
Azimuthal spin asymmetries in light-cone constituent quark models

S. Boffi,1,2 A.V. Efremov,3 B. Pasquini,1,2 and P. Schweitzer4

1Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, Pavia, Italy
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We present results for all leading-twist azimuthal spin asymmetries in semi-inclusive lepton-nucleon

deep-inelastic scattering due to T-even transverse-momentum dependent parton distribution functions on

the basis of a light-cone constituent quark model. Attention is paid to discuss the range of applicability of

the model, especially with regard to the scale dependence of the observables and the transverse-

momentum dependence of the distributions. We find good agreement with available experimental data

and present predictions to be further tested by future CLAS, COMPASS, and HERMES data.
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I. INTRODUCTION

The composite nature of the nucleon has been explored
for a long time by means of deep-inelastic scattering (DIS)
of a lepton beam in the Bjorken regime, i.e., when q and P
denote the four-momentum transfer and the nucleon mo-
mentum, in the limit of P � q and Q2 ¼ �q2 ! 1, while
x ¼ Q2=ð2P � qÞ is fixed. As a consequence of the high
scale Q, scattering occurs in a collinear configuration
between the incident lepton and a single ‘‘parton’’ in the
nucleon. The factorization theorem allows the inclusive
DIS cross section to be expressed as a convolution of two
contributions: one corresponds to the hard process occur-
ring at short distance between probe and parton; the other
accounts for the coherent long-distance interactions be-
tween parton and target, and is described in terms of parton
distributions. At leading order (leading twist) x can be
interpreted as the fraction of the longitudinal momentum
of the parent (fast-moving) nucleon carried by the active
parton, and one may distinguish three kinds of parton
distributions. Two of them are well known from measure-
ments of structure functions in DIS and other processes:
fa1 ðxÞ is the probability density of finding an unpolarized
parton with longitudinal momentum fraction x in an un-
polarized nucleon, and g1ðxÞ gives the net helicity of
partons in a longitudinally polarized nucleon. The third
one, the (chiral-odd) transversity h1ðxÞ describing the num-
ber density of partons with polarization parallel to that of a
transversely polarized nucleon minus the number density
of partons with antiparallel polarization, requires a quark
helicity flip that cannot be achieved in the inclusive DIS.
Other processes have to be explored for that.

However, in addition to the information on the longitu-
dinal behavior in momentum space along the direction in
which the nucleon is moving, a complete three-
dimensional picture of the nucleon also requires knowl-
edge of the transverse motion of partons [1,2]. A full
account of the orbital motion, which is also an important
issue to understand the spin structure of the nucleon, can be

given in terms of transverse-momentum dependent parton
distribution functions (TMDs). There are eight leading-
twist TMDs f1ðx; pTÞ, f?1Tðx; pTÞ, g1Lðx; pTÞ, g1Tðx; pTÞ,
h1ðx; pTÞ, h?1Lðx; pTÞ, h?1Tðx; pTÞ, h?1 ðx; pTÞ [3]. Two of

them, the Boer-Mulders and Sivers functions h?1 ðx; pTÞ
and f?1Tðx; pTÞ [3,4], are T-odd, i.e., they change sign under
naı̈ve time reversal, which is defined as usual time reversal,
but without interchange of initial and final states. The other
six leading-twist TMDs are T-even.
In order to be sensitive to intrinsic transverse parton

momenta it is necessary to measure adequate transverse
momenta of the produced hadrons in the final state, e.g., in
processes like semi-inclusive lepton-nucleon DIS (SIDIS),
hadron production in eþe� annihilation or the Drell-Yan
processes in hadron-hadron collisions [1–21].
Here, factorization has been proved at leading twist [22–

25] allowing to access information on TMDs as well as on
fragmentation functions (FFs) describing the hadronization
process of the hit quark decaying into the detected hadrons.
At leading twist, the fragmentation of unpolarized hadrons
is described in terms of two fragmentation functions,
D1ðz; KTÞ and H?

1 ðz; KTÞ, where z is the energy fraction

taken out by the detected hadron and KT ¼ jKTj its trans-
verse momentum. The function D1ðz; KTÞ describes the
decay of an unpolarized quark, whereas the Collins func-
tion H?

1 ðz; KTÞ describes a left-right asymmetry in the

decay of a transversely polarized quark [7–9].
By measuring the angular distribution of produced had-

rons, in SIDIS it is possible to access information on all
eight leading-twist TMDs in combinations with the two
leading-twist FFs. Restricting ourselves to the one-photon-
exchange approximation and considering spin degrees of
freedom such as the beam helicity and the target spin, the
contraction between the lepton and hadron tensors in the
SIDIS lepton-nucleon cross section can be decomposed in
a model-independent way in terms of 18 structure func-
tions, thus exhibiting a nontrivial azimuthal dependence of
the detected hadron around the (spacelike) direction de-
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fined by the virtual photon [10,26–30]. According to facto-
rization each of the leading-twist structure functions can be
conceived as a convolution between one TMD and one FF.
Since structure functions enter the cross section with a
defined angular coefficient, they can be accessed by look-
ing at specific azimuthal SIDIS asymmetries. This has
become now a powerful tool for studying the three-
dimensional structure of the nucleon [31–48], and many
more data are expected to come in the future. The remark-
able experimental progress was accompanied by and mo-
tivated numerous theoretical and phenomenological
studies in the literature [49–87].

In this paper we compute azimuthal spin asymmetries
due to the T-even transverse-momentum dependent parton
distributions functions. For that we use the predictions
from the light-cone constituent quark model (CQM) of
Ref. [78], which has been successfully applied also in the
calculation of electroweak properties of the nucleon [88]
and generalized parton distributions [89]. Such a model,
based on the light-cone wave function (LCWF) overlap
representation of TMDs, is well suited to illustrate the
relevance of the different orbital angular momentum com-
ponents of the nucleon wave function for the respective
observables. To best of our knowledge, this is the first
attempt to describe all leading-twist spin asymmetries in
SIDIS due to T-even TMDs in a single approach. We
include also studies of the far better known collinear
double-spin asymmetries A1 and ALL—not only for sake
of completeness, but also to demonstrate the capability of
the approach to describe reliably the gross features of spin
effects in the nucleon.

The article is organized as follows: In Sec. II, the rele-
vant definitions of azimuthal asymmetries in SIDIS are
recalled. In Sec. III, the main ingredients of the light-

cone CQM of Ref. [78] are reviewed, and the results for
T-even TMDs discussed. In Sec. IV, we first study the
collinear double-spin asymmetries A1 and ALL. This and
the following Sec. V devoted to a discussion of the
transverse-momentum dependence of the TMDs, help to
assert the range of applicability of the approach. In
Secs. VI, VII, VIII, and IX, we evaluate the leading-twist
azimuthal double and single-spin asymmetries due to T-
even TMDs—focusing on their x dependence. Section X
exemplifies how the approach can be applied to make
predictions for the transverse hadron momentum depen-
dence of spin asymmetries. Concluding remarks are given
in Sec. XI. Finally, a more detailed discussion about the
model predictions for the sensitivity of the azimuthal
asymmetries on different orbital angular momentum com-
ponents are discussed in the Appendix.

II. SPIN AND AZIMUTHAL ASYMMETRIES IN
SIDIS

The SIDIS process is sketched in Fig. 1. Let us denote
the momenta of the target, incoming and outgoing lepton
by P, l and l0 and introduce the four-momentum transfer
q ¼ l� l0 with Q2 ¼ �q2. Then the relevant SIDIS vari-
ables are defined as x ¼ Q2=ð2P � qÞ, y ¼ ðP � qÞ=ðP � lÞ,
and z ¼ ðP � PhÞ=ðP � qÞ. The component of the momen-
tum of the produced hadron transverse with respect to the
virtual photon is denoted by Ph? and Ph? ¼ jPh?j.
The SIDIS cross section (differential in x, y, z and the

azimuthal angle �h of the produced hadron defined in
Fig. 1) has the following general decomposition [10,27],
where �0 is the spin- and �-independent part of the cross
section, and where the dots indicate power suppressed (‘‘-
subleading-twist’’) terms,

d4�

dxdydzd�h

¼ d4�0

dxdydzd�h

f1þ cosð2�hÞp1ðyÞAcosð2�hÞ
UU þ SL sinð2�hÞp1ðyÞAsinð2�hÞ

UL þ �SLp2ðyÞALL

þ �ST cosð�h ��SÞp2ðyÞAcosð�h��SÞ
LT þ ST sinð�h ��SÞAsinð�h��SÞ

UT þ ST sinð�h þ�SÞp1ðyÞAsinð�hþ�SÞ
UT

þ ST sinð3�h ��SÞp1ðyÞAsinð3�h��SÞ
UT g þ . . . (1)

with

p1ðyÞ ¼ 1� y

1� yþ 1
2 y

2
; p2ðyÞ ¼

yð1� 1
2 yÞ

1� yþ 1
2 y

2
: (2)

In Aweight
XY the index X describes the beam polarization,

which is unpolarized (U) or longitudinal (L, characterized
then by the beam helicity �). The index Y denotes the
target polarization, which is unpolarized (U), longitudinal
(L) or transverse (T) with respect to the virtual photon. In
experiments the target is polarized with respect to the
beam, of course, but this is up to corrections of Oð1=QÞ
the same. As we shall deal with leading-twist observables,
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FIG. 1 (color online). Kinematics of the SIDIS process lN !
l0hX and the definitions of azimuthal angles in the lab frame.
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such corrections will be neglected throughout. The super-
script ‘‘weight’’ reminds us of the kind of angular distri-
bution of the produced hadrons with no index indicating an
isotropic � distribution, and �S is the azimuthal angle of
the target’s transverse polarization vector, see Fig. 1. The
asymmetries are defined in terms of structure functions

Aweight
XY ¼ Fweight

XY =FUU, and the latter have the following
partonic (tree-level) description in the Bjorken-limit [3,11]

FUU ¼ C½f1D1�; (3)

FLL ¼ C½g1LD1�; (4)

Fsinð�h��SÞ
UT ¼ �C

�
h? � pT

M
f?1TD1

�
; (5)

F
cosð�h��SÞ
LT ¼ C

�
h? � pT

M
g1TD1

�
; (6)

Fsinð�hþ�SÞ
UT ¼ C

�
h? � KT

zmh

h1H
?
1

�
; (7)

Fcosð2�hÞ
UU ¼ C

�
2ðh? � KTÞðh? � pTÞ � KT � pT

zmhM
h?1 H

?
1

�
;

(8)

Fsinð2�hÞ
UL ¼ C

�
2ðh? �KTÞðh? � pTÞ � KT � pT

zmhM
h?1LH

?
1

�
;

(9)

Fsinð3�h��SÞ
UT ¼ �C

�
2ðh? � pTÞðpT �KTÞ þ p2

Tðh? � KTÞ � 4ðh? � pTÞ2ðh? � KTÞ
2zmhM

2
h?1TH?

1

�
; (10)

where h? ¼ Ph?=Ph? and M (mh) is the mass of the
nucleon (produced hadron). The convolution is defined as

C½wjJ� ¼
Z

d2pT

Z
d2KT�

ð2ÞðzpT þKT �Ph?ÞwðpT;KTÞ
�X

a

e2axj
aðx;pTÞJaðz;KTÞ; (11)

where pT ¼ jpTj. These convolution integrals can be
solved analytically only in the case of the structure func-
tions FUU and FLL, in which case the weight function w in
Eq. (11) is simply unity. The unpolarized cross section is
given in terms of FUU by

d4�0

dxdydzd�h

¼ 2�2s

Q4

�
1� yþ y2

2

�
FUUðx; zÞ;

FUUðx; zÞ ¼
X
a

e2axf
a
1 ðxÞDa

1ðzÞ:
(12)

Recalling the notation ga1ðxÞ ¼
R
d2pTg

a
1Lðx; pTÞ, the

double-spin asymmetry ALL is given as follows:

ALL ¼ FLL

FUU

¼
P
a
e2axg

a
1ðxÞDa

1ðzÞP
a
e2axf

a
1 ðxÞDa

1ðzÞ
: (13)

If no hadron is observed in the final state, the inclusive
version of the double-spin asymmetry (13) is commonly
referred to as A1 and given by

A1 ¼
P
a
e2axg

a
1ðxÞP

a
e2axf

a
1 ðxÞ

: (14)

For all other structure functions (5)–(10) the convolution
integrals cannot be solved analytically, unless one assumes
models for the transverse parton momentum dependence of
TMDs. A popular model is the Gaussian Ansatz, where one

assumes

jaðx; pTÞ ¼ jaðxÞ expð�p2
T=hp2

TðjÞiÞ
�hp2

TðjÞi
;

Jaðz; KTÞ ¼ JaðzÞ expð�K2
T=hK2

TðJÞiÞ
�hK2

TðJÞi
(15)

for some generic transverse parton momentum dependent
distribution jaðx; pTÞ and fragmentation Jaðz; KTÞ func-
tions. This is, of course, a crude approximation.
However, besides being convenient [11], this Ansatz is
also phenomenologically useful, provided the transverse
hadron momenta are small compared to the relevant hard
scale, hPh?i � Q in SIDIS, and one is interested in catch-
ing the gross features of the effects [53]. A high precision
description of pT effects requires methods along the QCD-
based formalism of [6], see [90] and references therein for
examples.
Using this Ansatz we obtain the following results:

Fsinð�h��SÞ
UT ¼ �B0

X
a

e2axf
?ð1Þa
1T ðxÞDa

1ðzÞ;

B0 ¼
ffiffiffiffi
�

p
M

fhp2
Tðf?1TÞi þ hK2

TðD1Þi=z2g1=2
;

(16)

Fcosð�h��SÞ
LT ¼ B0

0

X
a

e2axg
ð1Þa
1T ðxÞDa

1ðzÞ;

B0
0 ¼

ffiffiffiffi
�

p
M

fhp2
Tðg1TÞi þ hK2

TðD1Þi=z2g1=2
;

(17)

F
sinð�hþ�SÞ
UT ¼ B1

X
a

e2axh
a
1ðxÞH?ð1=2Þa

1 ðzÞ;

B1 ¼ 2

f1þ Rðh1Þg1=2
;

(18)
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Fcosð2�hÞ
UU ¼ B2

X
a

e2axh
?ð1Þa
1 ðxÞH?ð1=2Þa

1 ðzÞ;

B2 ¼ 8zM½�hK2
TðH?

1 Þi��1=2

1þ Rðh?1 Þ
;

(19)

Fsinð2�hÞ
UL ¼ B0

2

X
a

e2axh
?ð1Þa
1L ðxÞH?ð1=2Þa

1 ðzÞ;

B0
2 ¼

8zM½�hK2
TðH?

1 Þi��1=2

1þ Rðh?1LÞ
;

(20)

Fsinð3�h��SÞ
UT ¼ �B3

X
a

e2axh
?ð1Þa
1T ðxÞH?ð1=2Þa

1 ðzÞ;

B3 ¼ 3

fRðh?1TÞ1=3 þ Rðh?1TÞ�1=3g3=2 ;
(21)

where

jaðxÞ ¼
Z

d2pTj
aðx; pTÞ;

jð1ÞaðxÞ ¼
Z

d2pT

p2
T

2M2
jaðx; pTÞ;

(22)

H?ð1=2Þa
1 ðzÞ ¼

Z
d2KT

KT

2zmh

H?a
1 ðz; KTÞ;

RðjÞ ¼ z2hp2
TðjÞi

hK2
TðH1Þi

:

(23)

Of course, other models of pT dependence can also be
assumed. In that case, however, one typically cannot solve
the convolution analytically, as in Eqs. (16)–(21), and has
to use numerical integration.

Notice that one could avoid the model dependence at
this point by including adequate powers of transverse
hadron momentum in the weights of the asymmetries [3].
The analysis of such Ph?-weighted asymmetries is more
involved, and so far only preliminary data not corrected for
acceptance effects have been shown [39].

III. TMDS IN THE LIGHT-CONE CONSTITUENT
QUARK MODEL

A convenient way to describe parton distributions is to
use the representation in terms of overlaps of LCWFs. This
representation can be viewed as a generalization of the
famous Drell-Yan formula for electromagnetic form fac-
tors [91], and it was recently derived and applied in phe-
nomenological calculations for the generalized parton
distributions [92,93] and transverse-momentum dependent
parton distributions [78,94]. In practice, this representation
becomes useful in phenomenological applications where
one can reasonably truncate the expansion of the hadron
state to the Fock components with a few partons. In our
approach, we consider the minimum Fock sector with just
three valence quarks. This truncation allows to describe the

parton distributions in those kinematical regions where the
valence degrees of freedom are effective, while the con-
tributions from quarks and gluons are suppressed.
The three-quark component of the nucleon has been

studied extensively in the literature [95–101] in terms of
quark distribution amplitudes defined as hadron-to-vacuum
transition matrix elements of nonlocal gauge-invariant
light-cone operators. Unlike these works, the authors of
Refs. [94,102,103] considered the wave-function ampli-
tudes keeping full transverse-momentum dependence of
partons and proposed a systematic way to enumerate inde-
pendent amplitudes of a LCWF given a particular parton
combination. Within this general classification scheme,
one finds that the nucleon state with three valence quarks
has six independent scalar amplitudes, which serve to
parametrize the contribution from the four different orbital
angular momentum components Lz compatible with total
angular momentum conservation, i.e., Lz ¼ 0, �1, 2. An
application of this method has been developed in Ref. [78]
for the calculation of the TMDs within a light-cone CQM,
which will be used here to make quantitative estimates of
the azimuthal asymmetries. The key ingredient of the
model is to derive the LCWF by boosting equal-time
model wave function. The equal-time wave function is
constructed as a product of a momentum wave function,
which is in a pure S-wave state and invariant under permu-
tations, and a spin-isospin wave function, which is
uniquely determined by SU(6) symmetry requirements.
The corresponding solution in light-cone dynamics is ob-
tained through the unitary Melosh rotations acting on the
spin of the individual quarks. By applying the Melosh
rotations, the Pauli spinors of the quarks in the nucleon
rest frame are converted into light-cone spinors. The ef-
fects of the relativistic spin dynamics are evident in the
presence of spin-flip terms in the Melosh rotations gener-
ating nonzero orbital angular momentum components,
which can be mapped out into six independent scalar
amplitudes. The explicit expressions of these light-cone
amplitudes can be found in Ref. [78], while the corre-
sponding results for the TMDs are given by

fa1 ðx; pTÞ ¼ Na
Z

d½X��ðx� x3Þ�ðpT � p?3Þ
� jc ðfxig; fp?igÞj2; (24)

ga1Lðx; pTÞ ¼ Pa
Z

d½X��ðx� x3Þ�ðpT � p?3Þ

� ðmþ xM0Þ2 � p2
T

ðmþ xM0Þ2 þ p2
T

jc ðfxig; fp?igÞj2; (25)

ga1Tðx; pTÞ ¼ Pa
Z

d½X��ðx� x3Þ�ðpT � p?3Þ

� 2Mðmþ xM0Þ
ðmþ xM0Þ2 þ p2

T

jc ðfxig; fp?igÞj2;
(26)
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ha1ðx; pTÞ ¼ Pa
Z

d½X��ðx� x3Þ�ðpT � p?3Þ

� ðmþ xM0Þ2
ðmþ xM0Þ2 þ p2

T

jc ðfxig; fp?igÞj2; (27)

h?a
1T ðx; pTÞ ¼ �Pa

Z
d½X��ðx� x3Þ�ðpT � p?3Þ

� 2M2

ðmþ xM0Þ2 þ p2
T

jc ðfxig; fp?igÞj2;
(28)

h?a
1L ðx; pTÞ ¼ �Pa

Z
d½X��ðx� x3Þ�ðpT � p?3Þ

� 2Mðmþ xM0Þ
ðmþ xM0Þ2 þ p2

T

jc ðfxig; fp?igÞj2;
(29)

where we introduced the integration measure

d½X� ¼ dx1dx2dx3�

�
1�X3

i¼1

xi

�

� d2p?1d
2p?2d

2p?3

½2ð2�3Þ�2 �

�X3
i¼1

p?i

�
: (30)

In Eqs. (24)–(29), M0 is the mass of the noninteracting
three-quark system, and m the constituent quark mass.
Furthermore, the flavor dependence is given by the factors
Nu ¼ 2, Nd ¼ 1, and Pu ¼ 4=3, Pd ¼ �1=3, as dictated
by SU(6) symmetry. A further consequence of the assumed
SU(6) symmetry is the factorization in Eqs. (24)–(29) of
the momentum-dependent wave function c ðfxig; fp?igÞ
from the spin-dependent factor arising from the Melosh
rotations. Thanks to this factorized form one finds the
following relations:

2ha1ðx; pTÞ ¼ ga1Lðx; pTÞ þ Pa

Na f
a
1 ðx; pTÞ; (31)

Pa

Na
fa1 ðx; pTÞ ¼ ha1ðx; pTÞ � p2

T

2M2
h?a
1T ðx; pTÞ; (32)

h?q
1L ðx; pTÞ ¼ �ga1Tðx; pTÞ: (33)

Equation (31) is a generalization of the analogous relations
discussed in [56,104] and was also rederived together with
Eq. (32) in Ref. [77]. Equation (33) was already found in
the diquark spectator model of Ref. [76]. In QCD the
various TMDs are all independent of each other, and
describe different aspects of the nucleon structure.
However, it is natural to encounter relations among
TMDs in simple models limiting the valence-quark con-
tribution and imposing SU(6) symmetry. The specific form
of the relations can be traced back to the Melosh rotations,
which relate longitudinal and transverse nucleon polariza-
tion states in a Lorentz-invariant way. A similar situation

occurs with the bag model [77]. In the diquark spectator
model of Ref. [76] the relations (31) and (32) hold only for
the separate scalar and axial contributions, while Eq. (33)
is verified more generally for both u and d flavors. Since
only two out of the four functions f1, g1L, h1, h

?
1T are

linearly independent, there are numerous relations among
them. For example, subtracting (31) and (32) one gets a
particularly interesting relation between pretzelosity, trans-
versity, and helicity distribution [77]

ga1ðx; pTÞ � ha1ðx; pTÞ ¼ h?ð1Þa
1T ðx; pTÞ: (34)

This relation was recently discussed also in connection
with the quark orbital angular momentum distribution
[80]. In the version of the diquark spectator model of
Ref. [79] the relation (34) is not supported in the axial-
vector diquark sector, but it remains valid for the scalar
sector (see also [80,81]). Interestingly, in Ref. [82] the
h?1Tðx; pTÞ distribution was reconsidered also within a co-
variant parton model with the remarkable finding that the
model satisfies the relation (34) without assuming SU(6)
symmetry.
The results in Eqs. (24)–(29) are applied in the following

to a specific CQM taking the form of the momentum wave
function from Ref. [105]

c ðfxi;p?igÞ ¼ 2ð2�Þ3
�
1

M0

!1!2!3

x1x2x3

�
1=2 N0

ðM2
0 þ �2Þ� ;

(35)

where!i is the free-quark energy andN
0 is a normalization

factor such that
R
d½X�jc ðfxig; fp?igÞj2 ¼ 1. In Eq. (35),

the scale �, the parameter � for the power-law behavior,
and the quark mass m are taken from Ref. [105], i.e., � ¼
0:607 GeV, � ¼ 3:4, and m ¼ 0:267 GeV. According to
the analysis of Ref. [106] these values lead to a very good
description of many baryonic properties.
The results Eqs. (24)–(29) are general and can be applied

to any CQM adopting the appropriate nucleon wave func-
tion. For example, we also considered the prediction in the
hypercentral CQM model of Refs. [107,108]. It has been
observed that the description of nucleon properties using
the model wave function either from [106] or from
[107,108] agree typically within (10–20)%, which might
be considered as an indication of the accuracy of the CQM
approach. In the following we shall assume that such is
also the accuracy of the T-even TMDs from CQM [106].
The numerical results for T-even TMDs obtained in this
way were discussed in detail in Ref. [78]. In order to
compute T-odd TMDs it is necessary to go beyond the
mere CQM scenario, and introduce gauge-boson degrees
of freedom, which was beyond the scope of Ref. [78] and
this work, where we concentrate on asymmetries due to T-
even TMDs.
In Fig. 2, we show the results for the integrals in pT of

the TMDs defined in Eq. (22), omitting the flavor depen-
dence given by the SU(6) isospin factors Na and Pa in
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Eqs. (29). The solid curves correspond to the total results,
obtained as the sum of the partial-wave contributions. The
other curves show the contributions of the different orbital
angular momentum components of the nucleon wave func-
tion. The unpolarized distribution f1, the helicity distribu-
tion g1, and the transversity h1 involve matrix elements,
which are all diagonal in the orbital angular momentum. In
the plots of these functions, the dashed curves give the
contribution from the S-wave component, and the dotted
curves correspond to the P-wave contribution. The D wave
gives a negligible contribution to the f1 and g1 distribu-
tions (dashed-dotted curves), while it is absent in the case
of h1. Although all these three functions are dominated by
the S waves, they have a non-negligible contribution also
from the P waves, with the largest (smallest) weight in the

case of f1 (g1). The functions gð1Þ1T and h?ð1Þ
1L involve a

transfer of orbital angular momentum by one unit between
the initial and final nucleon state. In our model, they are
simply related by Eq. (33). For these functions, the dashed
curves in Fig. 2 show the contribution from the interference
of S and P waves, and the dotted curves correspond to the
results from the P- and D-wave interference term. The S-P

interference term gives the largest contribution in the full x
range, while the P- and D-wave interference term contrib-

utes at most by 20%. In the case of h?ð1Þ
1T one has a

mismatch of orbital angular momentum between the initial
and final nucleon state equal to �Lz ¼ 2. In the plot of this
function in Fig. 2, the dashed curve gives the result for the
interference of the Lz ¼ 1 and Lz ¼ �1 components, and
the dotted curve refers to the contribution from the inter-
ference of the S- and D-wave components. Thanks to the
interference with the S wave, we note that here the con-
tribution from the D wave is amplified. Furthermore, at
variance with the other distribution functions, the different
partial-wave contributions do not have the same x depen-
dence, and for x * 0:6 the P waves are suppressed with
respect to the S-D wave interference term. This peculiar

behavior makes the h?ð1Þ
1T function interesting, especially in

the study of the interplay between the different partial-
wave components in the azimuthal spin asymmetries, as
discussed in the Appendix.

IV. COLLINEAR DOUBLE-SPIN ASYMMETRIES
A1 AND ALL

Before discussing azimuthal asymmetries in SIDIS, we
consider first the double-spin asymmetry ALL and its in-
clusive analog A1, Eqs. (13) and (14). The study of these
observables in the model framework is instructive, because
in this case evolution equations (and fragmentation func-
tions) are known and complications due to pT dependence
are avoided. This allows us to test the model under ‘‘con-
trolled conditions’’ in two respects. First, in which x range
and with what accuracy is the model applicable? Of course,
the performance of the model could vary with observables.
Nevertheless, this exercise will give us valuable insights in
this respect. Second, how stable are the results under
evolution? In this case we can compare exact results,
with results obtained making assumptions on the evolution.
The experience made here will be useful later, when deal-
ing with azimuthal asymmetries whose evolution is practi-
cally not solved.
A related key question emerging not only here but in any

nonperturbative calculation concerns the scale at which the
model results for the parton distributions hold. From the
point of view of QCD where both quark and gluon degrees
of freedom contribute, the role of the low-energy quark
models is to provide initial conditions for the QCD evolu-
tion equations. Therefore, we assume the existence of a
low scale Q2

0 where glue and sea quark contributions are

suppressed, and the dynamics inside the nucleon is de-
scribed in terms of three valence (constituent) quarks con-
fined by an effective long-range interaction. In fact, glue
and sea quark degrees of freedom might be thought of at
this low scale to be contained in the structure of the
constituent quarks, which are massive objects. The actual
value of Q2

0 is fixed evolving back unpolarized data, until

the valence distribution matches the condition that the
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FIG. 2. Parton distribution functions and transverse moments
of TMDs as functions of x from the light-cone CQM [78]. In all
panels the solid curves show the total results for the ‘‘flavorless’’
TMDs, i.e., the TMDs of definite flavor follow from multiplying
by the spin-flavor factors Na or Pa, see Eqs. (24)–(29). The other
curves show how much the different angular momentum com-
ponents of the nucleon wave function contribute to the total
results: In the case of f1ðxÞ, g1ðxÞ, h1ðxÞ, the dashed and dotted
curves correspond to the contribution from the squares of the S-
and P-wave components of the nucleon wave function, respec-
tively. The D-wave contribution is absent in h1, while for f1 and
g1 it is quite small and corresponds to the hardly visible dashed-

dotted curves. In the case of gð1Þ1T ðxÞ, hð1Þ?1L ðxÞ the dashed and

dotted curves give the results from the S-P and P-D interference

terms, respectively. In the case of hð1Þ?1T ðxÞ, the dashed curve is

the result from the P-wave interference, and the dotted curve is
due to the interference of S and D waves.
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second moment, i.e., the momentum fraction carried by the
valence quarks, is equal to one [109].

Using LO evolution equations, we find Q2
0 ¼

0:079 GeV2 [110]. Although there is no rigorous relation
between the QCD quarks and the constituent quarks, and a
more fundamental description of the transition from soft to
hard regimes would be very helpful, this strategy reflects
the present state of the art for quark model calculations
[111–113], and has been validated with a fair comparison
to experiments [109,111].

Figure 3(a) shows the inclusive double-spin asymmetry
A1 in DIS off proton, Eq. (14). The two theoretical curves
are obtained using ga1ðxÞ and fa1 ðxÞ from the light-cone

CQM [78]. In one case both distribution functions are
LO evolved from the low scale of the model Q2

0 to Q2 ¼
3:0 GeV2 (solid curve) using the evolution codes of
Refs. [114,115], and in the other case both distribution
functions are taken at the low scale of the model (dashed
curve). The results differ moderately at x * 0:1 reflecting
the weak scale dependence of A1 [116].

As can be seen in Fig. 3(a), the description of data from
the E143, EMC, and SMC experiments [117–119] is rea-
sonable. For x * 0:15 the model describes the A1 data
within an accuracy of about 30%. The description im-
proves in the valence-x region of x * 0:2 though the
accuracy of the data at large x is not sufficient to draw
definite conclusions. Since the model contains no anti-
quark and gluon degrees of freedom, it is not surprising
to observe that it does not work at small x. As an inter-
mediate summary, it can be said that the results are weakly
scale dependent, and the model well catches the main
features of the observable A1 in its range of applicability,
namely, in the valence-x region.

Since in the following we will deal with SIDIS, we
repeat the exercise with the double-spin asymmetry ALL,
Eq. (13). Figures 3(b) and 3(c), show ALL in DIS produc-
tion of charged hadrons off proton target. The theoretical
curves are obtained using ga1ðxÞ and fa1 ðxÞ from the light-
cone CQM [78], once LO evolved to Q2 ¼ 2:5 GeV2

(solid curve), and once left at the initial scale of the model
(dashed curve). For the fragmentation function Da

1ðzÞ we
use in both cases, and throughout this work, the LO pa-
rametrization [120] at Q2 ¼ 2:5 GeV2. Again, we observe
a weak scale dependence, and a good description of data in
the valence x region, where the model describes the data
within an accuracy ofOð20%Þ. Thus, in the SIDIS case we
make a comparably positive experience as in the inclusive
case. Notice that the result with ga1ðxÞ and fa1 ðxÞ taken at the
low scale is, strictly speaking, not the consistent result for
ALL at such a low scale because we use the parametrization
for Da

1 at Q2 ¼ 2:5 GeV2.
We remark that we could have tried to describe the

double-spin asymmetries A1 and ALL with ga1ðxÞ from the
model, and fa1 ðxÞ from a parametrization, for example
[121]. Such an approach would correspond to the strategy
to use the model only as input for the part which is
responsible for the spin effect, and to use for the well-
known denominator of the spin asymmetry standard pa-
rametrizations, which has the advantage that the model
uncertainty is only in the numerator. In the case of A1

and ALL, however, such an approach yields a bad descrip-
tion of the data. This can be traced back to the fact that the
fa1ðxÞ from the model [78] and from parametrizations [121]
have different large-x behavior. Interestingly, it happens to
be the case also in the case of ga1ðxÞ from the model [78]
and from parametrizations [122], such that the uncertain-
ties partly cancel in the ratio, leading to a better description
of the data. It is important to stress that here we deal with
chiral-even functions, where antiquark and gluon degrees
of freedom are of importance. In the case of chiral-odd
TMDs the situation is different, and a different approach
could be more successful. We will come back to this point
later on.
The above discussion allows to assign a ‘‘typical accu-

racy’’ to the approach. In this context it is of interest to
make the following observation. The present version of the
model uses SU(6) symmetry, such that gu1ðxÞ ¼ �4gd1ðxÞ at
the low scale, and similarly for other polarized distribution
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FIG. 3. The inclusive (a) and semi-inclusive (b, c) double-spin asymmetries, A1 and ALL, defined in Eqs. (13) and (14), in DIS off
proton as functions of x. The theoretical curves are obtained with ga1ðxÞ and fa1 ðxÞ from the light-cone CQM [78] as follows: both

functions LO evolved to the hQ2i of the experiments (solid curves), and both at the low scale of the model (dashed curves). In (b, c) we
use always the parametrization [120] for Da

1 atQ
2 ¼ 2:5 GeV2. The data in (a) are from Refs. [117–119], in (b,c) are from SMC (open

circles) [142] and HERMES (solid circles) [143].
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functions or TMDs. Because of isospin symmetry the
structure functions of the neutron are related to those of
the proton by interchanging u and d flavor. Therefore, at

the low scale An
1 / 4

9 g
u=n
1 þ 1

9g
d=n
1 ¼ 4

9g
d
1 þ 1

9 g
u
1 ¼ 0. At

higher scales An
1 � 0 due to evolution but the effect re-

mains small. Rather than claiming An
1 � 0, it is more

meaningful to state that SU(6) predicts An
1 to be small

compared to, say, the A1 of proton. Thus, for the SU(6)
symmetry concept to be a useful tool, we expect for the
ratio

��������
An
1

Ap
1

��������� 1: (36)

Experimentally, An
1 (extracted by subtracting deuteron and

proton data, or from 3He data, modulo nuclear corrections)
is found clearly nonzero. However, in the valence-x region
the SU(6) expectation is supported by data [123–128]: the
ratio (36) is of the order of magnitude 20%—which is
indeed a ‘‘zero’’ within the model accuracy.

Notice that in SIDIS the SU(6) symmetric TMDs are
weighted with fragmentation functions, such that in gen-
eral azimuthal asymmetries from the neutron are nonzero
already at the low scale (with the exception of �0 into
which u and d quarks fragment with equal strength).
Nevertheless, also in SIDIS the results for a neutron target
are highly sensitive to SU(6) breaking effects, and we
refrain from showing them here. An adequate description
of spin asymmetries from a neutron target requires to
account systematically for possible SU(6)-breaking ef-
fects. This is similar to what one observes in the case of
the electric form factor of the neutron, where mixed-
symmetry components in the nucleon wave function
were found essential to reproduce the experimental data
[88,129]. Results for the TMDs with such SU(6) breaking
terms will be discussed elsewhere.

Let us draw conclusions from the study presented in this
section. The double-spin asymmetries in inclusive DIS, A1,
and SIDIS, ALL, are weakly scale dependent. The model
describes the data on these observables within an accuracy
of�20–30% in the valence-x region. This suggests that the
approach could also be useful for studies of azimuthal spin
asymmetries. In fact, at this point it is worth to stress that
(i) azimuthal phenomena are expected to yield sizable
effects especially in the valence-x region, (ii) first data
on azimuthal asymmetries often have uncertainties com-
parable to the observed model accuracy, (iii) in proposals
for future experiments predictions of new effects of an
accuracy of Oð30%Þ are useful enough.

V. PT DEPENDENCE, GAUSS ANSATZ,
APPLICABILITY OF THE MODEL

When dealing with azimuthal asymmetries in SIDIS it is
very convenient to use the Gaussian model for the distri-
bution of transverse parton momenta, see Sec. II. If one

assumes the Gaussian Ansatz (15) for fa1 ðx; pTÞ and
Da

1ðz; KTÞ, then a good description of the SIDIS data
(more precisely, mean values for hPh?ðzÞi not corrected
for acceptance effects) from HERMES [34] is obtained
with the following parameters [59]:

hp2
Tðf1Þi ¼ 0:33 GeV2; hK2

TðD1Þi ¼ 0:16 GeV2:

(37)

Numerically, very similar results were obtained in [57]
from a study of EMC data [31] on the Cahn effect [5].
The pT dependence of TMDs in the model [78] is

definitely not of Gaussian form. (In fact, neither in this
model, nor in any other model of TMDs considered so far
[75–87], there is even the factorization of x and pT depen-
dence.) However, the essential question is: Can the pT

dependence be reasonably approximated by a Gaussian
form?
In order to discuss that let us make the following two

exercises: First, we define the mean transverse momenta
(n ¼ 1) and the mean square transverse momenta (n ¼ 2)
in the TMD jðx; pTÞ as follows:

hpn
T;ji ¼

R
dx

R
d2pTp

n
Tjðx; pTÞR

dx
R
d2pTjðx; pTÞ

: (38)

In Table I we show results for these quantities for T-even
twist-2 TMDs from [78].
In order to see to which extent the results for the pT

dependence of TMDs from [78] can be approximated by a
Gaussian behavior, we remind that in the Gaussian model
the following relation holds:

hp2
Ti ¼Gauss 4

�
hpTi2: (39)

In Table I we show also the results for the ratio 4hpT i2
�hp2

T i that
would be unity for a Gaussian pT distribution. Remarkably,
the model results for this ratio from [78] deviate from unity
by not more than 10%. Of course, although the Gaussian
model relation (39) works within 10%, it does not neces-
sarily imply that the pT-dependence in the model is

TABLE I. The mean transverse momenta and the mean square
transverse momenta of T-even TMDs, as defined in Eq. (38),
from the light-cone CQM [78]. If the transverse momenta in the
TMDs were Gaussian, then the result for the ratio in the fourth
column would be unity, see text. The last column shows the
hp2

TðjÞi in units of hp2
Tðf1Þi.

TMD j hpTi in GeV hp2
Ti in GeV2 4hpT i2

�hp2
T i

hp2
T ðjÞi

hp2
T ðf1Þi

f1 0.239 0.080 0.909 1

g1 0.206 0.059 0.916 0.74

h1 0.210 0.063 0.891 0.79

g1T 0.206 0.059 0.916 0.74

h?1L 0.206 0.059 0.916 0.74

h?1T 0.190 0.050 0.919 0.63
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Gaussian within such an accuracy. We make therefore the
following second exercise.

We ask the question: what is the difference between
computing in the model [78] an observable using exact
model pT dependence of TMDs and computing it by
approximating the true pT dependence by a Gaussian?
We can rephrase this question also as follows: when inte-
grating out the transverse momenta of produced hadrons
and focusing, for example, on the x dependence of azimu-
thal asymmetries, the pT-model dependence is weakened,
but to what extent?

In order to answer that question we choose the double-

spin asymmetry Acosð�h��SÞ
LT and use the model [84] for

Da
1ðz; KTÞ, which also refers to a low scale. (We stress

that the results presented here are to be considered as an
exploratory study of pT-model effects. Our predictions for
this asymmetry will be given in the subsequent section.)

In Fig. 4, we see the results for Acosð�h��SÞ
LT obtained as

follows: The solid curve shows the result from solving
numerically the convolution integral in (6) with
g1Tðx; pTÞ from [78] and Da

1ðz; KTÞ from [84]. The dotted
curve shows the result for the asymmetry obtained from the

Gaussian model, Eq. (17), using gð1Þa1T ðxÞ from [78] and

Da
1ðzÞ from [84], assuming the Gaussian Ansatz (15) for

these functions, and assigning the Gaussian widths accord-
ing to Eq. (38).

The different results agree within an accuracy of 20%,
see Fig. 4. Such an uncertainty is ‘‘within the model
accuracies’’ of Refs. [78,84]. Thus, we conclude that the
true transverse-momentum dependence in the models
[78,84] can be approximated by the Gaussian Ansatz
with a satisfactory precision for practical purposes.

Next, we address the question how to use consistently
the model predictions [78] for phenomenology—in view of
the fact that they refer to a very low hadronic scale. The
fact that hp2

Ti of fa1 in that model is smaller compared to
what is required by phenomenology, Eq. (37), is perfectly
reasonable. Sudakov effects make the pT distributions
broader, i.e., hp2

Ti larger, when evolving to larger (experi-
mentally relevant) scales.
This pT broadening is expected to be independent of the

quark polarization, in first approximation. Thus, what we
can use for phenomenology are the model results for hp2

Ti
in units of the mean square transverse momenta of f1, see
last column in Table I, and take the ‘‘unit’’ hp2

Tðf1Þi from
phenomenology, Eq. (37).
On the basis of the considerations in this and in the

previous section, we are in the position to establish our
strategy to treat azimuthal asymmetries in the following.
Let us summarize.

(i) We will mainly focus on the x dependence of the
asymmetries, especially in the valence-x region (see
Sec. IV).

(ii) We will assume the Gaussian model, which is a
reasonable approximation (this section, see above).

(iii) When information on a specific Gaussian width of a
polarized TMD is needed, we will use the model
prediction for the corresponding ratio (see last col-
umn in Table I), and the value from Eq. (37) for the
width of fa1 .

(iv) We will not discuss the z dependence of the azimu-
thal asymmetries, because here integrals over the x
dependence enter which extend, depending on the
experiment, to low-x regions where the model is not
applicable.1

(v) Similar warnings apply to the Ph? dependence of the
asymmetries. We shall therefore address this point
with particular care, see Sec. X below.

VI. THE DOUBLE-SPIN ASYMMETRY A
cosð�h��SÞ
LT

We start the discussion of azimuthal asymmetries with

the double-spin asymmetry Acosð�h��SÞ
LT ¼

Fcosð�h��SÞ
LT =FUU, which is proportional to

P
ae

2
ag

a
1TD

a
1 ,

see Eq. (6). Assuming the Gaussian Ansatz, which gives
a good approximation, see Sec. V, we have to model the
prefactor B0

0 in Eq. (17). For that let us rewrite that factor as

B0
0 ¼

ffiffiffiffi
�

p
M

hp2
Tðf1Þi1=2

�hp2
Tðg1TÞi

hp2
Tðf1Þi

þ hK2
TðD1Þi

z2hp2
Tðf1Þi

��1=2
: (40)

For the first ratio in the curly brackets we use the model

0
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Acos(φh-φS)
LT

x

FIG. 4. A
cosð�h��SÞ
LT in �þ production off proton, as a function

of x. Solid curve: exact result obtained using g1Tðx; pTÞ from
[78] and D1ðz; KTÞ from [84]. Dashed curve: an approximation

obtained using the integrated functions gð1Þ1T ðxÞ, D1ðzÞ from

[78,84] and ‘‘simulating’’ their pT dependence by means of
the Gaussian Ansatz, as described in the text.

1We recall that the numerators and denominators of the
asymmetries (5)–(10) are actually weighted by 1=Q4 / 1=x2,
which strongly emphasizes the role of the small-x region, whose
description is beyond the range of applicability of the model.
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prediction from the last column in Table I. For the second
ratio in the curly brackets we use the numbers from
Eq. (37).

Being interested in the x dependence of the asymmetry,
we further integrate over z

Acosð�h��SÞ
LT ðxÞ ¼

P
a
e2axg

ð1Þa
1T ðxÞhB0

0D
a
1iP

a
e2axf

a
1 ðxÞhDa

1i
; (41)

where h. . .i denotes the average over zwithin the respective
experimental cuts. Here and in the following, we will
consider the range 0:2 	 z 	 0:7 corresponding to the
typical kinematics of HERMES. There is little difference
if one uses the COMPASS cuts 0:2 	 z < 1, since the
resulting hzi is similar. At JLab typically higher hzi are
reached. For the present observable, however, this has little
impact.

The results for Acosð�h��SÞ
LT in DIS production of pions off

different targets are shown in Fig. 5. For gð1Þa1T ðxÞ and fa1 ðxÞ
we take the results from the model [78], and consider two
options. First, we take both functions at the low scale of the
model (dashed curves). Second, we consider both curves
LO evolved to Q2 ¼ 2:5 GeV2 (solid curves).

Hereby, we use for gð1Þa1T ðxÞ the evolution equations for
ga1ðxÞ. This is admittedly not the correct evolution pattern.
However, this is the evolution pattern of a chiral-even
polarized function, and the purpose of presenting it here

is to shed some light on the possible size of evolution
effects.
Our crude estimate of evolution effects indicates, that

the predictions for the asymmetries are presumably robust
concerning scale dependence. The proton asymmetries
reach 4% in the valence-x region, which could be mea-
sured—especially at JLab. The deuteron asymmetries are
somewhat smaller. For a deuteron target there also exist
preliminary data from the 2002–2004 run of the
COMPASS experiment [46]. As can be seen in Fig. 5,
our results are compatible with these preliminary data.

Estimates for A
cosð�h��SÞ
LT were made also in [67] on the

basis of the approximation

gð1Þa1T ðx;Q2Þ �WW
x
Z 1

x

dy

y
ga1ðy;Q2Þ (42)

using the parametrization [122] for ga1ðxÞ. The approxima-
tion is ‘‘justified’’ in QCD upon the neglect of pure twist-3
(quark-gluon) correlators and current quark-mass terms
[68–70]. This is analog to the Wandzura-Wilczek (WW)
approximation for the twist-3 parton distribution function
gaTðxÞ [130–132]—hence, the label ‘‘WW’’ in (42). The
WW approximation for gaTðxÞ is supported experimentally
within the error bars of the present data [133–135].
Whether the WW-type approximation (42) is supported
by data equally well remains to be seen.
In the light-cone CQM [78] the ‘‘WW-type approxima-

tion,’’ Eq. (42), is supported in the valence x region with
good accuracy. Furthermore, our results support the find-
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FIG. 5. The double-spin asymmetry A
cosð�h��SÞ
LT in DIS production of pions, as a function of x, obtained using gð1Þa1T ðxÞ and fa1 ðxÞ from

the light-cone CQM [78] in the following way: both functions are taken at the low scale of the model (dashed curves), and both are LO

evolved to Q2 ¼ 2:5 GeV2 (solid curves). Hereby, the scale dependence of gð1Þa1T ðxÞ is ‘‘simulated’’ using the ga1ðxÞ evolution pattern,

see text. The data points are preliminary COMPASS data for charged hadron production off deuteron [46].
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ings of [67] also numerically. Taking into account the
different kinematical cuts applied in the calculation of
[67], we obtain asymmetries of similar size, with a more
flat x dependence.

VII. THE SINGLE-SPIN ASYMMETRY A
sinð�hþ�SÞ
UT

Next, we focus on the azimuthal single-spin asymmetry

(SSA) Asinð�hþ�SÞ
UT ¼ Fsinð�hþ�SÞ

UT =FUU due to transversity
and the Collins function. In the Gauss Ansatz (15) the
structure function in the numerator of this SSA is given
by the expression in Eq. (18).

For the Collins function, more precisely for hB1H
?ð1=2Þa
1 i

equal to h2BGaussH
?ð1=2Þa
1 i in the notation of [62], we use

the results extracted in [62] from the (preliminary)
HERMES data [38]. Although meanwhile new data are
available [44,45,47,48] the results onH?

1 from [62] are still
in excellent agreement with updated extractions [64].

When dealing with asymmetries due to chiral-odd
TMDs, in our opinion a different approach is more appro-
priate as compared to the case of asymmetries due to
chiral-even TMDs. Let us explain this point in more detail.

When describing asymmetries due to chiral-even func-
tions in the previous sections, we used model input for both
the numerator and the denominator of the asymmetries. In
the model gluon (and sea quark) degrees of freedom are
absent at the low scale, and generated by evolution at
higher scales. Admittedly, in this way one cannot accu-
rately describe absolute DIS cross section data. For that
nonzero unpolarized gluon and sea quark distributions are
needed already at low input scales [121] (though the model
scale is lower than the initial scale of the parametrizations
[121]). This ‘‘shortcoming’’ of the model, however, affects
similarly the numerator and the denominator of asymme-
tries due to chiral-even TMDs. Indeed, we observed that
these model uncertainties partly cancel in the ratio—re-
sulting in a useful description of (SI)DIS data on asymme-
tries in the valence-x region, see Sec. IV.

Can we expect a similarly good description of asymme-
tries, which are due to chiral-odd TMDs, using this strat-

egy? The answer is no, in our opinion. Transversity has no
gluon counterpart, in contrast with fa1ðxÞ. The absence of

gluon degrees of freedom in an approach constitutes there-
fore a ‘‘lesser shortcoming’’ for ha1ðxÞ than for fa1 ðxÞ. So
one expects intuitively that in quark models transversity
and other chiral-odd TMDs could be modeled more reli-
ably than chiral-even ones, though it is not clear how to put
this expectation on a firm field theoretical basis.
Nevertheless, these considerations suggest to adopt the

following strategy for the description of the Collins SSA,
namely, to use ha1ðxÞ from the model LO evolved [56,136]

to the experimental scale in the numerator of the SSA, and
fa1ðxÞ from a parametrization, e.g., [121], taken at the

corresponding scale. In this way, the model uncertainty is
limited to the numerator of the SSA only, while the de-
nominator is described exactly. We indeed observe that the
above-described strategy yields by far the best results in
the case of the Collins SSA, see Fig. 6. Any other options,
such as ha1ðxÞ and fa1 ðxÞ from the model at the low scale or

ha1ðxÞ and fa1 ðxÞ from the model LO evolved, gave unsat-

isfactory results.

Let us discuss in more detail the results for A
sinð�hþ�SÞ
UT in

Fig. 6, where for sake of clarity we refrain from showing
the error bands due to the statistical and systematic un-
certainties of the extracted Collins function [62]. Figures 6
(a) and 6(b) show the results for charged pion production
from a proton target in comparison to the preliminary
HERMES data [38]. (It is consistent to compare to these
data, because the information on H?

1 [62] was extracted

from those data.) The model results ideally describe these
data—including the small-x region, see Figs. 6(a) and 6(b).
This is in line with the favorable comparison between our
model predictions [56,104] and the phenomenological ex-
traction of the transversity and tensor charges in
Refs. [63,64].

In Figs.6(c) and 6(d)we compare our results for Asin�C

UT 

�Asinð�hþ�SÞ

UT (since �C¼�hþ�Sþ�) for charged pion

production from a deuterium target to the COMPASS data
[47], which extend down to much lower values of x. Our
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FIG. 6 (color online). The single-spin asymmetry Asinð�hþ�SÞ
UT 
 �Asin�C

UT in DIS production of charged pions off proton and deuteron
targets, as a function of x. The theoretical curves are obtained on the basis of the light-cone CQM predictions for ha1ðx;Q2Þ from
Refs. [56,78], see text. The (preliminary) proton target data are from HERMES [38], the deuteron target data are from COMPASS [47].
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results are compatible with the data also in this case,
including again the small-x region.

On the basis of the presently available information on
the Collins function extracted from SIDIS and eþe� data,
we would predict �0 SSAs compatible with zero within the
uncertainties of the extractions [62–64]. However, this is a
prediction due to our present understanding of the Collins
effect, rather than due to the model for TMDs. For this
reason, here and in the following two sections where we
discuss further SSAs due to Collins effect, we refrain from
showing results for neutral pion production.

VIII. THE SINGLE-SPIN ASYMMETRY A
sinð2�hÞ
UL

In this section we discuss the azimuthal SSA Asinð2�hÞ
UL ¼

Fsinð2�hÞ
UT =FUU due to h?a

1L and the Collins function. In the
Gauss Ansatz (15) the structure function in the numerator
of this SSA is given by the expression in Eq. (20). Thus, in

order to describe this SSAwe need hB0
2H

?ð1=2Þa
1 i, which we

estimate on the basis of the Collins function extractions
[57,59] precisely as described in Ref. [68].

The problem we face in the context of Asinð2�hÞ
UL concerns

the question of how to evolve correctly h?ð1Þa
1L ðxÞ from the

low initial scale of the model to the relevant experimental
scale. In contrast with transversity, exact evolution equa-
tions are not available in this case.

In our study of A
sinð�hþ�SÞ
UT we learned that other strat-

egies, such as leaving transversity at the low scale of the
model [and taking fa1 ðxÞ in the denominator from the
model or from parametrization, at the low scale or evolved]
resulted in unfavorable descriptions of data, and we were
able to understand qualitatively why. Of course, this is here
a different observable. But the experience with the Collins
SSA does not encourage any other strategy than that
adopted in that case, in Sec. VII, namely, to evolve the
chiral-odd TMD from the model, and use parametrizations
for the denominator of the SSA.

Not being able to evolve h?ð1Þa
1L ðxÞ correctly we use

instead the ha1ðxÞ-evolution pattern to evolve it ‘‘approxi-

mately.’’ Since both functions are chiral odd, the simula-
tion of evolution effects in this way can be expected to be
more promising than using any other evolution pattern.
In Fig. 7, we compare the results obtained in this way to

the HERMES data from proton and deuteron targets
[32,34]. We observe that our estimates are well compatible
with the data—including again the small-x region. For
comparison, in the Appendix and Ref. [137] we also
show the results obtained with the same ingredients as in
Fig. 7 but without approximate evolution of ha1LðxÞ. This
approach yields a somewhat larger SSA, especially at large
x, but it is similarly compatible with the data.

In Ref. [68] predictions for the Asinð2�hÞ
UL SSAwere made

on the basis of the WW-type approximation

h?ð1Þa
1L ðxÞ �WW�x2

Z 1

x

dy

y2
ha1ðyÞ; (43)

and model predictions for transversity from [138].
Equation (43) is analog to the approximation (42), i.e., it
also arises when certain quark-gluon correlator and current
quark-mass terms are neglected. Interestingly, the light-
cone CQM supports the approximation (43) within a rea-
sonable accuracy [78]. Also, the numerical results for the
SSA obtained here and in [68] agree well qualitatively.
It is, of course, an important question how to quantify

the theoretical uncertainty we introduced in our study by

employing the incorrect evolution pattern for h?ð1Þa
1L ðxÞ.

Until exact evolution equations for this TMD will be
available, this question cannot be answered exactly.
However, one may suspect that the uncertainties due to
evolution are less dominating than other uncertainties
within the model. The current HERMES data do not con-
tradict this expectation, see Fig. 7. We remark that there are
also preliminary CLAS data [41]. Our approach is compat-
ible with the results for �þ and �0 but cannot explain the
trend of the �� SSA, similarly to Ref. [68]. The situation
will be further clarified in future experiments at JLab
[139,140], and COMPASS.

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3

Asin(2φh)
UL (a)

π+ proton

x

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3

Asin(2φh)
UL (b)

π- proton

x

-0.02

0

0.02

0.04

0.06

0 0.1 0.2 0.3

Asin(2φh)
UL (c)

π+ deuteron

x

-0.02

0

0.02

0.04

0.06

0 0.1 0.2 0.3

Asin(2φh)
UL (d)

π- deuteron

x

FIG. 7 (color online). The single-spin asymmetry Asinð2�hÞ
UL in DIS production of charged pions off proton and deuteron targets, as a

function of x. The theoretical curves are obtained by evolving the light-cone CQM predictions for h?ð1Þa
1L of Ref. [78] to Q2 ¼

2:5 GeV2, using the ha1 evolution pattern, see text. The data points are from HERMES [32,34]. The inner error bars are the statistical

errors, the outer error bars are the systematic errors.
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IX. THE SINGLE-SPIN ASYMMETRY A
sinð3�h��SÞ
UT

Finally, we study the azimuthal SSA Asinð3�h��SÞ
UT ¼

Fsinð3�hþ�SÞ
UT =FUU due to pretzelosity and the Collins func-

tion. In the Gauss Ansatz (15) the structure function in the
numerator of this SSA is given by the expression in

Eq. (21). The factor hB3H
?ð1=2Þa
1 i we evaluate exactly as

done in Ref. [77].

Also in the context of the asymmetry A
sinð3�h��SÞ
UT we

face the question how to evolve h?ð1Þa
1T ðxÞ from the low

initial scale of the model to the relevant experimental scale.
Exact evolution equations are not available in this case,
either. We follow here the approach developed in the
previous section, and ‘‘simulate’’ the evolution of

h?ð1Þa
1T ðxÞ by evolving it according to the transversity-

evolution pattern. Again, since pretzelosity and transver-
sity are chiral odd, this way might be a useful estimate of
evolution effects.

The results obtained in this way are shown in Fig. 8. We
find the pretzelosity SSA rather small, about 1% in the
case of charged pions from a proton target, see Figs. 8(a)
and 8(b). This makes it the probably most challenging
asymmetry to be measured. The deuteron SSAs are some-
what smaller, see Figs. 8(c) and 8(d) where we show for
comparison the preliminary COMPASS data presented in
Ref. [46]. Our results are compatible with the data, and
explain why the effect was found consistent with zero
within error bars at COMPASS. The error bars of the
preliminary data [46] simply do not allow to resolve an
asymmetry smaller than 1%.

In Ref. [77] estimates for the asymmetry A
sinð3�h��SÞ
UT

were presented on the basis of the positivity bound

jh?ð1Þa
1T ðxÞj 	 1

2 ðfa1 ðxÞ � ga1ðxÞÞ [49], using the parametri-

zations [121] for fa1 ðxÞ, ga1ðxÞ. The results of the light-cone
CQM for pretzelosity (as well as other TMDs), of course,
respect positivity bounds [78], and the transverse moment
of pretzelosity at the low scale of the model is not that
small, see Fig. 2. But after evolution (with the transversity-
evolution pattern) to a scale of Q2 ¼ 2:5 GeV2, it is much

smaller than its bound constructed from parameterizations
for fa1ðxÞ, ga1ðxÞ at Q2 ¼ 2:5 GeV2. Therefore, our esti-

mates of the pretzelosity SSA are significantly smaller than
the maximal effect allowed by positivity requirements
[77].
Of course, we do not know to which extent our approach

to estimate the h?ð1Þ
1T ðxÞ evolution effects is really realistic.

For comparison, in the Appendix and Ref. [137], we also
make predictions neglecting the evolution of pretzelosity.
In this way the results for the SSA are more sizable, and the
effects are larger especially in the region of intermediate
and large x. The planned experiment at JLab will allow us
to discriminate among the different predictions [141].

X. Ph?-DEPENDENCE OF SPIN ASYMMETRIES

As discussed in Sec. V, care is required in order to use
the model results for the pT dependence of TMDs for
phenomenological applications. In this section we shall
exemplify how this can be done with a study of the Ph?
dependence of the double-spin asymmetry ALL. In princi-
ple, we could discuss also other asymmetries, but ALL has
the advantage that its x and z dependence is rather well
known—so we do not need the model input for that, and
can focus on Ph? dependence, which is the only new
concept in this case. Would we discuss other (azimuthal)
spin asymmetries, we would need to use the model input
also for the x dependence of the novel TMD, and face the
problems of how to evolve TMDs, make a meaningful
estimate of Sudakov effects, and deal with the small-x
region (see footnote 1). When dealing with ALL in the
way described below, we avoid these problems.
Before discussing the Ph? dependence of ALL in our

approach, let us remark that ideally a study of pT effects
should start with absolute cross section data on the pro-
duction of hadrons in unpolarized DIS. Such data are
difficult to produce, and experimentally it is preferable to
study the Ph? dependence of asymmetries, since detector
acceptance effects in the numerator and denominator of the
asymmetries (largely) cancel. Therefore, so far informa-
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FIG. 8. The single-spin asymmetry A
sinð3�h��SÞ
UT in DIS production of charged pions off proton and deuteron targets, as a function of

x. The theoretical curves are obtained by evolving the light-cone CQM predictions for h?ð1Þa
1T of Ref. [78] to Q2 ¼ 2:5 GeV2, using the
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tion from SIDIS on pT dependence of the unpolarized
parton distribution and fragmentation functions, fa1 and
Da

1 , has been obtained only indirectly, see Sec. V. It would
be desirable to improve this situation. Apart from the
absolute cross section proportional to FUU, the next ‘‘sim-
plest’’ observable to learn about pT effects is probably
ALL ¼ FLL=FUU.

In Sec. V, we learned that the Gauss Ansatz is supported
within the model with reasonable accuracy. This justifies to
make explicit use of it, also in this case. If we assume this
Ansatz, then

FUUðx; z; Ph?Þ ¼
X
a

e2axf
a
1 ðxÞDa

1ðzÞ
expð�P2

h?=hP2;unp
h? iÞ

�hP2;unp
h? i ;

hP2;unp
h? i ¼ hK2

Ti þ z2hp2
Tðf1Þi; (44)

FLLðx; z; Ph?Þ ¼
X
a

e2axg
a
1ðxÞDa

1ðzÞ
expð�P2

h?=hP2;pol
h? iÞ

�hP2;pol
h? i ;

hP2;pol
h? i ¼ hK2

Ti þ z2hp2
Tðg1Þi: (45)

If we assume that the widths are flavor and x or z indepen-
dent, then the Ph? dependence of the double-spin asym-
metry is given by

ALLðPh?Þ ¼ hALLi
hP2;unp

h? i
hP2;pol

h? i exp
�

P2
h?

hP2;unp
h? i �

P2
h?

hP2;pol
h? i

�
;

(46)

where hALLi denotes the spin asymmetry averaged over x
and z, which is known in the experiment with precision.
[Now, in Eq. (46) it is implied that ‘‘z2’’ in (44) and (45) is
replaced by hz2i. This is an approximation, and the treat-
ment could be improved, but we refrain from this in our
illustrative study for sake of clarity.]

We remark that positivity, i.e., ALL 	 1 8 x and Ph?,
dictates

hp2
Tðg1Þi

hp2
Tðf1Þi

	
��������
ga1ðxÞ
fa1 ðxÞ

��������: (47)

This implies that (in the Gauss Ansatz) the widths of
helicity and the unpolarized distribution could be equal,
if and only if the equality fa1 ðxÞ ¼ jga1ðxÞj were true.

Now, let us discuss how to use the model results in order
to predict the Ph? dependence of ALL. From Table I we
know that

hp2
Tðg1Þi

hp2
Tðf1Þi

¼ 0:74: (48)

If we take this ratio for granted, and assume for hp2
Tðf1Þi

the result from [59], Eq. (37), then we obtain for aðPh?Þ 

ALLðPh?Þ=hALLi the results shown in Fig. 9. We include in
Fig. 9 also predictions based on using the results for hK2

Ti,hp2
Tðf1Þi from [57]. We observe a rather stable prediction,

which depends little on the choice of parameters [59] vs
[57]. The prediction in Fig. 9 depends more strongly on the
model prediction (48).
This result is (in our approximations) the same for any

target and produced hadron. In fact, in the SU(6) symmet-
ric light-cone CQM of Ref. [78] the widths as defined in
Eq. (38) are always flavor independent. But we recall, that
the entire Gauss Ansatz is in the light of the results of
Ref. [78] merely an approximation.
It will be instructive to learn to which extent our pre-

dictions will be confirmed by experiment. As mentioned,
we could similarly discuss predictions from the model for
azimuthal asymmetries, too. But those predictions would
presumably have larger theoretical uncertainties, such that
we shall content ourselves here with the study of the Ph?
dependence of ALL.

XI. CONCLUSIONS

In this work we have studied all leading-twist azimuthal
spin asymmetries in SIDIS due to T-even TMDs on the
basis of predictions within one and the same model, i.e.,
the light-cone CQM of Ref. [78].
By studying first the well-known double-spin asymme-

tries A1 in DIS and ALL in SIDIS, we demonstrated that the
approach is capable of describing the data on these asym-
metries in the valence-x region with an accuracy of
Oð20–30Þ%. The comparison with results from other con-
stituent models has shown this to be a typical accuracy to
which the constituent quark model scenario can be ex-
pected to work.
We paid particular attention to the question, how to

apply the model results for TMDs obtained at a very low
hadronic scale to the description of data referring to high
scales of typically several GeV2. We made a test for the
double-spin asymmetries A1 in DIS and ALL in SIDIS
where the evolution equations involving the parton density
fa1ðxÞ and the helicity distribution ga1ðxÞ are exactly known.
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FIG. 9 (color online). aðPh?Þ 
 ALLðPh?Þ=hALLi vs Ph? in
SIDIS, for experiments with hz2i ¼ 0:16. The results are ob-
tained using the prediction (48) from the model [78], and the
Gauss model parameters in Eq. (37) from Ref. [59] (solid curve)
or the corresponding parameters from Ref. [57] (dashed curve).

BOFFI, EFREMOV, PASQUINI, AND SCHWEITZER PHYSICAL REVIEW D 79, 094012 (2009)

094012-14



In these cases we have been able to demonstrate the
stability under evolution of our results in the valence-x
region.

For TMDs entering the description of azimuthal asym-
metries, however, not only the evolution with renormaliza-
tion scale has to be taken into account, but also Sudakov
effects, which broaden the pT distribution of the TMDs.
We tackled this issue in two steps. First, we observed that
the light-cone CQM [78] do not show a Gaussian pT

dependence. Nevertheless, their pT dependence entering
the azimuthal asymmetries is integrated over in certain
convolution integrals, so that we have found that within
the accuracy of our approach the effect of the true pT

dependence in the TMDs can be approximated by a
Gaussian dependence. We have therefore explicitly em-
ployed the Gaussian Ansatz, which allows to express azi-
muthal asymmetries in terms of parton distribution
functions or transverse moments of TMDs. In the second
step, we used evolution equations to evolve the respective
parton distribution functions or transverse moments of
TMDs to the experimental scales.

We have been able to do this exactly, strictly speaking,
only in the case of transversity ha1ðxÞ. In the other cases, the
evolution of the transverse moments of TMDs was esti-
mated by employing those evolution equations, which
seem most promising to be able to simulate the correct
evolution, which is presently not available. For example,

we evolved gð1Þa1T ðxÞ by means of the evolution pattern of

the (also chiral even) ga1ðxÞ, while for h?ð1Þa
1L ðxÞ, h?ð1Þa

1T ðxÞ
we used the evolution pattern of the chiral odd ha1ðxÞ. The
theoretical uncertainties due to these approximate treat-
ment of the scale dependence are presumably not larger
than the accuracy of the model.

Among the leading-twist azimuthal spin asymmetries

due to T-even TMDs, the Collins SSA Asinð�hþ�SÞ
UT is the

only nonzero one within the present day error bars. We
observe a very good agreement of our results for the x
dependence of this SSAwith the HERMES proton [36,38],
as well as with the COMPASS deuteron target data [37,40].

The presently available final data on Asinð2�hÞ
UL [32,34] or

preliminary data on A
cosð�h��SÞ
LT and A

sinð3�h��SÞ
UT [46] show

results compatible with zero within error bars. Our results
are compatible with these first or preliminary data. In
future, our predictions of these azimuthal spin asymmetries
could be tested by more precise data—especially from
COMPASS and JLab.

In an exploratory study of the double-spin asymmetry
ALL we have shown how model results for TMDs obtained
at very low scale could be applied for studies of the Ph?
dependence of spin asymmetries. We have chosen this
observable, because here the Ph? dependence is the only
new aspect, the x and z dependence being known experi-
mentally with good precision. For that we explored again
the fact that the light-cone CQM [78] supports the

Gaussian Ansatz for TMDs within a reasonable accuracy,
and used as model input only the prediction for the ratio of
the mean transverse-momentum squares of ga1 and f

a
1 . This

ratio is expected to be little affected by Sudakov effects in a
first approximation. We made predictions for ALLðPh?Þ,
which could be tested soon, for example, at JLab [141].
The advantage of our study is that the same model input

has been used to describe all leading-twist spin asymme-
tries due to T-even TMDs. Wherever the data allow to draw
definite conclusions, we observed a good agreement with
the experiment in the range of applicability of the ap-
proach. It remains to be seen whether also our predictions
for the other azimuthal spin asymmetries will be similarly
confirmed by future data. If so, our approach will provide
interesting insights in the spin and orbital angular momen-
tum structure of the nucleon, which—though being model
dependent—are of interest by themselves, as it is exposed
in the Appendix.
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APPENDIX: ANGULAR MOMENTUM
DECOMPOSITION OF SPIN ASYMMETRIES

In this Appendix we discuss the contribution from the
different angular momentum components of the nucleon
wave function to the spin asymmetries. To this aim, we
calculate the numerator of the asymmetries using the re-
sults of the TMDs at the hadronic scale of the model, and
separating them into partial wave contributions according
to the decomposition shown in Fig. 2 of Sec. III. In order to
discuss how this decomposition behaves under evolution to
higher scale, one would need to know the evolution equa-
tions for the different angular momentum components of
the nucleon wave function separately, but, to our knowl-
edge, this problem has never been addressed so far and is
beyond the scope of our work. Although this decomposi-
tion is model dependent and it is not possible to extract
experimentally the absolute strength of the different partial
waves, it is instructive to visualize how the angular mo-
mentum content of the TMDs affects the spin asymmetries.
In particular, the combined analysis of different spin asym-
metries can give insights about the relative strength of the
different partial waves, and therefore can be useful in
modeling the light-cone wave function of the nucleon.
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The results for the SSAs presented in this Appendix,
correspond to an alternative approach concerning the ques-
tion how to use the model results referring to a low had-
ronic scale for phenomenology at experimentally relevant
scales. Namely, here we use the model at the low scale only
as input for the part which is responsible for the spin
effects. For the well-known denominator of the SSAs, we
use standard parametrizations at the experimental scale. In
this way, the model uncertainty is only in the numerator.
The comparison of these results and those presented in
Secs. VI, VIII, and IX, where attempts were made to
approximate evolution effects of the TMDs, with forth-
coming experimental data [139–141] may give us interest-
ing information about the scale dependence of these
observables.
In Fig. 10, we show the results for the ALL asymmetry,

obtained by using both the unpolarized distribution func-
tion f1 and the helicity distribution function g1 from the
light-cone CQM at low scale. The total results are further
split into the contributions to g1 from the S- (dashed curve)
and P-wave (dotted curve) components, while the D-wave
contribution is not shown because it is negligible. These
separate terms reflect the dominance of the S-wave com-
ponent with respect to the P wave in g1, as already ob-
served in Fig. 2 of Sec. III. Furthermore, the S-wave term is
practically constant in the full x range, while the P-wave
contribution is slowly increasing at a larger value of x,
reaching a maximum of about 30% of the total result.

The Acosð�h��SÞ
LT asymmetry shown in Fig. 11 is calcu-

lated with both the unpolarized distribution function f1
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FIG. 10. The double-spin asymmetry ALL in DIS production of
charged pions off proton and deuteron targets, as a function of x.
The results are obtained using ga1ðxÞ and fa1 ðxÞ from the light-

cone CQM [78] at the hadronic scale, and decomposing ga1ðxÞ
into different partial-wave contributions: the dashed curves
correspond to the contribution from S waves, the dotted curves
are the results for the P-wave contribution, and the solid curves
are the total results.
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FIG. 11. The double-spin asymmetry A
cosð�h��SÞ
LT in DIS production of pions off proton and deuteron targets, as a function of x. The

results are obtained using gð1Þa1T ðxÞ and fa1 ðxÞ from the light-cone CQM [78] at the hadronic scale, and decomposing gð1Þa1T into different
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the results for the P- and D-wave interference term, and the solid curves are the total results.
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and the helicity distribution function gð1Þ1T from the
light-cone CQM at low scale. Here, we separate the

contribution to gð1Þ1T from the interference of S and P

waves (dashed curves) and from the interference of P
and D waves (dotted curves). We see that the S- and
P-wave interference term governs both the size and the
shape in x of the total results, while the contribution of
the P- and D-wave interference is rather small and constant
in the full x range.

We now pass to consider single-spin asymmetries in-
volving chiral-odd TMDs. In the following, we will use for
f1 the parametrization from Ref. [121] at Q2 ¼ 2:5 GeV2,

while for the h1, h
ð1Þ?
1T , and hð1Þ?1L TMDs we will use the

results from the light-cone CQM at low scale. The

A
sinð�hþ�SÞ
UT asymmetry is shown in Fig. 12, with the sepa-

rate contribution to h1 from the S- (dashed curves) and P-
wave (dotted curves) components. The contribution from
the P waves is within 30% of the total results, and, at
variance with the double-spin asymmetries discussed
above, the two partial-wave contributions have very similar
x dependence, with a maximum at x ’ 0:7.

In Fig. 13, we show the results for the Asinð2�hÞ
UL asym-

metry, due to the to the h?1L TMD. Since in our model

h?1L ¼ �g1T , the relative strength of the contributions from
the S- and P-wave interference (dashed curves) and the P-
and D-wave interference (dotted curves) is the same as for

the corresponding contributions in Acosð�h��SÞ
LT .

Finally, in Fig. 14, we show the results for the

A
sinð3�hþ�SÞ
UT asymmetry, separating the contributions to

hð1Þ?1T from the interference of P waves (dashed curves)

and S-D waves (dotted curves). This is the only case where
we can exploit the interference with the large S-wave
contribution to amplify the effects due to the small D
wave. The two interference terms have a quite different
shape as a function of x: in the case of the P-wave inter-
ference, we have an oscillating behavior, with a sign
change at x ’ 0:7, while the S-D wave interference term
is similar to a bell-shaped curve with the maximum at x ’
0:7. The sum of these two contributions gives a total result,
which is peaked at x ’ 0:4. At larger x, the S-D wave
interference term gives the main contribution, while at
smaller x the P wave and the S-D wave interference terms
contribute with the same strength.
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