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We investigate the behavior of the perturbative relation between the photon energy spectrum in B !
Xs� and the hadronic Pþ spectrum in semileptonic B ! Xu‘ �� decay at high orders in perturbation theory

in the ‘‘large-�0’’ limit, in which only terms of order �n
s�

n�1
0 are retained. The leading renormalon in the

weight function Wð�; P�Þ relating the two spectra is confirmed to be at u ¼ 1=2, corresponding to

nonperturbative corrections atOð�QCD=mbÞ. We show that the P� dependent pieces of the weight function

have no infrared renormalons in this limit, and so the factorial growth in perturbation theory arises solely

from the constant terms. We find no numerical enhancement of leading logarithms, suggesting that fixed-

order perturbation theory is more appropriate than a leading-log resummation for the extraction of jVubj.
The importance of various terms in the expansion of the weight function is studied using a model for the

B ! Xs� photon spectrum. Our analysis suggests that higher order perturbative corrections do not

introduce a significant uncertainty in the extraction of jVubj.
DOI: 10.1103/PhysRevD.79.094007 PACS numbers: 13.20.He, 12.39.Hg

I. INTRODUCTION

The total rate for the decay B ! Xu‘ �� provides a theo-
retically clean determination of the magnitude of the
Cabibbo-Kobayashi-Maskawa matrix element jVubj as a
double expansion in powers of �sðmbÞ and �QCD=mb [1].

However, to eliminate the background from B ! Xc de-
cays, strong cuts on the final state phase space are required,
which can complicate the theoretical analysis. The kine-
matic regions in which cuts on the charged lepton energy
E‘, hadronic invariant mass mX [2], and hadronic light-

cone momentum Pþ ¼ EX � j ~PXj (where EX and ~PX are
the energy and three-momenta of the final state hadrons)
[3] are strong enough to eliminate the charm background
all correspond to the so-called shape function regime, in
which the local operator product expansion for the partial
rate breaks down [4,5]. However, in this region an expan-
sion of the partial rate in powers of �QCD=mb in terms of

nonlocal operators is still possible, and the matrix element
of the leading nonlocal operator can be measured in B !
Xs� decay. At leading order in �QCD=mb, we can write

d�i ¼
Z

Cið!Þfð!Þ þO

�
�QCD

mb

�
(1)

where i labels the decay,Cið!Þ is perturbatively calculable,
and the shape function fð!Þ is nonperturbative, but uni-
versal in inclusive B decays.1 It is convenient to eliminate

the shape function altogether, and express integrated rates
directly in terms of one another [5–7]. For example, we can
write

Z �

0
dPþ

d�u

dPþ
/
Z �

0
dP�Wð�; P�Þ d�s

dP�

þO

�
�QCD

mb

�
;

(2)

where P� � mB � 2E�, E� is the photon energy, and ��
Oð�QCDÞ. This defines the weight function Wð�; P�Þ,
which can be calculated in perturbation theory. The
Oð�QCD=mbÞ power corrections have been extensively

discussed in the literature [8–13], and have typically
been estimated to be below the 10% level for jVubj [10–
12], although it has been argued that subleading four-quark
operators may introduce significant uncertainties [11].
The weight function Wð�; P�Þ has been calculated in

fixed-order perturbation theory to Oð�2
s�0Þ [7]. It is also

known to next-to-leading-log order, Oð�n
s log

n�1mb=�iÞ,
where �i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCDmb

q
is the typical invariant mass of the

final state [10], generalized in [14]. It was shown in [7] that
the Oð�2

s�0Þ corrections to Wð�; P�Þ are substantial, and

the same order as the Oð�sÞ corrections. Given the size of
these corrections, it is important to study the convergence
of the perturbative expansion.
In this paper we examine the behavior of Wð�; P�Þ at

higher fixed orders in perturbation theory. We work in the
framework of the ‘‘large-�0’’ expansion, in which we
calculate all terms of order �n

s�
n�1
0 [15,16]. While there

is no limit of QCD in which these terms formally dominate,
this class of terms allows us to examine the asymptotic
nature of perturbation theory, as well as giving an estimate
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1Cð!Þ can be further factorized into ‘‘hard’’ and ‘‘jet’’ func-

tions; however, for our purposes we will not make this
decomposition.
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for the size of perturbative corrections. We discuss the
significance of these terms for the extraction of jVubj.

II. BOREL TRANSFORMED SPECTRA AND THE
WEIGHT FUNCTION

Since QCD has an asymptotic perturbative expansion, it
is convenient to study the Borel transformed series B½ ~R�ðuÞ
of a quantity ~R, where

~R ¼ R� Rtree ¼
X1
n¼0

rn�
nþ1
s (3)

and

B½ ~R�ðuÞ ¼ X1
n¼0

rn
n!

un: (4)

The expansion for B½ ~R�ðuÞ has better convergence proper-
ties than the original expansion. B½ ~R�ðuÞ can in turn be
used as a generating function for the coefficients rn

rn ¼ dn

dun
B½ ~R�ðuÞju¼0; (5)

while the original expression R can be recovered from the
Borel transform B½ ~R�ðuÞ by the inverse Borel transform:

R ¼ Rtree þ
Z 1

0
due�u=�sB½ ~R�ðuÞ: (6)

Singularities in B½ ~R�ðuÞ along the positive real u axis make
the inverse Borel transform ill defined. These are referred
to as infrared renormalons [17], factorially growing con-
tributions to the coefficients of the perturbative series,
which lead to ambiguities of order ð�QCD=mbÞn. In physi-

cal quantities these ambiguities are compensated by cor-
responding ambiguities in the definition of higher-
dimensional nonperturbative matrix elements in the opera-
tor product expansion of order �n

QCD, which render the

physical quantity unambigious.2

The Borel transform Eq. (4), in the large-�0 limit, may
be determined from the order �s term, r0, with finite gluon
mass following [16]

B½ ~R�ðuÞ¼�sin�u

�u
e5u=3

Z 1

0

�
�2

m2
b

��u
�
dr0
d�2

�r1
�2

��ð�2�m2
be

5u=3Þ
�
d�2þ1

u

�
Ĝ0ðuÞ�sin�u

�u
r1

�
:

(7)

Here � is the gluon mass and r1 is a constant. We have

used the MS scheme with the renormalization scale � set

to the pole mass,mb. The terms Ĝ0ðuÞ=u and r1 arise from
the renormalization of the graphs involved.

The weight function Wð�; P�Þ is defined through the

relation between the integrated B ! Xs� photon energy
spectrum and B ! Xu‘ �� charged lepton spectrum,

�uð�Þ �
Z �

0
dPþ

d�u

dPþ

¼ jVubj2
jVtbV

�
tsj2

�

6�emC
eff
7 ðmbÞ2

m2
B

�mbðmbÞ2

�
Z �

0
dP�Wð�; P�Þ d�77

dP�

þO

�
�QCD

mb

�
; (8)

where ���QCD in the shape function region, and the

normalization is the same as that used in [7]. Other defini-
tions ofW are possible, such as that used in [10]. As in [7],
we concentrate on the contribution to the B ! Xs� spec-
trum arising from the operator O7 ¼
ðe=16�2Þmb �sL�

��F��bR. While other operators also con-

tribute to the spectrum, for the purposes of studying the
convergence of the series and estimating the uncertainties
from higher order terms in perturbation theory we will
neglect their contribution and the mixing of these with
O7. The factor of m2

B= �m2
b pulled out of the relation arises

naturally, and improves the behavior of perturbation theory
for Wð�; P�Þ [7].
The partonic partial rates are defined by

1

��

d�77

d �x
¼ 	ð �xÞ þ gð �xÞ 1

�u

d�u

dp̂þ
¼ 	ðp̂þÞ þ hðp̂þÞ;

(9)

where ��¼G2
FjVtbV

�
tsj2�emm

3
b½ �mbðmbÞCeff

7 ðmbÞ�2=ð32�4Þ
and �u ¼ G2

FjVubj2m5
b=ð192�3Þ are the leading order

widths. The partonic variables

�x � 1� 2E�=mb; p̂þ � ðv� q=mbÞ � n (10)

are related to the hadronic variables by

P� � mB � 2E� ¼ mb �xþ�;

Pþ � EX � j ~PXj ¼ mbp̂þ þ�;
(11)

where � � mB �mb, q is the momentum of the lepton-
neutrino pair, n is a lightlike four vector in the � ~q direc-
tion, and v is the four-velocity of the B meson.
Convoluting the partonic rate with the shape function to
obtain the hadronic rates, we find

Wð�; P�Þ ¼ 1þ
Z ��P�

0
ðhðpÞ � gðpÞÞdp

�
Z ��P�

0
gðpÞ½Wð�; pþ P�Þ � 1�dp; (12)

where the partonic spectra are expanded to leading order in
�x and p̂þ respectively since in the shape function region
they are of Oð�QCD=mbÞ.
Since gðpÞ and hðpÞ are Oð�sÞ, Eq. (12) may be solved

iteratively forWð�; P�Þ. For the purposes of this paper, we

2Although the renormalon cancellation has only been explic-
itly shown in some cases in the large-�0 limit, it is assumed to
hold away from this limit.
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are only interested in terms of Oð�n
s�

n�1
0 Þ, for which the

last term in Eq. (12) does not contribute; therefore, we can
write

Wð�; P�Þ ¼ �̂p
uð�� P�Þ � �̂p

77ð�� P�Þ þOð�n
s�

n�2
0 Þ;
(13)

where we have defined the integrated partonic rates calcu-
lated in perturbation theory,

�̂
p
77ð�Þ ¼

1

��

Z �

0

d�77

d �x
d �x (14)

and

�̂
p
u ð�Þ ¼ 1

�u

Z �

0

d�u

dp̂þ
dp̂þ: (15)

The corresponding quantities ~W, ~�p
77, and

~�p
u are defined

by subtracting the tree level contribution.
Calculating the parton level photon spectrum with a

massive gluon is straightforward, and was done in [7].
Integrating the rate with a massive gluon over the endpoint
region and performing the integral Eq. (7), we find the
Borel transform of the integrated partonic rate:

B½~�p
77ð�Þ�ðuÞ ¼ e5u=3

�
2ðu� 1Þ

u2

�
�

mb

��2u �
�

2

u� 1
� 3

u

� 4

u2
þ 1

u� 2

�
sin�u

�u

�
�

mb

��u þ 2 sin�u

�u2

þ ð1þ uÞð3u2 � 2u� 2Þ�ðuÞ2
ðu� 2Þðu� 1Þu�ð2uÞ cos�u

�

þ 1

u

�
Ĝ0ðuÞ � 2e5u=3 sin�u

�u

�
: (16)

Since the operator O7 requires renormalization, the last

line arises from the MS counterterm. Ĝ0ðuÞ is given by

Ĝ 0ðuÞ ¼
X1
n¼0

gn
n!

un (17)

and gn are the coefficients of the expansion of G0ðuÞ [16]

G0ðuÞ ¼
X1
m¼0

gmu
m ¼ 2ð2uþ 1Þ�ð4þ 2uÞ

3ðuþ 2Þðuþ 1Þ�ð2þ uÞ2
sin�u

�u
:

(18)

The Borel transform of the differential photon spectrum
away from the �x ¼ 0 endpoint was calculated in [18].
Integrating this result from �x ¼ 0 to �x ¼ � reproduces
the � dependent terms of our result, Eq. (16). (The �
independent terms depend on the virtual contribution and
cannot be directly compared against [18]).
The calculation of the Borel transform of the semilep-

tonic partial rate �̂p
uð�Þ is significantly more involved than

for B ! Xs�. The Borel transform of the triple-differential
B ! Xu‘ �� spectrum was calculated in [19]. Rather than
integrate this result over the appropriate phase space, we
instead calculated the integrated rate �uð�Þ for a massive
gluon, and then performed the integral (7). The result has
the comparatively simple form

B½~�p
u ð�Þ�ðuÞ ¼ e5u=3

�
2ðu� 1Þ

u2

�
�

mb

��2u þ
�

5

3ðu� 3Þ �
2

u� 2
� 5

3ðu� 1Þ þ
7

3u
þ 2

u2
� 1

3ðu� 4Þ
�
2 sin�u

�u

�
�

mb

��u

þ �ðuÞ2
ðu� 4Þðu� 2Þðu� 1Þu�ð2uÞ cos�u

�
1

3
ð9u4 � 103u3 � 62u2 þ 38uþ 24Þ

� 16uð1þ uÞð2u� 1Þ
�

�

sin2�u
þ c ðuÞ � c ð2uÞ

���
; (19)

where c ðuÞ ¼ �0ðuÞ=�ðuÞ is the digamma function.
The Borel transformed weight function is given by the

difference between Eqs. (19) and (16). Note that the terms
proportional to ð�=mbÞ�2u=u2 and ð�=mbÞ�u sin�u=u3,
which generate the �n

s ln
nþ1ð�=mbÞ logs, cancel in the

difference. This reflects the universality of the leading
Sudakov logs. We can resum this contribution by evaluat-
ing the inverse Borel transform, Eq. (6). However the result
does not exponentiate because higher powers of logs, up to
�n
s ln

2n double logs, are not included since they are sup-
pressed in �0. The resummed �n

s ln
nþ1ð�=mbÞ logs from

Eqs. (A1) and (A2) are given by

CF

�0

Z 1

0
due�ð4�u=�s�0Þ 2

u2

�
�
�
�

mb

��2u þ 2

�
�

mb

��u � 1

�

¼ CF

�0

�
4 ln

�

mb

ln
1þ a

1þ 2a
þ 8�

�s�0

ln
ð1þ aÞ2
1þ 2a

�
; (20)

where a � �sðmbÞ�0

4� ln �
mb

.

The final result for the Borel transformed weight func-
tion is
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B½ ~Wð�;P�Þ�ðuÞ ¼ e5u=3
�
2 sin�u

�u2

� ðu� 5Þð3u� 4Þ
ðu� 4Þðu� 3Þðu� 2Þðu� 1Þ

�
��P�

mb

��u � 1

�
� �ðuÞ2

�ð2uÞðu� 4Þðu� 2Þðu� 1Þcos�u

�
�
16ðuþ 1Þð2u� 1Þ

�
�

sin2�u
þ c ðuÞ � c ð2uÞ

�
þ 2

3
ð5uþ 2Þð7uþ 1Þ

��
� 1

u

�
Ĝ0ðuÞ � 2e5u=3 sin�u

�u

�
;

(21)

where Ĝ0ðuÞ is obtained from Eqs. (17), (18), and (21) is
the main result of this paper.

The Borel transforms can be used to generate the
Oð�n

s�
n�1
0 Þ terms in the perturbative expansion via the

relation Eq. (5). Writing

�̂
p
77ð�Þ ¼ 1þX1

i¼1

Cs
nð�Þ�sðmbÞn�n�1

0 CF

ð4�Þn

�̂p
u ð�Þ ¼ 1þX1

i¼1

Cu
nð�Þ�sðmbÞn�n�1

0 CF

ð4�Þn

Wð�; P�Þ ¼ 1þX1
i¼1

Wnð�; P�Þ�sðmbÞn�n�1
0 CF

ð4�Þn ;

(22)

we can easily find the coefficients Cs
nð�Þ, Cu

nð�Þ, and
Wnð�; P�Þ to any order. The coefficients are given up to

n¼5 in Appendix A.
The leading log (LL) and next-to-leading log (NLL)

terms in Eq. (A3) are contained within the renormalization
group resummed NLL result in soft-collinear effective
theory (SCET),Wð�;P�ÞNLLSCET, obtained from [3,10,20,21].

The SCET result sums logs of �2
i =m

2
b, where �2

i �
Oð�QCDmbÞ. In the Appendix B we verify that the leading

�0 terms agree with Eq. (B2) by expanding in �sðmbÞ and
then expanding logs of�2

i =m
2
b and�

2
i =ðmbð�� P�ÞÞ. Our

results also agree with those in [7,22,23].

III. RESULTS AND DISCUSSION

A. Renormalons and Borel resummation

The leading renormalon ambiguity in both the photon
and semileptonic spectra isOð�QCD=mbÞ due to the pole at
u ¼ 1=2 in B½~�p

u ð�Þ�ðuÞ and B½~�p
77ð�Þ�ðuÞ. The divergence

does not cancel between the spectra and gives rise to a pole
at u ¼ 1=2 in the Borel transformed weight function. This
is consistent with the presence of nonperturbative correc-
tions toWð�; P�Þ atOð�QCD=mbÞ due to subleading shape
functions [8].
The Borel transform of the weight function can be

written in terms of �� P� independent and dependent

pieces, B½ ~W0�ðuÞ and B½ ~W1�ðuÞ respectively,

B½ ~W0�ðuÞ ¼ e5u=3
�
2 sin�u

�u2

� ðu� 5Þð3u� 4Þ
ðu� 4Þðu� 3Þðu� 2Þðu� 1Þ � 1

�
� �ðuÞ2

�ð2uÞðu� 4Þðu� 2Þðu� 1Þcos�u
�

�
16ðuþ 1Þð2u� 1Þ

�
�

sin2�u
þ c ðuÞ � c ð2uÞ

�
þ 2

3
ð5uþ 2Þð7uþ 1Þ

��
� 1

u

�
Ĝ0ðuÞ � 2e5u=3 sin�u

�u

�
; (23)

B½ ~W1ð�; P�Þ�ðuÞ ¼ e5u=3
2 sin�u

�u2

� ðu� 5Þð3u� 4Þ
ðu� 4Þðu� 3Þðu� 2Þðu� 1Þ

�
��
�� P�

mb

��u � 1

�
; (24)

where we have defined B½ ~W0�ðuÞ and B½ ~W1�ðuÞ such that
they are finite as u ! 0. Note that B½ ~W1�ðuÞ has no singu-
larities for positive u. Therefore the inverse Borel trans-
form of Eq. (24), ~W1, is well-defined and unambiguously
resums logarithms of ð�� P�Þ=mb. This tells us that the
poor behavior in the perturbative expansion of the weight

function is entirely due to the constant terms, ~W0, which
are generated by B½ ~W0�ðuÞ.
The relevant quantity in determining jVubj is the weight

function convoluted with the B ! Xs� photon spectrum,
as in Eq. (8). It is interesting to note that the integrated
quantity can have a renormalon ambiguity that is not
present in the weight function. In order to illustrate this
we calculate the Borel transform of ~W1, which is
renormalon-free, convoluted with a simple model of the
normalized B ! Xs� spectrum,

1

��

d�s

dP�

¼ bb

�ðbÞ�b
Pb�1
� e�ðbP�=�Þ; (25)

where b ¼ 2:5 and � ¼ 0:77 GeV [10]. This is straight-
forward to obtain from Eq. (24):

B

�Z �

0
dP�

~W1

1

��

d�s

dP�

�
ðuÞ ¼ e5u=3

2 sin�u

�u2
ðu� 5Þð3u� 4Þ

ðu� 4Þðu� 3Þðu� 2Þðu� 1Þ
�
�ðb; b�� Þ
�ðbÞ þ

�
�1þ

�
b�

�

�
b
�
�

mb

��u

� �ð1� uÞ
�ð1� uþ bÞ 1F1

�
b; 1� uþ b;

�b�

�

���
; (26)
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where �ða; zÞ ¼ R1
z ta�1e�tdt is the incomplete Gamma

function. The �ð1� uÞ term in Eq. (26) gives rise to a pole
at u ¼ 1, which corresponds to an order Oðð�QCD=mbÞ2Þ
ambiguity in the integrated quantity. This arises because
higher order terms in the perturbative expansion of ~W1

have more powers of lnð�� P�Þ=mb and therefore are
more singular near the end point. However since the re-
normalon in B½ ~W0�ðuÞ is at u ¼ 1=2, the factorial growth
in the integrated quantity is dominated by the constant
terms in the weight function rather than the logarithms.

It is amusing to notice that if the �n
s lnð�=mbÞnþ1

Sudakov logs did not cancel between �̂p
uð�Þ and �̂p

77ð�Þ
these would give rise to a ðð�� P�Þ=mbÞ�2u term in the

Borel transform of the weight function. When integrated
over P� with Eq. (25) this would lead to a pole at u ¼ 1=2,

the same order as the renormalon in B½ ~W0�ðuÞ.
Since B½ ~W1�ðuÞ has no poles in u, the inverse Borel

transform of Eq. (24) is well-defined. We may therefore
use Eq. (24) to sum all terms containing powers of lnðð��
P�Þ=mbÞ [terms of order �n

s�
n�1
0 logn�mð�� P�Þ=mb, for

n ¼ 1 to infinity and m ¼ 0 to n� 1]. While we were
unable to obtain a closed-form result for this quantity, by
expanding Eq. (24) in powers of u it is straightforward to
sum all terms of order �n

s�
n�1
0 logn�mð�� P�Þ=mb, for

n ¼ mþ 1 to infinity and for fixed m � 0, by evaluating
the inverse Borel transform

Wð�; P�Þresummed ¼ CF

�0

Z 1

0
due�ð4�u=�s�0ÞCm�1u

m�1

��
�� P�

mb

��u � 1

�

¼ CFCm�1

�0

�ðmÞ
�
�s�0

4�

�
m
��

1þ �s�0

4�
ln
�� P�

mb

��m � 1

�
; (27)

where Cm�1 is the coefficient of the u
m�1ð��P�

mb
Þ�u term in

Eq. (24), and the second line follows for m> 0. The
constant nonlogarithmic terms in the weight function are
not included in Eq. (27), as they arise from ~W0, but may be
obtained from the expansion Eq. (A3) to give the full
resummed logarithmic result. At leading log (LL), m ¼
0, we find

Wð�; P�ÞLL�0
¼ 1� 5CF

3�0
ln

�
�sðmbÞ�0

4� ln
��P�

mb
þ 1

�
: (28)

We explicitly show the NLL, the next-to-next-to-leading
logarithmic (NNLL) �n

s�
n�1
0 lnn�2 and next-to-next-to-

next-to-leading logarithmic (NNNLL) �n
s�

n�1
0 lnn�3 terms

below:

Wð�; P�ÞNLL�0
¼ �sðmbÞCF

4�

�
14

3

�
1

1þ b
� 1

�
þ

�
167

36
� 2�2

3

��

Wð�; P�ÞNNLL�0
¼ �sðmbÞ2�0CF

ð4�Þ2
��

1559

216
� 5�2

18

��
1

ð1þ bÞ2 � 1

�
þ

�
3857

144
� 16�2

9
� 12
ð3Þ

��

Wð�; P�ÞNNNLL�0
¼ �sðmbÞ3�2

0CF

ð4�Þ3
��

65545

3888
� 14�2

9

��
1

ð1þ bÞ3 � 1

�
þ

�
90043

864
� 13�2

108
� 16�4

15
� 166
ð3Þ

3

��
;

(29)

where b � �sðmbÞ�0

4� ln
��P�

mb
. These results provide a useful

check of our calculation, as they may be compared with the
corresponding resummed expressions in SCET, obtained

from [3,10,20,21]. Setting �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbð�� P�Þ

q
, we verify

that the resummed LL and NLL contributions in the large
�0 limit, Eqs. (28) and (29), are contained within the
renormalization group resummed NLL SCET result.

Finally, the renormalon in the weight function suggests
that the dominant contribution to its perturbative expansion
is from nonlogarithmic terms. We can investigate this

numerically by considering the leading logarithmic expan-
sion away from the P� ! � end point. Following [7], we

combine all known terms from Eqs. (A3) and (B2), and
take the ratio of the various logarithmic terms. While this
misses the contributions of terms beyond NLL and sub-
leading in �0, we can hope that the values below are still
indicative of the relative contributions of the various terms.
Taking mb ¼ 4:8 GeV, �sðmbÞ ¼ 0:22, and �2

i =m
2
b �

ð�� P�Þ=mb ¼ 1=9 as in [7] we find the following ratios

of the logarithmic terms at each order in �s:

�3
s : Oðlog3Þ:Oðlog2Þ:Oðlog1Þ:Oðlog0Þ ¼ 1:2:1:1:8:� 6:0;

�4
s : Oðlog4Þ:Oðlog3Þ:Oðlog2Þ:Oðlog1Þ:Oðlog0Þ ¼ 1:3:5:2:9:0:4:� 26;

�5
s : Oðlog5Þ:Oðlog4Þ:Oðlog3Þ:Oðlog2Þ:Oðlog1Þ:Oðlog0Þ ¼ 1:4:9:4:2:1:0:� 2:3:� 119: (30)

From these results, we can make two observations. First, the renormalon ambiguity in the weight function is reflected in
the rapid growth of the nonlogarithmic terms, which dominate the perturbative expansion. However, this bad behavior of
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perturbation theory is unphysical: in a consistent approach
to Oð1=mbÞ, the renormalon in the weight function will
cancel with a corresponding ambiguity in the definitions of
the subleading shape functions. This cancellation would be
manifest if the subleading shape functions were consis-
tently extracted from physical observables, but since they
are currently modeled, no such cancellation is manifest.
We will see in the next section that the estimated uncer-
tainty in jVubj from the factorially growing terms is small
compared to other sources of error, so we will not attempt
in this paper to absorb the renormalon ambiguity into
subleading shape functions. These results do, however,
underscore the fact that separating the bad behavior of
perturbation theory from the Oð1=mbÞ corrections is not
a well defined procedure.

Second, assuming the pattern in Eq. (30) continued to
hold beyond the large-�0 and NLL terms included here, it
indicates that terms which are enhanced by more powers of
log�2

i =m
2
b � logð1=9Þ � �2 do not dominate over terms

with fewer powers of logarithms. Since the logarithmic
terms do not suffer from renormalon ambiguities, and,
therefore, no cancellation against the subleading operators
is expected for these terms, this pattern should not change
once subleading operators are consistently included. Thus,
these results support the conclusion of [7] that fixed-order
perturbation theory is more appropriate than a leading-log
resummation for the extraction of jVubj (see also [24,25]).

B. Determination of jVubj
From a phenomenological perspective, our results are

most useful as an estimate of the size of higher order
perturbative corrections to the extraction of jVubj via
Eq. (8). The perturbative results in Eq. (A3) for
Wð�; P�Þ are plotted in Fig. 1 at different orders in the

�n
s�

n�1
0 expansion. Throughout this section, we will use

the values mb ¼ 4:8 GeV and �sðmbÞ ¼ 0:22 for numeri-
cal evaluations, and take � ¼ m2

D=mB ¼ 0:66 GeV, cor-
responding to the kinematic cut which removes the

B ! Xc background. At tree level, the weight function is
1 (the dotted line in Figs. 1 and 2). Curve (a) in Fig. 1
shows the weight function up to Oð�2

s�0Þ, calculated pre-
viously in [7], while Curves (b), (c), and (d) show the
results to Oð�3

s�
2
0Þ, Oð�4

s�
3
0Þ, and Oð�5

s�
4
0Þ.

It is clear from the plots that the perturbative series for
Wð�; P�Þ is not converging well, as was discussed in the

previous section, due largely to the factorial growth of the
constant terms inWð�; P�Þ. As we will discuss shortly, the
results suggest that the optimal perturbative estimate is
obtained by truncating the series at Oð�3

sÞ, and using the
Oð�4

sÞ result as an estimate of the corresponding perturba-
tive uncertainty. In Fig. 2 we therefore compare the fixed
order �3

s�
2
0 result to other perturbative estimates of the

weight function. Curve (a) shows all known terms up to
Oð�3

sÞ: the complete NLL terms from Eq. (B2), combined
with the additional large �0 terms in Eq. (A3) that are
higher order in the leading log expansion. The gray band
around the curve gives the perturbative error estimate given
by the Oð�4

s�
3
0Þ term. The result is very close to the

large-�0 calculation up to Oð�3
s�

2
0Þ, shown in Curve (b).

Curve (c) shows the complete NLL resummed result.
As discussed in the previous section, the integral in

Eq. (8) has a worse perturbative expansion than the weight
function itself, since at higher orders in perturbation theory
Wð�; P�Þ is more singular at the endpoint of integration.

Hence, to determine the effects of perturbative corrections
on the determination of jVubj, we must look at the pertur-
bative expansion of Eq. (8) rather than that of Wð�; P�Þ.
For the purposes of estimating the size of higher order
terms, we adopt the simple model of the normalized B !
Xs� spectrum, Eq. (25). We obtain �̂uð�Þ, the integrated
B ! Xu‘ ��l decay rate normalized to the tree level value,

�̂ uð�Þ ¼ 1

�u

Z �

0
dPþ

d�u

dPþ
(31)

shown in Table I. We include several more terms than are

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

FIG. 1 (color online). Wð�; P�Þ from Eq. (A3) is shown in-
cluding terms up to the following order: (a) Oð�2

s�0Þ,
(b) Oð�3

s�
2
0Þ, (c) Oð�4

s�
3
0Þ, and (d) Oð�5

s�
4
0Þ.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

1.00

1.05

1.10

1.15

1.20

1.25

1.30

FIG. 2 (color online). (a) Wð�; P�Þ with all terms to Oð�3
sÞ

from Eqs. (A3) and (B2). The grey region is the error estimate
obtained from the �4

s�
3
0 term. (b) Wð�; P�Þ up to Oð�3

s�
2
0Þ from

Eq. (A3). (c) The resummed NLL SCET result, Wð�; P�ÞNLLSCET.
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explicitly shown in Eq. (A3) to demonstrate that the series
appears to converge up to Oð�4

s�
3
0Þ and then begins to

diverge. This suggests that the optimal perturbative result
is given by including all terms up to Oð�3

sÞ and using the
Oð�4

sÞ contribution to estimate the perturbative uncer-
tainty. At this stage, our best estimate of this result is
obtained by including all known terms up to Oð�3

sÞ from
Eqs. (A3) and (B2), and estimating the uncertainty from

the Oð�4
s�

3
0Þ term. Table II gives �̂uð�Þ obtained from the

renormalization group resummed LL and NLL weight
function in SCET, as well as all terms up to Oð�3

sÞ from
Eqs. (A3) and (B2). We see that the NLL result is in
agreement with the optimal perturbative value, within the
error. The perturbative uncertainty in jVubj, estimated from
the Oð�4

s�
3
0Þ terms is approximately 0.5%, which is far

smaller than the order 5% theoretical uncertainty in jVubj
from subleading shape functions, error in the b quark mass
and other sources [10].

IV. CONCLUSIONS

We have calculated the Borel transform of the B !
Xu‘ ��‘ Pþ spectrum and B ! Xs� P� spectrum to leading

order in �QCD=mb, from which we determine the Borel

transform of the weight function. The leading renormalon
in Wð�; P�Þ is confirmed to be at u ¼ 1=2, corresponding

to nonperturbative corrections at Oð�QCD=mbÞ. The

�n
s�

n�1
0 terms are easily obtained from the Borel transform

of the weight function and are given analytically to n ¼ 5.
We are able to resum logarithms of ð�� P�Þ=mb in the

large �0 limit of the weight function since the relevant
terms in B½Wð�; P�Þ�ðuÞ are renormalon-free. However,

we show that integrating these terms over P� introduces a

renormalon. Comparing all known terms in the perturba-
tive expansion of the weight function, we find no numerical
enhancement of leading logarithms, suggesting that fixed-
order perturbation theory is more appropriate than a
leading-log resummation.
From our results we estimate the size of higher order

perturbative corrections on the extraction of jVubj using a
model for the B ! Xs� photon spectrum. We have shown

that �̂uð�Þ begins to diverge beyond Oð�4
s�

3
0Þ in the �0

expansion of the weight function. This suggests that the
best perturbative estimate is given by including terms up to
Oð�3

sÞ with the theoretical uncertainty given by the �4
s�

3
0

term. We show that this result is in good agreement with
the resummed NLL SCET result.
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and S. Z. are supported by the Natural Sciences and
Engineering Research Council of Canada.

APPENDIX A: EXPANDINGOUT THE FUNCTIONS

Cs
1ð�Þ¼�2ln2

�

mb

�7ln
�

mb

�4�2

3
�5;

Cs
2ð�Þ¼2ln3

�

mb

þ13

6
ln2

�

mb

þ
�
�85

6
þ2�2

3

�
ln

�

mb

�4
ð3Þ�91�2

18
�631

36
;

Cs
3ð�Þ¼�7

3
ln4

�

mb

þ1

3
ln3

�

mb

þ
�
275

18
�2�2

3

�
ln2

�

mb

þ 1

18
ð�581þ58�2Þln �

mb

þ 1

324
ð�12727�6366�2�108�4�13824
ð3ÞÞ;

Cs
4ð�Þ¼3ln5

�

mb

�35

12
ln4

�

mb

þ
�
�35

2
þ2�2

3

�
ln3

�

mb

þ
�
6029

108
�29�2

6

�
ln2

�

mb

þ
�
�9557

108
þ235�2

18
��4

5

�
ln

�

mb

�72
ð5Þ�555

2

ð3Þþ�2

�
�24959

324
�8
ð3Þ

�
�57�4

10
�283555

2592

Cs
5ð�Þ¼�62

15
ln6

�

mb

þ33

5
ln5

�

mb

þ
�
395

18
�2�2

3

�
ln4

�

mb

þ
�
�2543

27
þ58�2

9

�
ln3

�

mb

þ
�
32171

162
�235�2

9
þ2�4

5

�
ln2

�

mb

þ
�
�50189

162

þ4429�2

81
�29�4

15

�
ln

�

mb

�7392583

19440
�154997�2

486
�3932�4

75
�494�6

315
�7452

5

ð5Þ�

�
205219

135
þ496�2

3
þ96
ð3Þ

�

ð3Þ:
(A1)

TABLE I. �̂uð�Þ for different orders in the ‘‘large-�0’’ expan-
sion of Wð�; P�Þ, Eq. (A3).
TreeOð�sÞOð�2

s�0ÞOð�3
s�

2
0ÞOð�4

s�
3
0ÞOð�5

s�
4
0ÞOð�6

s�
5
0ÞOð�7

s�
6
0Þ

1 1.08 1.15 1.17 1.16 1.12 1.04 0.88

TABLE II. �̂uð�Þ for the resummed LL and NLL weight
function in SCET, and all terms up to Oð�3

sÞ from Eqs. (A3) and
(B2).

Tree SCET LL SCET NLL All known terms to Oð�3
sÞ

1 1.10 1.18 1.17
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Cu
1ð�Þ ¼ �2ln2

�

mb

� 26

3
ln

�

mb

� 2�2 � 13

36
;

Cu
2ð�Þ ¼ 2ln3

�

mb

þ 3ln2
�

mb

þ
�
� 113

6
þ 2�2

3

�
ln

�

mb

� 16
ð3Þ � 41�2

6
þ 1 333

144
;

Cu
3ð�Þ ¼ � 7

3
ln4

�

mb

� 2

9
ln3

�

mb

þ
�
359

18
� 2�2

3

�
ln2

�

mb

þ
�
� 5 045

108
þ 34�2

9

�
ln

�

mb

þ 168 313

2 592
� 2 135�2

108
� 7�4

5
� 98
ð3Þ

Cu
4ð�Þ ¼ 3ln5

�

mb

� 5

2
ln4

�

mb

þ 1

6
ð�133þ 4�2Þln3 �

mb

þ
�
16 735

216
� 17�2

3

�
ln2

�

mb

þ
�
� 180 229

1 296
þ 319�2

18
� �4

5

�
ln

�

mb

� 432
ð5Þ �
�
1 807

6
þ 40�2

�

ð3Þ � 13 129�2

432
� 79�4

6
þ 11 428 313

31 104

Cu
5ð�Þ ¼ � 62

15
ln6

�

mb

þ 94

15
ln5

�

mb

þ
�
479

18
� 2�2

3

�
ln4

�

mb

þ
�
� 2 215

18
þ 68�2

9

�
ln3

�

mb

þ
�
21 581

72
� 319�2

9
þ 2�4

5

�
ln2

�

mb

þ
�
� 668 117

1 296
þ 13 535�2

162
� 34�4

15

�
ln

�

mb

� 4 920
ð5Þ þ
�
29 741

54
� 1 408�2

3
� 672
ð3Þ

�

ð3Þ þ 8 231�2

48

� 2 774�6

315
� 1 649�4

30
þ 64 526 377

31 104
: (A2)

W1ð�; P�Þ ¼ � 5

3
ln
�� P�

mb

� 2�2

3
þ 167

36
;

W2ð�; P�Þ ¼ 5

6
ln2

�� P�

mb

� 14

3
ln
�� P�

mb

þ 3 857

144
� 16�2

9
� 12
ð3Þ;

W3ð�; P�Þ ¼ � 5

9
ln3

�� P�

mb

þ 14

3
ln2

�� P�

mb

þ
�
5�2

9
� 1 559

108

�
ln
�� P�

mb

þ 90 043

864
� 13�2

108
� 16�4

15
� 166

3

ð3Þ;

W4ð�; P�Þ ¼ 5

12
ln4

�� P�

mb

� 14

3
ln3

�� P�

mb

þ
�
1 559

72
� 5�2

6

�
ln2

�� P�

mb

þ
�
14�2

3
� 65 545

1 296

�
ln
�� P�

mb

� 360
ð5Þ

�
�
71

3
þ 32�2

�

ð3Þ � 112�4

15
þ 60 449�2

1 296
þ 14 830 973

31 104
;

W5ð�; P�Þ ¼ � 1

3
ln5

�� P�

mb

þ 14

3
ln4

�� P�

mb

þ
�
� 1 559

54
þ 10�2

9

�
ln3

�� P�

mb

þ
�
65 545

648
� 28�2

3

�
ln2

�� P�

mb

þ
�
� 266 605

1 296
þ 1 559�2

54
� �4

3

�
ln
�� P�

mb

� 17 148

5

ð5Þ þ

�
�576
ð3Þ þ 20 709

10
� 304�2

�

ð3Þ

� 152�6

21
� 127�4

50
þ 1 906 687�2

3 888
þ 381 772 549

155 520
: (A3)

APPENDIX B: THE WEIGHT FUNCTION TO NLL ORDER

The renormalization group resummed NLL weight function has been calculated in SCET, [3,10,20,21]. By expanding
Wð�; P�ÞNLLSCET in �sðmbÞ and reexpanding the logarithms of �2

i =m
2
b and �2

i =ðmbð�� P�ÞÞ we find
Wð�; P�ÞNLLSCET ¼ 1þX1

i¼1

Wnð�; P�ÞNLLSCET

�sðmbÞnCF

ð4�Þn (B1)

and the first coefficients are given by

W1ð�; P�ÞNLLSCET ¼ � 5

3
ln
�� P�

mb

� 2�2

3
þ 167

36
;

W2ð�; P�ÞNLLSCET ¼
�
5�0

6
þ 92

27

�
ln2

�� P�

mb

þ
�
� 14�0

3
þ 128

3

ð3Þ þ 85�2

27
� 5 122

81

�
ln
�� P�

mb

;
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W3ð�; P�ÞNLLSCET ¼
�
� 5�2

0

9
� 92�0

27
� 1 616

243

�
ln3

�� P�

mb

þ
�
14�2

0

3
þ

�
� 64

3

ð3Þ � 65�2

27
þ 11 501

162

�
�0 � 2 560

27

ð3Þ

� 512�4

135
� 2 392�2

243
þ 68 155

162

�
ln2

�� P�

mb

;

W4ð�; P�ÞNLLSCET ¼
�
5�3

0

12
þ 253�2

0

81
þ 808�0

81
þ 27 584

2 187

�
ln4

�� P�

mb

þ
�
� 14�3

0

3
þ

�
128

9

ð3Þ þ 175�2

81
� 19 981

243

�
�2

0

þ
�
2 560

27

ð3Þ þ 512�4

135
þ 3 220�2

243
� 243 991

486

�
�0 þ 65 536

27

ð5Þ þ 47 104

243

ð3Þ þ 2 048�4

243

þ 56 560�2

2 187
� 21 384 356

6 561

�
ln3

�� P�

mb

;

W5ð�; P�ÞNLLSCET ¼
�
��4

0

3
� 230�3

0

81
� 2 828�2

0

243
� 55 168�0

2 187
� 462 080

19 683

�
ln5

�� P�

mb

þ
�
14�4

0

3
þ

�
� 32

3

ð3Þ � 55�2

27

þ 89 585

972

�
�3

0 þ
�
� 7 040

81

ð3Þ � 1 408�4

405
� 11 132�2

729
þ 548 459

972

�
�2

0 þ
�
� 32 768

9

ð5Þ

� 23 552

81

ð3Þ � 1 024�4

81
� 35 552�2

729
þ 3 675 094

729

�
�0 � 1 310 720

243

ð5Þ � 827 392

2 187

ð3Þ

� 262 144�6

15 309
� 188 416�4

10 935
� 1 213 696�2

19 683
þ 1 371 073 480

59 049

�
ln4

�� P�

mb

: (B2)

We verify that the leading �0 terms agree with Eq. (A3).
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