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We investigate pion superfluidity in the frame of a two flavor Nambu–Jona-Lasinio model beyond mean

field approximation. We calculate the thermodynamics to the next to leading order in an expansion in the

inverse number of colors, including both quark and meson contributions at finite temperature and baryon

and isospin density. Because of the meson fluctuations, the Sarma phase which exists at the mean field

level is washed away, and the Bose-Einstein condensation region at low isospin density is highly

suppressed.
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I. INTRODUCTION

The study on quantum chromodynamics (QCD) phase
structure is recently extended to finite isospin density [1].
The physical motivation to study QCD at finite isospin
density and the corresponding pion superfluidity is related
to the investigation of compact stars, isospin asymmetric
nuclear matter, and heavy ion collisions at intermediate
energies.

While the perturbation theory of QCD can well describe
the properties of new QCD phases at extremely high
temperature and density, the study on the phase structure
at moderate temperature and density depends on lattice
QCD calculation and effective models with QCD symme-
tries. The lattice simulation at finite isospin chemical po-
tential [2] shows that there is a phase transition from
normal phase to pion superfluidity phase at a critical iso-
spin chemical potential which is about the pion mass in the
vacuum. The QCD phase structure at finite isospin density
is also investigated in low energy effective models, such as
the Nambu–Jona-Lasinio (NJL) model [3] applied to
quarks [4–8] which is simple but enables us to see directly
how the dynamic mechanism of isospin symmetry break-
ing operates. Near the phase transition point, the chiral and
pion condensates calculated in this model are in good
agreement with the lattice simulation [2].

In a pion superfluid at zero baryon chemical potential,
the quark and antiquark of a condensed pair have the same
isospin chemical potential and in turn the same Fermi
surface. When a nonzero baryon chemical potential is
turned on, it can be regarded as a Fermi surface mismatch
between the quark and antiquark. The pion superfluidity in
baryonic matter is recently discussed at mean field level in
the NJL model in chiral limit [9] and in the real case with
finite current quark mass [10]. The pion superfluid can
exist when the baryon density is not very high, otherwise
the system will be in normal phase without pion conden-
sation because of too strong a mismatch. Inside the pion
superfluid, the condensed state is separated into two
phases. At small isospin chemical potential �I, the homo-
geneous and isotropic Sarma phase [11] is free from the

Sarma instability [11] and magnetic instability [12] due to
the strong coupling and large enough effective quark mass.
It is therefore the stable ground state. At large�I, while the
Sarma instability can be cured via fixing baryon density nB
to be nonzero, its magnetic instability implies that the
inhomogeneous and anisotropic Larkin-Ovchinnikov-
Fudde-Ferrell (LOFF) phase [13] is favored more than
the Sarma phase. In the intermediate �I region, the stable
ground state is the Sarma phase at higher nB and LOFF
phase at lower nB.
The Bose-Einstein condensation—Bardeen-Cooper-

Shriffer (BEC-BCS) crossover at finite baryon and isospin
chemical potentials—is investigated in the NJL model
[14]. The pion condensation undergoes a BEC-BCS cross-
over when the isospin chemical potential increases. The
point here is that the crossover is not triggered by increas-
ing the strength of attractive interaction among quarks but
driven by changing the isospin density. It is found that the
chiral symmetry restoration at finite temperature and den-
sity plays an important role in the BEC-BCS crossover.
Most of the work in the NJL model is mainly based on

the mean field approximation to the quark mass and on the
random phase approximation (RPA) for the Bethe-Salpeter
equation for the meson masses [15]. If one examines the
thermodynamic potential in the mean field approximation,
one sees immediately the deficit of this approach, viz., that
only the quarks contribute to the thermodynamic potential
with mesons playing no role whatsoever. This is clearly
inadequate and unphysical, since one expects at least that
the pionic degrees of freedom should dominate the system
at low temperature, while the quark degrees of freedom
should be relevant only in the chiral symmetry restoration
phase. As such, this indicates that calculations in the NJL
model must be performed beyond the mean field approxi-
mation. In Ref. [16], the thermodynamics of a quark-
meson plasma is calculated to order 1=Nc in an expansion
in the inverse number of colors, and pions as Goldstone
particles corresponding to spontaneous chiral symmetry
restoration do control the thermodynamic functions at
low temperature and density.
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A characteristic feature of the Sarma phase is the inter-
mediate temperature superfluidity [17]: the superfluidity
happens at finite temperature but disappears at zero tem-
perature. Since the mean field treatment is a good approxi-
mation only at zero temperature [18], a careful study on the
Sarma phase needs to go beyond the mean field. As for the
BEC-BCS crossover induced by the change in density, the
description on the BEC phase at low density should be
closely related to whether the meson fluctuations are in-
cluded or not. In this paper, we investigate the pion super-
fluidity in the frame of the NJL model beyond mean field
approximation. We will focus on the effect of meson
fluctuations on the Sarma phase and the BEC-BCS cross-
over at finite temperature and baryon and isospin density.

The paper is organized as follows. In Sec. II we present
the thermodynamics of the pion superfluidity and the gap
equations for the chiral and pion condensates in the NJL
model in and beyond mean field approximation. In Sec. III
we calculate the phase diagram and see the meson effect on
the Sarma phase and BEC-BCS crossover. We summarize
and conclude in Sec. IV.

II. THERMODYNAMICS OF THE PION
SUPERFLUIDITY

The two flavor SUð2Þ NJL Lagrangian density is defined
as

L ¼ �c ði��@� �m0 þ��0Þc þG½ð �c c Þ2
þ ð �c i�5�c Þ2� (1)

with scalar and pseudoscalar interactions corresponding to
� and � excitations, where c is the quark field, m0 the
current quark mass, G the coupling constant with dimen-
sion ðGeVÞ�2, and � the quark chemical potential matrix
in flavor space � ¼ diagð�u;�dÞ ¼ diagð�B=3þ
�I=2; �B=3��I=2Þ with �B and �I being baryon and
isospin chemical potential. The Lagrangian density has the
symmetry UBð1ÞN SUIð2ÞN SUAð2Þ corresponding to
baryon number symmetry, isospin symmetry, and chiral
symmetry, respectively. However, at nonzero isospin
chemical potential, the isospin symmetry SUIð2Þ breaks
down to UIð1Þ global symmetry with the generator I3
which is related to the condensation of charged pions. At
zero baryon chemical potential, the Fermi surfaces of uðdÞ
and anti-dðuÞ quarks coincide and hence the condensate of
u and anti-d quarks is favored at sufficiently high �I > 0
and the condensate of d and anti-u quarks is favored at
sufficiently high �I < 0. We introduce the chiral conden-
sate

� ¼ h �c c i (2)

and the pion condensate

� ¼ ffiffiffi
2

p h �c i�5�þc i ¼ ffiffiffi
2

p h �c i�5��c i (3)

with �� ¼ ð�1 � i�2Þ=
ffiffiffi
2

p
. A nonzero condensate �means

spontaneous chiral symmetry breaking, and a nonzero
condensate � means spontaneous isospin symmetry
breaking.
In mean field approximation the thermodynamic poten-

tial includes the condensation part and the quark part,

�mf ¼ Gð�2 þ �2Þ þ�q; (4)

and the quark part can be evaluated as a summation of four
quasiparticle contributions [10],

�q ¼ �6
X4
i¼1

Z d3p

ð2�Þ3 gð!iÞ; (5)

where !i are the dispersions of the quasiparticles,

!1 ¼ E� þ�B=3; !2 ¼ E� ��B=3;

!3 ¼ Eþ þ�B=3; !4 ¼ Eþ ��B=3
(6)

with the definitions

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp ��I=2Þ2 þ 4G2�2

q
; Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
;

(7)

and the function gðxÞ is defined as gðxÞ ¼ x=2þ T lnð1þ
e�x=TÞ. The effective quark mass m is controlled by the
chiral condensate, m ¼ m0 � 2G�. The gap equations to
determine the condensates � (or quark mass m) and � can
be obtained by the minimum of the thermodynamic poten-
tial �mfðT;�B;�I; m;�Þ,
@�mf

@m
¼ 0;

@�mf

@�
¼ 0;

@2�mf

@m2
> 0;

@2�mf

@�2
> 0:

(8)

From the first order derivatives, we have

m

�
1

4G
þ @�q

@m2

�
¼ m0

4G
; �

�
Gþ @�q

@�2

�
¼ 0: (9)

Considering the relations between �I, �B and �u, � �d,
�u ¼ �B=3þ�I=2, and � �d ¼ ��B=3þ�I=2, the
baryon and isospin density nB ¼ �@�mf=@�B and nI ¼
�@�mf=@�I can be expressed in terms of the u and �d
quark density nu ¼ �@�mf=@�u and n �d ¼ �@�mf=@� �d,

nI ¼ 1
2ðnu þ n �dÞ; nB ¼ 1

3ðnu � n �dÞ: (10)

It is easy to see that nB plays the role of density asymmetry
for pion condensation. For isospin symmetric matter with
nB ¼ 0 the only possible homogeneous and isotropic pion
condensed state is the BCS state. The Sarma state appears
only in isospin asymmetric matter with nB � 0. The two
gap equations (9) and two number equations (10) deter-
mine self-consistently m, �, �I, and �B as functions of T,
nI, and nB at the mean field level.
We now consider the meson contribution to the thermo-

dynamics of the system. The meson modes are regarded as
quantum fluctuations above the mean field in the NJL
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model and can be calculated in the frame of RPA [15]. For
the mean field quark propagator with off-diagonal ele-
ments in flavor space,

S �1ðpÞ ¼ ��p� þ�u�0 �m 2iG��5

2iG��5 ��p� þ�d�0 �m

� �
;

(11)

we must consider all possible channels in the bubble
summation in RPA. In the pion superfluidity region, �
and charged pions are coupled to each other and the un-
charged pion is decoupled from them. Using matrix nota-
tion for the meson polarization function 1� 2G�ðqÞ [7],

1� 2G� ¼
1� 2G��� �2G���þ �2G���� 0
�2G��þ� 1� 2G��þ�þ �2G��þ�� 0
�2G���� �2G����þ 1� 2G����� 0

0 0 0 1� 2G��0�0

0
BBB@

1
CCCA (12)

with the quark bubbles

�jkðqÞ ¼ i
Z d4p

ð2�Þ4 Tr½��
jSðpþ qÞ�kSðpÞ�;

j; k ¼ �;�þ; ��; �0;

(13)

where the trace Tr ¼ TrC Tr TrD is taken in color, flavor,
and Dirac spaces and the meson vertices are defined as

�j ¼

8>>><
>>>:

1 j ¼ �
i�þ�5 j ¼ �þ
i���5 j ¼ ��
i�3�5 j ¼ �0;

��
j ¼

8>>><
>>>:

1 j ¼ �
i���5 j ¼ �þ
i�þ�5 j ¼ ��
i�3�5 j ¼ �0;

(14)

and the meson masses Mj are determined by

det½1� 2G�ðq0 þ�j ¼ Mj;q ¼ 0Þ� ¼ 0 (15)

with meson chemical potentials �� ¼ 0, ��þ ¼ �I,
��� ¼ ��I, ��0

¼ 0.
When the contribution from the meson fluctuations is

taken into account, the total thermodynamic potential to
order 1=Nc in an expansion in the inverse number of colors
becomes

� ¼ �mf þ�fl; (16)

where the mean field part�mfðT;�B;�I; m;�Þ is shown in
(4) and the meson part�flðT;�B;�I; m;�Þ is expressed in
terms of the polarization function [16],

�fl ¼ � i

2

Z d4q

ð2�Þ4 lndet½1� 2G�ðqÞ�: (17)

As is expected physically, the mesonic or collective de-
grees of freedom play a dominant role at low temperature,
while the quark degrees of freedom are most relevant at
high temperature [16].

In the chiral symmetry restoration phase at high tem-
perature and/or high density, mesons are not stable bound
states, but rather resonant states. They will decay into their
quark-antiquark pairs. As a consequence, the determinant
in the logarithm of (17) is a complex function in the meson
energy plane and the imaginary part can be expressed as a

scattering phase shift associated with quark-antiquark scat-
tering. From the calculation in the NJL model with only
chiral dynamics [16], the meson width is small around the
critical temperature but becomes remarkable when the
meson mass is much larger than two times the quark
mass, and correspondingly, the contribution from the phase
shift to the thermodynamics is negligible at low tempera-
ture but significant when the temperature is high enough.
For our calculation in the pion superfluidity phase, it can be
estimated that the phase shift will be important in the BCS
state at high density but its contribution is weakened in the
BEC state at low density. Since we focus in this paper on
the Sarma phase and the BEC state which exist at low
isospin density, we take pole approximation and neglect
the scattering phase shift to simplify the numerical calcu-
lations. In pole approximation, the meson contribution can
be greatly simplified as a summation of four quasiparticles,

�fl ¼
X
j

�j;

�j ¼
Z d3q

ð2�Þ3
�
1

2
ðEj ��jÞ þ T lnð1� e�ðEj��jÞ=TÞ

�

(18)

with meson energies Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

j þ q2
q

.

While mesons do not change the baryon density of the
system, the charged pions modify the isospin density when
the meson contribution to the thermodynamics is included,

nI ¼ 1
2ðnu þ n �dÞ þ ðn�þ � n��Þ; (19)

where n�þ ¼ �@��þ=@��þ and n�� ¼ �@���=@���
are the �þ and �� density.
Up to this point, the order parameters m for chiral phase

transition and � for pion superfluidity have been regarded
as the values minimizing �mf , and �fl has been evaluated
at these mean field values, m ¼ mmf and � ¼ �mf . While
this is a correct perturbative expansion above the mean
field, we may ask the questions: What is the feedback from
the mesonic degrees of freedom to the order parameters
and could we improve on these mean field values by
regarding m and � as variational parameters of the total
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thermodynamic potential � ¼ �mf þ�fl? We now per-
form this procedure and see what the difference between
the new and mean field condensates is.

Taking the first order derivatives of the total thermody-
namic potential with respect to the unknown quark massm
and pion condensate �, we obtain the following modified
gap equations:

m

�
1

4G
þ @�q

@m2
þ @�fl

@m2

�
¼ m0

4G
;

�

�
Gþ @�q

@�2
þ @�fl

@�2

�
¼ 0:

(20)

In comparison with the mean field gap equations (9), the
fluctuation part�fl in the thermodynamic potential leads to
a new minimum at mmfþfl and �mfþfl that now differs from
the mean field one at mmf and �mf . It is easy to see that the
structure of the new gap equations guarantees the two
phase transitions. From the second gap equation for pion
superfluidity, the trivial solution � ¼ 0 corresponds to
normal quark matter, while the nonzero solution from the
zero of the bracket corresponds to the energetically favored
pion condensed state. In the chiral limit, there are also two
solutions of the first gap equation corresponding, respec-
tively, to the chiral symmetry breaking and restoration
phase.

We now expand the fluctuation part of the thermody-
namic potential around the mean field minimum,

�flðT;�B;�I; m
2; �2Þ ¼ X1

i;j¼0

1

i!j!

@i

@ðm2Þi
@j

@ð�2Þj

��flðT;�B;�I; m
2; �2Þjmf

� ðm2 �m2
mfÞið�2 � �2

mfÞj;
(21)

and, to further simplify the calculation, we consider the
expansion only to the first order derivatives. Inserting the
expansion into the new gap equations yields the following
gap equations:

m

�
1

4G�

þ @�q

@m2

�
¼ m0

4G
; �

�
G� þ @�q

@�2

�
¼ 0 (22)

with two effective coupling constants G� and G� defined
by

1

4G�

¼ 1

4G
þ @

@m2
mf

�flðT;�B;�I;m
2
mf ; �

2
mfÞ;

G� ¼ Gþ @

@�2
mf

�flðT;�B;�I;m
2
mf ; �

2
mfÞ:

(23)

In comparing this group of coupled gap equations with the
mean field one (9), one observes that, in the chiral limit, the
two groups take the same form, differing only in the
effective coupling constants. The coupling constants in
the scalar and pseudoscalar channels are the same at

mean field level, but they become different and depend
on temperature and charge densities when one goes beyond
the mean field. If we take G� ¼ G� ¼ G, we recover the
mean field case. That is, in this approach, the contribution
from meson fluctuations is fully included in G� and G�.
The above approach describes the thermodynamics of a

quark-meson plasma with both chiral phase transition and
pion superfluidity phase transition beyond the mean field at
finite temperature and baryon and isospin density. The two
new gap equations (22) determine simultaneously the order
parameters � (or m) and � of the two phase transitions. In
the chiral limit, the two phase transitions are fully sepa-
rated from each other [7]: the chiral symmetry is automati-
cally restored in the pion superfluidity phase. That is, the
two order parameters do not coexist in the system. In the
real word, chiral symmetry is not fully restored at any
isospin chemical potential. However, � is much smaller
than � in the pion superfluidity region [7]. Since we focus
in this paper on the fluctuation effect on the pion super-
fluidity, we will, for the purpose of simplification in nu-
merical calculations, neglect the � fluctuations and keep
only the � fluctuations in the gap equations. Namely, we
take G� ¼ G in the following.

III. PHASE DIAGRAMS IN AND BEYOND MEAN
FIELD

Since the NJL model is nonrenormalizable, we should
employ a regularization scheme to avoid the divergence in
the gap equations. The simplest and normally used way is
to introduce a hard three momentum cutoff jpj<�. In the
following numerical calculations, we take the current
quark mass m0 ¼ 5 MeV, the coupling constant G ¼
4:93 GeV�2, and the cutoff � ¼ 653 MeV [16]. This
group of parameters ensures the pion mass m� ¼
138 MeV and the pion decay constant f� ¼ 93 MeV in
the vacuum.
In the treatment above, we considered the meson fluc-

tuations as a perturbation around the mean field and took
only the first order derivatives in the effective coupling
constants (23). If this treatment is good, the difference
between the two pion condensates calculated in and be-
yond the mean field approximation should be small. To
check the validity region of this method, we show in Fig. 1
the two condensates as a function of isospin density at fixed
temperature and baryon density. At low isospin density
which corresponds to the BEC region, the difference be-
tween the two is really small, but it grows with increasing
density and becomes large in the BCS region. Therefore,
the approximation with only first order derivatives is good
for the study of BEC, but the contribution from the higher
order derivatives may be important for the BCS state.
The phase diagrams of pion superfluidity in the T � nI

plane at fixed baryon density and in the nB � nI plane at
fixed temperature are shown in Fig. 2. The thin and thick
solid lines are, respectively, phase transition lines in and
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beyond mean field approximation which separate the nor-
mal quark matter at high temperature or high baryon
density from the pion superfluidity matter at high isospin
density. For pion superfluidity, the averaged Fermi surface
of the paired quarks is controlled by isospin chemical
potential and the mismatch is served by baryon chemical
potential. Therefore, the Sarma phase which is induced by
the Fermi surface mismatch may enter the pion superflu-
idity at nonzero baryon density. In mean field approxima-
tion, by analyzing the four quasiparticle dispersions!i, the
possible types of the Sarma state and their thermodynamic
and dynamic instabilities are discussed in detail in Ref. [7].
It is found that the Sarma phase is the ground state of the
pion superfluidity at low isospin chemical potential. Very
different from the BCS phase structure where the tempera-
ture of the pairing state is always lower than the tempera-

ture of the normal state, the Sarma phase appears in an
intermediate temperature region and the normal state exists
in lower and higher temperature regions; see the mean field
phase transition line in the T � nI plane at low isospin
density in Fig. 2. However, the phase structure in the T �
nI plane is significantly modified when the meson fluctua-
tions are included. From Fig. 2, the meson effect reduces
greatly the pion superfluidity region, and the critical tem-
perature is suppressed from about 150 MeV in the mean
field treatment to about 80 MeV in the case beyond the
mean field. A qualitative change resulted from the meson
fluctuations is that the intermediate temperature superflu-
idity or the Sarma state in mean field calculations is totally
washed away, and the normal quark matter is always above
the BCS pairing state. In the nB � nI plane, the phase
diagram in the mean field approximation is similar to the
one in the nB ��I plane obtained in Ref. [10], and again
the meson effect reduces remarkably the pion superfluidity
region.
It has been argued both in effective theory and lattice

simulation that at finite but not very large isospin density
and zero baryon density, the QCD matter is a pure meson
matter, i.e., a Bose-Einstein condensate of charged pions.
At ultrahigh isospin density, the matter turns to be a Fermi
liquid with quark-antiquark cooper pairing [1]. Therefore,
there should be a BEC to BCS crossover when the isospin
chemical potential increases. There are some equivalent
quantities to describe the BEC-BCS crossover induced by
changing charge density [19]. Among them are the root-
mean-square radius of the Cooper pair which is small in
BEC and large in BCS, the s-wave scattering length which
is positive in BEC and negative in BCS, the condensate
scaled by the Fermi energy which is large in BEC and
small in BCS, and the fermion chemical potential which is
negative in BEC and positive in BCS. In the following we
take the chemical potential to characterize the BEC-BCS
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FIG. 2. The phase diagrams of pion superfluidity in the T � nI plane at fixed baryon density nB=n0 ¼ 0:5 (left panel) and in the
nB � nI plane at fixed temperature T ¼ 50 MeV (right panel) in the mean field approximation (thin lines) and including meson
fluctuations (thick lines). n0 ¼ 0:17=fm3 is the normal nuclear density. The solid lines are the phase transition lines and the dashed
lines are the BEC-BCS crossover lines.
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FIG. 1. The pion condensates in the mean field approximation
(thin line) and including meson fluctuations (thick line) as
functions of isospin density at fixed temperature and baryon
density. �0 is the chiral condensate in vacuum and ncI is the
critical isospin density of pion superfluidity.
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crossover. For relativistic pion superfluidity, the chemical
potential which controls the BEC-BCS crossover is
�I=2�m [14] depending on temperature and baryon den-
sity through the effective quark mass m, and �I can be
viewed as the binding energy of the bound state of quark
and antiquark in the BEC limit. In Fig. 3 we show �I=2�
m as a function of nI at fixed temperature and baryon
density in and beyond the mean field approximation. In
both cases, the effective chemical potential goes up from
negative to positive values with increasing isospin density.
The zero point, namely, the BEC-BCS crossover point, is
located at nI=n0 ¼ 1:68 in the mean field treatment and
nI=n0 ¼ 1:29 in the case with meson fluctuations. The
crossover lines determined by �I=2�m ¼ 0 in T � nI
and nB � nI planes are shown in Fig. 2. When the mesonic
fluctuations are included, not only the pion superfluidity
region is greatly reduced, but also the BEC region is
strongly shrunk.

In the BCS limit of the pion superfluidity, the isospin
density is high and the paired quark and antiquark is
weakly coupled. At the critical temperature, the conden-
sate disappears, the weakly coupled fermions are excited
separately, and the system is a Fermi liquid. In the BEC
limit, however, the isospin density is low and the paired
quark and antiquark is tightly coupled. In this case, above
the critical temperature, the system becomes a Bose liquid
of tightly bound pions, and the quarks should be too heavy
to be excited. This means that, at the critical temperature
mesons are lighter than quarks in the BEC limit and quarks
are lighter than mesons in the BCS limit. To confirm the
BEC-BCS crossover picture obtained above by calculating
the effective chemical potential inside the pion superflu-
idity, we show in Fig. 4 the meson mass M�þ and quark

mass m as functions of isospin density at the critical
temperature and fixed baryon density. With increasing
isospin density, the quark mass drops down but the meson
mass goes up monotonously. The two lines cross at about
nI=n0 ¼ 1:4 which is qualitatively in agreement with the
BEC-BCS crossover value determined by �I=2�m ¼ 0.

IV. SUMMARY

We have investigated the thermodynamics of a pion
superfluid at finite isospin density in the frame of the two
flavor NJL model beyond the mean field approximation.
Considering the fact that mesons, in particular, pions be-
cause of their low mass, dominate the thermodynamics of a
quark-hadron system at low temperature, the mesonic fluc-
tuations should be significant for the phase structure of
pion superfluidity. By recalculating the minimum of the
thermodynamic potential including meson contribution,
we derived a new gap equation for the pion condensate
which is similar to the mean field form but with a medium
dependent coupling constant. From our numerical calcu-
lations, the main effects of the meson fluctuations on the
phase structure are: (1) the critical temperature of pion
superfluidity is highly suppressed and the Sarma phase
which exists at low isospin chemical potential in the
mean field approximation is fully washed away and
(2) the BEC region at low isospin density is significantly
shrunk.

ACKNOWLEDGMENTS

Thework is supported by the NSFCGrant No. 10735040
and the National Research Program Grants
No. 2006CB921404 and No. 2007CB815000.

1.2 1.4 1.6 1.8 2 2.2

nI n0

-0.1

-0.05

0

0.05

0.1
I
2

m
nB n0 0.5
T 50MeV

FIG. 3. The effective chemical potential �I=2�m as a func-
tion of isospin density at fixed temperature T ¼ 50 MeV and
baryon density nB=n0 ¼ 0:5 in the mean field approximation
(thin line) and including mesonic fluctuations (thick line). n0 is
the normal nuclear density.

1 1.25 1.5 1.75 2 2.25 2.5

nI n0

0

50

100

150

200

250

300

M
eV

T Tc
nB n0 0.5

M

m

FIG. 4. The meson mass M�þ (solid line) and quark mass m
(dashed line) as functions of isospin density at the critical
temperature Tc and fixed baryon density nB=n0 ¼ 0:5. n0 is
the normal nuclear density.

CHENGFU MU AND PENGFEI ZHUANG PHYSICAL REVIEW D 79, 094006 (2009)

094006-6



[1] D. T. Son and M.A. Stephanov, Phys. At. Nucl. 64, 834
(2001).

[2] J. B. Kogut and D.K. Sinclair, Phys. Rev. D 66, 034505
(2002); 66, 014508 (2002); 70, 094501 (2004).

[3] Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);
124, 246 (1961).

[4] D. Toublan and J. B. Kogut, Phys. Lett. B 564, 212 (2003).
[5] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562,

221 (2003).
[6] A. Barducci, R. Casalbuoni, G. Pettini, and L. Ravagli,

Phys. Rev. D 69, 096004 (2004); 71, 016011 (2005).
[7] L. He and P. Zhuang, Phys. Lett. B 615, 93 (2005); L. He,

M. Jin, and P. Zhuang, Phys. Rev. D 71, 116001 (2005).
[8] H. J. Warringa, D. Boer, and J. O. Andersen, Phys. Rev. D

72, 014015 (2005).
[9] D. Ebert and K.G. Klimenko, J. Phys. G 32, 599 (2006).
[10] L. He, M. Jin, and P. Zhuang, Phys. Rev. D 74, 036005

(2006).
[11] G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).

[12] S. Wu and S. Yip, Phys. Rev. A 67, 053603 (2003).
[13] A. I. Larkin and Yu.N. Ovchinnikov, Sov. Phys. JETP 20,

762 (1965); P. Fulde and R.A. Ferrell, Phys. Rev. 135,
A550 (1964).

[14] G. Sun, L. He, and P. Zhuang, Phys. Rev. D 75, 096004
(2007).

[15] U. Vogl and Weise, Prog. Part. Nucl. Phys. 27, 195 (1991);
S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992); M.K.
Volkov, Phys. Part. Nucl. 24, 35 (1993); T. Hatsuda and T.
Kunihiro, Phys. Rep. 247, 221 (1994); M. Buballa, Phys.
Rep. 407, 205 (2005).

[16] P. Zhuang, J. Hufner, and S. P. Klevansky, Nucl. Phys.
A576, 525 (1994).

[17] J. Liao and P. Zhuang, Phys. Rev. D 68, 114016 (2003).
[18] P. Pieri, L. Pisani, and G. C. Strinati, Phys. Rev. B 70,

094508 (2004).
[19] Sh. Mao, X. Huang, and P. Zhuang, Phys. Rev. C 79,

034304 (2009).

PION SUPERFLUIDITY BEYOND MEAN FIELD . . . PHYSICAL REVIEW D 79, 094006 (2009)

094006-7


