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We calculate the next-to-leading order perturbative QCD corrections to the transverse momentum

weighted single transverse spin asymmetry in Drell-Yan lepton pair production in hadronic collisions. We

identify the splitting function relevant for the scale evolution of the twist-three quark-gluon correlation

function. We comment on the consequences of our results for phenomenology.
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I. INTRODUCTION

Single transverse spin asymmetries (SSAs) in high en-
ergy hadronic reactions continue to attract much theoreti-
cal and experimental interest. They are defined as
differences of cross sections when one of the initial had-
rons’ transverse spin is flipped, divided by the sum: AN �
ðd�ðS?Þ � d�ð�S?ÞÞ=ðd�ðS?Þ þ d�ð�S?ÞÞ. The theo-
retical description of SSAs has proven to be a challenge
[1], since the leading collinear partonic contribution to the
asymmetries vanishes [2]. Over the past few years, there
have been a number of theoretical developments that have
led to much progress in the exploration of the underlying
physics for single-spin asymmetry phenomena. These de-
velopments mainly follow two lines: the so-called trans-
verse momentum dependent (TMD) approach [3–10],
which uses parton distributions and/or fragmentation func-
tions that depend on partonic transverse momentum, and
the twist-three quark-gluon correlation function approach
[11–18]. More recently, it has been found in some cases
that the two approaches are closely related and describe the
same physics [19,20].

So far, however, phenomenological applications of the
approaches have been limited to the ‘‘bare’’ parton model,
that is, to the zeroth order of perturbation theory without
any QCD corrections, as the latter were generally not
available. This situation was remedied very recently
when the leading-order (LO) kernels for the scale evolution
of the relevant twist-three correlation functions were de-
rived [21,22]. In this paper, we take a further step toward a
more comprehensive QCD description of single-spin phe-
nomena by calculating next-to-leading order (NLO)
QCD corrections for a particular observable, the transverse
momentum weighted SSA in Drell-Yan lepton pair
production.

As demonstrated by many examples, next-to-leading-
order perturbative-QCD (pQCD) corrections are typically
very important in hadronic processes. They often lead to
significant K-factors, and also allow estimates of the size
of yet higher order corrections. Moreover, an NLO calcu-
lation for a particular physical process will provide a direct
test of QCD factorization for the associated observable,
complementing the general arguments for such factoriza-
tions [7,8,23]. One-loop pQCD corrections to the hard-
scattering factors in the TMD factorization approach
have been calculated for the observables associated with
the so-called k?-even TMD parton distributions [7]. For
the related k?-odd TMD observables, especially relevant
for SSAs in various processes, there has not been any
particular calculation so far. The same is true for the
twist-three approach, where all calculations for the SSAs
so far have been at leading order only [12,15,16]. Previous
studies have shown that QCD corrections for higher-twist
observables are much more complicated to obtain than for
leading-twist ones [24–27]. This is related both to technical
difficulties resulting from more complex partonic states,
and to possible mixing between higher-twist matrix ele-
ments [24].
On the other hand, the recent developments, especially

the consistency between the TMD approach and the twist-
three approach found in [19], have provided confidence in
our understanding of the underlying theoretical description
of single-spin phenomena. They naturally motivate a study
of NLO corrections to SSA observables. The calculations
and results of [19] will be the starting point for our deri-
vation of the NLO corrections to the SSA in the Drell-Yan
process. In this process, a transversely polarized nucleon
with momentum PA scatters off an unpolarized nucleon
(PB) to produce a virtual photon with invariant massQ and
transverse momentum q?, which subsequently decays into
a lepton pair,

p"ðPA; S?ÞpðPBÞ ! ��ðQ2; q?Þ þ X ! ‘þ‘� þ X; (1)
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where S? is the transverse polarization vector of the inci-
dent nucleon. The Drell-Yan process is best suited as a first
example for the calculation of NLO corrections to single-
spin processes. It is among the simplest processes in had-
ronic scattering, and its single-spin asymmetry is also
kinematically simpler than those for other processes. For
example, for scattering with single transverse polarization,
the pair transverse momentum q? and the polarization

vector S? are simply correlated as ���S�?q
�
? ¼

jS?jjq?j sin�, where � is the azimuthal angle of ~q?
relative to that of ~S?. If ~q? is measured experimentally,
the corresponding single-spin asymmetry receives contri-
butions from the so-called Sivers effect in the TMD ap-
proach, applicable when q? � Q, or from the twist-three
Qiu-Sterman matrix elements when q? �Q. As we men-
tioned above, the two approaches coincide in the kinematic
regime of overlap [19]. In the following, we will make use
of this fact.

The transverse momentum of the virtual photon (or the
lepton pair) generally depends on various transverse mo-
menta in the process, namely, those of the initial partons,
and those generated by gluon radiation. For the cross
section differential in transverse momentum, one has to
be careful to classify the different contributions, as a TMD
factorization only exists in the limit of small transverse
momentum, q? � Q [7,19]. However, if we integrate over
all transverse momentum q?, the cross section will depend
only on the longitudinal momentum fraction of the virtual
photon, and a collinear factorization approach will apply.
For the single transverse-spin dependent cross section, we
have to suitably weigh with transverse momentum in order
to obtain a nonvanishing result, because the unintegrated
cross section has linear dependence on ~q?. The weighted
cross section is defined as [28,29]:

hq?��ðS?Þi �
Z

d2q?jq?j sin�d��ðS?Þ
d2q?

; (2)

where we have simplified the expression by omitting de-
pendence on any other kinematic variables. Since the
transverse momentum has been integrated out, the above
weighted cross section can be properly formulated in the
collinear factorization approach [20], and can be factorized
into parton distributions and/or twist-three correlation
functions for the incident nucleons, and partonic hard-
scattering functions. In the case of the SSA, the quark-
gluon correlation function in the polarized nucleon will be
an important ingredient in the factorization formula. It will
be part of the following factorization formula for the above
q?-weighted cross section:

dhq?��ðS?Þi
dQ2

¼ �0

Z dx1
x1

dx2
x2

� dx0

x0
TF;qðx1; x2Þ �qðx0ÞH ðx1; x2; x0Þ;

(3)

where �0 ¼ 4��2
em=3NCsQ

2, with s ¼ ðPA þ PBÞ2, �qðx0Þ
denotes the antiquark distribution of the unpolarized nu-
cleon, and TF;q the Qiu-Sterman matrix element for quark

q. We have restricted ourselves here to one quark flavor;
extension to more flavors and to scattering off a quark from
the unpolarized nucleon is trivial. In the following, we will
drop the label q of TF;q for simplicity. As indicated, TF is a

function of two separate light-cone variables, and thus the
convolution over momentum fraction will include both, as
we will see. TF is defined as

TFðx1; x2Þ �
Z d��d	�

4�
eiðx1Pþ

A
	�þðx2�x1ÞPþ

A
��Þ���?

� S?�hPA; Sj �c ð0ÞLð0; ��Þ�þgFþ
� ð��Þ

�Lð��; 	�Þc ð	�ÞjPA; Si; (4)

where L is the proper gauge link to make the matrix
element gauge invariant, and where the sums over color
and spin indices are implicit.
In the factorization formula Eq. (3), the hard-scattering

function can be expanded as a series in the strong coupling
constant,

H ¼ H ð0Þ þ �s

2�
H ð1Þ þ � � � ; (5)

where H ð0Þ is the leading order term, H ð1Þ the NLO one,
and so forth. In the following, we will demonstrate that the
above factorization formula is valid at NLO level. In
particular, the collinear divergence can be factorized into
the parton distribution and quark-gluon correlation func-
tion, whereas the hard coefficient function is free of any
divergence. The real-gluon radiation diagrams have al-
ready been studied in [19], and the results can be carried
over to our present calculation with relatively little effort.
We will compute the virtual corrections as well. It is
important to check that the soft divergence in real-gluon
radiation is canceled by that in the virtual diagrams, so that
we are left with only collinear divergences, which can be
absorbed into the parton distribution and/or the twist-three
correlation function, where they give rise to the scale
evolution of the distributions.
The rest of the paper is organized as follows. In Sec. II,

we will derive the leading order expression for the hard
coefficient, and calculate the virtual correction at next-to-
leading order. In Sec. III, we calculate the real-gluon
radiation contributions, and combine them with the virtual
corrections. We will show that the soft divergence is can-
celed in the sum, and that the remaining collinear diver-
gence can be removed by collinear factorization. We
conclude our paper in Sec. IV.

II. BORN DIAGRAMS AND VIRTUAL
CORRECTIONS

At the leading order, the virtual photon is produced in
the quark-antiquark annihilation subprocess. In order to
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obtain a nonvanishing weighted transverse-spin-dependent
cross section hq?��ðS?Þi, we have to include an initial
state interaction as shown in Fig. 1, which provides the
required phase [14]. We perform our calculations in cova-
riant gauge. Let p0 denote the momentum of the incident
antiquark, kq1 that of the initial quark to the left of the cut,

kq2 that of the right, and kg ¼ kq2 � kq1 the momentum of

the polarized gluon attaching to the hard part. This attach-
ment may take place on the left side of the cut, as shown in
Fig. 1(a), or on the right side, as in 1(b).

The polarized gluon is associated with a gauge potential
A
, and one of the leading contributions comes from its
component Aþ. The gluon’s momentum is dominated by
xgPþ kg?, where xg is the longitudinal momentum frac-

tion with respect to the polarized proton. The transverse
momentum kg? flows through the perturbative diagram

and returns to the polarized proton through the quark lines.
The contribution to the single-transverse-spin asymmetry
arises from terms linear in kg? which, when combined with

Aþ, yield @?Aþ, a part of the gauge field strength tensor
F?þ. In order to compute this contribution, we expand the
partonic scattering amplitudes in terms of kg? up to the

linear term. The weighted cross section can, in general, be
written as

dhq?��ðS?Þi
dQ2

¼ ���S�?
2s

Z d4kq1

ð2�Þ4
d4kq2

ð2�Þ4
�ðq�?Hðkq1; kq2;Q2ÞÞ �qðx0ÞTaðkq1; kq2Þ;

(6)

where Taðkq1; kq2Þ represents the nonperturbative matrix

element for the polarized nucleon with full momentum
dependence on kq1 and kq2. In the above weighted cross

section, we have an explicit term q�? in the integral, along

with the hard partonic part Hðkq1; kq2;Q2Þ.
To obtain the collinear factorization formula Eq. (3), we

have to perform a collinear expansion of the hard partonic
part. For the leading Born diagrams in Fig. 1, we find
that q? is related to the transverse momenta of the two
quark lines as: q? ¼ kq2? for Fig. 1(a) and q? ¼ kq1? for

Fig. 1(b). Therefore, the contribution from Fig. 1(a) to the
collinear expansion of Eq. (6) will be

ðq�?Hðkq1; kq2;Q2ÞÞjFig:1ðaÞ ¼ ig

�ðkþq2 � kþq1Þ � i�
k�q2?;

(7)

where the propagator associated with the initial state in-
teraction produces the pole at kþg ¼ 0. The single-spin

asymmetry arises from the phase of this pole. Similarly,
the contribution from Fig. 1(b) will be

ðq�?Hðkq1; kq2;Q2ÞÞjFig:1ðbÞ ¼ � ig

�ðkþq2 � kþq1Þ � i�
k�q1?:

(8)

The total contribution is thus

ðq�?Hðkq1; kq2;Q2ÞÞjFig:1ðaþbÞ

¼ ig

�ðkþq2 � kþq1Þ � i�
ðk�q2? � k�q1?Þ

¼ ig

�ðkþq2 � kþq1Þ � i�
k�g?: (9)

When integrated over the transverse and light-cone-minus
components of the two momenta kq1 and kq2, the combined

terms Taðkq1; kq2Þ and kg? produce the matrix element

TFðx; xÞ. One then obtains the leading order contribution
to the weighted cross section as [28]

dhq?��ðS?Þi
dQ2

¼ �0

Z dx

x

dx0

x0
TFðx;xÞ �qðx0Þ�ð1�Q2=xx0sÞ;

(10)

from which one can readily determine the leading order
hard coefficient to be

FIG. 1. Leading order contribution to the weighted transverse
spin-dependent cross section.

FIG. 2. One-loop virtual correction to the weighted cross sec-
tion: the gluon attaches to the opposite side of the loop correction
(upper two diagrams); the gluon attaches to the same side of the
loop corrections (lower two diagrams).
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H ðx1; x2; x0Þ ¼ �

�
1� x2

x1

�
�ð1� zÞ; (11)

where z ¼ Q2=ŝ with ŝ ¼ x1x
0s.

The above derivation shows that the Born kinematics
greatly simplify the collinear expansion for the hard par-
tonic part, because of momentum conservation. We can
utilize this feature in the calculations of the virtual correc-
tions to the Born diagrams as well. At one-loop order, the
virtual corrections contain two types of diagrams shown in
Fig. 2. In the upper two diagrams (a,b) of Fig. 2 the
polarized gluon attaches to the side of the cut opposite
from the loop correction which is represented by a blob. On
the other hand, in the lower two diagrams (c,d), the gluon
attaches to the side that also has the loop. The loops are
displayed in detail in Figs. 3 and 4. Figure 3 is the usual
vertex correction, plus self-energy diagrams. If the gluon is
on the side of the loop, we have to attach the gluon to all
possible places in the virtual diagrams, see Fig. 4.

As before, the Born kinematics simplifies the collinear
expansion in the calculations of these diagrams. For ex-
ample, to obtain the contributions from Figs. 2(a) and 2(b),
we can simply multiply the Born result in Eq. (9) by the
known [30] Drell-Yan virtual correction factor, giving

ðq�?Hðkq1; kq2;Q2ÞÞjFig:2ðaþbÞ

¼ ig

�ðkþq2 � kþq1Þ � i�
k�g?

�s

4�
CF

�
4�
2

Q2

�
�

�
�
� 2

�2
� 3

�
� 8þ �2

�
; (12)

where CF ¼ ðN2
c � 1Þ=2Nc with Nc ¼ 3 the number of

colors. Here we have used dimensional regularization,
with D ¼ 4� 2� space-time dimensions and 
 the mass
scale to be introduced in order to keep coupling constants
dimensionless.1 In obtaining this result, it is essential that
the one-loop virtual correction in the Drell-Yan process
amounts to a simple multiplicative factor to the vertex �
.
As for the Born diagram, the collinear expansion is trivial,
and the phase for the SSA comes from the initial state
interaction, i.e., the denominator of Eq. (12).
The calculation of Figs. 2(c) and 2(d) is more cumber-

some, but again the collinear expansion will receive con-
tributions proportional to kq1? and kq2? just as in Eqs. (7)

and (8). After a lengthy calculation, we find that the dia-
grams in Fig. 4 lead to the following result for the initial
state interaction contribution:

ðq�?Hðkq1; kq2;Q2ÞÞjFig:2ðcþdÞ

¼ ig

�ðkþq2 � kþq1Þ � i�
k�g?

�s

4�
CF

�
4�
2

Q2

�
�

�
�
� 2

�2
� 3

�
� 8þ �2

�
; (13)

identical to that for Figs. 2(a) and 2(b). Substituting the
results in Eqs. (12) and (13) into the collinear expansion
formula, and accounting for the leading-order phase space

FIG. 3. Corrections to the quark-antiquark-photon vertex, cor-
responding to the blob in the upper two diagrams of Fig. 2.

FIG. 4. Corrections to the quark-antiquark-photon vertex with gluon attachment, corresponding to the blob in the lower two diagrams
of Fig. 2.

1Note that we also follow Ref. [30] to absorb a factor ð1� �Þ in the normalization �0, which universally appears in all matrix
elements and hence does not affect the final results.
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in D dimensions, we find the total virtual correction to the
weighted single-spin cross section:

�0

�s

2�
CF

�
4�
2

Q2

�
� 1

�ð1� �Þ
Z dx

x

dx0

x0
TFðx; xÞ �qðx0Þ

� CF�ð1� zÞ
�
� 2

�2
� 3

�
� 8þ �2

�
: (14)

In the next section, we will calculate the real-gluon radia-
tion contribution, and obtain the final result for the NLO
correction. It is important to verify that the soft divergence
in the above virtual corrections is canceled against that in
the real diagrams. We will check this cancellation in the
next section.

III. REAL CORRECTIONS AND FINAL RESULTS

The real-gluon emission contributions to the single-spin
asymmetry for the Drell-Yan process have been computed
in [19]. In that paper, the focus was on the SSA at fixed q?,
whereas in our present calculation we are considering the
q?-weighted cross section, which involves integration over
all q?. While we can still use much of the setup of the
calculations of [19], we have to redo them in D ¼ 4� 2�
dimensions. This is relatively straightforward. Another
issue we need to address is the transverse-momentum
flow in the diagrams. In the calculations performed in
[19], the virtual photon is an ‘‘observed’’ particle in the

sense that its momentum is kept fixed in the collinear
expansion of the hard partonic scattering amplitudes
Hðkq1; kq2;Q2Þ. Since we are integrating over all q? in

the present calculation, one might think that the photon
momentum could be a function of the transverse momenta
of the initial partons and hence change the collinear ex-
pansion. However, because of momentum conservation it
turns out that it is sufficient to allow transverse-momentum
flow only through the radiated gluon.
Before going into the calculation, we note that we will

only consider contributions associated with the twist-three
quark-gluon correlation function. There are two types of
such contributions: real-gluon emission in the subprocess
ðqgÞ þ �q ! �� þ g, and the quark-gluon Compton pro-
cess ðqgÞ þ g ! �� þ q. We do not consider in this study
contributions entering with a three-gluon twist-three cor-
relation function [16,31]. We also ignore contributions by
the ‘‘axial’’ twist-three quark-gluon correlation function
considered in Ref. [32].
The real-gluon radiation diagrams yield soft and col-

linear divergences when integrated over the transverse
momentum, which are regularized by dimensional regu-
larization. Following a standard procedure for the phase
space integrals as in the case of the spin-averaged cross
section [30], we obtain the following expression for the
real-gluon radiation contribution to the transverse momen-
tum weighted spin-dependent cross section:

dhq?��ðS?Þi
dQ2

¼ �0

�s

2�

Z dx

x

dx0

x0

�
4�
2

Q2

�
� 1

�ð1� �Þ z
�ð1� zÞ1�2�

Z 1

0
dvðvð1� vÞÞ��

�
�
x
@

@x
TFðx; xÞðDq �q �qðx0Þ þDqggðx0ÞÞ þ TFðx; xÞðNs

q �q �qðx0Þ þ Ns
qggðx0ÞÞ

þ TFðx; x� �xgÞðNh
q �q �qðx0Þ þ Nh

qggðx0ÞÞ
�
; (15)

where v is related to the partonic center-of-mass scattering
angle � by v ¼ ð1þ cos�Þ=2. The above expression con-
tains three contributions. The first two are the derivative
and nonderivative terms from the soft-pole diagrams, re-
spectively; the third is the contribution by hard-pole dia-
grams, which only have nonderivative pieces. In
D ¼ 4� 2� dimensions, we obtain the following expres-
sions for the corresponding partonic hard-scattering
terms2:

Dq �q ¼ 1

2Nc

�t̂

ŝ

�
ð1� �Þ

�
û

t̂
þ t̂

û

�
þ 2Q2ŝ

t̂ û
� 2�

�
; (16)

Dqg ¼ � N2
c

2ðN2
c � 1Þ

�t̂

ŝ

�
�
ð1� �Þ

�
ŝ

�t̂
þ�t̂

ŝ

�
� 2Q2û

t̂ ŝ
þ 2�

�
; (17)

NðsÞ
q �q ¼ 1

2Nc

1

�ŝ t̂ û
½Q2ðû2 � t̂2Þ þ 2Q2ŝðQ2 � 2t̂Þ

� ðû2 þ t̂2Þt̂þ �ðŝt̂2 � ŝû2 þ 2t̂3 þ 3t̂2û� û3Þ�;
(18)

NðsÞ
qg ¼ N2

c

2ðN2
c � 1Þ

1

�ŝ2t̂
½Q2ðŝ2 � t̂2Þ þ 2Q2ûðQ2 � 2t̂Þ

� ðŝ2 þ t̂2Þt̂þ �ðût̂2 � ûŝ2 þ 2t̂3 þ 3t̂2ŝ� ŝ3Þ�;
(19)

2Note that in contrast to [30] we average over the polarizations
of the initial gluon in the qg subprocess by the factor 1=ð2ð1�
�ÞÞ, as is customary in the MS scheme.
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NðhÞ
q �q ¼

�
1

2Nc

þ CF

ŝ

ŝþ û

�

� ðQ2 � t̂Þ3 þQ2ŝ2 � �ðŝþ ûÞðt̂þ ûÞû
ŝ t̂ û

; (20)

NðhÞ
qg ¼

� �N2
c

2ðN2
c � 1Þ þ TR

ŝ

ŝþ û

�

� ðQ2 � t̂Þ3 þQ2û2 � �ðŝþ ûÞðŝþ t̂Þŝ
�ŝ2t̂

; (21)

where ŝ, t̂, and û are the partonic Mandelstam variables for
the 2 ! 2 processes, which can be expressed in terms of
Q2 and z as

ŝ ¼ Q2

z
; t̂ ¼ �Q2

z
ð1� zÞð1� vÞ;

û ¼ �Q2

z
ð1� zÞv:

(22)

From the above expressions, we see that the integral over v
will contain divergences when v ! 0 or v ! 1. The main
task in this calculation is to separate these divergences and
identify them as soft or collinear, so that they can be
canceled appropriately.

First, let us examine the derivative term from the soft-
gluon pole contribution in the q �q channel. After integrating
over v, it becomes

�0

�s

2�

�
4�
2

Q2

�
� 1

�ð1� �Þ
1

2Nc

Z dx

x

dx0

x0
�qðx0Þ

�
��
� 1

�

�
TFðx; xÞ2z2 þ

�
x
@

@x
TFðx; xÞ

�
ð1þ z2Þ

� ln
ð1� zÞ2

z

�
; (23)

where we have performed an integration by parts in order
to simplify the 1=� term. The latter comes from a collinear
divergence, which will be canceled by factorization into
the evolved TF function. There is no soft divergence in this
term, which is expected because the virtual diagrams do
not contribute to the derivative terms, as we saw earlier.

The soft-pole derivative terms in the qg channel give
only finite contributions. It is easy to perform the phase
space integration, and we obtain

�0

�s

2�

�N2
c

2ðN2
c � 1Þ

Z dx

x

dx0

x0

�
x
@

@x
TFðx; xÞ

�
gðx0Þð1þ z2Þ

�
�
1

3
ð1� zÞð4þ 4z2 � 5zÞ

�
: (24)

The nonderivative term from the soft-pole diagrams in
the q �q channel has both soft and collinear divergences.
After integrating over the phase space variable v, we get

�0

�s

2�

�
4�
2

Q2

�
� 1

�ð1� �Þ
1

2Nc

Z dx

x

dx0

x0
TFðx; xÞ �qðx0Þ

�
�
� 2

�2
�ð1� zÞ � 1

�

z3 � 3z2 � z� 1

ð1� zÞþ
þ �2

3
�ð1� zÞ þ ðz3 � 3z2 � z� 1Þ

�
�
2

�
lnð1� zÞ
1� z

�
þ
þ lnz

1� z

��
: (25)

The double-pole 1=�2 term represents a soft-collinear
divergence, which will eventually be canceled. The
collinear-divergent term / 1=� will generate part of the
splitting function for the evolution of the unpolarized quark
distribution and/or the twist-three correlation function.
Now we turn to the hard-pole contributions, which are

only nonderivative. For these contributions, the two argu-
ments in the twist-three quark-gluon correlation function
are different and may depend on partonic kinematics. As a
result, the v-integral is somewhat more involved, and for
some parts the integral cannot be performed completely.
First, we will separate these parts by introducing ‘‘plus’’-
distributions of the form

Z 1

0
dv

gðvÞ
vþ

�
Z

dv
gðvÞ � gð0Þ

v
;

Z 1

0
dv

gðvÞ
ð1� vÞþ �

Z
dv

gðvÞ � gð1Þ
1� v

;

(26)

in the integrand. The distributions arise from terms / v�1,
ð1� vÞ�1 in the integrand which, when combined with the
phase space factor ðvð1� vÞÞ��, give rise to identities of
the form

v�1�� ¼ � 1

�
�ðvÞ þ 1

ðvÞþ � �

�
lnðvÞ
v

�
þ
þOð�2Þ: (27)

For the q �q channel, the part that cannot be further inte-
grated over v analytically then reads:

�0

�s

2�

Z dx

x

dx0

x0
dv

1� z

�
1

vþ
þ 1

ð1� vÞþ
�

� TF

�
x; x

z

1� vð1� zÞ
�
�qðx0Þ½ð1� vð1� zÞÞ3 þ z�

�
�

1

2Nc

þ CF

1

1� vð1� zÞ
�
: (28)

Both plus distributions are needed because the integrand is
divergent at both v ! 0 and v ! 1. The distributions
guarantee that the integral over v is finite. Besides, as
one can see, there is no divergence in the limit z ! 1.
The remaining part of the hard-pole contribution in the q �q
channel is then rather straightforward to obtain, and we
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obtain upon integration over v

�0

�s

2�

�
4�
2

Q2

�
� 1

�ð1� �Þ
Z dx

x

dx0

x0
�qðx0Þ

�
�
TFðx; xzÞ

�
1

2Nc

þ CF

��
1

�2
�ð1� zÞ � 1

�

1þ z

ð1� zÞþ
� �2

6
�ð1� zÞ þ ð1þ zÞ

�
2

�
lnð1� zÞ
1� z

�
þ
þ lnz

1� z

��

þ TFðx; xÞ
�

1

2Nc

zþ CF

��
1

�2
�ð1� zÞ � 1

�

1þ z2

ð1� zÞþ
� �2

6
�ð1� zÞ þ ð1þ z2Þ

�
2

�
lnð1� zÞ
1� z

�
þ
þ lnz

1� z

�

þ ð1� zÞ
��
: (29)

Again, we have both soft and collinear divergences.
Similarly, for the hard-pole contribution in the qg chan-

nel, we have a regularized part that cannot be further
integrated over v analytically:

�0

�s

2�

Z dx

x

dx0

x0
dv

ð1� vÞþ TF

�
x; x

z

1� vð1� zÞ
�
gðx0Þ

� ½ð1� vð1� zÞÞ3 þ v2ð1� zÞ2z�

�
� �N2

c

2ðN2
c � 1Þ þ TR

1

1� vð1� zÞ
�
; (30)

and a remaining singular part:

�0

�s

2�

�
4�
2

Q2

�
� 1

ð1� �Þ�ð1� �Þ
Z dx

x

dx0

x0
TFðx; xÞgðx0Þ

�
� �N2

c

2ðN2
c � 1Þ zþ TR

��
� 1

�
ðz2 þ ð1� zÞ2Þ

þ ðz2 þ ð1� zÞ2Þ lnð1� zÞ2
z

þ 1

�
: (31)

There is no soft divergence. The collinear divergence will
be canceled by factorization of the gluon splitting contri-
bution to the spin-averaged antiquark distribution function.

As we mentioned at the beginning, the soft divergence
has to disappear after adding the contributions by the real-
gluon radiation and virtual diagrams. Indeed this happens,
as inspection of Eqs. (14), (25), and (29) shows.
Specifically, the term / 1=�2 from the soft-pole diagrams
cancels that from the hard-pole diagrams associated with
color-factor 1=2Nc, and the remaining 1=�2 term from the
hard-pole diagrams (associated with the color-factor CF)
cancels against that from the virtual diagrams. This is an
important cross-check on the consistency of our calcula-
tions, and demonstrates the importance of the hard-pole
diagrams.

After cancellation of soft poles, the result will only
contain collinear divergences. We find for the remaining

pole term

�0

�s

2�

Z dx

x

dx0

x0

�
�1

�

��
TFðx;xÞ �qðx0Þ

�
2CF

�
1þ z2

1� z

�
þ

þ
�
CF þ 1

2Nc

�
z

�
þðTFðx;xzÞ�TFðx;xÞÞ �qðx0Þ

�
�
CF þ 1

2Nc

�
1þ z

1� z
þTFðx;xÞgðx0ÞTRðz2 þð1� zÞ2Þ

�
:

(32)

The residue of this collinear divergence contains the split-
ting functions governing the evolution of the antiquark
distribution in the unpolarized nucleon and the twist-three
correlation function. For the former, we have

�qðxÞ ¼ �qð0ÞðxÞ þ �s

2�

Z dx0

x0

�
� 1

�

�

�
�
�qðx0ÞCF

�
1þ z2

1� z

�
þ
þ gðx0ÞTRðz2 þ ð1� zÞ2Þ

�
;

(33)

where z ¼ x=x0 and �qð0ÞðxÞ denotes the bare leading order
antiquark distribution. Similarly, we obtain the collinear
QCD correction to the Qiu-Sterman matrix element at
equal momentum fractions:

TFðx; xÞ ¼ Tð0Þ
F ðx; xÞ þ �s

2�

Z dx0

x0

�
� 1

�

�

�
�
TFðx0; x0ÞCF

�
1þ z2

1� z

�
þ
þ

�
CF þ 1

2NC

�

�
�
1þ z

1� z
TFðx0; x0zÞ � 1þ z2

1� z
TFðx0; x0Þ

��
:

(34)

From this equation, we directly read off the scale evolution
equation for the ‘‘diagonal’’ twist-three quark-gluon cor-
relation function at x1 ¼ x2 ¼ x:

@

@ ln
2
TFðx; x;
2Þ

¼ �sð
2Þ
2�

Z dx0

x0

�
CFTFðx0; x0;
2Þ

�
1þ z2

1� z

�
þ

þ Nc

2

�
TFðx0; x0;
2Þz� ðTFðx0; x0;
2Þ

� TFðx0; x0z;
2ÞÞ 1þ z

1� z

��
(35)

� �sð
2Þ
2�

Z dx0

x0
P qg!qg 	 TFðx0; x0;
2Þ: (36)

This evolution equation could also have been obtained
from the perturbative calculation of the quark Sivers func-
tion at large transverse momentum performed in [19].
However, we note that in that paper a boundary term
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( / �ð1� zÞ) in the derivative contribution was over-
looked.3 After correcting for this term, the result of [19]
becomes consistent with that given above. Equation (35) is
also consistent with the results derived recently by differ-
ent methods [21,22]. We note, however, that the evolution
equations derived in [21] go beyond ours, as they also
contain the contributions from additional operators such
as three-gluon ones, which we are not considering here.

A few comments on the evolution equation are in order.
First, it is evident that the scale evolution of the diagonal
(x1 ¼ x2 ¼ x) function mixes with the function at x1 � x2,
implying that the equation as it stands is not closed. In
other words, there will be a more general evolution equa-
tion for the full function TFðx1; x2Þ. This feature is quite
general for higher-twist parton distributions and fragmen-
tation functions [24–27]. Second, there is no particular
simplification of the evolution equation in the large-Nc

limit. This is different from what was discovered for the
evolution equations for other twist-three quark distribu-
tions, such as hLðxÞ and eðxÞ, where the evolution equa-
tions are closed (diagonal) in that limit [25]. However, we
notice that the high-x part of the evolution equation, i.e.,
the large z limit of the kernel in the integrand, is the same
as that for the spin-averaged leading-twist quark distribu-
tion, because the term CFðð1þ z2Þ=ð1� zÞÞþ is the ordi-
nary leading order quark splitting function. This property

will have important phenomenological consequences [21]
for the behavior of the quark-gluon correlation function at
high x and thus for SSAs in hadronic processes at forward
angles.
We note that the renormalization and evolution of gen-

eral twist-three quark-gluon operators has been extensively
studied over the past two decades [24–27]. The above
result for the evolution of the Qiu-Sterman matrix element
should likely also be reproduced from the evolution equa-
tions discussed in some of these papers. However, we
notice that the Qiu-Sterman matrix element corresponds
to a very different projection of the general twist-three
quark-gluon correlation function, and we do not expect
that there will be a simple relation between the above
evolution equation and those for other specific twist-three
distributions such as gTðxÞ. The comparison between the
above results (or the ones of [21,22]) and those in [24–27]
is very important and will be addressed in the future.

After MS subtraction of the collinear divergences into
the quark-gluon correlation function of the polarized nu-
cleon and the antiquark distribution of the unpolarized
nucleon, we obtain the full NLO expression for the soft-
gluon and hard-pole contributions4 to the transverse-
momentum weighted single-spin–dependent cross section
in Drell-Yan lepton pair production in pp collisions:

dhq?��ðS?Þi
dQ2

¼ �0

Z dx

x

dx0

x0
TFðx; x;
2Þ �qðx0;
2Þ þ �0

�s

2�

Z dx

x

dx0

x0

�
�
�qðx0;
2Þ

�
ln
Q2


2
ðCFP qq þ P qg!qg 	 TFðx; xz;
2ÞÞ þ 1

2Nc

�
x
@

@x
TFðx; x;
2Þ

�
ð1þ z2Þ lnð1� zÞ2

z

þ
�
2

�
lnð1� zÞ
1� z

�
þ
� lnz

1� z

���
CFð1þ z2Þ þ 2z3 � 3z2 � 1

2Nc

�
TFðx; x;
2Þ

þ
�

1

2Nc

þ CF

�
ð1þ zÞTFðx; xz;
2Þ

�
þ TFðx; x;
2Þ

��
CF þ z

2Nc

�
ð1� zÞ þ CF

�
2�2

3
� 8

�
�ð1� zÞ

��

þ gðx0;
2Þ
��

x
@

@x
TFðx; x;
2Þ

�� �N2
c

2ðN2
c � 1Þ

�
1

3
ð1� zÞð4þ 4z2 � 5zÞ

þ TFðx; x;
2ÞTR

�
ðz2 þ ð1� zÞ2Þ lnQ

2


2

ð1� zÞ2
z

þ 2zð1� zÞ
�

þ TFðx; x;
2Þ N2
c

2ðN2
c � 1Þ

1

6
ð8� 27zþ 48z2 � 29z3Þ

��

þ
Z dv

1� z

�
1

vþ
þ 1

ð1� vÞþ
�
TF

�
x; x

z

1� vð1� zÞ ;

2

�
�qðx0;
2Þ½ð1� vð1� zÞÞ3 þ z�

�
�

1

2Nc

þ CF

1

1� vð1� zÞ
�
þ

Z dv

ð1� vÞþ TF

�
x; x

z

1� vð1� zÞ ;

2

�
gðx0;
2Þ

� ½ð1� vð1� zÞÞ3 þ v2ð1� zÞ2z�
� �N2

c

2ðN2
c � 1Þ þ TR

1

1� vð1� zÞ
�
: (37)

3This term does not, however, affect the consistency of the twist-three and the TMD approaches established in [19].
4We remind the reader that we do not consider contributions associated with soft-fermion poles or with a three-gluon twist-three

correlation function.
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As expected, the logarithms containing the factorization
scale enter with the splitting functions for the evolution of
the twist-three quark-gluon correlation function and the
twist-two antiquark distribution.

One important feature of this result is its behavior near
‘‘partonic threshold,’’ that is in the large-z limit of the
integrand, corresponding to ŝ�Q2, when the initial par-
tons have ‘‘just enough’’ energy to produce the virtual
photon. Setting the scale 
 ¼ Q, we have the following
structure of the NLO correction in this case:

dhq?��ðS?Þi
dQ2

¼ �0

�s

2�

Z dx

x

dx0

x0
TFðx; x;
2Þ �qðx0;
2Þ

�
�
8CF

�
lnð1� zÞ
1� z

�
þ
þ . . .

�
: (38)

Here we have written out the ‘‘double-logarithmic’’ term

which dominates near threshold in the MS scheme. The
ellipses denote terms that are subleading relative to this
term. The structure of this expression is identical to that for
the spin-averaged q?-integrated NLO cross section near
threshold,

d�

dQ2 ¼ �0

�s

2�

Z dx

x

dx0

x0
qðx;
2Þ �qðx0;
2Þ

�
�
8CF

�
lnð1� zÞ
1� z

�
þ
þ . . .

�
: (39)

This means that the soft-gluon contribution is spin inde-
pendent. It contributes in the same way to the spin-
averaged and single-spin-dependent cross sections, and
will lead to the same soft-gluon threshold resummation
effects to these cross sections, at least at the leading
double-logarithmic level. This observation is very similar
to that made for the transverse momentum resummation in
the Drell-Yan process [33].

IV. CONCLUSIONS

In summary, we have derived the NLO perturbative-
QCD correction to the transverse momentum weighted
single-spin asymmetry in Drell-Yan lepton pair production
in hadronic collisions. In the calculation, we have shown

that the collinear divergences can be absorbed into the
NLO twist-three quark-gluon correlation function of the
transversely polarized nucleon and the unpolarized quark
distribution of the unpolarized nucleon. This procedure
also determines the evolution equation for the ‘‘diagonal
part’’ of the twist-three Qiu-Sterman matrix element at
equal momentum fractions, x1 ¼ x2. We have found this
equation to be consistent with the more complete one
derived recently in Refs. [21,22].
Our calculations suggest that a general factorization

formula (see Eq. (3)) exists for the transverse momentum
weighted spin-dependent cross section in the Drell-Yan
process, in extension of the general factorization argu-
ments given in [23].
We have found that both the evolution kernel and the full

NLO expression for the spin-dependent cross section be-
come identical to their spin-averaged counterparts in the
‘‘threshold’’ limit ŝ ! Q2, or z ! 1. This will likely have
the phenomenological consequence that the single-spin
asymmetry for the Drell-Yan process will be quite stable
under NLO corrections, in particular, when  ¼ Q2=s is
large.
It will be important to carry out further studies. We have

mentioned already that it may be possible to derive the
evolution of the twist-three correlation functions also from
some of the results of [24]. Also, it will be important to
derive NLO corrections also for other processes. For ex-
ample, extension to semi-inclusive deep inelastic scatter-
ing should be relatively straightforward to do.
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