
and the parameters in the models have been adjusted to
fit all the data. They provide a useful tool to make pre-
dictions for outcoming experiments and are widely used in
the community. The Monte-Carlo event generators for
unpolarized high energy reactions have also been used to
calculate the corresponding unpolarized parts in calculat-
ing the polarizations of the produced hadrons in literature
[9–22].
To show how this is carried out, we take the polarization

of H in the case of PT ¼ 0 as an example and rewrite
Eq. (3) as

PHðzjPT ¼ 0Þ ¼
P

f;� e
2
f

R
dxdyPbDLðyÞKðx; yÞqfðxÞDHð�Þ

f ðzÞSHð�Þ
fP

f e
2
f

R
dxdyKðx; yÞ½qfðxÞDH

f ðzÞ þ �qfðxÞDH
�f
ðzÞ� ; (54)

where � ¼ A through D denoting the different origins of H: (A) directly produced and contain qf; (B) directly produced
but do not contain qf; (C) decay product ofHj which is directly produced and contain qf; (D) decay product ofHj which is

directly produced and do not contain qf. S
Hð�Þ
f ¼ �DHð�Þ

f ðzÞ=DHð�Þ
f ðzÞ is the spin transfer factor in fragmentation for each
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contribution. We see from Eqs. (32), (35), and (39) that SHðAÞ
f ¼ tFH;f, S

HðCÞ
f ¼ tFHj;f

tDH;Hj
and SHðBÞ

f ¼ SHðDÞ
f ¼ 0. Denote the

relative contribution from origin (�) by

RHð�Þ
f ðx; y; zÞ ¼ e2fKðx; yÞqfðxÞDHð�Þ

f ðzÞ
P

f e
2
f

R
dxdyKðx; yÞ½qfðxÞDH

f ðzÞ þ �qfðxÞDH
�f
ðzÞ� ; (55)

and we have

PHðzjPT ¼ 0Þ ¼ X
f;�

Z
dxdyRHð�Þ

f ðx; y; zÞPbDLðyÞSHð�Þ
f :

(56)

We see that the relative production weight RHð�Þ
f ðx; y; zÞ

defined in Eq. (55) is independent of the polarization and
can be calculated using a Monte-Carlo event generator. In
the right-hand side of Eq. (56), the quark polarization
PbDLðyÞ and the spin transfer constant SHð�Þ

f are two
known quantities and they are the places where informa-
tion on polarization comes in. In practice, we generate a ep
collision event using an event generator. We study the final
state hadrons and search for the hyperon H under study.
After we find a H in the considered kinematic region, we
calculate DLðyÞ and SHð�Þ

f by tracing back the origin of the
H using information recorded in theMonte-Carlo program.

Usually a Monte-Carlo event generator is tested by the
existing data at different energies, and is expected that it
can give a reasonable description of the unpolarized quan-
tities at a given energy provided that the physics does not
have sudden changes at that energy. We therefore use such
an Monte-Carlo event generator for such analysis in the
following. Such a calculation method is not only the most
convenient way available currently of calculating the frag-
mentation functions and the contributions from different
hard scattering processes but also the most convenient way
to include the contributions from all different decay
processes.

F. A lower energy effect

At lower energies, there is another effect that relates to
the valence quark contribution and may cause a difference
between PH and P �H in e� þ N ! e� þHðor �HÞ þ X,
i.e., the contribution from the hadronization of the remnant
of target nucleon. It has been pointed out first in [13] that
contribution of the hadronization of target remnant is
important to hyperon production even for reasonably large
xF at lower energies. (Here, xF � 2pk=W is the Feynman x
in the c.m. frame of the ��p system, W is the total c.m.
energy of the ��p system. xF is approximately equal to z at
high energy W and small transverse momentum pT [44]).
The effect has been confirmed by the calculations pre-
sented in [21]. It has been shown that [13] at the CERN
NOMAD energies, contributions from the hadronization of
nucleon target remnant dominates hyperon production at
xF around zero. It is impossible to separate the contribution
of the struck quark fragmentation from those of the target

remnant fragmentation. In this case, the factorization theo-
rem given in Eq. (1) is broken down and the concept of
independent fragmentation is no more valid. Clearly, this
effect can be different for hyperon and antihyperon pro-
duction since the target remnant contribution comes
mainly from the fragmentation of the valence diquark. It
contributes quite differently for hyperons and antihyper-
ons. This can have a large influence at lower energies, but
the influence should vanish at high energies where current
fragmentation can well be defined. As already demon-
strated in Ref. [16], this low energy effect has already little
influence on the results at COMPASS energy, in particular,
when studying the difference between PH and P �H. We
therefore do not consider this effect in the following text
of this paper.

III. PH AND P �H IN SIDISWITH POLARIZED BEAM
AND UNPOLARIZED TARGET

By using the method presented in the last section, we can
calculate the polarizations of hyperon and antihyperon in
SIDIS with the aid of a Monte-Carlo event generator. We
use the latest version of LEPTO 6.5.1 [43] based on the Lund
string fragmentation model [41] in the following. We study
SIDIS with longitudinally polarized electron (muon) beam
and unpolarized target in this section and make calcula-
tions of PH and P �H in the case that a symmetric strange sea
sðxÞ and antisea distribution �sðxÞ is assumed and in the case
that an asymmetry between sðxÞ and �sðxÞ is taken into
account separately.

A. Results with symmetric strange sea and antisea
distributions

Our calculations in this case are made by using a pa-
rametrization of PDF’s (parton distribution functions) ob-
tained in PDFLIB where no asymmetry between strange
sea and antisea distribution is taken into account. It is
obvious that different sets of parametrizations of PDF’s
may have influence on our results of PH and P �H. In the
following, we first present the results obtained using
CTEQ2L and study the influence of different sets of pa-
rametrizations later in this section.

1. Results at COMPASS energy

To compare with the available experimental data, we
first make calculations in the same kinematic region as in
the COMPASS experiment [6,7], i.e., Q2 > 1 GeV2, and
0:2< y< 0:9 with � beam energy of 160 GeV and beam
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polarization P� ¼ �0:76. As we have mentioned in the

last section, when the target is unpolarized, the difference
between the polarizations ofH and �H comes only from the

relative weight RH
f and R

�H
�f
as given by Eqs. (8) and (9). We

therefore first calculated R�
f and R

��
f and show the results

obtained in Figs. 3(a) and 3(b), respectively. The scale for
the parton distributions used in these and the following
calculations in this paper is taken as the same as the
momentum transfer Q in the scattering process. For com-
parison with experiments, we plot them as functions of xF
which is the Feynman x in the c.m. frame of the ��p
system and is approximately equal to z at high energy
and small pT .

From Figs. 3(a) and 3(b), we see the following features:

(1) With increasing xF, R
�
s and R

��
�s increase fast, R�

u;d or

R
��
�u; �d

vary slowly, while R�
�q ðxFÞ and R

��
q ðxFÞ de-

crease, in particular, in the large xF region. This is

because R�
u;d;s and R

��
�u; �d;�s

have the first rank contri-

butions while R
��
u;d;s and R�

�u; �d;�s
do not and the first

rank contributions to R�
u;d and R

��
�u; �d

have strangeness

suppression compared to R�
s and R

��
�s .

(2) The shape of R�
u ðxFÞ is similar to R�

d ðxFÞ but the
former is in general much larger than the latter. This
is not only because of the larger contribution from
the valence to u but also because the electric charge
squared factor for u is 4 times as large as that for d.
Similar relations hold for �u and �d contributions and

also for those to ��.
(3) There is in general quite a large difference between

R�
f and R

��
�f
for a given f, i.e., the charge conjugation

symmetry does not hold here. The difference is

particularly large for R�
u and R

��
�u . This is a character-

istic of the contribution from the valence quark.

To understand that the valence quark contributions are
still large at COMPASS energy, Ref. [16] has calculated
the x values of the struck quark and/or antiquark. We did
similar calculations in exactly the same COMPASS kine-
matic region as described above and obtain the results

shown in Fig. 4. We see that most of the �’s and ��’s are
from the quark and antiquark with momentum fraction x
around 0.01. In this x region, the valence quark contribu-
tions are indeed still quite large so that uðxÞ> �uðxÞ and
dðxÞ> �dðxÞ. This leads to much larger u (d) contributions

to � than the corresponding �u ( �d) contribution to ��.

We recall that the spin transfer in fragmentation S�f ¼
S

��
�f
is quite different for f ¼ u or d from that for f ¼ s (see

Fig. 2); we thus expect that there is a significant difference
between P� and P ��. We calculate these polarizations using

the spin transfer S�f ðzÞ ¼ S
��
�f
ðzÞ described in the last sec-

tion, and show the results in Fig. 5. We see that there are
indeed some differences between P� and P �� at the same

xF. The magnitude of P �� is larger than that of P�. This is
because the contribution from the u quark is larger and S�u
is small and negative.
To compare with the data from COMPASS [6,7], we also

calculate the spin transfer S�ep and S
��
ep in e� þ p ! e� þ

�ð ��Þ þ X as given by Eq. (24) and show the results in
Fig. 6. We recall that the magnitude of the spin transfer of s

(�s) quark to � ( ��) in the fragmentation process is much
larger than that of u or d ( �u or �d) quark (see Fig. 2), so S�ep
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FIG. 4 (color online). The x distribution of the struck quark or
antiquark that leads to the production of � or �� in the kinematic
region of xF > 0 at COMPASS energy

ffiffiffi
s

p ¼ 17:35 GeV.

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

(a) e-p→e-ΛΧ

d

u

s

d
–

u
–

s
–

R
fΛ
/R

fΛ

0.2 0.4 0.6 0.8

(b) e-p→e-Λ
–

Χ

d
–

u
–

s
–

d

u

s

xF
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(S
��
ep) takes its maximum when there is only a contribution

from strange quarks, i.e., S�ep ! S�s . In contrast, S�ep (S
��
ep)

reaches its minimum when there is only a contribution
from u and/or d ( �u and/or �d), i.e., S�ep ! S�u ¼ S�d .

These are the limits of S�ep and S
��
ep in e� þ p ! e� þ

�ð ��Þ þ X. To show the range of S�ep and S
��
ep in the case

that the spin transfer model described in Sec. II D is used,
we also show these two limits in the same figure.

From Fig. 6, we see that, with a symmetric strange sea
and antisea distribution, we still obtain some differences

between S�ep and S
��
ep as functions of xF. But the differences

seem not as large as those observed by the COMPASS

collaboration [6,7]. From the limits S�s and S�u , we see also
that there is enough room to fit the data by adjusting the
relative weights of s (�s) contributions compared to those
from u and d ( �u and �d).
We have seen that the differences between P� and P �� in

the case discussed in this subsection come only from
valence quark contributions. This is because the relative
contribution from s to � is different from the relative

contribution from �s to ��. If we extend the study to other
JP ¼ ð1=2Þþ hyperons such as �� and �, the situations
can be different. For example, for �þ and its antiparticle
���, the production and the polarization are dominated by u
and �u contributions, respectively. Although valence quark
contributions make u dominance even stronger, the relative
weights do not change much, even at COMPASS energy.

Similarly,�� and ��þ are dominated by d and �d, and� and
�� are dominated by s and �s, respectively. We expect a
much smaller difference between PH and P �H for these
hyperons. In Fig. 7, we show the corresponding results at
COMPASS energy. We see that the differences obtained
between PH and P �H are indeed much smaller than those for

� and ��. Since the decay contributions to these hyperons
are almost negligible, the calculations here are simpler and
more clear. This provides a rather clean test to see whether
the difference between P� and P �� is due to valence
contributions.

2. Results at eRHIC energy

It is also clear that, if we go to even higher energies, the
main contributions are from an even smaller x region. In
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from COMPASS [7].
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the small x regions, valence quark contributions are negli-
gible. In such cases, we should have PH ¼ P �H assuming a
symmetric sea and antisea quark distribution. To show this,
we made calculations at eRHIC energy, i.e., we take the
electron beam of 10 GeVand proton beam of 250 GeV. The

electron beam polarization is taken as one and the nucleon
is taken as unpolarized. We first checked the x distribution
of the struck quarks (antiquarks) that lead to the produc-
tions of hyperons at such high energy. In the calculations,
we choose events in the kinematic region 0:2 � y � 0:9
and Q2 > 1 GeV2. The results are shown in Fig. 8. We see
that they are indeed dominated by very small x. The results
of hyperon and antihyperon polarization, using the same
parton distribution set CTEQ2L with symmetric sea and
antisea densities, are shown in Fig. 9. As expected, the H
and �H polarizations are almost the same.

3. Results obtained using different sets of PDF’s

In the calculations presented above, we used CTEQ2L
for parton distributions. As mentioned earlier, there are
different sets of parametrizations available and the signifi-
cant differences still exist for sea quark distributions espe-
cially for the strange sea. As an example, we show in
Fig. 10 the s (�s) quark distribution in CTEQ2L and
GRV98Lo. We see that the difference between the two
parametrizations is indeed quite large.
The difference in different sets of PDF’s can certainly

influence the results of PH and P �H. We study this influence
by repeating the calculations mentioned above using differ-
ent sets of parton distribution functions. As examples, we
show the results for �, �0, and their antiparticles in
Figs. 11(a)–11(d) at COMPASS and eRHIC energies,
respectively.
From the results, we indeed see some significant differ-

ences between the results obtained using the two different
sets of PDF’s. We see in particular that, at the COMPASS
energy, the magnitude of the polarizations obtained using
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CTEQ2L PDF’s are larger than the corresponding results
obtained using GRV98Lo. In contrast, at the eRHIC en-
ergy, the polarizations obtained using GRV98Lo PDF’s are
larger. This is because, at eRHIC energy, the dominating
contributions are from the very small x region where sðxÞ in

GRV98Lo is larger than that in CTEQ2L (see Fig. 10).
However, at COMPASS energy, the dominating contribu-
tions are from the much larger x region, where sðxÞ in
GRV98Lo is smaller than that in CTEQ2L. Such
differences lead to different relative weights RH

f and mani-

fest themselves in the results for PH and P �H shown in
Figs. 11(a)–11(d). We also see that different sets of PDF’s
influence the magnitudes of PH and P �H but they have little
influence on the difference between them. The difference
between PH and P �H is not very sensitive to the parametri-
zations of PDF’s.

B. Results with asymmetric strange sea and antisea
distribution

As discussed in the last section, an asymmetry between
strange sea and antisea quark distributions can be another
source for the difference between hyperon and antihyperon
polarization, and this effect remains at even higher energies
such as at eRHIC. The asymmetry in the strange sea of the
nucleon was studied by many authors in literature [29–34].
Different models are proposed. A global QCD fit to the
CCFR and NUTEV dimuon data has also shown clear
evidence that sðxÞ � �sðxÞ [35,36], and a parametrization
of the strangeness asymmetry has also been included in the
CTEQ parametrization. Such an asymmetry is usually
described by defining s�ðxÞ ¼ sðxÞ � �sðxÞ, and corre-
spondingly denoting sþðxÞ ¼ sðxÞ þ �sðxÞ. It seems now
evident that s�ðxÞ � 0 but the size is quite unknown.
What we are sure is just the limit �sþðxÞ � s�ðxÞ �
sþðxÞ. For example, we show two different parametriza-
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FIG. 10. Comparison of the sea quark distributions from
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tions from CETQ in Fig. 12. We see that the difference in
the parametrizations of s�ðxÞ is indeed very large. We even
do not know the sign of s�ðxÞ in a given x region. In this
subsection, we study the contribution of such an asymme-
try to the difference between the polarization ofH and that
of the corresponding �H in SIDIS.
We first carried out the calculations by taking the same

sþðxÞ and other PDF’s from CTEQ2L as those used in the
previous calculations but taking a nonzero s�ðxÞ into ac-
count. Since our current knowledge of s�ðxÞ is very much
limited, the form of s�ðxÞ is almost completely unknown.
We simply take an existing parametrization such as the one
in CETQ6set37 for illustration. With these inputs, we

obtain the � and �� polarizations and S�ep and S
��
ep in the

COMPASS kinematic region and show the results in
Fig. 13. We see that, in this kinematic region, the influence
from such a small asymmetry s�ðxÞ is small. To see how
large the effect can be, we consider the two extreme cases
for s�ðxÞ, i.e. s�ðxÞ ¼ �sþðxÞ or s�ðxÞ ¼ sþðxÞ. The re-
sults obtained are also shown in Fig. 13. We see that the

difference between � and �� obtained in either limit is
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much larger than that obtained in the case using a sym-
metric sðxÞ and �sðxÞ and the differences in these two
limiting cases are opposite to each other. We see also that
the results obtained in the limiting case that s�ðxÞ ¼
�sþðxÞ seem to be closer to the existing COMPASS data
[6,7] while those obtained in the case that s�ðxÞ ¼ sþðxÞ
seem to be in the wrong direction.

At the eRHIC energy, the only source for the difference
between P� and P �� is the asymmetry between sðxÞ and
�sðxÞ. We did similar calculations and obtain the results
shown in Fig. 14. We can see that the difference between
P� and P �� is quite small if we use the asymmetric strange-
ness distribution as given in CTEQ6set37. However, it can
be rather large in the two extreme cases. The asymmetry
between sðxÞ and �sðxÞ has an even smaller influence on P�

and that for the corresponding antiparticle. For compari-

son, we show the results for�þ and ��� in the same figure.
These results show us that experiments at eRHIC can in-
deed provide us useful information on the asymmetry
between sðxÞ and �sðxÞ in nucleon, but high statistics is
needed.

As a brief summary of the results presented in this
section, we would like to emphasize the following. We
have calculated the polarizations of hyperons and their
antiparticles in SIDIS with polarized lepton beam and
unpolarized target. We carried out the calculations at dif-
ferent energies with different inputs of parton distributions
and two different cases for polarized fragmentation func-
tions. The results show that the magnitudes of the polar-
izations of different hyperons or those for antihyperons
depend significantly on different sets of parton distribu-
tions and on the polarized fragmentation functions. Precise
measurements of these polarizations should be able to shed
light, in particular, on the polarized fragmentation func-
tions. The results show also that the difference between the
polarization of hyperon and that of the corresponding
antihyperon depends quite weakly on different sets of
parton distribution and/or fragmentation functions. These
factors have significant influences on the magnitudes of the
polarizations but little on the difference between the results
for hyperon and those for the antihyperon. This implies
that, although it is difficult to extract detailed information
on the difference between sea and antisea distribution in
nucleon from the difference between hyperon and antihy-
peron polarization since they are complicated convolutions
of the different factors involved in the scattering, a signifi-
cant difference at high energy such as at eRHIC can be
considered as a clear signature for the existence of the
difference between sea and antisea distributions in nucleon
thus shed light on the fine structure of nucleon sea.

IV. PH AND P �H IN SIDIS WITH UNPOLARIZED
BEAM AND POLARIZED TARGET

If the lepton beam is unpolarized and the target proton is
polarized with PT ¼ 1, the polarizations of the hyperons

(or antihyperons) are determined by Eq. (28). In this case,
the relative weights for the contributions of different fla-
vors are the same as those discussed in the last section
which are determined by the unpolarized quantities.
However, the polarizations of the quarks and antiquarks
are different. In the case of unpolarized lepton beam and
longitudinally polarized nucleon, the polarizations of the
quarks and antiquarks are equal to those in the polarized
nucleon, which is a simple result of helicity conservation.
This is a good place to study polarized quark distributions
in the nucleon. There exist many different sets of parame-
trizations of the polarized PDF’s [see e.g. [45–50] ] and the
differences between them are quite large. An example is
given in Fig. 15 where two sets of parametrizations from
GRSV2000 [45], GRSV2000 set3 (standard), and set4
(valence) are shown. We make calculations of PH and
P �H using these two sets of parametrizations of the polar-
ized PDF’s to see the sensitivity of the results of PH andP �H

on the polarized PDF’s. We carried out the calculations in
the COMPASS kinematic region and at eRHIC energy. The
results at the two energies are similar and those at
COMPASS energy are shown in Ref. [16]. We show those
at eRHIC energy in Fig. 16.
The results show in particular following interesting fea-

tures. First, the polarizations of hyperons and antihyperons
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are quite sensitive to the polarized PDF’s. Different sets of
polarized PDF’s lead indeed to quite different results of
hyperon and antihyperon polarizations. We see, in particu-
lar, that the differences obtained from a different set of
polarized PDF’s are generally larger than the differences
between the results for different models for the spin trans-
fer in fragmentation. Second, because the relative weights
RH
f and spin transfer SHf are quite different from each other

for different flavor f for a given hyperon H, the polar-
izations of different hyperons and antihyperons are sensi-
tive to polarized PDF’s of different flavors. For example,
P�þ and P�� are sensitive to �uðxÞ and �dðxÞ, respec-

tively. They have different signs because the sign of �uðxÞ
is different from that of �dðxÞ. The magnitude of P�þ is
larger than P�� because j�uðxÞj> j�dðxÞj. Similar fea-
tures can be seen for �0, ��, and the corresponding
antihyperons. These two features are important because
they show that we can use hyperon polarizations in SIDIS
to extract information on polarized PDF’s.

V. SUMMARYAND OUTLOOK

In summary, we have calculated the longitudinal polar-
izations of the hyperons and antihyperons in semi-inclusive
deep-inelastic scattering at COMPASS and eRHIC ener-
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gies. We have, in particular, made a systematic study of the
different contributions to the differences between the po-
larization of a hyperon and its antiparticle. We presented
the results obtained in SIDIS with polarized beam and
unpolarized target for the case that a symmetric strange
sea and antisea distribution is used and those obtained in
the case that an asymmetry between strange sea and antisea
distribution is taken into account and for reactions with
unpolarized beam and polarized target. Our results show
that (1) at COMPASS energy, valence contributions play an
important role in the difference between hyperon and
antihyperon polarization but are negligible at eRHIC en-
ergy; (2) a significant asymmetry between strange sea and
antisea distributions can manifest itself in the difference
between hyperon and antihyperon polarization at eRHIC
energy, but high statistics is needed in order to detect it;
(3) different sets of PDF parametrizations have a quite
large influence on the magnitudes of hyperon polarizations
but the influence on the difference between hyperon and
antihyperon polarization is relatively small; (4) hyperon
and antihyperon polarizations in reactions using unpolar-
ized beam and polarized target are sensitive to the polar-
ized parton distributions and different hyperons are
sensitive to different flavors, and hence can be used to

extract information on flavor tagging. These results show
that both the difference between hyperon and antihyperon
polarization in reaction with polarized beam and unpolar-
ized target and the polarizations of hyperons and antihy-
perons in reactions with unpolarized beam and polarized
target are sensitive to the fine structure of the nucleon sea.
Because there are many different influences from different
factors involved in the scattering and the polarizations of
hyperons and/or antihyperons are complicated convolu-
tions of them, it is difficult to extract detailed information
on the difference between sea and antisea quark distribu-
tions in nucleon from the difference between hyperon and
antihyperon polarization in SIDIS. However, high preci-
sion measurements, in particular those at high energies
such as at eRHIC, are able to provide us deep insights
into the nucleon sea.
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