
CP violation and kaon-pion interactions in B ! K�þ�� decays
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We study CP violation and the contribution of the strong kaon-pion interactions in the three-body

B ! K�þ�� decays. We extend our recent work on the effect of the two-pion S- and P-wave interactions

to that of the corresponding kaon-pion ones. The weak amplitudes have a first term derived in QCD

factorization and a second one as a phenomenological contribution added to the QCD penguin amplitudes.

The effective QCD coefficients include the leading order contributions plus next-to-leading order vertex

and penguins corrections. The matrix elements of the transition to the vacuum of the kaon-pion pairs,

appearing naturally in the factorization formulation, are described by the strange K� scalar (S-wave) and

vector (P-wave) form factors. These are determined from Muskhelishvili-Omnès coupled channel

equations using experimental kaon-pion T-matrix elements, together with chiral symmetry and asymptotic

QCD constraints. From the scalar form factor study, the modulus of the K�
0ð1430Þ decay constant is found

to be ð32� 5Þ MeV. The additional phenomenological amplitudes are fitted to reproduce the K� effective

mass and helicity angle distributions, the B ! K�ð892Þ� branching ratios and the CP asymmetries of the

recent data from Belle and BABAR collaborations. We use also the new measurement by the BABAR group

of the phase difference between the B0 and �B0 decay amplitudes to K�ð892Þ�. Our predicted B� !
K�

0ð1430Þ��, K�
0ð1430Þ ! K��� branching fraction, equal to ð11:6� 0:6Þ � 10�6, is smaller than the

result of the analyzes of both collaborations. For the neutral B0 decays, the predicted value is ð11:1�
0:5Þ � 10�6. In order to reduce the large systematic uncertainties in the experimental determination of the

B ! K�
0ð1430Þ� branching fractions, a new parametrization is proposed. It is based on the K� scalar form

factor, well constrained by theory and experiments other than those of B decays.
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I. INTRODUCTION

Rare two-body and quasi-two-body charmless hadronic
decays of B mesons [1] are a rich field for tests of the
standard model and QCD [2]. Furthermore, three-body
charmless hadronic B decays provide an interesting
ground, not only for searches on CP violations but also
to study hadronic physics [3]. Strong interaction effects, in
particular, through the presence of two-body resonances
and their interferences, can influence weak decay observ-
ables. Strong interaction phases are necessary for the oc-
currence of CP violation and it is essential to have a
description, as reliable as possible, of the interactions
between the detected hadrons. Dalitz plot analyses allow
us to extract effective mass and angular distributions of the
produced meson pairs. If one pair is created in two (or
more) different states, one can see specific interference
effects leading to additional and interesting CP asymme-
tries. These arise from the variations of the strong phases
with energy, such variations are absent in the two-body B

decays where the energy is fixed. The meson-meson final
state interactions must be addressed using theoretical con-
straints, such as unitarity, analyticity, and chiral symmetry,
and experimental data from processes other than B decays.
Then, for a given B-decay, the comparison between the
theoretical model and experimental results will determine
the strong phases needed to generate the measured direct
CP asymmetries.
Recently, BABAR and Belle Collaborations have per-

formed detailed Dalitz plot analyses for different B !
K�þ�� decays [4–12]. One observes an accumulation
of events for �� or K� effective masses lower than
2 GeVand, in particular, the presence of the scalar mesons
f0ð980Þ, K�

0ð1430Þ (and to a lesser extent f0ð1500Þ) and of

the vector mesons �ð770Þ0, K�ð892Þ. The event distribu-
tions of the Dalitz plots are usually studied using the isobar
model in which the decay amplitudes are parametrized by
sums of Breit-Wigner terms and a background. In
Refs. [4,7,10–12], an effective range nonresonant compo-
nent has been used in the K� S-wave amplitude. The aim
was to ameliorate the description of the low K� effective
mass spectrum.*Present address: ANL, Argonne, USA.
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An important breakthrough in the theory of B decays
recently achieved is the confirmation of the validity of
factorization, as a leading order approximation in an ex-
pansion in inverse powers of the b quark mass mb [13].
This concerns the B decays into two mesons and was later
reformulated using the soft collinear effective theory ap-
proach to QCD [14]. Detailed comparisons between the-
ory, based on QCD factorization (QCDF), and experiment
were made in the case of decays into two pseudoscalar
mesons and one pseudoscalar and one vector meson
[13,15]. Agreement is generally quite fair. However,
some phenomenological parameters are introduced.

In this paper, we study the decays of the B into three
mesons, B ! K�þ��, for which, to our knowledge, no
proof of factorization has been given. However, we restrict
ourselves to specific kinematical configurations in which
the three mesons are quasi aligned in the rest frame of the
B. This condition is met, in particular, in the low effective
K� mass region ( & 2 GeV) of the Dalitz plot where most
of theK� resonant structures are seen. Wewill denote such
processes as B ! ðK�Þ� where the mesons of the K� pair
move, more or less, in the same direction. Three-body
interactions are expected to be suppressed in such condi-
tions. Then, it seems reasonable to assume the validity of
factorization for this quasi–two-body B decay [16] where
we assume that the (K�) pair originates from a quark-
antiquark state.

In a previous work [17], the decays B ! ð�þ��ÞSK as
well as B!ð �KKÞSK, where the two comoving mesons in
the (�þ��) and (K �K) pairs are in S-states, were studied
using an approximate construction of relevant scalar form
factors proposed in Ref. [18]. The decays B!ð�þ��ÞPK,
with the two pions in a P state, were subsequently studied
in Ref. [19]. Here, we focus on the decays B�!
ðK���Þ��, B0!ðK0�þÞ�� and �B0!ð �K0��Þ�þ. In
the factorization approach the amplitudes can be expressed
as the product of effective QCD coefficients [13] and the
two matrix elements of the vector currents hK�j �q��sj0i
and h�j �q��bjBi, with q ¼ u or d. One conspicuous con-
sequence is that theK� pair is restricted to be in either an S
or a P state; no D or higher waves being allowed. This fact
is indeed supported by the Belle experiment of Ref. [9]. In
their analysis on B0 ! K0

S�
þ�� decays, one clearly ob-

serves a vector K�ð892Þþ and a scalar K�
0ð1430Þ reso-

nances, the signal for the tensor K�
2ð1430Þ being small.

The matrix element of the vector current hK�j �q��sj0i
involves two functions of the K� effective mass squared,
the strange scalar and vector form factors. We will perform
a construction based on general properties of analyticity,
QCD asymptotic counting rules [20], and using accurate
experimental data on K� scattering, both in the elastic and
inelastic region. Such data have been obtained in the
relatively high statistics LASS experiment on K� proton
interaction [21–23]. A specific feature of K� scattering at
medium energies is that inelasticity is dominated by two-

body or quasi–two-body channels. More specifically, it was
shown by LASS that inelasticity in the S-wave is domi-
nated by the K�0 state and in the P-wave by the K�� and
K� states. Combining dispersion relations with unitarity
relations then leads to a set of coupled integral equations
for the form factors. These equations constitute a general-
ization of Watson’s theorem of final state interactions, well
known for a single channel case [24].
An analogous system of equations was studied and

solved for the first time by Donoghue, Gasser, and Leut-
wyler [25] in the case of the pion scalar form factor. More
recently, this method was applied to the K� scalar form
factor in Ref. [26]. For our purpose, we have redone the
calculation of Ref. [26] and extended this framework to the
case of the vector form factor. Both of these form factors,
needed in our work on B!ðK�Þ� decays, are treated
exactly in the same way. This provides a unified treatment
of different B decays through coupled final-state channels
and also of �!K��� decays [27,28] using form factors
constrained by accurate results on K� scattering. It could
allow us, for instance, to give predictions for B!ðK�0ÞS�,
ðK��ÞP� and ðK�ÞP� decays as was done in Ref. [17] for
B!ðK �KÞSK decays connected to B!ð�þ��ÞSK decays.
The introduction of form factors, constrained by theory

and other experiments than B decays, is an alternative to
the use of the isobar model. This latter approximation
violates unitarity and the information about resonances,
present in the final states, can be distorted by other nearby
resonances due to interference. In our approach, we use the
complex pole definition of a resonance which allows us to
obtain its branching ratio and its decay constant. An alter-
native way, examined here too, is to integrate over the
effective mass range where the resonance dominates.
Recently charmless three-body decays of B mesons have
been extensively studied by Cheng, Chua, and Soni in the
factorization scheme [29]. Their calculation proceeds via
quasi–two-body decays involving resonant states and non-
resonant contributions. Breit-Wigner expressions are used
to describe the appropriate resonance effects in the scalar
and vector matrix elements. Their K�ð892Þ�, �ð770Þ0K,
and K�

0ð1430Þ� branching ratios are too small compared to

the data by a factor varying between 2 and 5. This is also
the case in our QCD factorization approach. To improve
agreement with experiment we introduce phenomenologi-
cal corrections to the QCD penguin amplitudes. The latter
could represent (in part) the contribution (not studied here)
of the weak annihilation and hard-spectator contributions
together with their phenomenological components [13].
They could also partially come from long distance charm-
ing penguin amplitudes [14,30] which, themselves, could

arise from intermediate Dð�Þ
s Dð�Þ states, reminding that

B ! Dð�Þ
s Dð�Þ branching fractions are large. Finally, they

can come from unknown effects of new physics which
could appear in the b ! s quark loop transitions (see for
instance Ref. [31]).
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Our paper is organized as follows. In Sec. II we derive,
in the QCDF framework, the B ! ðK�ÞS;P�� decay am-

plitudes for B�, B0, and �B0. The charged B (b ! s �dd
transition for B�) decay amplitudes have only penguin
diagram contributions, while the neutral (b ! s �uu transi-
tion for �B0) have an additional tree diagram. In the weak
amplitudes, we include penguin-correction terms repre-
sented by four complex parameters. The amplitudes are
expressed in terms of the product of the effective QCD
coefficients by the B to� transition form factor and theK�
strange form factors. Section III tabulates the values of the
process and scale dependent effective QCD coefficients
[13] we use in our amplitudes. To the leading-order con-
tribution in �s, we add the next-to-leading order short-
distance vertex and penguin corrections. Their calculation
is outlined in Appendix Awhere we give also their values.

In Sec. IV we specify the model we use for the B to �
transition form factors. The unitary equations satisfied by
the scalar and vector strange form factors are also pre-
sented. We discuss briefly the low energy constraints and
the two-channel description ðK�;K�0Þ for the S-wave K�
scattering. In the case of the P-wave, the necessary three-
channel ðK�;K��;K�Þ description is then described. We
give the results for the strange scalar and vector K� form
factors. Using the complex pole definition of a resonance, a
simple and unambiguous separation between the back-
ground and the resonant contributions of the S-wave and
P-wave amplitudes, is given. This allows us to determine
in an unambiguous way the B ! K�

0ð1430Þ� and B !
K�ð892Þ� branching fractions. A detailed derivation of
the S-wave T-matrix elements, necessary to calculate the
strange scalar form factor, is presented in the Appendix B.
We calculate the values of the decay constants of K�ð1430Þ
and K�

0ð892Þ from the knowledge of the vector and scalar

K� form factors in Appendix C. In Appendix D, we show
how the two-body amplitudes B ! K�

0ð1430Þ� and B !
K�ð892Þ� are related to the three-body ones. Effective
decay constants for K�ð1430Þ and K�

0ð892Þ are also

calculated.
In Sec. V we describe our fitting procedure on the addi-

tional penguin parameters. We furthermore compare the
results of our fit to the experimentalmK� mass and helicity
angle distributions. We present our fitted values for the
branching ratios and CP asymmetries for the B !
K�ð892Þ� and B ! K�

0ð1430Þ� decays. Note that, in the

case of the scalar meson production, our branching ratios
are predictions. Discussion of the results and comparison
with experimental analyzes are also given. A summary and
some conclusions are presented in Sec. VI.

II. DECAYAMPLITUDES AND PHYSICAL
OBSERVABLES

The amplitudes for the nonleptonic decays of the B
meson are given as matrix elements of the effective weak
Hamiltonian

Heff ¼ GFffiffiffi
2

p X
p¼u;c

�p

�
C1O

p
1 þ C2O

p
2 þ

X10
i¼3

CiOi

þ C7�O7� þ C8gO8g

�
þ H:c:; (1)

where in the case of strangeness S ¼ �1 final states

�u ¼ VubV
�
us; �c ¼ VcbV

�
cs; (2)

the Vpp0 being Cabibbo-Kobayashi-Maskawa quark-

mixing matrix elements. For the Fermi coupling constant
GF we take the value 1:166 37� 10�5 GeV�2. In this
work we use �u ¼ 3:55� 10�4 � i7:49� 10�4 and �c ¼
4:05� 10�2 þ i6:5� 10�7. The Cið	Þ are the Wilson
coefficients of the respective four-quark operators Oið	Þ
at a given renormalization scale 	. The explicit expression
of the operators Oi may be found e.g. in Ref. [32]. Studies
of B decays into two-body [32] and quasi–two-body
[13,33] final states have been performed in the QCDF
framework. These studies show that naive factorization is
a useful first order approximation which receives correc-
tions proportional to the strong coupling constant �sðmbÞ,
�sð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCDmb

q
Þ and in inverse powers of mb [2]. Here, we

perform a heuristic extension of these results to a class of
three-body decays B ! ðK�Þ�.

A. Charged B decay amplitudes

We focus on the processB� ! ðK��þÞ��. To illustrate
our approach, let us write the matrix elements of the
penguin operators O3 and O4 at leading order factoriza-
tion1

h��ðK��þÞjC3O3 þ C4O4jB�i
¼ a4h��j �d��ð1� �5ÞbjB�ihK��þj�s��ð1� �5Þdj0i

(3)

with

a4 ¼ C4ð	Þ þ 1

Nc

C3ð	Þ; (4)

where Nc ¼ 3 is the number of colors. In this approxima-
tion, the dependence of the amplitude as a function of the
two Dalitz-plot variables mK�, m�� is completely deter-
mined in terms ofK ! � and B ! � form factors. Wewill
probe this prediction by employing a careful determination
of the K� form factors described in detail in Sec. IVand in
Appendix B. Our main assumption will be that the correc-
tions to naive factorization can be absorbed into effective-
mass independent modifications of the parameters ai. We
will borrow parts of these corrections from quasi-two-body
calculations and also append a phenomenological part.

1In this derivation we have assumed that the (K��þ) pair
originates from a quark-antiquark state.
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The B to � transition matrix element is written as

h��ðp��Þj �d��ð1� �5ÞbjB�ðpB�Þi

¼
�
ðpB� þ p��Þ� �M2

B �m2
�

q2
q�
�
fB

���
1 ðq2Þ

þM2
B �m2

�

q2
q�fB

���
0 ðq2Þ; (5)

where fB
���

0;1 ðq2Þ are the scalar and vector B� to �� form

factors. The four-momentum transfer is

q ¼ pB� � p�� ¼ pK� þ p�þ ; (6)

with p�� , p�þ , pK� , and pB� being the four momenta of
the negative and positive pions, of the K� and of the B�
mesons, respectively. In an analogous way, the matrix
element for the transition from vacuum to the K��þ state

is given in terms of the scalar fK
��þ

0 ðq2Þ and vector

fK
��þ

1 ðq2Þ form factors by

hK�ðpK�Þ�þðp�þÞj �s��ð1� �5Þdj0i

¼
�
ðpK� � p�þÞ� �m2

K �m2
�

q2
q�

�
fK

��þ
1 ðq2Þ

þm2
K �m2

�

q2
q�f

K��þ
0 ðq2Þ: (7)

Above, MB, mK, and m� are the masses of the charged B
mesons, kaons, and pions, respectively. From Eqs. (5) and
(7) one obtains

h��j �d��ð1� �5ÞbjB�ihK��þj�s��ð1� �5Þdj0i

¼ fB
���

0 ðq2ÞfK��þ
0 ðq2ÞðM2

B �m2
�Þm

2
K �m2

�

q2

þ fB
���

1 ðq2ÞfK��þ
1 ðq2Þ

�
m2

K��� �m2
�þ��

� ðM2
B �m2

�Þm
2
K �m2

�

q2

�
; (8)

where mK��� and m�þ�� are the K��� and �þ�� effec-
tive masses. Note that q2 is the square of the K��þ
effective mass. In the K��þ center-of-mass system

m2
K��� �m2

�þ�� � ðM2
B �m2

�Þm
2
K �m2

�

q2

¼ 4p�þ � p�� ¼ 4jp�þjjp��j cos
; (9)

where 
 is the angle between the �þ and �� three-
momenta. The first term of the right-hand side of Eq. (8)
corresponds to the K��þ S-wave contribution while the
second term to that of the P-wave since it depends linearly
on cos
. One observes that there are no contributions from
l � 2 partial waves.

Finally, we introduce the matrix element of the complete
weak effective Lagrangian. We write the K� S-wave con-
tribution in the following form

M�
S � h��ðK��þÞSjHeffjB�i

¼ GFffiffiffi
2

p ðM2
B �m2

�Þm
2
K �m2

�

q2
fB

���
0 ðq2ÞfK��þ

0 ðq2Þ

�
�
�u

�
au4ðSÞ �

au10ðSÞ
2

þ cu4

�
þ �c

�
ac4ðSÞ �

ac10ðSÞ
2

þ cc4

�
� 2q2

ðmb �mdÞðms �mdÞ
�
�u

�
au6ðSÞ �

au8ðSÞ
2

þ cu6

�
þ �c

�
ac6ðSÞ �

ac8ðSÞ
2

þ cc6

���
: (10)

Here the kinematical q2 dependence associated with the
terms ap4 � ap10=2þ cp4 (p ¼ u, c) is different from that in

front of the ap6 � ap8=2þ cp6 ones. In the latter case, due to

a Fierz transformation, the matrix elements of scalar rather
than vector current are involved. This q2 dependence has
an important consequence for the behavior of the effective
mass distributions (see Sec. VB 1). For the P-wave one
has,

M�
Pp�� �p�þ � h��ðK��þÞPjHeffjB�i

¼ 2
ffiffiffi
2

p
GFp�� �p�þfB

���
1 ðq2ÞfK��þ

1 ðq2Þ

�
�
�u

�
au4ðPÞ�

au10ðPÞ
2

þcu4

�

þ�c

�
ac4ðPÞ�

ac10ðPÞ
2

þcc4

�

þ2
mK�

mb

f?V ð	Þ
fV

�
�u

�
au6ðPÞ�

au8ðPÞ
2

þcu6

�

þ�c

�
ac6ðPÞ�

ac8ðPÞ
2

þcc6

���
: (11)

In Eqs. (10) and (11) api ðSÞ and api ðPÞ are the leading order
factorization coefficients to which Oð�sÞ vertex and pen-
guin corrections are added in the quasi-two-body approxi-
mation of pseudoscalar-scalar, PS, or pseudoscalar-vector,
PV, final states (see Sec. III). These coefficients will be
evaluated at the scale 	 ¼ mb. The term proportional to
f?V ð	Þ=fV has been inferred from a similar term which
arises at order �s in the B ! PV amplitudes [13]. In the
following, we take the K�ð892Þ decay constant fV ¼
218 MeV and f?V ðmbÞ ¼ 175 MeV with mK� ¼
893:8 MeV. We have further assumed that the correspond-
ing P-wave form factor (which is associated with the
antisymmetric tensor current) is simply proportional to
the one associated with the vector current.
It was observed in Ref. [13] that the calculated Oð�sÞ

and 1=mb corrections are insufficient to explain the experi-
mental branching rate for the B ! K�� decay. We have
therefore allowed for four additional complex terms cu4 , c

c
4,

cu6 and cc6 which one could partly interpret as nonperturba-

tive contributions in the penguin diagrams. The other part
of these coefficients could represent hard spectator inter-
action in the pertubative regime and annihilation terms.
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Annihilation diagrams, due to divergences inherent to the
form of the twist-three amplitudes employed in QCDF
[13,32], are commonly parametrized by complex ampli-
tudes very similar to these QCD penguin corrections. This
complex parametrization is also the case for the endpoint
divergence of the hard-spectator amplitudes. The above
parameters will be determined by performing detailed fits
to the Dalitz plot in the region mK� < 1:8 GeV, m�� >
1:5 GeV where one believes that the QCDF formalism
could apply.

The complete amplitude for the B� ! ðK��þÞ�� de-
cay is

M� ¼ M�
S þM�

Pp�� � p�þ : (12)

Charge conjugation of M� gives the Bþ ! ðKþ��Þ�þ
decay amplitude

Mþ ¼ M�ð�u ! ��
u; �c ! ��

c; B
� ! Bþ;

K� ! Kþ; �� ! ��Þ: (13)

Let us specify here the value of the meson masses used
in this work: MB ¼ 5279:2 MeV, mK ¼ 495:66 MeV
(averaged K� and K0 masses) and m� ¼ 139:57 MeV.
For the quark masses, evaluated at the scale 	 ¼ mb, we
take mb ¼ 4:2 GeV, ms ¼ 84 MeV, and mu ¼ md ¼
3:4 MeV.

B. Neutral B decay amplitudes

In the �B0 ! ð �K0��ÞS;P�þ decay we have the quark

transition b ! s �uu. The derivation is similar to that just
described above for the B� ! ðK��þÞS;P�� case.

However, there is a tree diagram a1 contribution. One
obtains for the S-wave amplitude

�M0
S � h�þð �K0��ÞSjHeff j �B0i

¼ GFffiffiffi
2

p ðM2
�B0 �m2

�Þ
m2

�K0 �m2
�

q2
f

�B0�þ
0 ðq2Þf �K0��

0 ðq2Þ

�
�
�uða1 þ au4ðSÞ þ au10ðSÞ þ cu4Þ þ �cðac4ðSÞ

þ ac10ðSÞ þ cc4Þ �
2q2

ðmb �muÞðms �muÞ ½�uðau6ðSÞ

þ au8ðSÞ þ cu6Þ þ �cðac6ðSÞ þ ac8ðSÞ þ cc6Þ	
�
: (14)

For the P-wave amplitude one has

�M0
Pp�� � p�þ � h�þð �K0��ÞPjHeffj �B0i

¼ 2
ffiffiffi
2

p
GFp�� � p�þf

�B0�þ
1 ðq2Þf �K0��

1 ðq2Þ
�
�
�uða1 þ au4ðPÞ þ au10ðPÞ þ cu4Þ

þ �cðac4ðPÞ þ ac10ðPÞ þ cc4Þ þ 2
mK�

mb

f?V
fV

� ½�uðau6ðPÞ þ au8ðPÞ þ cu6Þ þ �cðac6ðPÞ
þ ac8ðPÞ þ cc6Þ	

�
: (15)

The full amplitude for the �B0 ! ð �K0��Þ�þ decays is

�M 0 ¼ �M0
S þ �M0

Pp�� � p�þ : (16)

The charge conjugation of the �M0 amplitude gives the
B0 ! ðK0�þÞ�� decay amplitude as

M0 ¼ �M0ð�u ! ��
u; �c ! ��

c; �B
0 ! B0;

�K0 ! K0; �� ! ��Þ: (17)

Isospin symmetry leads to

f
�B0�þ
0;1 ðq2Þ ¼ fB

0��
0;1 ðq2Þ ¼ fB

���
0;1 ðq2Þ ¼ fB

þ�þ
0;1 ðq2Þ (18)

and to

f
�K0��
0;1 ðq2Þ ¼ fK

0�þ
0;1 ðq2Þ ¼ fK

��þ
0;1 ðq2Þ ¼ fK

þ��
0;1 ðq2Þ:

(19)

In Eqs. (14) and (15) we have introduced the same phe-
nomenological parameters as those for the charged
B-decay amplitudes, Eqs. (10) and (11).

C. Physical observables

The density distribution of the Dalitz plot for the B� !
K��þ�� decay2 can be expressed in terms of the K��þ
and�þ�� effective masses, the latter being related to cos

as seen in Eq. (9). The double differential B� ! K��þ��
decay rate reads

d2��

d cos
dmK��þ
¼ mK��þjp�þjjp��j

8ð2�Þ3M3
B

jM�j2; (20)

whereM� is given by Eq. (12). The moduli of the �þ and
�� momenta are

jp�þj¼ 1

2mK��þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

K��þ �ðmKþm�Þ2	½m2
K��þ �ðmK�m�Þ2	

q
;

(21)

2Note that here and in the following, for simplicity, we
suppress the parentheses between the two first mesons of the
three-meson final state.
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jp��j¼ 1

2mK��þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

B�ðmK��þ þm�Þ2	½M2
B�ðmK��þ �m�Þ2	

q
:

(22)

In the experimental analyzes, the helicity angle 
H is
usually defined as 
H ¼ �� 
. Integrating the double
differential distribution of Eq. (20) over cos
 gives for
the differential effective mass branching fraction

dB�

dmK��þ
¼ 1

�B�

mK��þjp�þjjp��j
4ð2�Þ3M3

B

�
jM�

S j2

þ 1

3
jp�þj2jp��j2jM�

P j2
�
; (23)

where �B� denotes the total width of B�. This is a sum of
the S- and P-wave contributions

dB�

dmK��þ
¼ dB�

S

dmK��þ
þ dB�

P

dmK��þ
: (24)

The CP violating asymmetry for the charged B decays is
defined as

ACP ¼ B� �Bþ

B� þBþ (25)

The integration of the double differential decay rate over
mK��þ within the range ðmmin; mmaxÞ gives the angular
distribution

dB�

d cos

¼ Aþ B cos
þ Ccos2
; (26)

where

A ¼
Z mmax

mmin

dmK��þ
mK��þjp�þjjp��j

8ð2�Þ3M3
B

jM�
S j2; (27)

B ¼ 2
Z mmax

mmin

dmK��þ
mK��þjp�þj2jp��j2

8ð2�Þ3M3
B

ReðM�
S M

��
P Þ;
(28)

C ¼
Z mmax

mmin

dmK��þ
mK��þjp�þj3jp��j3

8ð2�Þ3M3
B

jM�
P j2: (29)

Similarly one can derive the above observables given in
Eqs. (20), (23), and (26) for the Bþ ! Kþ���þ, �B0 !
�K0���þ, and B0 ! K0�þ�� reactions.

D. B ! K�
0ð1430Þ� and B ! K�ð892Þ� amplitudes

The scalar K�
0ð1430Þ and the vector K�ð892Þ resonances

are quite visible in the experimental effective K� mass
distributions of the B ! K�� decays [4–12]. Branching
fractions for the B ! K�

0ð1430Þ� and B ! K�ð892Þ� re-

actions have been extracted by the experimental groups
within the framework of the isobar model. Here, we will

make use of the complex pole definition of a resonance in
scattering theory. This method allows one to perform in a
simple way a separation between the resonance contribu-
tion (defined to correspond to the pole part) and the back-
ground contribution in the amplitude.
We obtain the B ! K�

0ð1430Þ� amplitudes by replacing

in Eqs. (10) and (14) fK�0 ðq2Þ by fpole0 ðq2Þ defined in

Eqs. (45)–(47). Similarly the B ! K�ð892Þ� amplitudes
are given by replacing in Eqs. (11) and (15) fK�

1 ðq2Þ by
fpole1 ðq2Þ defined in Eqs. (62) and (63). Integration of the

differential branching fraction (23) over the effective mass
mK� of the pole parts of the scalar or vector form factors
will determine the B� ! �K�0

0 ð1430Þ�� and B� !
�K�0ð892Þ�� branching fractions, respectively. In this ap-
proach, we can also determine the decay constants of the
vector and the scalar resonances: this is exposed in
Appendix C.

III. EFFECTIVE QCD AMPLITUDES

The short-distance physics of the weak decay ampli-
tudes b ! s �dd or b ! s �uu is codified in the effective
QCD amplitudes au;ci ð	Þ, each of which corresponds to a
particular decay topology. The available QCDF calcula-
tions (see for instance Refs. [13,32,33]) concern two-body
final states. They apply to our case of a three-body final
state ðK�Þ� when the effective mass of the K� subsystem
coincides with the mass of a vector or a scalar resonance.
We will make the approximation to use these calculated
corrections also away from the resonance masses. In this
work, we take into account only vertex and penguin cor-
rections. At the leading order, these amplitudes are univer-
sal (i.e. do not depend on quark flavor) and given by

aið	Þ ¼
�
Cið	Þ þ Ci�1ð	Þ

Nc

�
NiðMÞ; (30)

where the plus (minus) sign corresponds to odd (even)
values of the index i. One finds NiðMÞ ¼ 0 if the emitted
mesonM[either the K�ð892Þ or theK�

0ð1430Þ, which do not
include the spectator quark] is a vector one and if i ¼ 6, 8,
otherwise NiðMÞ ¼ 1. The next-to-leading order vertex
and penguin corrections are calculated following
Ref. [33] for K�

0ð1430Þ� final states and Ref. [13] for

K�ð892Þ� ones. We write

api ð	Þ ¼ aið	Þ þ Ci�1

Nc

CF�s

4�
ViðMÞ þ Pp

i ðMÞ; (31)

with CF ¼ ðN2
c � 1Þ=2Nc. The relevant Wilson Cið	Þ co-

efficients were calculated in next-to-leading order logarith-
mic approximation and we take their values from Table 1
of Ref. [32] at the natural characteristic scale	 ¼ mb. The
second and third terms of Eq. (31) refer to the vertex and
penguin corrections and for completeness we describe in
Appendix A the main steps of their calculations. In Table I
we list the values of the coefficients api ðmbÞ with i ¼ 1, 4,
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6, 8, 10, used in the weak decay amplitudes discussed in the
present paper. These have been obtained adding to the
aiðmbÞ values (given in this table) those of the vertex and
penguin corrections listed in Table VI. The next-to-leading
order corrections are relatively small except in the case of
the B ! K�

0ð1430Þ� decays for au4 and ac4. These arise

mainly from the penguin terms.

IV. SCALAR AND VECTOR B� AND K� FORM
FACTORS

A. B� form factors

The scalar and vector B� transition form factors fB�0 ðq2Þ
and fB�1 ðq2Þ were introduced in Eq. (5) and are one of the

ingredients in QCDF. These form factors contain parts of
the nonperturbative physics which stems from the hadro-
nization of quark currents. In the applications considered
here, the variable q2 is timelike and remains small com-
pared to the physical threshold ðmB þm�Þ2. The form
factors in this region are real and we expect their variation
to be slow. Several studies dedicated to these transition
form factors have been carried out; on the phenomenologi-
cal side, we refer to the various approaches to heavy-to-
light transition amplitudes. These include light-cone sum
rules [34], light-front [35], simple nonrelativistic [36], or
relativistic quark models [37–40]. Ab initio approaches
such as lattice-regularized QCD have also been used to
determine B� form factors, however the lattice results are
for large momenta q2 > 10 GeV2 and need to be extrapo-
lated to low momenta [41,42] by means of pole dominance
models.

More recently, a comprehensive set of B-meson heavy-
to light-transition form factors, calculated with truncated
transition amplitudes based on Dyson-Schwinger equa-
tions in QCD, was reported in Ref. [43]. The methods of
Refs. [34,35] yield form factors for a small domain of
timelike momentum transfer q2, while those in
Refs. [37–39] apply to the entire range of physical mo-
menta. However, this is only possible by employing func-
tional extrapolations of the transition form factors

fB�0;1 ðq2 ¼ 0Þ to the timelike q2-range. On the other hand,

the form factors obtained from double dispersion relations
of spectral densities in the relativistic quark model [40] or
using Dyson-Schwinger equations in QCD [43] are calcu-
lated for all physical q2 values. A typical value found in
[40] is fB�1 ðq2 ¼ 0Þ ’ 0:2 which is in agreement with the

Dyson-Schwinger result fB�1 ðq2 ¼ 0Þ ¼ 0:24 as well as

with lattice data extrapolations [42].
In the above studies, the q2 dependence of the B�

transition form factors, as q2 varies from threshold up to
about ð1:8 GeVÞ2, is found to be small. This, of course, is
in contrast with the case of the K� scalar or vector form
factors which we discuss below. In practice, we take the
following constant values: fB�0 ðq2Þ ¼ fB�0 ðm2

K�
0
ð1430ÞÞ ¼

0:266 and fB�1 ðq2Þ ¼ fB�1 ðm2
K�ð892ÞÞ ¼ 0:250.

B. K� form factors

Another important ingredient of the QCD-factorized
B-decay amplitudes are the K� scalar and vector form
factors. These also appear in semileptonic decays like � !
K��� orK ! �l�l. Use of analyticity and unitarity allows
one to relate them to the S and the P wave K� scattering
amplitudes. Indeed, rather accurate information on K�
scattering is available, in particular, from the high statistics
experiment of Estabrooks et al. [44] and from the LASS
Collaboration [23]. This approach served to determine the
scalar form factors of the pion and kaon in Ref. [25]. Jamin,
Oller and Pich applied it recently to evaluate the K� scalar
form factor [26]. We perform also its calculation following,
essentially, their work. We then develop an extension of
this construction to the vector case, so both form factors are
handled in a similar way. The main approximation is to
reduce the sum over the inelastic many-body channels in
the unitarity equations to a finite number of two-body
channels. This is supported by the experiments performed
by the LASS Collaboration in the center-of-mass energy
range mK� < 2:5 GeV [21–23,45]. They find that the in-
elasticity in the S-wave is dominated by one channel, K�0,
and in the P-wave by two channels, K�� and K�. Then,

TABLE I. Leading and next-to-leading order effective QCD amplitudes aiðmbÞ and api ðmbÞ for
the K�

0ð1430Þ� and K�ð892Þ� final states [see Eqs. (30) and (31)].

B ! K�
0ð1430Þ� B ! K�ð892Þ�

aiðmbÞ api ðmbÞ aiðmbÞ api ðmbÞ
a1 1.018 1:029þ i0:063 1.018 1:045þ i0:014
au4 �0:031 �0:061� i0:023 �0:031 �0:030� i0:015
ac4 �0:031 �0:069þ i0:057 �0:031 �0:035� i0:005
au6 �0:039 �0:042� i0:014 0 �0:006� i0:002
ac6 �0:039 �0:045� i0:004 0 0:002þ i0:009
au8 0.00044 0:0005� i0:0001 0 �0:0001þ i0:0
ac8 0.00044 0:0005� i0:0 0 �0:0þ i0:0001
au10 �0:0015 �0:002þ i0:003 �0:0015 0:0001þ i0:0006
ac10 �0:0015 �0:002þ i0:004 �0:0015 0:0001þ i0:0007
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from fits to the experimental data, one constructs a 2� 2
scattering T-matrix for the S wave and a 3� 3 one for the
P wave. The form factors satisfy a set of n coupled,
homogeneous singular integral equations with a kernel
linear in the T-matrix (n ¼ 2 for the S wave and n ¼ 3
for the P wave). The mathematical properties of such
equations are derived in Muskhelishvili’s book [46]. In
particular the number of independent solutions N is given
by the index of the integral operator which can be ex-
pressed in terms of the sum of the S-matrix eigenphases
�jðtÞ of the S-matrix,

Xn
j¼1

½�jð1Þ � �jð0Þ	 ¼ N�: (32)

N is also the number of independent conditions that one
must impose on the form factors in order to determine them
from the integral equations. Wewill use conditions at t ¼ 0
or near t ¼ 0 derived from chiral symmetry. Asymptotic
conditions will also be used.

1. Scalar form factor

Following the experimental analyzes, we assume the
dominance of a single inelastic channel K�0.3 The K�0
matrix element of the vector current can be written in terms

of two form factors fK
þ�0

þ ðtÞ and fK
þ�0

� ðtÞ as
hKþj �u�	sj�0i ¼ fK

þ�0
þ ðtÞðpK þ p�0 Þ	

þ fK
þ�0

� ðtÞðpK � p�0 Þ	; (33)

where t ¼ ðpK � p�0 Þ2 ¼ q2. The coupled channel inte-

gral equations will involve the two components

F1ðtÞ �
ffiffiffi
2

p
fK

þ�0

0 ðtÞ ¼ fK
��þ

0 ðtÞ;

F2ðtÞ ¼
ffiffiffi
2

3

s �m2
K �m2

�0

m2
K �m2

�

f
Kþ�0
þ ðtÞ þ t

m2
K �m2

�

fK
þ�0

� ðtÞ
�
:

(34)

We have used here isospin symmetry to express the form

factor fK
��þ

0 ðtÞ, introduced in Eq. (7), in terms of fK
þ�0

0 ðtÞ.
The form factors F1ðtÞ and F2ðtÞ are analytic functions

in the complex t plane with a cut along the real axis ðm� þ
mKÞ2 
 t 
 1. Asymptotic counting rules in QCD [20]
imply that the dispersion relations satisfied by the func-
tions FiðtÞ converge without subtractions

FiðtÞ ¼ 1

�

Z 1

ðm�þmKÞ2
ImFiðt0Þdt0

t0 � t
; i ¼ 1; 2: (35)

Unitary equations of the two coupled channels K� (i ¼ 1)
and K�0 (i ¼ 2) allow one to express the imaginary parts
as follows (see [25,26])

ImF1ðtÞ ¼ 
ðt� t1Þ 2qK�ðtÞffiffi
t

p T�
11ðtÞF1ðtÞ

þ 
ðt� t2Þ
2qK�0 ðtÞffiffi

t
p T�

12ðtÞF2ðtÞ;

ImF2ðtÞ ¼ 
ðt� t1Þ 2qK�ðtÞffiffi
t

p T�
12ðtÞF1ðtÞ

þ 
ðt� t2Þ
2qK�0 ðtÞffiffi

t
p T�

22ðtÞF2ðtÞ; (36)

where

t1 ¼ ðmK þm�Þ2; t2 ¼ ðmK þm�0 Þ2 (37)

and qK�ðtÞ, qK�0 ðtÞ are the center-of-mass momenta. The

set of integral equations obtained by inserting Eqs. (36)
into (35) are often called Muskhelishvili-Omnès equations.
The detailed determination of the matrix elements T11, T12,
T22 is given in Appendix B. We use experimental data and
theoretical constraints at low energy, in particular, we
employ a systematic combination of the chiral and 1=Nc

expansions [47,48]. At medium and high energies, we
employ a K-matrix parametrization as in Ref. [26], which
guarantees unitarity. This provides a smooth interpolation
with index N ¼ 2 in the asymptotic region, where no
experimental data exist [see Eq. (32)]. One must therefore
provide two initial conditions for the form factors. As in
Ref. [26], we use the values of F1ðtÞ at t ¼ 0 and at the
Cheng-Dashen point t ¼ m2

K �m2
� which are precisely

constrained by chiral symmetry

F1ð0Þ ¼ 0:961; F1ðm2
K �m2

�Þ ¼ fK
f�

� 3:1� 10�3;

(38)

where fK and f� are the kaon and pion decay constants,
respectively. The value at t ¼ 0 is derived from chiral
perturbation theory at order p4 [49,50] and includes an
estimate for the p6 corrections made in Ref. [51]. The
value at t ¼ m2

K �m2
� was obtained in Ref. [50] at order

p4. In that case, the p6 corrections are expected to be very
small, of order 10�3. For the ratio fK=f�, the latest Review
of Particle Physics [52] (see the note by J. Rosner and S.
Stone, p. 821) gives

fK
f�

¼ 1:193� 0:002� 0:006� 0:001 (39)

and we will use the central value in Eq. (38). We solve the
set of integral equations for F1 and F2 using the numerical
method of Ref. [53]. The results for the modulus and for
the phase of F1 are displayed in Fig. 1. Our numerical
results are in a fair agreement with those of Refs. [26,27].
The phase of the form factor satisfies, as it should,
Watson’s theorem in the energy region below the K�0
threshold. Above this point it displays a sharp drop.
Correspondingly, the modulus of F1 displays a dip.

3The authors of Ref. [26] have studied the influence of an
additional K� inelastic channel and found that it is rather small.
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These structures reflect interference effects between the
independent solutions which are linearly combined.
Because of the linearity of the equations, the dependence
on the initial conditions can be studied by varying
F1ðm2

K �m2
�Þ and keeping F1ð0Þ fixed. The figure illus-

trates the variation of the scalar form factor fK�
0 as a

function of fK=f�.

2. K�
0ð1430Þ pole part of the scalar form factor

The separation between resonant and background con-
tributions has some arbitrariness, in particular, if the back-
ground contribution is significant, depending on how each
contribution is parametrized. In the case of B ! K��
amplitude, we propose a simple and unambiguous way to
define this separation based on the well known property
that a resonance can be associated with a pole of the
scattering matrix in the complex energy plane on the
second Riemann sheet (e.g. [54]). This pole also appears
in form factors and current correlation functions. We first
study the scalar K�

0ð1430Þ resonance and then the vector

K�ð892Þ resonance.
Let us analyze the scalar form factor fK�0 ðtÞ. We want to

define the extrapolation to the second Riemann sheet in the
t variable. We recall that we have assumed, in constructing
the T matrix, that scattering was elastic up to the �0K
threshold. We can write the discontinuity of the form factor
upon crossing the cut as follows,

fK�
0 ðtþ i�Þ � fK�

0 ðt� i�Þ ¼ �2
K�ðtþ i�ÞTS
11ðt

þ i�ÞfK�
0 ðt� i�Þ; (40)

for t real and in the range ðm�þmKÞ2
 t
ðm�0 þmKÞ2.
Here, 
K�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððmK þm�Þ2 � tÞðt� ðmK �m�Þ2Þ
p

=t
and TS

11 is the S-wave T-matrix element of the K� !
K� process. TS

11ðtÞ satisfies a discontinuity equation simi-

lar to Eq. (40),

TS
11ðtþ i�Þ � TS

11ðt� i�Þ ¼ �2
K�ðtþ i�Þ
� TS

11ðtþ i�ÞTS
11ðt� i�Þ: (41)

Equations (40) and (41) allow us to find the extension of
fK�
0 on the second Riemann sheet

fII0 ðtÞ ¼
fK�
0 ðtÞ

1� 2
K�ðtÞTS
11ðtÞ

; (42)

which, by definition, must satisfy

fII0 ðt� i�Þ ¼ fK�0 ðtþ i�Þ (43)

along the cut. Equation (42) shows that fII0 ðtÞ displays a

pole whenever the denominator function

DðtÞ ¼ 1� 2
K�ðtÞTS
11ðtÞ (44)

displays a zero. In a similar way, one can define the
extension to the second sheet of the T-matrix, ðTS

11ÞII,
which because of Eq. (41) has exactly the same denomi-
nator function DðtÞ. A point t0 such that Dðt0Þ ¼ 0 corre-
sponds to a pole of ðTS

11ÞII and thus can be associated with a
resonance [54]. From this, it is simple to isolate the pole
part of the form factor

f
pole
0 ðtÞ ¼ fK�

0 ðt0Þ
�ðt� t0Þ ; (45)

where � ¼ dDðtÞ=dt at t ¼ t0. In the numerator, fK�0 ðt0Þ
can be computed using its dispersive representation.
In practice, in order to do so, we must be able to define

TS
11ðtÞ for complex values of t. In our work we have defined

TS
11ðtÞ on the real axis in the range 1:25 
 ffiffi

t
p 
 2:5 GeV

from a 2� 2 K-matrix fit to the experimental data. By
construction, the elements of the K-matrix have no branch
cut on the positive real axis. The meromorphic function

FIG. 1 (color online). Modulus (left) and phase (right) of the strange scalar form factor fK
��þ

0 ðtÞ obtained by solving a two-channel
Muskhelishvili-Omnès equation system. Variation with the input F1ð�K�Þ ¼ fK=f� � 3:1� 10�3 at the Cheng-Dashen point �K� ¼
m2

K �m2
� is illustrated. In the present work we use the form factor corresponding to fK=f� ¼ 1:193.
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parametrization which we used should be valid in some
complex domain of the t variable. It seems reasonable to
assume that it remains reliable in the region of the
K�

0ð1430Þ resonance pole since this pole lies rather close

to the real axis. Numerically, we find the following result
for the location of the pole

t0 ¼ ð1:9487� i0:3825Þ GeV2;ffiffiffiffi
t0

p ¼ ð1:4026� i0:1364Þ GeV: (46)

These results compare reasonably well with the values of
the mass MR ¼ ð1:414� 0:006Þ GeV and of the half-
width �R=2 ¼ ð0:145� 0:011Þ GeV of the K�ð1430Þ
given by the PDG [52]. For the other quantities needed

for f
pole
0 ðtÞ we obtain

fK�0 ðt0Þ ¼ �0:3242� i1:4679;

� ¼ ð0:8381þ i1:1713Þ GeV�2:
(47)

We remind that, in the dispersive construction of fK�0 ðtÞ
from Ref. [26], followed here, the result depends on the
value of fK=f� which controls one of the initial conditions
[see Eq. (38)]. The number given above for f0ðt0Þ corre-
sponds to fK=f� ¼ 1:193 which we used as central value.
Varying fK=f� we would obtain:

fK�
0 ðt0Þ ¼ �0:4901� i1:6652 for

fK
f�

¼ 1:203;

fK�
0 ðt0Þ ¼ �0:1586� i1:2710 for

fK
f�

¼ 1:183:

(48)

Figure 2 shows the modulus of fpole0 ðtÞ compared with the

modulus of fK
��þ

0 ðtÞ and that of the ‘‘background’’ which

we may define just as the difference

fback0 ðtÞ ¼ fK�
0 ðtÞ � f

pole
0 ðtÞ: (49)

We can define the isolated K�
0ð1430Þ resonance contribu-

tion to the B ! K�þ�� decay amplitudes by replacing

the scalar form factor fK�0 ðtÞ by f
pole
0 ðtÞ. For instance, for

the B� ! K��þ�� case, this substitution can be done in
Eq. (10).

3. Vector form factor

We perform a construction using the same method as in
the case of the scalar form factor. Here the main points
involved in this construction are given below, a more de-
tailed discussion can be found in Ref. [28]. For K� scat-
tering in P-wave at medium energies (mK� 
 2:4 GeV),
we assume the dominance of two inelastic channels, K��
and K�. We treat vector mesons as stable particles in our
unitary equations. For the three coupled channels K� (i ¼
1), K�� (i ¼ 2) and K� (i ¼ 3) three form factors HiðtÞ
enter the calculation. The first one was defined in Eq. (7):

H1ðtÞ �
ffiffiffi
2

p
fK

þ�0

1 ðtÞ ¼ fK
��þ

1 ðtÞ: (50)

The other two are defined by the following matrix ele-
ments:

hK�þðpV; �Þj �u�	sj�0ðp�Þi ¼ �	���"
��ð�Þp�

Vp
�
�H2ðtÞ;

(51)

h�0ðpV; �Þj �u�	sjK�ðpKÞi ¼ ��	���"
��ð�Þp�

Vp
�
KH3ðtÞ:

(52)

In the above equations "� is the polarization four-vector of
the K� or the � meson, p denote four-momenta of mesons
and �	��� is the completely antisymmetric tensor. The

components H2 and H3 have dimension mass�2 while H1

is dimensionless. As for the S-wave case each form factor
satisfies an unsubtracted dispersion relation. We have now
to determine six independent matrix elements of the 3� 3
P-wave T-matrix, TP, from fits to the experimental data.
The most complete data exist for the elastic channelK� !
K� [23]. Some information is also available on the inelas-
tic amplitudesK� ! K�� andK� ! K� in the regions of
the resonances K�ð1410Þ and K�ð1680Þ [22,45]. As in the
case of the S-wave, theK-matrix method is used to enforce
three-channel unitarity. The unitarity equations obeyed by
the three form factors HiðtÞ can be written as

ImHiðtÞ ¼
X3
j¼1

ð��1ðTPÞ�Q2��ÞijHjðtÞ; (53)

where �, Q, and � are diagonal matrices with � ¼
diag½1; ffiffi

t
p

;
ffiffi
t

p 	, � ¼ 2Q=
ffiffi
t

p
and

Q¼ diag½
ðt� t1ÞqK�ðtÞ;
ðt� t3ÞqK��ðtÞ;
ðt� t4ÞqK�ðtÞ	
(54)

with t3 ¼ ðmK� þm�Þ2 and t4 ¼ ðmK þm�Þ2. The nor-

malization of the TP-matrix here is such that its relation
with the S-matrix is

FIG. 2 (color online). Modulus of the scalar form factor
fK

��þ
0 ðtÞ compared with its pole part, as defined in the text.
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SP ¼ 1þ 2i
ffiffiffiffi
�

p
QTPQ

ffiffiffiffi
�

p
: (55)

In the asymptotic region, mK� � 2:4 GeV, we impose a
smooth interpolation for the scattering amplitudes with the
index N ¼ 4 [see Eq. (32)]. In order to enforce exact
unitarity in the interpolation region we write the S-matrix
in exponential form, SP ¼ expð2ihÞ, where h is real and
symmetric matrix and we interpolate the nondiagonal ele-
ments of h to zero and the diagonal ones to multiples of �.
Illustration of this interpolation of the eigenphases of the
SP-matrix is given in the Fig. 4 of Ref. [28].

For N ¼ 4, in order to solve the system of integral
equations we must impose four conditions on the form
factors. We use the three values of Hi at t ¼ 0 and, as
the fourth constraint, we implement an asymptotic condi-
tion for t ! �1 on the form factor H1. According to
Refs. [20,55] and ignoring flavor symmetry breaking, one
should have,

H1ð�q2Þjq2!1 � 16�
ffiffiffi
2

p
�sðq2Þf2�
q2

: (56)

We do not attempt to reproduce the logarithmic running of
�s and actually implement Eq. (56) with the constant value
�s ¼ 0:2. At t ¼ 0, one hasH1ð0Þ ¼ F1ð0Þ and wewill use
the value given in Eq. (38). The values of H2ð0Þ and H3ð0Þ
are not known as precisely. In the SUð3Þ chiral limit, flavor
symmetry leads to the following relation between the
charged current matrix element and the electromagnetic
one, j

	
EM

hK�þj �u�	sj�0i ¼ 3
ffiffiffi
2

p
2

h�þjj	EMj�þi; (57)

which allows one to relate H2ð0Þ and H3ð0Þ to the radiative
decay width of the �þ, yielding

H2ð0Þ ¼ �H3ð0Þ ¼ ð1:54� 0:08Þ GeV�1: (58)

The relative sign is determined by vector meson domi-
nance arguments. We have studied the influence of flavor
symmetry breaking to first order in the quark masses. There
are three independent symmetry breaking parameters and
two of them can be determined from experiment (see [28]).
As a consequence, one can express H2 and H3 in terms of
the third, unknown parameter a, as follows:

H2ð0Þ ¼ ð1:41� 0:09� 65:4aÞ GeV�1;

H3ð0Þ ¼ ð�1:34� 0:07� 65:4aÞ GeV�1:
(59)

The magnitude of a is expected to be a few times 10�3. We
have estimated a from the sum R of the decay rates of the
�� into K��0 and �K0�� Rð� ! K���Þ ¼ ð13:5� 0:5Þ �
10�3 [52] which gives a ¼ ð�7:0þ0:7

�2:0Þ � 10�3. Results for

the vector form factor are displayed in Fig. 3. Its phase
shows a sharp transition as a function of the parameter a
close to a ¼ �7� 10�3. It goes from a regime where its
value is 3� at infinity to one where it is � displaying a
sharp drop. The K�ð1680Þ resonance appears to be sup-
pressed but the properties of the form factor in this energy
region depend significantly on the S-matrix interpolation
parameters in the region mK� � 2:4 GeV. In our applica-
tion to B decays we will use the form factor in the regionffiffi
t

p
& 1:8 GeV, where the sensitivity to the asymptotic

interpolation is small.

4. K�ð892Þ part of the vector form factor

As before, the starting point is the discontinuity equation
satisfied by fK�

1 ðtÞ across the elastic unitarity cut, which
reads

FIG. 3 (color online). Modulus (left) and phase (right) of the strange vector form factor fK
��þ

1 ðtÞ obtained by solving a three-channel
Muskhelishvili-Omnès equations system. Dependence on the symmetry breaking parameter a is illustrated [see Eq. (59)].
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fK�
1 ðtþ i�Þ � fK�

1 ðt� i�Þ ¼ �2
K�ðtþ i�Þq2K�ðtþ i�Þ
� TP

11ðtþ i�ÞfK�1 ðt� i�Þ;
(60)

and from this we deduce the expression of fK�1 ðtÞ on the
second Riemann sheet

fII1 ðtÞ ¼
fK�
1 ðtÞ

1� 2
K�ðtÞq2K�ðtÞTP
11ðtÞ

: (61)

The position of a resonance in the complex plane, tpole1 ,

corresponds to a zero of the denominator function in
Eq. (61) and this allows one to isolate a pole in fII1 ðtÞ,

fpole1 ðtÞ ¼ fK�1 ðtpole1 Þ
�ðt� t

pole
1 Þ : (62)

In the case of the K�ð892Þ we obtain, based on our fit, the
following values for the pole parameters

t
pole
1 ¼ ð0:7982� i0:0504Þ GeV2;ffiffiffiffiffiffiffiffi
t
pole
1

q
¼ ð0:8939� i0:0282Þ GeV;

� ¼ ð�1:8874þ i9:5726Þ GeV2;

fK�
1 ðtpole1 Þ ¼ 0:8244� i9:0784:

(63)

The K�ð892Þ resonance being very narrow, we expect the
pole component to strongly dominate the form factor be-
low 1 GeV. This is illustrated in Fig. 4 which shows that,
indeed, the background component is very small in that
case. As before we can define the B decay amplitude B !
K�ð892Þ� from the three-body amplitude B ! K�� by

substituting fK�
1 ðtÞ by f

pole
1 ðtÞ in the relevant formulas, for

example, in Eqs. (11) and (15).

V. FIT, RESULTS AND DISCUSSION

A. Fitting procedure

In this paper we use a fitting procedure similar to that
described in Ref. [19]. We perform a �2 fit on experimental
data from Belle [5,6,8,9] and BABAR [7,10–12] collabo-
rations. We use sixmK� and five cos
H distributions where
the background is subtracted. These data are extracted
from the figures of the first seven papers just cited. We
also exploit the four branching fractions for the K�ð892Þ�,
the three CP asymmetries for K�ð892Þ� and the three CP
asymmetries forK�

0ð1430Þ� calculated by experimentalists

in their data analyzes [6,9,11,12]. Branching fractions are
necessary to determine the absolute size of decay ampli-
tudes. However, the branching fractions for the B !
K�

0ð1430Þ� are not well determined due to the large width

of the K�
0ð1430Þ resonance. Therefore we use here only the

well measured branching fractions for the B ! K�ð892Þ�,
the K�ð892Þ being a narrow resonance. The phases of the
decay amplitudes can be constrained by the phase differ-
ence, ��0, between the decay amplitudes of B0 !
K�þð892Þ�� and �B0 ! K��ð892Þ�þ. Here we use the
preliminary result of Ref. [10]. The total �2 reads

�2
tot ¼ �2

mK�
þ �2

cos
H
þ wð�2

BR þ �2
ACP

þ �2
��0

Þ; (64)

where the coefficient w is introduced in order to increase
the weight of the branching fractions, CP asymmetries and
the phase difference, which form a significantly smaller
data set than the mK� and cos
H distributions. We have
verified that varying w between 5 and 20 leads to very
similar fits. In this analysis, to perform our best fit, we
choose w ¼ 10.
The �2 for a given distribution with n bins is defined by

�2 ¼ Xn
i¼1

�
YexpðxiÞ � YthðxiÞ

�YexpðxiÞ
�
2
; (65)

where YexpðxiÞ and �YexpðxiÞ are the number of experimen-

tal events and associated error in each bin xi. Here x
denotes eithermK� or cos
H. Integration of the differential
distributions dBðxÞ=dx [see Eqs. (23) and (26)] over the
bin width ½xi�1; xi	 yields the theoretical number of events
YthðxiÞ,

YthðxiÞ ¼ N
Z xi

xi�1

dBðxÞ
dx

dx: (66)

Our theoretical distributions are normalized to the number
of experimental events in the analyzed range from x0 to xn
with

N ¼
P

n
i¼1 YexpðxiÞR
xn
x0

dBðxÞ
dx dx

: (67)

Altogether in our fit we include 308 bins in the mK� and
cos
H distributions, four branching fractions, six CP
asymmetries and one phase difference.

FIG. 4 (color online). Modulus of the vector form factor
fK

��þ
1 ðtÞ compared with the K�ð892Þ complex pole component.
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In our minimization, the branching fractions and asym-
metries are calculated in limited mK� regions. For the
K�ð892Þ we choose a mK� range from 0.82 to 0.97 GeV
and for the K�

0ð1430Þ one from 1.0 to 1.76 GeV. These

ranges have been used in Refs. [5,8,9] to obtain the helicity
angle distributions in the regions where the resonances
dominate. The experimental branching fractions, which
we use in our fit, are calculated in the above mK� regions
from the models presented in the experimental analyzes
(see, in particular, Refs. [5,9,11]). In our analysis we have
excluded two experimental points in the mK� distributions
and three in the cos
H ones. As will be seen below these
points lie significantly far from the general trend of the
data.

B. Results

In Table II we give the values of the phenomenological
cu;c4;6 parameters and their errors obtained from our best fit.

These parameters enter our amplitudes defined in Sec. II.
The large values of the cu4;6 coefficients should not be

directly compared to those of cc4;6, since in the amplitudes

the latter are multiplied by �c and the former by �u with
j�cj ’ 50j�uj. The results of our fits, with �2 ¼ 541 for
308 experimental K� effective mass and helicity angle
distribution points, and �2 ¼ 9:3 for ten experimental
branching ratios and asymmetries, are presented in
Tables III, IV, and V and in Figs. 5–11. For the phase
difference ��0 our fit gives �199� � 6� to be compared
with ð�164� 24� 12� 15Þ� found in the experimental
analysis of Ref. [10]. In the calculation of distributions we
take into account all the �� effective mass cuts around the
D, J=� and �ð2SÞ meson masses. As described in
Refs. [5–11], these cuts are introduced in the experimental
analyzes in order to eliminate the decay contributions from
these resonances. Our results, shown as histograms, take
into account the above cuts. In all figures presented in this
section, the dashed and dotted lines describe the S- and
P-wave contributions, respectively. In these latter cases the
cuts are not taken into account. Note that, following the
experimental procedure, for the mK� plots the requirement
is made that m�þ�� is greater than 1.5 GeV for the Belle
data and 2.0 GeV for the BABAR results. Thus, the con-
tributions unrelated to K� rescattering and arising, for
example, from B ! �ð770ÞK and B ! f0ð980ÞK decays,
are removed from the data samples. In our model such
contributions are omitted.

1. The K� effective mass and helicity angle distributions
in B� ! K����� decays

The K��� effective mass distribution for the B� !
K����� decays, obtained from our fit, is compared to

TABLE II. Phenomenological parameters of the decay ampli-
tudes [see e.g. Eqs. (10), (11), (14), and (15)].

Real part Imaginary part

cu4 �0:402� 0:244 �3:641� 0:054
cc4 þ0:015� 0:003 þ0:033� 0:004
cu6 �0:051� 0:153 �0:161� 0:184
cc6 þ0:075� 0:009 �0:033� 0:007

TABLE III. Branching fractions for the B ! K�ð892Þ� decays averaged over charge conjugate reactions in units of 10�6. In the
second column, giving the experimental branching ratios, the 2=3 factor arises from isospin symmetry. The values of the model
calculated by the integration on mK� from 0.82 to 0.97 GeV are compared to the corresponding Belle and BABAR results given in the
fourth column. Model errors stem from the phenomenological parameter uncertainties obtained through the minimization procedure.
The last column corresponds to the model without phenomenological parameters.

Decay mode Bexp Ref. Bexpð0:82; 0:97Þ model model [cpi � 0]

B� ! ½ �K�0ð892Þ ! K��þ	�� 6:45� 0:71 [6] 5:35� 0:59 5:73� 0:14 1.42

7:20� 0:90 [11] 5:98� 0:75
�B0 ! ½ �K��ð892Þ ! �K0��	�þ 5:60� 0:93 [9] 4:65� 0:77 5:42� 0:16 1.09

2
3 ð11:7� 1:30Þ [12] 6:47� 0:72

TABLE IV. Direct CP asymmetries averaged over charge conjugate reactions. The values of the model, calculated over the mK�

range from 0.82 to 0.97 GeV for the K� P-wave and from 1.0 to 1.76 GeV for the S-wave, are compared to the Belle and BABAR
results. Concerning the errors of the model and the last column, see the caption in Table III.

Decay mode exp. (%) Ref. model (%) model (%) [cpi � 0]

B� ! ½ �K�0ð892Þ ! K��þ	�� �14:9� 6:8 [6] �2:5� 1:3 1.4

3:2� 5:4 [11]

B� ! ½ �K�
0ð1430Þ ! K��þ	�� 7:6� 4:6 [6]

B� ! ðK��þÞS�� 3:2� 4:6 [11] 5:4� 1:0 0.2
�B0 ! ½ �K�0ð892Þ ! �K0��	�þ �14� 12 [12] �19:6� 3:0 6.1
�B0 ! ð �K0��ÞS�þ 17� 26 [12] �0:2� 1:3 �1:7
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the experimental distributions of Belle [6] and BABAR
Collaborations [11] in Figs. 5 and 6, respectively. The
mass distributions are averaged over charge conjugate
states. In both cases, our model describes quite well the
mK� distributions in the K�ð892Þ and K�

0ð1430Þ regions. It
also depicts quite well the sizable enhancement below
1 GeV related to the K�

0ð800Þ state, often called �
[52,56]. In our amplitude, its contribution is present in
the relatively large background found in the modulus of
the scalar form factor at lowmK� [see Eq. (49) and Fig. 2].
If one approximates the quasi-two-body B ! ðK�ÞS� by
the two-body B ! K�

0ð1430Þ� amplitudes, then q2 is fixed
at the resonance mass m2

K�
0
ð1430Þ in the third lines of

Eqs. (10) and (14). With this replacement, one cannot
reproduce the low mK� distributions below about 1 GeV,
the q2-term contribution becoming much too large. This
justifies the form of our three-body approach, within the
QCD factorization framework, to these decays. The origin
of this q2 term is given below Eq. (10).

In the isobar model, used in experimental analyzes, the
above q2 dependence is approximated by one fitted con-
stant parameter. For the description of the wide K�

0ð1430Þ
resonance this may not be a very good approximation since
the q2 varies by a factor of 8 from the K� threshold to the

TABLE VI. Next-to-leading-order vertex and penguin corrections entering api ðmbÞ [see Eq. (31)] for B ! K�
0ð1430Þ� and B !

K�ð892Þ� decays. Note that there are no penguin corrections for i ¼ 1.

B ! K�
0ð1430Þ� B ! K�ð892Þ�

Vertex Penguin Vertex Penguin

a1 0:011þ i0:063 0.0 0:028þ i0:014 0.0

au4 �0:001� i0:005 �0:029� i0:019 �0:002� i0:001 0:004� i0:014
ac4 �0:001� i0:005 �0:037þ i0:061 �0:002� i0:001 �0:002� i0:004
au6 �0:0004þ i0 �0:003� i0:014 0:001� i0:001 �0:007� i0:001
ac6 �0:0004þ i0 �0:006� i0:004 0:001� i0:001 0:001þ i0:011
au8 0:0þ i0:0 0:0� i0:0001 �0:00001þ i0:00001 �0:0þ i0:0
ac8 0:0þ i0:0 0:0� i0:0 �0:00001þ i0:00001 �0:0þ i0:0001
au10 0:0006þ i0:0032 �0:0006� i0:0001 0:0014þ i0:0007 0:0002� i0:0001
ac10 0:0006þ i0:0032 �0:0007þ i0:0003 0:0014þ i0:0007 0:0002� i0:0

TABLE V. Branching fractions averaged over charge conjugate reactions B ! ðK�ÞS� in units of 10�6. The second column gives
the experimental results. The predictions of our model, calculated by the integration of the mK� distribution over mK� from threshold
(0.64 GeV) to 1.76 GeV, are compared to the corresponding Belle and BABAR results given in the fourth column. In the first two lines,
the Belle branching fractions [6,9], calculated with a Breit-Wigner amplitude, are compared to our predictions obtained from the
K�

0ð1430Þ pole part of the scalar form factor (see Sec. IVB 2). In the last two lines we show the BABAR branching fractions [11,12] for

B ! ðK�ÞS� calculated, in their parametrization, with the part of the decay amplitude proportional to the K� S-wave T-matrix. This
is compared to the results of our model, where the B ! ðK�ÞS� amplitude corresponds to the part proportional to the scalar form
factor (see Sec. IVB 1). See caption of Table III for the factor of 2=3 in the first column, for the errors of the model and for the last
column.

Decay mode Bexp Ref. Bexpð0:64; 1:76Þ model model [cpi � 0]

B� ! ½ �K�0
0 ð1430Þ ! K��þ	�� 32:0� 3:0 [6] 27:0� 2:5 11:6� 0:6 6.1

�B0 ! ½ �K��
0 ð1430Þ ! �K0��	�þ 30:8� 4:0 [9] 26:0� 3:4 11:1� 0:5 5.7

B� ! ðK��þÞS�� 24:5� 5:0 [11] 22:5� 4:6 16:5� 0:8 7.5
�B0 ! ð �K0��ÞS�þ 2

3 ð28:2� 7:5Þ [12] 17:3� 4:6 15:8� 0:7 7.1

FIG. 5. The K��� effective mass distributions in the B� !
K����� decays from the fit to the experimental data as
described in Sec. VA. Data points are from Ref. [6]. The dashed
line represents the S-wave contribution of our model, the dotted
line that of the P-wave and the histogram corresponds to the
coherent sum of the S- and P-wave contributions.
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mK� limit of about 1.8 GeV, close to the sum of the
mK�

0
ð1430Þ mass and its width.

The results of the fit to the cos
H distributions of the
Belle Collaboration [5] around the K�ð892Þ and K�

0ð1430Þ
resonances are shown in Figs. 7(a) and 7(b). Here we show
the contributions of the S and P waves as their interference
given by Eq. (28). In the �2 fit corresponding to Fig. 7(a),

we have excluded one bin at cos
H ¼ �0:95. This bin is
not related to any cut and its �2 value is almost twice as
large as the value of the total �2 for this distribution. In
Fig. 7(a), the P-wave contribution dominates, those of the
S wave and of the interference term being rather small. On
the contrary, and as expected, it can be seen in Fig. 7(b) that
the S-wave contribution is much larger than that of the P
wave. Contribution of the interference term leads to a
visible left-right asymmetry. The minima in the histo-
grams of Figs. 7(b) and 10(b) at cos
H ’ �0:15 and
þ0:2 correspond to the cuts related to background events
of J=� and �ð2SÞ, respectively. There is also a cut in
Figs. 7(a) and 7(b) at cos
H ’ �0:75 corresponding to the
D meson.

2. The K� effective mass and helicity angle distributions
for B0 ! K0�þ�� and �B0 ! �K0���þ decays

The results of the fits to the mK� distributions for the
�B0 ! K0

S�
��þ and B0 ! K0

S�
þ�� decays of the Belle

Collaboration [9] are shown in Figs. 8(a) and 8(b), respec-
tively. In the �2 fit to the �B0 ! K0

S�
��þ distribution, we

have excluded the two bins atmK� ¼ 1538 and 1588 MeV.
They have quite small errors and negative numbers of
events. In the mK� range around the K�ð892Þ, the histo-
gram of the model has less events for �B0 case than for B0.
One then expects a negative CP asymmetry, which is
confirmed by the value given in Table IV. It is in agreement
with the result of the experimental analysis.
Our mK� distributions for the same neutral B decays are

compared to those of the BABAR Collaboration [10] in

FIG. 6. As in Fig. 5 but for the data points from Ref. [11].

FIG. 7. Helicity angle distributions for B� ! K����� decays calculated from the averaged double differential distribution
integrated over mK��� mass from 0.82 to 0.97 GeV in the K�ð892Þ case (a) and from 1.0 to 1.76 GeV in the K�

0ð1430Þ one (b).

Data points are from Ref. [5]. Dashed lines represent the S-wave contribution of our model, dotted lines represent that of the P-wave,
the dot-dashed lines represent that of the interference term. The histograms correspond to the sum of these three contributions.
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Fig. 9. As previously, the K�ð892Þ and K�
0ð1430Þ are well

described by our model. Here, the width of the bins is
larger than that of Belle in Fig. 8 which explains why the
maximum of the P-wave contribution is above the experi-
mental points close to the K�ð892Þ position.

The averaged �B0 ! K0
S�

��þ and B0 ! K0
S�

þ�� he-

licity angle distributions for the mK� regions of the
K�ð892Þ and K�

0ð1430Þ are compared in Fig. 10 to the

Belle data [8,9]. In the �2 fit to the distribution shown in
Fig. 10(b) we have excluded two bins at cos
H equal to

�0:95. These two data lie rather outside the general trend
of the distribution. As in the charged B decays, the P wave
dominates theK�ð892Þ region and the Swave theK�

0ð1430Þ
one. In both cases the S-P interference is rather small.
Figure 11 shows our helicity angle distribution fitted to

the BABAR experimental data [7] which results from the
integration of the double differential distribution over mK�

from 0.776 to 1.01 GeV. The contributions of the S and P
wave and of their interference are similar to those observed
in Figs. 7(a) and 10(a).

FIG. 8. As in Fig. 5 but for �B0 ! K0
S�

��þ decays (a), for B0 ! K0
S�

þ�� ones (b) and for the data of Ref. [9].

FIG. 9. As in Fig. 5 but for �B0 ! K0
S�

��þ decays in (a) and for B0 ! K0
S�

þ�� ones in (b), and for the data of Ref. [10].
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3. Branching fractions and CP asymmetries

In Table III, our branching fractions for the B !
K�ð892Þ� decays are compared to the corresponding ex-
perimental Belle and BABAR values. As already mentioned
in Sec. VA these are obtained from integration on mK�

from 0.82 to 0.97 GeVof the double differential branching
fractions of our model and those of the experimental
analyzes. The theoretical errors are calculated using co-

variance matrix elements and the corresponding deriva-
tives of the branching fractions over all fitted parameters.
We did not include other uncertainties entering our ampli-
tudes, so our theoretical errors are underestimated. Our
model branching fractions for B ! K�ð892Þ� decays
agree quite well with the corresponding experimental
ones within their errors. Using the pole part of our
P-wave form factor [see Eqs. (62) and (63)] and integrating
over the full range, we obtain for the charged averaged
branching fraction 6:95� 10�6. This value compares quite
well with those of Belle and BABAR given in Table III. Let
us stress however, that when the phenomenological pa-
rameters cpi (i ¼ 4, 6 and p ¼ u, c), are set to zero, the
theoretical branching fractions are too small by a factor 4
or 5 (see the last column of Table III). This indicates that
QCDF P-wave amplitudes are too small by a factor of
about 2.
In Fig. 12(a) we present the reduced complex P-wave

amplitudes, Mred
P , which are given by the expression be-

tween the curly brackets in Eqs. (11) and (15) for B� and
�B0 decays, respectively. The reduced S-wave amplitudes,
Mred

S , for B� and �B0 decays, shown in Fig. 12(b), are

defined similarly from Eqs. (10) and (14). The correspond-
ing Bþ and B0 amplitudes can then be obtained through the
conjugation �u ! ��

u, �c ! ��
c. The dashed arrows corre-

spond to the reduced amplitudes before the fit (cpi ¼ 0)
while the solid ones to the result of the fit. In Fig. 12(a), the
B� and Bþ reduced amplitudes without phenomenological
parameters are degenerate due to the dominance of the
almost real �c term over the �u one. Moreover, the fact
that the �B0 and B0 reduced amplitudes for cpi ¼ 0 have
almost opposite imaginary parts, comes from the presence

FIG. 10. As in Fig. 7 but for �B0 ! K0
S�

��þ and B0 ! K0
S�

þ�� averaged distributions, and for the Belle data of Ref. [9] in (a) and
that of Ref. [8] in (b).

FIG. 11. As in Fig. 7(a) but for �B0 ! K0
S�

��þ and B0 !
K0

S�
þ�� averaged distributions, and for the BABAR data of

Ref. [7].
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of the tree term �ua1 with a large real part of the a1
coefficient close to 1 (see Table I).

Our direct CP violating asymmetries are compared with
the experimental ones in Table IV. Their errors are calcu-
lated in the same way as for the branching fractions. For
B� ! �K�0ð892Þ�� decays our asymmetries lie between
those of Belle and BABAR. The results for B� !
ðK��þÞS�� and for �B0 ! ð �K0��ÞS�þ decays agree
with the experimental values of both collaborations. For
the S-wave, the variation with the range of integration is
within the experimental errors. For instance, if one calcu-
lates the asymmetries over the mK� range from threshold
(0.64 GeV) to 1.76 GeV, our result for the chargedB decays
varies from ð5:4� 1:0Þ% to ð9:8� 1:1Þ% and for the neu-
tral ones from ð�0:2� 1:3Þ% to ð2:7� 1:3Þ%. There is no
variation for the P wave.

C. Discussion

In the case of the K�
0ð1430Þ resonance, it is difficult to

extract the quasi-two-body branching fraction from experi-
mental data due to the presence of a significant background
which can mainly be attributed to the broad K�

0ð800Þ
resonance. Contrary to the P-wave amplitude, entirely
dominated by the K�ð892Þ resonance below 1 GeV, the S
wave is more complex. This is exemplified in Fig. 2 by the
comparison of the pole part of the scalar form factor to the
complete form factor. We remind that our S-wave ampli-
tudes are proportional to this form factor as readily seen,
for instance, in Eqs. (10) and (14). This S-wave complexity
results in different parametrizations in Belle and BABAR
analyzes. The Belle group uses a Breit-Wigner amplitude
to represent the K� S-wave interaction. They have fur-

thermore a large contribution from a nonresonant part. The
BABAR Collaboration has introduced a term proportional
to the K� S-wave T-matrix, and used the LASS parame-
trization of the latter. It consists of an effective range
nonresonant component plus a K�

0ð1430Þ Breit-Wigner

term. Since this parametrization is fitted to experimental
K� scattering data (in the range 0:8 
 mK� 
 1:53 GeV),
this method provides an improved treatment of the final
state interaction as compared to the Belle parametrization
(see e.g. Ref. [57]). However, factorization implies that the
B decay amplitude should involve the scalar form factor
rather than simply the T-matrix. Note that the T-matrix and
the associated form factor have the same phase in the
elastic region (mK� & 1:45 GeV), but not the same modu-
lus. Above the K� elastic region both the phase and the
modulus are different.
Our model, based on factorization, allows us to calcu-

late, in an unambiguous way, the branching fractions mak-
ing use of either the complete K� S-wave contribution or
of the K�

0ð1430Þ resonance only, described here as the pole
position of the scalar form factor on the second Riemann
sheet (cf. Sec. IVB 2). Our predictions, using the mK�

range from threshold (0.64 GeV) to 1.76 GeV, are shown
in the fifth column of Table V. In the two first lines we use
the pole-part contribution of the scalar form factor whereas
in the last two lines the full scalar form factor contributes.
Our values have to be compared with those of the fourth
column calculated by us using the experimental parame-
trizations with our range of integration. The values of the
experimental analyzes are given in the second column.
They correspond to integration over the full mK� range.
In our model, if one integrates also over the full range using
the pole part of the scalar form factor [see Eqs. (45)–(47)],

FIG. 12. Complex plane representation of the parts of the amplitudes depending on the CKM matrix elements, on the effective QCD
coefficients api and on the fitted penguin parameters cpi . (a) P wave, (b) S wave at mK� ¼ 1:414 GeV (K�

0ð1430Þ mass). Dashed lines:

amplitudes with cpi ¼ 0, solid lines: results of the fit. See text for the exact definition of these reduced amplitudes.
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the averaged charge branching ratio for the B� decays is
12:7� 10�6.

For both charged and neutral B ! K�
0ð1430Þ� decays,

the predictions of our model are smaller than the corre-
sponding Belle results [6,9] by a factor of 2.3. It is worth-
while to mention that the Belle Collaboration has found
two solutions in their Dalitz-plot analyzes. For example, in
the Table IVof the second paper of Ref. [6], the value of the
solution 2 is smaller by a factor of about 5 than that of the
retained solution 1. In the case of their solution 1, there is a
strong negative interference between the resonant
K�

0ð1430Þ contribution and the nonresonant term. In their

B0ð �B0Þ ! K����0 analysis [12] the BABAR Collab-
oration has found four degenerate solutions and the quoted
errors of the final result (see their Tables IVand V) include
the spread of these four solutions.

In Fig. 13, we compare the mK� distributions of the
averaged B�!ðK���ÞS�� decays corresponding to our
model and to the BABAR parametrization calculated with
the central values of their parameters. As mentioned above,
our B!ðK�ÞS� amplitude is proportional to the strange
K� scalar form factor [see Eqs. (10), (12), and (13)] but in
BABAR’s case it is the part proportional to the K� S-wave
T-matrix. In Fig. 13(a), we show the resonant K�

0ð1430Þ
contribution (dashed line) of our model together with the
background part (dotted line) and the interference term
(dashed-dotted line) between the resonant and background
contributions. In Fig. 13(b), the corresponding three com-

ponents for the BABAR parametrization [11] are shown,
their effective range term (dashed-dotted line) playing the
role of the background. In our case the interference term is
positive, its contribution being close to 19%, that of the
resonance about 70% and that of the background part
around 11%. This can be compared with the BABAR pa-
rametrization which, for the range mK� between 0.64 and
1.76 GeV, gives �25% for their negative interference
contribution, 78% for their resonance part and 47% for
the nonresonant effective range term. These numbers are
very close to the corresponding values, �26%, 81% and
45% given in Ref. [11] obtained integrating over the full
range of mK�. Although these effective mass spectra are
significantly different, our integrated value for the B� !
ðK��þÞS�� branching fraction ð16:5� 0:8Þ � 10�6 is
within 1 standard deviation with respect to the experimen-
tal BABAR result ð22:5� 4:6Þ � 10�6. For the neutral B
decays the comparison is even better: we obtain ð15:8�
0:7Þ � 10�6 and the BABAR result, recalculated for the
mK� range from 0.64 to 1.76 GeV, is ð17:3� 4:6Þ �
10�6 (see last line of Table V). We then suggest below
[see Eq. (68)] a parametrization (based on our amplitude)
proportional to the K� scalar form factor and which could
be used, instead of a parametrization proportional to the
K� S-wave T-matrix, in experimental analyzes of B !
K�� decays.
Our theoretical QCDF predictions (cpi ¼ 0), shown in

the last column of Table V, give too low branching frac-

FIG. 13. Comparison of the different components of the averagedmK� distributions of the B� ! ðK���ÞS�� decays: a) our model,
b) BABAR’s LASS parametrization [11]. In this calculation our amplitude is proportional to the scalar K� form factor but that of
BABAR is the part proportional to the S-wave K� T-matrix. The dashed lines correspond to the resonant K�

0ð1430Þ contributions, the
dotted-dashed lines to the background, dotted lines to the interference, and the solid lines to their sum.
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tions for all B decays into ðK�ÞS� or K�
0ð1430Þ� by a

factor close to 2. Figure 12(b) illustrates the influence of
the phenomenological parameters on the theoretical re-
duced S-wave amplitudes. The modulus of the amplitudes

increases by a factor of about
ffiffiffi
2

p
and there is also an

important phase change. The fact that, at the K� mass
equal to the K�

0ð1430Þ mass, the magnitudes and phases of

all reduced S-wave amplitudes (without and with cpi ) are
similar, comes from the dominance of the q2 term propor-
tional to �c and from the smallness of the au;c8 ðSÞ coeffi-
cients [see, for instance, Eqs. (14) and Table I].

As was discussed in Sec. IVB 1 and shown Fig. 1, the
S-wave form factor depends on the value of the fK=f�
ratio. We found that the form factors corresponding to
fK=f� ¼ 1:193 (form factor of the present work) and
1.183 lead to fits of comparable good quality, with however
a slightly better �2 for the form factor calculated with
fK=f� ¼ 1:183. Use of the form factor with a ratio equal
to 1.203 gives a poorer fit.

Effective mass and helicity distributions together with
branching ratio data allow to determine mainly the moduli
of the decay amplitudes. Their phases can be constrained
by measurements of direct CP asymmetries and by time-
dependent Dalitz plot analyses. In our fit, besides asym-
metries, we use the preliminary value, obtained by the
BABAR group [10], of the phase difference ��0 between
the B0 and �B0 decay amplitudes to K�ð892Þ�. Had we not
imposed this constraint, we would obtain four different
solutions with equivalent �2 and with almost unchanged
moduli for S- and P-wave amplitudes but with different
phases. In a just published analysis of B0 ! K0

S�
þ��

decays the Belle Collaboration [58] has proposed values
for ��0. We have checked that we can, reasonably well,
reproduce the value of their solution 2, viz. ð14:6þ19:4

�20:3 �
11� 17:6Þ� with a global fit of the same quality as the
present one. Comparing the results of the two fits, we found
indeed that the S- and P-wave amplitudes had basically
unchanged moduli but modified phases. Note the large
difference between the preliminary result of Ref. [10],
��0 ¼ ð�164� 24� 12� 15Þ� and the above value of
Belle. Our ACP value for �B0 ! ð �K0��ÞP�þ given in
Table IV, ð�19:6� 3:0Þ%, agrees well with that of the
solution 2 of this Belle analysis, ð�20� 11� 5� 5Þ%.

As just mentioned above and as found in their previous
analysis [6,9], the Belle Collaboration, in this latest time-
dependent analysis [58], has retained 2 solutions which is
consequence of the interplay between the quite broad
K�

0ð1430Þ resonance and their phenomenological nonreso-

nant background. Their solution 1 has a large K�
0ð1430Þ�

fit fraction with a sizable negative resonant-nonresonant
interference term while their solution 2 is characterized by
a fit fraction smaller by a factor of 3.5 and a small inter-
ference term, as we found in our model. Using the
K0

S�
þ�� charmless total branching fraction ð47:5� 2:4�

3:7Þ � 10�6, as given in Table III of their previous pub-

lication [9], one obtains a branching fraction of 8:3� 10�6

for their solution 2, value close to our result cited in
Table V.

VI. SUMMARYAND CONCLUDING REMARKS

With this analysis of S- and P-wave pion-kaon interac-
tions in B ! K�� decays, we have extended and com-
pleted previous studies on final-state interactions in these
three-body decays [17,19]. We have concentrated on the
scalar K�

0ð1430Þ and vector K�ð892Þ resonances following
the logic of these previous works that treated the ��
interactions in S- and P-waves as well as their interfer-
ences. In Sec. II the weak decay amplitudes were again
derived in the QCD factorization approach [13,32], which
express them as a product of two currents multiplied by a
sum of effective coefficients which includes nonfactoriz-
able contributions. These coefficients, representing pertur-
bative QCD leading order amplitudes and next-to-leading
order vertex and penguin corrections, were studied and
given in Sec. III. The contribution of these higher order
terms is not sufficient to obtain a good description of data.
Therefore, we have introduced phenomenological parame-
ters which can simulate on one hand long-distance charm-
ing penguin amplitudes [30] and on the other hand hard-
spectator scattering and weak annihilation contributions
[13]. These phenomenological amplitudes could receive
also, through b to s quark transitions involved here, some
new-physics contributions.
The different models for the matrix element of the first

current, expressing the B to � transition in terms of the
scalar and vector transition form factors have been briefly
reviewed in Sec. IVA. The creation of a pion-kaon pair in
an S- or P-wave from vacuum is mediated by the second
current, and accordingly described by a K� scalar and a
vector form factor. These control the dependence of the
decay amplitude as a function of the K� invariant mass,
because the B� form factors are nearly constant in the
region considered. In Sec. IVB1 the scalarK� form factor
was calculated along similar lines as in Ref. [26] and the
extension to the case of a vector form factor was developed
in Sec. IVB 3.
We treat both the S- and P-wave on the same footing,

namely, relating the form factors using their analyticity and
unitarity relations to pion-kaon scattering properties
known from experiments. A simplified, but realistic treat-
ment of inelasticity is also implemented. In the determi-
nation of these form factors we also use chiral symmetry
and QCD constraints at low and high energies, respec-
tively. As a by-product of the scalar form factor study we
predict for the modulus of the K�

0ð1430Þ decay constant a

value of 32� 5 MeV. Our theoretical amplitudes go be-
yond the usual two-body approach applied to decays such
as B ! K�� and correctly accounts for the K� final-state
interaction both on and away from resonance peaks. A
nonresonant background can be isolated from the resonant

B. EL-BENNICH et al. PHYSICAL REVIEW D 79, 094005 (2009)

094005-20



one in our model as illustrated in Sec. IVB2, and com-
pared to those introduced by Belle as well as BABAR
collaborations in their amplitude parametrization
[6,9,11,12]. A comparison between our resonant, nonreso-
nant and interference term splitting and that of BABARwas
presented in Sec. VC.

Furthermore, our model correctly reproduces the en-
hancement of the decay distributions in the low-mass
region as observed in Figs. 5, 6, 8, and 9. This enhancement
may be attributed to the broad K�

0ð800Þ resonance which is
present in the T-matrix that we use. As can be seen from
Figs. 2 and 13 the K�

0ð800Þ is responsible, in our model, for

the behavior of our S-wave amplitude formK� from thresh-
old to about 1.2 GeV.

Our theoretical QCDF amplitude predicts branching
fractions for the B ! K�ð892Þ� and B ! K�

0ð1439Þ� de-

cays too small by factors of about 5 and 2, respectively. The
inclusion of four complex phenomenological penguin pa-
rameters allows us to have a realistic model. These pa-
rameters, common for Bþ, B�, B0, and �B0 decays, have
been fitted to numerous experimental data, which includes
308 data for the K� effective mass and helicity angle
distributions, four B ! K�ð892Þ� branching fractions,
six direct CP violating asymmetries, and the phase differ-
ence between the B0 and �B0 decay amplitudes to
K�ð892Þ�. Our model reproduces rather well these 319
data with total �2 of 551.5 corresponding to a �2 per
degree of freedom equal to 1.77. This good reproduction
of the data makes it possible to predict the B ! ðK�ÞS�
and B ! K�

0ð1430Þ� branching fractions. We can obtain,

without ambiguities, the pole contribution of the K�
0ð1430Þ

resonance. This contribution is smaller than the experi-
mental determination by Belle (see Table V) and BABAR
[12] by factors of 2.3 and 1.4, respectively. The determi-
nation of these branching fractions, within the isobar
model is problematic since the resonance K�

0ð1430Þ is

wide and the nonresonant part difficult to assess. The
nonuniqueness of the parametrization of the nonresonant
contribution leads to a large systematic uncertainty of the
B ! K�

0ð1430Þ� branching fraction as seen in the Particle

Data Tables [52]. In our approach, with a scalar form factor
well constrained by theory and experiments other than
B-decays studies, we can describe the data over the mK�

range from threshold to 1.8 GeV.
Therefore, to diminish ambiguities in data analyzes, we

propose to use the following S-wave amplitude parametri-
zation for B ! ðK�ÞS� decays:

M SðmK�Þ ¼ fK�
0 ðm2

K�Þ
�
c0
m2

K�

þ c1

�
; (68)

which follows from Eq. (10). Here, c0 and c1 are constant
complex parameters to be determined through the Dalitz
plot analysis of a given B-meson decay. Upon request, we
can provide a numerical table for the scalar form factor
fK�
0 ðm2

K�Þ. To calculate the K�
0ð1430Þ resonance contribu-

tion, one can replace, once the c0 and c1 parameters have

been determined, fK�0 ðm2
K�Þ by its pole part f

pole
0 ðm2

K�Þ
given in Eqs. (45)–(47).
The direct CP violating asymmetries and the time-

dependent CP asymmetries are related to the not very
well determined angle � of the unitary triangle. Our am-
plitudes are sensitive to � via their dependence on �u [see
Eqs. (10), (11), (14), and (15)]. Precise measurements of
the Dalitz plot distributions could allow to constrain �
using our model.
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APPENDIX A: VERTEX AND PENGUIN
CORRECTIONS FOR PS AND PV FINAL STATES

Here we show how we calculate the next-to-leading
order vertex and penguin corrections entering the effective
QCD amplitudes api ð	Þ of Eq. (31). We compute their
values for PS and PV final states, namely K�

0ð1430Þ�
and K�ð892Þ�. Let us first quote some general results
from Ref. [13] for the vertex correction terms ViðMÞ:

ViðMÞ ¼
Z 1

0
�MðxÞ

�
12 ln

mb

	
� 18þ gðxÞ

�
dx (A1)

for i ¼ 1, 4, 10 and

ViðMÞ ¼
Z 1

0
�mðxÞ½�6þ hðxÞ	dx (A2)

if i ¼ 6, 8, where �M and �m are the leading-twist and
twist-3 distribution amplitudes, respectively, of the emitted
meson. The integration is over the longitudinal meson-
momentum fraction x. As in Sec. III, M stands for the
emitted meson that does not include the spectator quark.
The functions gðxÞ and hðxÞ are given in Eq. (38) of
Ref. [13].
Light cone distribution amplitudes (LCDA) for scalar

mesons were derived making use of QCD sum rules [33].
We use these distributions to calculate vertex corrections
for the case where M is a K�

0ð1430Þ. The leading twist

Gegenbauer expansion for scalar mesons is given by [33]
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�SðxÞ ¼ 6xð1� xÞ
�
�S
0 þ

X1
n¼1

�S
nð	ÞC3=2

n ð2x� 1Þ
�
;

(A3)

while the scalar twist-3 amplitude is �sðxÞ ¼ 1. Here, the
�S
nð	Þ are related to the scalar Gegenbauer moments

Bnð	Þ by virtue of

�S
nð	Þ ¼ 	SB

S
nð	Þ; 	S ¼ mS

m2ð	Þ �m1ð	Þ ; (A4)

with the quark masses m1 � m2, as in the case of the
K�

0ð1430Þ, and where mS is the scalar meson mass. The

normalization condition
R
1
0 �SðxÞdx ¼ 1 yields BS

0 ¼ 	�1
S

and thus �S
0 ¼ 1 if the small even Gegenbauer moments

are neglected. With this, the vertex corrections to order �S
3

for a K�
0ð1430Þ� final state withM ¼ K�

0 are given, for i ¼
1, 4, 10, by the Eq. (4.3) of Ref. [33] and by ViðK�

0Þ ¼ �6
for i ¼ 6, 8.

The leading twist LCDA for a vector meson M ¼ V
reads

�VðxÞ ¼ 6xð1� xÞ
�
1þ X1

n¼1

�V
n ð	ÞC3=2

n ð2x� 1Þ
�
; (A5)

which is given by the same expansion in Gegebauer poly-

nomials C3=2
n ð2x� 1Þ as the one for pseudoscalar mesons

�PðxÞ but with different moments �V
n ð	Þ. Thus, the vertex

corrections Eq. (A1) for a K�ð892Þ� final state whereM ¼
K�, are given by the Eqs. (47) and (48) of Ref. [32] for i ¼
1, 4, 10. Taking into account the twist-3 LCDA, PnðxÞ
being the usual Legendre polynomials,

�vðxÞ ¼ 3
X1
n¼0

�V
n?ð	ÞPnþ1ð2x� 1Þ; (A6)

we obtain the i ¼ 6, 8 corrections as

ViðK�Þ ¼ ð9� 6i�Þ�K�
1? þ

�
19

6
� i�

�
�K�
2?; (A7)

where we have made use of the property
R
1
0 �vðxÞdx ¼ 0.

At order �s, corrections from penguin contractions with
the various operators Oið	Þ exist for i ¼ 4, 6 for QCD
penguins and i ¼ 8, 10 for electroweak penguins but not
for i ¼ 1. The expressions for these contributions can be
found in integral form in Ref. [13] for the B ! PV decay
in Eqs. (39)–(46). We apply them using the latest results on
Gegenbauer moments for the K�ð892Þ [59]. The PS pen-
guin corrections have the same expressions as those for PP
final states [32] but one must employ the LCDA introduced
in Eq. (A3). Nonetheless, since even Gegenbauer moments
are suppressed, we take into account corrections up to

�
K�

0

3 ð	Þ as for the vertex corrections.

Finally, the input parameters entering our computation
of the au;ci ð	Þ include the u-, s-, c- and b-quark masses, the
strong coupling constant �s and the Gegenbauer moments
of the leading twist and twist-three light cone distribution

amplitudes for the scalar K�
0ð1430Þ and vector K�ð892Þ

mesons. We use the scale 	 ¼ mb with �sðmbÞ ¼ 0:223.
The corresponding values of the quark masses have been
given below Eq. (13). In order to calculate the Gegenbauer
moments associated with the LCDA of the scalar meson,
we start from the values at 	 ¼ mb=2 from Table X of
Ref. [33]. For the vector meson we use the recently deter-

mined moments �K�
i and �K�

i? at 	 ¼ 1 GeV [59]. After

evolution to the scale 	 ¼ mb, one obtains the following
values: �1ðK�

0Þ ¼ 5:26, �3ðK�
0Þ ¼ �8:24 for the scalar

meson K�
0ð1430Þ and �1ðK�Þ ¼ 0:018, �2ðK�Þ ¼ 0:065,

�1?ðK�Þ ¼ 0:026, �2?ðK�Þ ¼ 0:065 for the vector meson
K�ð892Þ. In Table VI, we give our results for the next-to-
leading order vertex and penguin corrections of Eq. (31)
and from which are calculated the api ðmbÞ listed in Table I.

APPENDIX B: DETERMINATIONOF THE S-WAVE
T-MATRIX ELEMENTS

Below, we describe the determination of the S-wave
T-matrix elements T11, T12, and T22, the channel K� being
labeled as 1 and K�0 as 2.

1. Fit above the inelastic threshold

Precise experimental data on K� scattering is available
[23,44] and cover approximately the range 0:9 & mK� &
2:5 GeV. Experiment shows that inelasticity effectively
sets in at the �0K threshold and we make the assumption
that it is saturated by the �0K channel. Above the inelastic
threshold, the three components of the T-matrix, T11, T12

and T22 are needed in the unitarity equations. A two-
channel S-matrix which is unitary and satisfies time rever-
sal invariance can be parametrized, in terms of three ob-
servable quantities: two phase-shifts ð�K�; �K�0 Þ and one

inelasticity parameter (�K�),

S ¼ �K�e
2i�K�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�K�Þ2

p
eið�K�þ�K�0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�K�Þ2
p

eið�K�þ�K�0 Þ �K�e
2i�K�0

 !
:

(B1)

The relation between the partial-wave T and S matrices is

Smn ¼ �mn þ 4i

�
qmðsÞqnðsÞ

s

�
1=2

Tmn;m; n ¼ 1; 2 with

s ¼ ðpK þ p�Þ2 � m2
K�; (B2)

and where qiðsÞ is the center-of-mass momentum for chan-
nel i. A simple way to enforce unitarity is to use aK-matrix
type representation of the T-matrix. We take here the
following representation

T�1 ¼ K�1 � diagð �J1ðsÞ; �J2ðsÞÞ; (B3)

where K must be real and symmetric and the functions
�JiðsÞ, i ¼ 1, 2 read:
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�J iðsÞ ¼ s

�

Z 1

si

ds0

s0ðs0 � sÞ
2qiðs0Þffiffiffiffi

s0
p ; (B4)

with s1 ¼ ðmK þm�Þ2 and s2 ¼ ðmK þm�0 Þ2. Following
the approach of Ref. [26], we use the following parametri-
zation for the K-matrix:

KijðsÞ ¼
gigj

M2
1 � s

þ hihj

M2
2 � s

þ aij þ bijs

1þ ðs=cÞ2 ; (B5)

which includes two resonances and a background term. We
determine the parameters by performing a fit over an
energy range, 1:25 
 mK� 
 2:5 GeV. We used the ex-
perimental data of LASS [23], who measured the phase and
the modulus of the charged amplitude Kþ�� ! Kþ��
combined with the earlier measurements of Estabrooks
et al. [44] of the isospin 3=2 component. The central values
of the parameters determined from the fit are as follows:

M1 ¼ 1:454; g1 ¼ 0:505; g2 ¼ 1:651;

M2 ¼ 1:988; h1 ¼ 0:784; h2 ¼ 1:144;

a11 ¼ 2:371; a12 ¼ 10:060; a22 ¼ �43:946;

b11 ¼ �1:345; b12 ¼ �2:051; b22 ¼ 14:538:

(B6)

All the above parameters are in units of GeVexcept for aij
which are dimensionless and bij which are in units of

GeV�2. The energy cutoff parameter c is not fitted, it is
set to c ¼ 1 GeV2. The number of data points is 70, the
total �2 is 205 and the number of parameters in this fit is
12. Figure 14 shows the comparison of the fit result with
the experimental data of Ref. [23]. Using these results,
when t ! 1, the phases and inelasticity parameters of
the S-matrix satisfy: �K�ð1Þ ¼ 2�, �K�0 ð1Þ ¼ 0 and

�K�ð1Þ ¼ 1.

2. Below the inelastic threshold

a. Chiral symmetry constraints on T12

Chiral symmetry constrains scattering amplitudes which
involve the �0 meson at low energy if one combines chiral
symmetry with the large Nc expansion [60]. We will use
here a systematic expansion scheme based on counting
1=Nc on the same footing as a chiral factor p2 [47,48]

� � p2 � 1

Nc

: (B7)

At order � of this expansion the Lagrangian contains three
independent terms

L � ¼ F2
0

4
ftrðD	UD	UyÞ þ trð�yUþUy�Þg � 1

2
M2

0�
2
0;

(B8)

where U is a unitary matrix which contains a nonet of
pseudoscalar meson fields �0; . . . ; �8. At this order, ��
�0 mixing involves one angle 
 and its value may be
determined such that the physical � mass is reproduced.
This gives 
 ¼ �5:6� and the prediction for the mass of
the �0 meson is too large [61] (M�0 ’ 1:6 GeV). This

problem is cured by going to the next order of this expan-
sion. The Lagrangian at order �2 contains eight indepen-
dent terms

L�2 ¼ L2 trðD	U
yD�UD	UyD�UÞ

þ ðL3 þ 2L2Þ trðD	U
yD	UD�U

yD�UÞ
þ L5 trðD	U

yD	Uð�yUþUy�ÞÞ
þ L8 trð�yU�yUþ �Uy�UyÞ
� iL9 trðFR

	�D
	UD�Uy þ FL

	�D
	UyD�UÞ

þ L10 trðUyFR
	�UF	�LÞ þ k1D	�0D

	�0

þ ik2
F0ffiffiffi
6

p �0 trð�yU�Uy�Þ: (B9)

FIG. 14 (color online). Results of the K-matrix fit for the modulus, ja0j, and the phase, �0, of the Kþ�� ! Kþ�� amplitude.
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This Lagrangian involves the subset of the Gasser-
Leutwyler [49] coupling constants Li which are of leading
order in Nc (the scale dependence shows up here at order
�3) plus two additional couplings, k1 and k2. At order �

2,
�� �0 mixing involves two angles 
0 and 
8,

�8 ¼ 1

�8

ð�� cos
8 þ��0 sin
8Þ;

�0 ¼ 1

�0

ð��� sin
0 þ��0 cos
0Þ:
(B10)

The factors �0 and �8 can be expressed in terms of L5, and
the angles 
0, 
8 can be expressed in terms of the chiral
couplings L5, L8 and the physical meson masses m�, m�0

[47]. Using the Lagrangian’s (B8) and (B9) a small calcu-
lation yields the scattering amplitude K� ! K�0. It can be
written in the following form:

TK�;K�0 ðs; t; uÞ ¼ sin
8T8ðs; t; uÞ þ cos
0T0ðs; t; uÞ
þ sin
Tsðs; t; uÞ þ cos
Tcðs; t; uÞ;

(B11)

with

T8ðs; t; uÞ ¼ �
ffiffiffi
3

p
36f2�

ð�9tþ 8m2
K þm2

� þ 3m2
�0 Þ;

T0ðs; t; uÞ ¼
ffiffiffi
6

p
18f2�

ð2m2
K þm2

�Þ;
(B12)

and

Tsðs; t; uÞ ¼ L3

�1ffiffiffi
3

p
f4�

½�2ðt� 2m2
KÞðt�m2

�0 �m2
�Þ

þ ðs�m2
� �m2

KÞðs�m2
�0 �m2

KÞ
þ ðu�m2

� �m2
KÞðu�m2

�0 �m2
KÞ	

þ L5

4
ffiffiffi
3

p
27f4�

ðm2
K �m2

�Þð8m2
K þm2

� � 3m2
�0 Þ

þ L8

�16
ffiffiffi
3

p
9f4�

ðm2
K �m2

�Þð2m2
K þm2

�Þ; (B13)

Tcðs; t; uÞ ¼ ðL3 þ 2L2Þ 2
ffiffiffi
6

p
3f4�

½ðt� 2m2
KÞðt�m2

�0 �m2
�Þ

þ ðs�m2
� �m2

KÞðs�m2
�0 �m2

KÞ
þ ðu�m2

� �m2
KÞðu�m2

�0 �m2
KÞ	

þ L5

�2
ffiffiffi
6

p
27f4�

½9tðm2
K �m2

�Þ þ 31m2
Km

2
�

þ 3m2
Km

2
�0 þ 4m4

K þ 6m2
�0m2

� � 8m4
�	

þ L8

8
ffiffiffi
6

p
9f4�

ð8m2
Km

2
� þ 2m4

K �m4
�Þ

þ ~k2

ffiffiffi
6

p ð2m2
K þm2

�Þ
9f2�

; (B14)

with ~k2 ¼ k2 � k1=2. Projecting Eq. (B11) on its l ¼ 0
partial wave gives T12ðsÞ. Its value in numerical form at
the K� threshold s1 is at order (�þ �2):

T12ðs1Þ ¼ 0:32 sin
8 þ 0:28 cos
0 þ L2ð�470:5 cos
Þ
þ L3ð�156:8 cos
þ 14:5 sin
Þ
þ L5ð�229:1 cos
� 21:5 sin
Þ
þ L8ð161:4 cos
� 169:3 sin
Þ
þ ~k2ð0:56 cos
Þ: (B15)

The values of the couplings L5, L8 can be determined from
the ratio of the decay constants fK=f� and the ratio of the
quark masses 2ms=ðmu þmdÞ using the � expansion up to
order �2. Using, for instance, the central values obtained
from lattice QCD by the MILC collaboration [62] yields:
L5 ’ 1:97� 10�3 and L8 ’ 0:87� 10�3, while for the
mixing angles one obtains 
0 ’ �18:9� and 
8 ’
�3:03�. Fitting the � and �0 masses in the � expansion

gives ~k2 ’ 0:12 [47]. Finally, we need the values of L2 and
L3. In the ordinary chiral expansion, Lr

2ð	Þ, Lr
3ð	Þ can be

obtained either from sum rules based on�� scattering [49]
or based on K� scattering [63,64] or from data on Kl4

decay form factors [65,66]. For illustration, let us adopt the
values from [64] and identify L2, L3 with Lr

2ð	Þ, Lr
3ð	Þ at

	 ¼ m�. This gives: L2 ’ 1:3� 10�3 and L3 ’ �4:4�
10�3. We can now deduce the value of the transition matrix
element T12. At leading order one finds: T12ðs1Þ ’ 0:25,
while including next-to-leading order corrections one ob-
tains: T12ðs1Þ ’ 0:15. Clearly, convergence is not very fast
but we can expect the order of magnitude to be reasonable.
This result will serve us in the construction of T12ðsÞ in the
unphysical region s 
 ðmK þm�0 Þ2.
Finally, it is instructive to calculate the predictions for

the values of the scalar form factor components F1ð0Þ,
F2ð0Þ in this approach. A small calculation using the �2

Lagrangian gives

F1ð0Þ ¼ 1;

F2ð0Þ ¼
m2

K �m2
�0

m2
K �m2

�

�
sin
8 � 8

ffiffiffi
2

p ðm2
K �m2

�Þ
3f2�

L5 cos
0

�
’ 0:71: (B16)

The deviation of F1ð0Þ from 1 is proportional to ðms � m̂Þ2
according to the Ademollo-Gatto theorem [67]. In the �
expansion approach, the deviation shows up at order �3

because it is subleading in Nc. The value which we obtain
for F2ð0Þ at order �2 turns out to be very similar to the one
obtained in Ref. [26] in a somewhat different approach.
The corrections to F2ð0Þ of order �3, however, have no
reason to be particularly small. In fact, the value of F2ð0Þ
which we obtain from the solutions of the Muskhelishvili-
Omnès equations solutions, using chiral constraints on the
component F1ðtÞ, is somewhat smaller than in Eq. (B16):
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F2ð0Þ ’ 0:52. An analogous result was obtained in
Ref. [26].

b. Determination of T11 and T12

Below the inelastic threshold, the two components T11

and T12 are needed in the unitarity equations for the scalar
form factors. At first, let us look at T11. At low energies,
mK� & 0:9 GeV, K� ! K� scattering (analogously to
�� ! �� scattering) is constrained by Roy-Steiner equa-
tions [68] which result from combining dispersion rela-
tions and crossing symmetry with elastic unitarity. We will
use the results obtained from a recent reanalysis of such
equations [64]. In the energy range 0:9 
 mK� 

1:25 GeV we also use the fit performed in that reference
of the K� elastic phase shift.

There remains to discuss the K� ! K�0 transition ma-
trix element T12 in the unphysical region. For this purpose,
we may use a simple method which exploits the fact that
the phase, �12, of T12 is known for all values of the energy.
Indeed, it is identical with the elastic phase below the
inelastic threshold by Watson’s theorem and equal to
�K� þ �K�0 above because of two-channel unitarity. One

can then compute the Omnès function:

�12ðsÞ ¼ exp

�
s

�

Z 1

s1

ds0

s0ðs0 � sÞ�12ðs0Þ
�
; (B17)

and study c ðsÞ ¼ ��1
12 ðsÞT12ðsÞ. The function c ðsÞ has no

right-hand cut since Imc ðsÞ vanishes in the range ðmK þ
m�Þ2 
 s 
 1. Therefore, over a finite interval, we can
approximate c ðsÞ by a polynomial. In practice, we use a
polynomial of degree two and deduce the three parameters
of the polynomial from the known values of c ðsÞ at three
points, s ¼ s1, s2 and s3 ¼ ð1:8Þ2 GeV2. The value at the

K� threshold s1 is (approximately) known from the dis-
cussion above using the � expansion, while the values at s2
and s3 are known from theK-matrix fit. The result obtained
in this manner for the modulus of T12 is displayed in
Fig. 15. This completes the determination of the three
matrix elements TijðsÞ in the energy region where they

are needed in Eqs. (35) and (36).

APPENDIX C: DETERMINATION OF THE DECAY
CONSTANTS fK�

0
AND fK� IN THECOMPLEX POLE

APPROACH

In this appendix, we quote the results for the decay
constants fK�

0
and fK� which are associated with matrix

elements involving the scalar meson K�
0ð1430Þ and the

vector meson K�ð892Þ respectively, in the complex pole
approach. For the decay constant fK�

0
, let us use the defi-

nition proposed by Maltman [70]:

h0jJsuðxÞjK�
0ðpÞi ¼ fK�

0
m2

K�
0
expð�ipxÞ (C1)

with JsuðxÞ ¼ @	 �sðxÞ�	uðxÞ. We introduce the two-point

correlation function associated with this current:

	usðtÞ ¼ i
Z

d4x expðipxÞh0jT½JsuðxÞðJsuÞyð0Þ	j0i: (C2)

Using (C1), the contribution of the K�
0ð1430Þ to this corre-

lation function, if it were a stable state, would be:

	usðtÞjK�
0
ð1430Þ ¼

m4
K�

0
f2K�

0

m2
K�
0
� t

: (C3)

In reality, the K�
0ð1430Þ is a resonance and it shows up as a

pole of 	usðtÞ on the second Riemann sheet. By analogy
with Eq. (C3), we can identify the decay constant fK�

0
from

the residue of the pole (which implies that it is a complex
number). As before, in order to define the extension to the
second sheet we consider the discontinuity of the function
	usðtÞ along the real axis:

	suðtþ i�Þ �	suðt� i�Þ ¼ � 3

16�
ðm2

K �m2
�Þ2

� 
K�ðsþ i�Þf0ðsþ i�Þ
� f0ðs� i�Þ (C4)

for t real and lying in the range between the K� and the
K�0 thresholds. The factor 3 comes from summing over the
two possible charge states of the K� system. From Eq.
(C4), one deduces that the extension to the second sheet
must be defined as follows:

	su
II ðtÞ ¼ 	suðtÞ þ 3
K�ðtÞðm2

K �m2
�Þ2ðf0ðtÞÞ2

16�ð1� 2
K�ðtÞTS
11ðtÞÞ

: (C5)

We recognize again here the denominator function DðtÞ
which has a zero at t ¼ t0. We can identify the residue of
the pole at t ¼ t0 with Eq. (C3), replacing m2

K�
0
by ðt0Þ2.

FIG. 15 (color online). Absolute value of the T-matrix element
T12ðsÞ. In the region s � ðmK þm�0 Þ it is obtained from the

K-matrix fit, and in the region s 
 ðmK þm�0 Þ it is computed by

a polynomial approximation using the Omnès function as dis-
cussed in the text.
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The following expression for fK�
0
results:

ðfK�
0
Þ2 ¼ � 3ðm2

K �m2
�Þ2

16�ðt0Þ2�

K�ðt0Þðf0ðt0ÞÞ2: (C6)

Numerically, using the preceding results Eqs. (46) and (47)
we obtain for the fK=f� ¼ 1:193,

fK�
0
¼ ð31:3þ i7:6Þ MeV: (C7)

The result is quasi real and comparable with the value
obtained by Narison [69], fK�

0
¼ 40 MeV, and by

Maltman [70], fK�
0
¼ 42 MeV. Varying fK=f� one ob-

tains:

fK�
0
¼ ð36:7þ i7:5Þ MeV if

fK
f�

¼ 1:203 and

fK�
0
¼ ð25:8þ i9:9Þ MeV if

fK
f�

¼ 1:183:

(C8)

Let us now present the analogous results for the vector
form factor fK�

1 ðtÞ and the K�ð892Þ resonance. We want
now to identify the decay constant fK� associated with the
vector meson K�ð892Þ, which may be defined as

h0jjsu	 ðxÞjK�þðpÞi ¼ fK� expð�ipxÞ (C9)

with jsu	 ðxÞ ¼ �sðxÞ�	uðxÞ. For this purpose, we investigate
the correlation function

		�ðqÞ ¼ i
Z

d4xeiqxh0jTðjsu	 ðxÞjus� ð0ÞÞj0i
¼ ðq	q� � q2g	�Þ	1ðq2Þ þ q	q�	0ðq2Þ:

(C10)

The discontinuity along theK� elastic cut of	1ðq2Þ reads:

	1ðtþ i�Þ �	1ðt� i�Þ ¼ � 1

4�t

K�ðtþ i�Þq2K�ðtþ i�Þ

� fK�
1 ðtþ i�ÞfK�1 ðt� i�Þ;

(C11)

which allows, as before, to obtain the definition on the
second sheet

ð	1ðtÞÞII ¼ 	1ðtÞ þ 
K�ðtÞðqK�ðtÞfK�
1 ðtÞÞ2

4�tð1� 2
K�ðtÞq2K�ðtÞTP
11ðtÞÞ

:

(C12)

One then identifies the pole in this expression with the one
generated by a stable K� using (C9), which, finally, gives
fK� in terms of the vector form factor fK�

1

f2K� ¼ �
K�ðtpole1 ÞðqK�ðtpole1 ÞfK�
1 ðtpole1 ÞÞ2

4�t
pole
1 �

: (C13)

Numerically, inserting the values for t
pole
1 , fK�

1 ðtpole1 Þ and �
[see Eqs. (63)] gives

fK� 
 ð213:9� i13:6Þ MeV: (C14)

The modulus of this decay constant, 214.3, is close to the
value fV ¼ 218 MeV we use in the P-wave amplitudes
[see Eqs. (10) and (15)].

APPENDIX D: EFFECTIVE DECAY CONSTANTS
AND TWO-BODYAMPLITUDES B� ! �K�0

0 ð1430Þ��
AND B� ! �K�0ð892Þ��

We shall discuss below the case of B� ! �K�0
0 ð1430Þ��

decays. It can be easily generalized to decays of other B
mesons. For the two-body B� ! �K�0

0 ð1430Þ�� decay

mode the branching B2S can be written in terms of the
two-body amplitude M�

2S,

B 2S ¼ jM�
2Sj2

jp �K�
0
j

8�M2
B�B�

; (D1)

where jp �K�
0
j is the modulus of the �K�

0ð1430Þ momentum in

the B� rest frame:

jp �K�
0
j ¼ 1

2MB�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

B � ðm �K�
0
þm�Þ2	½M2

B � ðm �K�
0
�m�Þ2	

q
;

(D2)

m �K�
0
being the �K�

0ð1430Þ mass. In the vicinity of mK��þ ¼
m �K�

0
the two-body amplitude M�

2S is related to the three-

body one M�
S [Eq. (10)],

M�
S ¼ M�

2S�
S
�K�0
0
!K��þðmK��þÞ: (D3)

The vertex function �S can be expressed in terms of the

scalar form factor fK
��þ

0 ðm2
K��þÞ defined in Eq. (7):

�S
�K�0
0
!K��þðmK��þÞ ¼ 1

f �K�
0
ð1430Þ

m2
K �m2

�

m2
K��þ

fK
��þ

0 ðm2
K��þÞ:

(D4)

In this equation f �K�
0
ð1430Þ represents the not very well

known �K�
0ð1430Þ decay constant (see Appendix C and

also Ref. [33]). If the mK��þ effective mass is far from
the resonance massm �K�0 then, as one can see from Eq. (10),
the relations (D3) and (D4) cannot be used anymore, in
particular, close to the K� threshold and for mK� �
m �K�

0
ð1430Þ.

Integration of dB�
dmK��þ

[Eq. (24)] over the mK��þ range

from mmin to mmax, where the �K�
0ð1430Þ dominates, gives

for the process B� ! ðK��þÞS�� the branching fraction
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B3S ¼
Z mmax

mmin

dB�
S

dmK��þ
dmK��þ

¼ jM�
2Sj2

4ð2�Þ3M3
B�

�
B

Z mmax

mmin

dmK��þmK��þjp�þj

� jp��jj�S
�K�0
0
!K��þðmK��þÞj2: (D5)

The branching ratios B2S and B3S are simply related by

B 3S ¼ bB2S (D6)

where b ¼ 2
3 0:93 is the secondary branching fraction for

the decay �K�
0ð1430Þ ! K��þ [52]. Using Eqs. (D1), (D4),

and (D5), one obtains for the modulus square of the effec-
tive decay constant feff�K�

0
ð1430Þ,

jfeff�K�
0
ð1430Þj2 ¼

ðm2
K �m2

�Þ2
bð2�Þ2MBjp �K�

0
j
Z mmax

mmin

dmK��þm�3
K��þjp�þj

� jp��jjfK��þ
0 ðm2

K��þÞj2: (D7)

The knowledge of the scalar form factor allows one to
calculate this effective decay constant. Integration over
the range mmin 
 mK� 
 mmax with mmin ¼ 1 GeV and
mmax ¼ 1:76 GeV gives jfeff�K�

0
ð1430Þj ¼ 31 MeV. This value

is close to that of the decay constant calculated using the
pole part of the scalar form factor, jf �K�

0
ð1430Þj ¼ 32 MeV

[see Eq. (C7)]. This agreement is expected as, in the mK�

range (1, 1.76) GeV, the �K�
0ð1430Þ pole part dominates (see

e.g. Fig. 13).
The two-body B� ! �K�0ð892Þ�� decay amplitude,

M�
2P, can be expressed in terms of the three-body one

M�
P [Eq. (11)],

M�
P ¼ 2M�

2P�
P
K�!K��þðmK��þÞ: (D8)

The vertex function �P is related to the vector form factor

fK
��þ

1 ðm2
K��þÞ defined in Eq. (7):

�P
K�!K��þðmK��þÞ ¼ 1

mK�fK�
fK

��þ
1 ðm2

K��þÞ; (D9)

where mK� and fK� are K�ð892Þ mass and the decay
constant, respectively. The two-body branching fraction
for the B� ! �K�0ð892Þ�� decay is

B 2P ¼ jM�
2Pj2

jpK� j3
8�m2

K��B�
; (D10)

where jpK� j is the modulus of the K�ð892Þ momentum in
the B� rest frame. It can be calculated from Eq. (D2)
replacing m �K�

0
by mK� . The three-body branching fraction

B3P for B� ! �K�0ð892Þ��, �K�0 ! K��þ is obtained by
integration of the P-wave part of the effective mass distri-
bution [see Eq. (24)] frommP

min tom
P
max, covering the range

where the K�ð892Þ resonance dominates,

B3P ¼
Z mP

max

mP
min

dB�
P

dmK��þ
dmK��þ

¼ jM�
2Pj2

3ð2�Þ3M3
B�

�
B

Z mP
max

mP
min

dmK��þmK��þjp�þj3

� jp��j3j�P
K�!K��þðmK��þÞj2: (D11)

NowB3P ¼ ð2=3ÞB2P, where the factor 2=3 is the second-
ary branching fraction for the decay �K�0ð982Þ ! K��þ.
As previously for the case of the K�

0ð1430Þ, taking into

account the limited range of mK� between mP
min and mP

max

and using Eqs. (D9)–(D11), one obtains the modulus
square of the effective decay constant feffK�

jfeffK� j2 ¼ 1

2�2M3
BjpK� j3

Z mP
max

mP
min

dmK��þmK��þjp�þj3

� jp��j3jfK��þ
1 ðm2

K��þÞj2: (D12)

Integration from 0.82 to 0.97 GeV, range where the
K�ð892Þ dominates, gives jfeffK� j ¼ 194 MeV. This value

compares well with the decay constant calculated from
the pole part of the vector form factor, jfK� j ¼ 214 MeV
[see Eq. (C14)]. A larger range of integration will improve
the agreement. In the limit of infiniteMB mass and of zero
width K�ð892Þ, the effective decay constant equals fK� .
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