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74bDipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
75IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

76University of Victoria, Victoria, British Columbia, V8W 3P6 Canada
77Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
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We present measurements of the semileptonic decays B� ! D0�� ���, B
� ! D�0�� ���, �B

0 ! Dþ�� ���,

and �B0 ! D�þ�� ���, which are sensitive to non-standard model amplitudes in certain scenarios. The data

sample consists of 232� 106 �ð4SÞ ! B �B decays collected with the BABAR detector at the PEP-II eþe�

collider. We select events with a D or D� meson and a light lepton (‘ ¼ e or �) recoiling against a fully

reconstructed B meson. We perform a fit to the joint distribution of lepton momentum and missing mass

squared to distinguish signal �B ! Dð�Þ�� ���ð�� ! ‘� ��‘��Þ events from the backgrounds, predominantly
�B ! Dð�Þ‘� ��‘. We measure the branching-fraction ratios RðDÞ � Bð �B ! D�� ���Þ=Bð �B ! D‘� ��‘Þ and
RðD�Þ � Bð �B ! D��� ���Þ=Bð �B ! D�‘� ��‘Þ and, from a combined fit to B� and �B0 channels, obtain the

results RðDÞ ¼ ð41:6� 11:7� 5:2Þ% and RðD�Þ ¼ ð29:7� 5:6� 1:8Þ%, where the uncertainties are

statistical and systematic. Normalizing to measured B� ! Dð�Þ0‘� ��‘ branching fractions, we obtain

Bð �B ! D�� ���Þ ¼ ð0:86� 0:24� 0:11� 0:06Þ% and Bð �B ! D��� ���Þ ¼ ð1:62� 0:31� 0:10�
0:05Þ%, where the additional third uncertainty is from the normalization mode. We also present, for

the first time, distributions of the lepton momentum, jp�
‘j, and the squared momentum transfer, q2.

DOI: 10.1103/PhysRevD.79.092002 PACS numbers: 12.15.Hh, 13.20.�v, 13.20.He, 14.40.Nd

I. INTRODUCTION

Semileptonic decays of B mesons to the � lepton—the
heaviest of the three charged leptons—provide a new
source of information on standard model (SM) processes
[1–3], as well as a new window on physics beyond the SM
[4–9]. In the SM, semileptonic decays occur at tree level
and are mediated by theW boson, but the large mass of the
� lepton provides sensitivity to additional amplitudes, such
as those mediated by a charged Higgs boson.
Experimentally, b ! c�� ��� decays1 are challenging to
study because the final state contains not just one, but
two or three neutrinos as a result of the � decay.

Theoretical predictions for semileptonic decays to ex-
clusive final states require knowledge of the form factors,
which parametrize the hadronic current as functions of
q2 ¼ ½pB � pDð�Þ �2: For light leptons ‘ � e, �,2 there is
effectively one form factor for �B ! D‘� ��‘, while there
are three for �B ! D�‘� ��‘. If a � lepton is produced
instead, one additional form factor enters in each mode.

The form factors for �B ! Dð�Þ‘� ��‘ decays
3 involving the

light leptons have been measured [10–12], providing direct
information on four of the six form factors. Heavy quark
symmetry (HQS) relations [13] allow one to express the

two additional form factors for �B ! Dð�Þ�� ��� in terms of
the form factors measurable from decays with the light
leptons. With sufficient data, one could probe the addi-
tional form factors and test the HQS relations.

Branching fractions for semileptonic B decays to �
leptons are predicted to be smaller than those to light
leptons. Calculations based on the SM predict Bð �B0 !
Dþ�� ���Þ ¼ ð0:69� 0:04Þ% and Bð �B0 ! D�þ�� ���Þ ¼
ð1:41� 0:07Þ% [8], which account for most of the pre-

dicted inclusive rate Bð �B ! Xc�
� ���Þ ¼ ð2:30� 0:25Þ%

[2] (here, Xc represents all hadronic final states from the
b ! c transition). In multi-Higgs doublet models [4–8],
substantial departures, either positive or negative, from the
SM decay rate could occur for Bð �B ! D�� ���Þ, while
smaller departures are expected for Bð �B ! D��� ���Þ.
Thus, measurements ofBð �B ! D�� ���Þ are more sensitive
to non-SM contributions than either Bð �B ! D��� ���Þ or
the inclusive rate. In addition to the branching fractions,
several other observables are sensitive to possible non-SM
contributions, including q2 distributions and D� and �
polarization [4–6,8,14].
The first measurements of semileptonic b-hadron decays

to � leptons were performed by the LEP experiments [15]
operating at the Z0 resonance, yielding an average [16]
inclusive branching fraction Bðbhad ! X�� ���Þ ¼ ð2:48�
0:26Þ%, where bhad represents the mixture of b-hadrons
produced in Z0 ! b �b decays. The Belle experiment has
reported Bð �B0 ! D�þ�� ���Þ ¼ ð2:02þ0:40

�0:37 � 0:37Þ% [17].

The BABAR Collaboration has presented a measurement
of the branching fractions for �B ! D�� ��� and �B !
D��� ��� for both charged and neutral B mesons [18]. In
this article, we describe the analysis in greater detail, with
particular emphasis on several novel features of the event
selection and fit technique. We also present distributions of
two important kinematic variables, the lepton momentum
jp�

‘j and the squared momentum transfer q2.

A. Analysis overview and strategy

We determine the branching fractions of four exclusive
decay modes: B� ! D0�� ���, B� ! D�0�� ���, �B0 !
Dþ�� ���, and �B0 ! D�þ�� ���, each of which is measured
as a branching-fraction ratio R relative to the correspond-
ing e and�modes. To reconstruct the �, we use the decays
�� ! e� ��e�� and �� ! �� �����, which are experimen-

tally the most accessible. The main challenge of the mea-

surement is to distinguish �B ! Dð�Þ�� ��� decays, which

1Charge-conjugate modes are implied throughout.
2Throughout this article, we use the symbol ‘ to refer only to

the light charged leptons e and �.
3The symbol Dð�Þ refers either to a D or a D� meson.
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have three neutrinos, from �B ! Dð�Þ‘� ��‘ decays, which
have the same observable final-state particles but only one
neutrino.

The analysis strategy is to reconstruct the decays of both
B mesons in the �ð4SÞ ! B �B event, providing powerful
constraints on unobserved particles. One Bmeson, denoted
Btag, is fully reconstructed in a purely hadronic decay

chain. The remaining charged particles and photons are
required to be consistent with the products of a b ! c
semileptonic B decay: the daughter charm meson (either
a D or D�) and a lepton (e or �). The lepton may be either
primary or from �� ! ‘� ��‘��. To distinguish signal

events from the normalization modes �B ! Dð�Þ‘� ��‘, we
calculate the missing four-momentum,

pmiss ¼ peþe� � ptag � pDð�Þ � p‘ (1)

of any particles recoiling against the observed Btag þDð�Þ‘
system. A large peak at zero in m2

miss ¼ p2
miss corresponds

to semileptonic decays with one neutrino, whereas signal
events produce a broad tail out to m2

miss � 8 ðGeV=c2Þ2.
To separate signal and background events, we perform a

fit (described in Sec. VII) to the joint distribution of m2
miss

and the lepton momentum (jp�
‘j) in the rest frame of the B

meson. In signal events, the observed lepton is the daughter
of the � and typically has a soft spectrum; for most back-
ground events, this lepton typically has higher momentum.
The fit is performed simultaneously in eight channels, with
a set of constraints relating the event yields between the
channels. The fit is designed to maximize the sensitivity to
the �B ! D�� ��� signals by using events in the D�‘�
channels to constrain the dominant backgrounds, �B !
D��� ��� feed-down, in which the final-state D� meson is
not completely reconstructed. Similarly, we use a set of
D�� control samples to constrain the feed-down back-
ground to both the D�� ��� and D��� ��� signals.

4

We perform a relative measurement, extracting both

signal �B ! Dð�Þ�� ��� and normalization �B ! Dð�Þ‘� ��‘

yields from the fit to obtain the four branching-fraction
ratios RðD0Þ, RðDþÞ, RðD�0Þ, and RðD�þÞ, where, for
example, RðD�0Þ � BðB� ! D�0�� ���Þ=BðB� !
D�0‘� ��‘Þ. In the ratio, many systematic uncertainties can-
cel, either partially or completely. These ratios are normal-
ized such that ‘ represents only one of e or �; however,
both light lepton species are included in the measurement.
We multiply these branching-fraction ratios by previous

measurements of Bð �B ! Dð�Þ‘� ��‘Þ to derive absolute
branching fractions.

II. THE BABAR DETECTOR AND DATA SETS

We analyze data collected with the BABAR detector at
the PEP-II eþe� storage rings at the Stanford Linear
Accelerator Center. PEP-II is an asymmetric-energy B
factory, colliding 9.0 GeV e� with 3.1 GeV eþ at a
center-of-mass energy of 10.58 GeV, corresponding to
the �ð4SÞ resonance. The data sample used consists of
208:9 fb�1 of integrated luminosity recorded on the
�ð4SÞ resonance between 1999 and 2004, yielding 232�
106 �ð4SÞ ! B �B decays. This data sample can be divided
into two major periods: Runs 1–3, comprising 109:0 fb�1

taken from 1999 to June 2003, and Run 4, comprising
99:9 fb�1 taken from September 2003 to July 2004. The
accelerator background conditions were significantly dif-
ferent between Runs 1–3 and Run 4, which could affect
missing-energy analyses such as this one; for this reason,
the two running periods have been independently vali-
dated, and the fraction of signal-like events found in the
Run 4 sample is used as a cross-check of the results, as
described in Sec. X.
The BABAR detector is a large, general-purpose mag-

netic spectrometer and is described in detail elsewhere
[19]. Charged particle trajectories are measured in a track-
ing system consisting of a five-layer double-sided silicon
strip detector and a 40-layer drift chamber, both of which
operate in the 1.5 T magnetic field of a superconducting
solenoid. A detector of internally reflected Cherenkov light
(DIRC) is used to measure charged particle velocity for
particle identification (PID). An electromagnetic calorime-
ter (EMC), consisting of 6580 CsI(Tl) crystals, is used to
reconstruct photons and in electron identification. The steel
flux return of the solenoid is segmented and instrumented
with resistive plate chambers (IFR) for muon and neutral
hadron identification.
All detector systems contribute to charged particle iden-

tification. Ionization energy losses in the tracking systems
and the Cherenkov light signature in the DIRC are used for
all charged particle types. Electrons are also identified on
the basis of shower shape in the EMC and the ratio of
energy deposited in the EMC to the track momentum.
Muon identification is based on a minimum-ionization
energy deposit in the EMC and on the measured interaction
length in the IFR.
This analysis relies on measurement of the missing

momentum carried off by multiple neutrinos, and the large
solid angle coverage (hermeticity) of the detector is there-
fore crucial. The tracking system, calorimeter, and IFR
cover the full azimuthal range and the polar angle range
from approximately 0:3< �< 2:7 rad in the laboratory
frame, corresponding to a �ð4SÞ center-of-mass coverage
of approximately 90% [the direction � ¼ 0 corresponds to
the direction of the high-energy beam, and therefore to the
�ð4SÞ boost]. The DIRC fiducial volume is slightly
smaller, corresponding to a center-of-mass frame coverage
of about 84%.

4Throughout this paper, we use the symbol D�� to represent all
charm resonances heavier than the D�ð2010Þ, as well as non-
resonant Dð�Þn� systems with n � 1.
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Within the active detector volume, the efficiency for
reconstructing charged tracks and photons is very high,
typically greater than 95% over most of the momentum
range. At low momenta, however, the reconstruction effi-
ciency drops off, leading to an increased contribution from
feed-down processes to which special attention is paid
throughout this analysis. Feed-down occurs when the pho-
ton from D� ! D� or the �0 from D� ! D�0 is not
reconstructed (in the case of the �0, either one or both of
the photons from �0 ! �� may be missed). Care must
therefore be taken to avoid confusingD� feed-down events
for D signals.

We use a Monte Carlo simulation (MC) of the produc-
tion and decay of signal and background events based on
EVTGEN [20]. A sample of simulated inclusive B �B events

equivalent to about five times the integrated luminosity is
used to study backgrounds and to optimize event selection
criteria. Large samples of many individual semileptonic B
decays (discussed in Sec. III) are used to parameterize the
distributions of variables used in the fit. Final-state radia-
tion is simulated using PHOTOS [21]. Simulation of the
detector response is performed with GEANT [22] and the
resulting efficiencies and resolutions are validated in mul-
tiple data control samples.

III. SEMILEPTONIC DECAY MODELS

In the SM, the matrix element for a semileptonic B
meson decay can be written as

M ð �B ! Dð�Þð‘�=��Þ ��Þ ¼ �i
g2

8m2
W

VcbL
�H�; (2)

where g is the weak coupling constant, mW is the W mass,
Vcb is the quark mixing matrix element, and L� andH� are

the leptonic and hadronic currents, respectively. Here, we
have used a simplified form for the W propagator appro-
priate for energies much less thanmW . The leptonic current
is exactly known,

L� ¼ �u‘�
�ð1� �5Þv�; (3)

and the hadronic current is given by

H� ¼ hDð�Þj �c��ð1� �5ÞbjBi: (4)

In the case of a �B ! D transition, the axial-vector part of
the current does not contribute to the decay, and we may
write the hadronic current in terms of two form factors
fþðq2Þ and f�ðq2Þ:
hDjV�jBi ¼ ðpþ p0Þ�fþðq2Þ þ ðp� p0Þ�f�ðq2Þ; (5)

with V� � �c��b and where p and p0 are the four-
momenta of the B andDmesons, respectively. For the �B !
D� transition, the axial-vector term contributes to the decay
as well, and we write the hadronic current in terms of form
factors Vðq2Þ, A1ðq2Þ, A2ðq2Þ, A3ðq2Þ, and A0ðq2Þ:

hD�jV� � A�jBi ¼ 2i����	

mB þmD�
"��p0

�p	Vðq2Þ

� ðmB þmD� Þ"��A1ðq2Þ þ "� 	 q
mB þmD�

� ðpþ p0Þ�A2ðq2Þ þ 2mD�
"� 	 q
q2

� q�A3ðq2Þ � 2mD�
"� 	 q
q2

q�A0ðq2Þ;

(6)

where A� � �c���5b and " is the D� polarization vector.
The form factor A3ðq2Þ is related to two other form factors
as

A3ðq2Þ ¼ mB þmD�

2mD�
A1ðq2Þ �mB �mD�

2mD�
A2ðq2Þ (7)

so that there are only four independent form factors.
In the limit of massless leptons, any terms proportional

to q� � ðp� p0Þ� vanish when the hadronic current is
contracted with the leptonic current. For this reason, the
contributions from the form factors f�ðq2Þ and A0ðq2Þ are
essentially negligible for electrons and muons, as men-
tioned above.
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FIG. 1. Generated q2 distributions for (a) �B ! D‘� ��‘ and
�B ! D�� ���; (b) �B ! D�‘� ��‘ and �B ! D��� ���. The two
curves in each plot show q2 for the light lepton (dashed line)
and for the � (solid line). All distributions use the CLN form
factor model with experimentally measured shape parameters.
The distributions are normalized to equal areas.
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Semileptonic decays are simulated using the ISGW2
model [23], except for �B ! D�‘� ��‘ decays, which use
an HQET model with a linear form factor expansion [24],

and nonresonant �B ! Dð�Þ�‘� ��‘ decays, which use the
model of Goity and Roberts [25]. We reweight both signal
�B ! Dð�Þ�� ��� and normalization �B ! Dð�Þ‘� ��‘ events
[26] so that the decay distributions follow the Caprini-
Lellouch-Neubert (CLN) form factor model [27] with
parameters measured in data. We use 
2þ ¼ 1:17� 0:18
[28] for �B ! D‘� ��‘ and �B ! D�� ��� decays, and we use
R1 ¼ 1:417� 0:061� 0:044, R2 ¼ 0:836� 0:037�
0:022, and 
2

A1
¼ 1:179� 0:048� 0:028 [11] for �B !

D�‘� ��‘ and �B ! D��� ��� decays.5 Variation of these
form factors is taken into account as a systematic uncer-

tainty, including the correlations between the three �B !
D� form factor parameters.
Figures 1–3 show distributions of three kinematic vari-

ables important to this analysis, all generated using the
CLN form factor parameterization with parameters given
above. Figure 1 compares q2 distributions between the
signal and normalization modes. Signal events must satisfy
q2 >m2

�, leading to qualitatively different q2 spectra for
signal and normalization events; this feature is exploited in
the event selection and in validation studies. Figure 2
shows distributions of lepton energy in the B meson rest
frame. While the �� lepton in signal events typically has
high energy (due to its mass), the secondary lepton ‘�
typically has much lower energy than either the �� or the

primary lepton in �B ! Dð�Þ‘� ��‘ events. This low lepton
energy leads to a lower reconstruction efficiency for signal
leptons than those in the normalization modes. Figure 3
shows distributions of m2

miss for the two signal modes,

which, due to the three neutrinos in these events, forms a
broad structure up to very large m2

miss.

IV. EVENT RECONSTRUCTION AND SELECTION

All event selection requirements (as well as the fit
procedure described in Sec. VII) are defined using simu-
lated events or using control samples in data that exclude
the signal region in order to avoid any potential sources of
bias. About 60% of the B �BMC sample is used in optimiz-
ing the event selection, while the remaining 40% is used as
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FIG. 2. Generated lepton energy distributions for
(a) �B ! D‘� ��‘ and �B ! D�� ���; (b) �B ! D�‘� ��‘ and �B !
D��� ���. The three curves in each plot show the ‘� energy in
�B ! Dð�Þ‘� ��‘ (dashed line), the �� energy in �B ! Dð�Þ�� ���

(solid line), and the secondary lepton energy in �B ! Dð�Þ�� ���

(dotted line), all defined in the B meson rest frame. All distri-
butions use the CLN form factor model with experimentally
measured shape parameters. The distributions are normalized to
equal areas.
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FIG. 3. Generated m2
miss distributions for (a)

�B ! D�� ��� and
(b) �B ! D��� ���. Both distributions use the CLN form factor
model with experimentally measured shape parameters.

5The parameters R1 and R2 are not included in the model of
Caprini, Lellouch, and Neubert [27]; to model the �B ! D� form
factors, we adopt the formalism used in [12], Eqs. (13) and (14),
where the leading terms in these form factor ratio expansions are
taken as free parameters. We use independent slope parameters

2þ and 
2

A1
for the �B ! D and �B ! D� form factors, respec-

tively, treating the two sets of form factors as uncorrelated.
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an independent validation of the selection and fitting
procedures.

Most of the selection criteria described here are opti-

mized to maximize the quantity S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
, where S and B

are the expected signal and background yields in the large
m2

miss region of our data sample, assuming standard model

branching fractions for signal decays. The requirement on
�E of the Btag candidate (defined below) was initially

optimized in the same way, but was tightened because
fits to MC samples indicated that events at large j�Ej
contributed to biases in the signal extraction. The final
selection corresponds to a compromise between the statis-

tical S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ B

p
optimization and the systematic effects

due to this bias.

A. Btag Reconstruction

We reconstruct Btag candidates in 1114 final states

Btag ! Dð�ÞY� with an algorithm that has been used pre-

viously at BABAR for a number of analyses, especially
those dependent on measuring missing momentum [29].
These final states arise from the large number of ways to
reconstruct the D and D� mesons within the Btag candidate

and the possible pion and kaon combinations within the Y�
system. Tag-sideD candidates are reconstructed asD0

tag !
K��þ, K��þ�0, K��þ�þ��, and K0

S�
þ��, and as

Dþ
tag ! K��þ�þ, K��þ�þ�0, K0

S�
þ, K0

S�
þ���þ,

and K0
S�

þ�0. Tag-side D� candidates are reconstructed

as D�0
tag ! D0

tag�
0 and D0

tag� and as D�þ
tag ! D0

tag�
þ. The

Y� system may consist of up to six light hadrons (��, �0,

K�, or K0
S). In both the Dð�Þ

tag and Y� systems, we recon-

struct �0 ! �� and K0
S ! �þ�� and require charged

kaon candidates to satisfy PID criteria (loose criteria for

D0 ! K��þ, tight for all other modes.6) Dð�Þ
tag candidates

are selected within about 2� (standard deviations) of the
nominal mass, with � depending on the reconstruction
mode and typically 5–10 MeV=c2 for the Dtag mass and

1–2 MeV=c2 for the D�
tag �Dtag mass difference.

We use two kinematic variables to identify Btag candi-

dates,

mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4� jptagj2

q
(8)

and

�E ¼ Etag �
ffiffiffi
s

p
=2; (9)

where
ffiffiffi
s

p
is the total eþe� energy, jptagj is the magnitude

of the Btag momentum, and Etag is the Btag energy, all

defined in the eþe� center-of-mass frame. For correctly
reconstructed Btag candidates, mES is equal to the B meson

mass, with a resolution of about 2:5 MeV=c2, and �E is
equal to zero, with a resolution of about 18 MeV.

For each Dð�Þ
tag ‘‘seed’’ candidate, we use a recursive

algorithm to identify candidate Y� systems. Light hadrons
from the remaining tracks and photons in the event are
added to the Y� system, one at a time. If the resulting

values ofmES and�E for theDð�Þ
tagY

� candidate are close to

the nominal values, the Btag candidate is accepted. If the

value of �E is too large, the light hadron just added is
removed from the Y� system, since continuing to add
particles to this Y� candidate will increase �E further.
The algorithm then continues recursively with the remain-
ing particles in the event, adding and removing light had-
rons to the Y� system according to mES, �E, and the Y�
system topology. This algorithm is semiexclusive, meaning
that particles in the Y� system are not constrained to
intermediate resonance states. Because of this, the yield
is significantly higher than exclusive B reconstruction,
while the purity is somewhat lower. In this analysis, how-
ever, since we exclusively reconstruct the second B meson
in the event, the purity of our final sample is substantially
improved with respect to the raw Btag sample.

We require mES > 5:27 GeV=c2 and j�Ej< 72 MeV,
corresponding to �4� in �E and �4� in mES (the kine-
matic limit mES <

ffiffiffi
s

p
=2 provides an effective þ4� re-

quirement). We reconstruct Btag candidates with an

efficiency of 0.2% to 0.3%. Figure 4 shows distributions
of mES for selected Btag candidates both before and after

the signal-side reconstruction. We make no attempt at this
stage to select a single Btag among multiple reconstructed

candidates: this decision is made after reconstructing the
signal side as well.

B. Reconstruction of the Signal B

For the B meson decaying semileptonically, we recon-

struct Dð�Þ candidates in the modes D0 ! K��þ,
K��þ�0, K��þ�þ��, K0

S�
þ��; Dþ ! K��þ�þ,

K��þ�þ�0, K0
S�

þ, K�Kþ�þ; D�0 ! D0�0, D0�; and
D�þ ! D0�þ,Dþ�0. We reconstructK0

S mesons asK0
S !

�þ�� with 491<m�þ�� < 506 MeV=c2, corresponding
to�3�. We reconstruct �0 mesons as �0 ! ��, requiring
90<m�� < 165 MeV=c2 for the soft �0 used to recon-

struct D� ! D�0
soft, and requiring E�� > 200 MeV and

125<m�� < 145 MeV=c2 for a �0 used to reconstruct a

D meson; the mass intervals correspond to �3� in both
cases and are different because the resolution is poorer at
low energies. Charged kaon candidates are required to
satisfy tight PID criteria with a typical efficiency of 85%
while rejecting 98% of pions. Charged pion candidates are
required to satisfy loose PID criteria with a typical effi-

6The terms ‘‘loose’’ and ‘‘tight’’ refer to the relative signal-to-
background discrimination of various PID criteria. Loose criteria
are chosen to have high efficiency, and have relatively high
background rates as well; tight criteria have lower background
but also lower signal efficiency. The optimal choice of criteria
depends on the particle type and on the a priori purity of the
sample, and is therefore different for each reconstruction
channel.
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ciency of 97% while rejecting 88% of kaons. D (D�)
candidates are selected within 4� of the D mass (D� �
D mass difference); as on the tag side, � is typically
5–10 MeV=c2 (1–2 MeV=c2).

Electron candidates are required to satisfy tight PID
criteria and to have lab-frame momentum jpej>
300 MeV=c, with an efficiency that rises from 85% at
the lowest momenta to 95% for jpej> 1:0 GeV=c. Muon
candidates are required to satisfy tight PID criteria; since
muon PID relies on the hit pattern in the IFR, this effec-
tively requires jp�j * 600 MeV=c, and results in an effi-

ciency of 40%–60% over the allowed momentum range.
The energy of electron candidates is corrected for brems-
strahlung energy loss if photons are found close to the
electron direction. Lepton candidates of either flavor are
required to have at least 12 hits in the drift chamber and to
have a laboratory-frame polar angle 0:4< �< 2:6 rad
(excluding the very forward and very backward regions
of the tracking system) in order to ensure a well-measured
momentum, since mismeasured lepton momenta distort the
m2

miss distribution and tend to move background events into

the signal-like region. Approximately 5% of selected lep-

ton candidates are misidentified, almost all of which are
pions misreconstructed as muons.

C. Total-event and single-candidate selection

We form whole-event candidates by combining Btag

candidates with Dð�Þ‘� candidate systems. We combine

charged Btag candidates with Dð�Þ0‘� systems and neutral

Btag candidates with both Dð�Þþ‘� and Dð�Þ�‘þ systems,

where the inclusion of both charge combinations allows for
neutral B mixing.
In correctly reconstructed signal and normalization

events, all of the stable final-state particles, with the ex-
ception of the neutrinos, are associated with either the Btag,

Dð�Þ, or ‘� candidate. Events with additional particles in
the final state must therefore have been misreconstructed,
and we suppress these backgrounds with two selection
requirements on the ‘‘extra’’ particle content in the event.
We require that all observed charged tracks be associated

with either the Btag, D
ð�Þ, or ‘ candidate. We compute

Eextra, the sum of the energies of all photon candidates

not associated with the Btag þDð�Þ‘ candidate system, and

we require Eextra < 150–300 MeV, depending on the Dð�Þ
channel. When considering these extra tracks and extra
photons, care is taken to reject track and photon candidates
which are likely to be due to accelerator background,
electronics noise, or reconstruction software failures;
fake photons in the EMC are, to some degree, unavoidable,
which is why we can not simply require Eextra ¼ 0. The
different D modes have very different levels of combina-
torial background, which the Eextra cut is particularly ef-
fective at rejecting. Figure 5 shows distributions of Eextra

for simulated signal and normalization events. Excellent
agreement is seen in the two distributions, indicating that
the efficiency of a cut on Eextra will largely cancel when we
measure the branching-fraction ratio; we observe the same

level of agreement in the four Dð�Þ‘� channels separately,
as well as in the e and � final states separately.
We suppress hadronic events and combinatorial back-

grounds by requiring jpmissj> 200 MeV=c, where jpmissj
is the magnitude of the missing momentum. This require-

ment mainly rejects hadronic events such as �B ! Dð�Þ��,
where the �� is misidentified as a ��. Our selection

rejects more than 99% of �B ! Dð�Þ�� background, while
rejecting less than 1% of signal and other semileptonic
events.
We further suppress background by requiring q2 >

4 ðGeV=c2Þ2, where q2 is calculated as

q2 ¼ ½pB � pDð�Þ �2 ¼ ½peþe� � ptag � pDð�Þ �2: (10)

This requirement preferentially rejects combinatorial

backgrounds from two-body B decays such as B !
Dð�ÞD, where one D meson decays semileptonically (or,
in the case of a Dþ

s , leptonically as Dþ
s ! �þ��). Our
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FIG. 4. Distributions of mES in selected events. (a) shows all
Btag candidates reconstructed in 20 fb�1 of data, and the purity

of this plot has been increased by requiring j�Ej< 50 MeV.
(b) shows the distribution for the complete data sample after the
signal B and total-event selection requirements. Note the sub-
stantial improvement in purity due to the complete reconstruc-
tion.
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selection rejects about 25% of these backgrounds, while
the signal efficiency is about 98% because signal events
automatically satisfy q2 >m2

� 
 3:16 ðGeV=c2Þ2. For
�B ! D‘� ��‘ decays, the q2 distribution peaks near zero
(see Fig. 1), so this selection has an efficiency of about
60% for this normalization mode; for �B ! D�‘� ��‘ de-
cays, the q2 distribution peaks at higher values, so our
efficiency is about 70%. The q2 requirement is the main
reason why the reconstruction efficiency is different for
signal and normalization modes, as seen below.

If multiple candidate systems pass our selection in a
given event, we select the one with the lowest value of
Eextra. This scheme preferentially selects the candidate that
is least likely to have lost additional particles. The main
effect of this algorithm is that a candidate in one of the
D�‘� channels will be selected before a candidate in one of
the D‘� channels when both candidates are present in an
event. Because D� ! D feed-down is a dominant back-
ground whileD ! D� feed-up is comparatively rare, keep-
ing as many true D� events in the D�‘� reconstruction
channels helps to increase the sensitivity to the D�� ���

signals.
To improve the resolution on the missing momentum,

we perform a kinematic fit [30] to all �ð4SÞ ! BtagD
ð�Þ‘�

candidates. We constrain charged track daughters ofK0
S,D,

and B mesons to originate from common vertices, and we
constrain the �ð4SÞ ! B �B vertex to be consistent with the
measured BABAR beamspot location. We constrain the
mass of the signal D meson (and D� meson, if there is
one) to the measured value [16], and the combined mo-
mentum of the two B mesons to be consistent with the
measured beam energy.

D. D�� Control sample selection

We select four control samples to constrain the poorly
known �B ! D��ð‘�=��Þ �� background. The selection is
identical to that of the signal channels, but we require the

presence of a �0 meson in addition to the Btag þDð�Þ‘
system. The �0 candidate must have momentum greater
than 400 MeV=c, and the event must satisfy Eextra <
500 MeV, where the two photons from �0 ! �� are ex-
cluded from the calculation of Eextra.
Most of the D�� background in the four signal channels

occurs when the �0 from D�� ! Dð�Þ�0 is not recon-
structed, so these control samples provide a direct normal-
ization of the background source. Similar D�� decays in
which a �� is lost contribute very little to the background
since they do not have the correct charge correlation be-

tween the Btag and Dð�Þ candidate, and decays with two

missing charged pions, which may have the correct charge
correlation, have very low reconstruction efficiencies. The
feed-down probabilities for the D��ð‘�=��Þ �� background
are determined from simulation, with uncertainties in the
D�� content treated as a systematic error as described in
Sec. IXA3.

V. SELECTED EVENT SAMPLES

After applying all of the criteria above, we select a total
of 3196 data events, 2886 in the four signal channels and
310 in the D�� control samples, as listed in Table I. Since
most of the events at large m2

miss are either D�� ��� or

D��� ��� signal events, the third column in the table gives
a first indication of where our sensitivity comes from.
There are more events in the two B� channels, D0‘� and
D�0‘�, due to a larger efficiency to reconstruct charged
Btag candidates than neutral ones and, to a lesser extent, a

larger efficiency to reconstruct D0 mesons on the signal
side than Dþ mesons. There are more events in the D
channels than the D� channels, particularly at large m2

miss,

because these channels contain both D mesons and D�
feed-down. The greatest signal sensitivity therefore comes
from the D0‘� channel.
Figure 6 shows distributions of jp�

‘j versus m2
miss for the

selected data samples. One-dimensional distributions of
m2

miss and jp�
‘j for these samples are shown when we

discuss the signal fit in Sec. VII.

TABLE I. Number of selected data events in the four signal
channels, Nev, and in the four D

�� control samples, ND��CS. Here,
the large m2

miss region is taken to be m2
miss > 2 ðGeV=c2Þ2 and

corresponds to the region with greatest signal sensitivity.

Channel Nev Nev (large m2
miss) ND��CS

D0‘� 1403 121 137

D�0‘� 790 43 77

Dþ‘� 295 36 66

D�þ‘� 398 14 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-310

-210

-110

FIG. 5. Distributions of Eextra in simulated events, shown after
all event selection except the cut on Eextra itself. Signal �B !
Dð�Þ�� ��� events are shown as points, while �B ! Dð�Þ‘� ��‘

normalization events are shown as the histogram. The gap
between the Eextra ¼ 0 bin and the remainder of the distribution
corresponds to the minimum allowed photon energy, 50 MeV,
while the bump at 100 MeV is due to events with two minimum-
energy photons. The normalization is arbitrary. The agreement
between the two distributions indicates that the efficiency of a
cut on Eextra will cancel when we measure the branching-fraction
ratio.
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Figure 7 shows distributions of jp�
‘j versus m2

miss for

several MC samples after applying all event selection
criteria. While the composition of the event sample will
be discussed in greater detail in the following section, these
distributions exhibit the qualitative features of the data
sample which are most relevant to our signal extraction.
Figure 7(a) shows D0‘� ��‘)D0‘�, where we introduce
the ) notation to mean that these are true B� ! D0‘� ��‘

events reconstructed in the D0‘� channel. The m2
miss dis-

tribution is very narrowly peaked around zero, as expected
for one-neutrino events. Figure 7(b) shows D�0‘� ��‘ )
D0‘�, feed-down events where a D�0 is misreconstructed
as a D0. In this case, the center of the m2

miss distribution is

offset from zero, and this offset decreases with increasing
jp�

‘j; this kinematic feature is common to all feed-down

processes, and is due to the fact that higher jp�
‘j correspond

to lower D� momenta and therefore to lower momenta for
the lost �0 or �. The width of the m2

miss distribution is also

observed to decrease with increasing jp�
‘j, a feature which
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FIG. 7 (color online). Distributions of jp�
‘j versus m2

miss for
several MC samples after all event selection. Red (light grey)
regions indicate relatively high density of reconstructed events,
while blue (dark grey) indicate relatively low density. Shown are
(a) D0‘� ��‘ ) D0‘�, (b) D�0‘� ��‘ ) D0‘�,
(c) D0�� ��� ) D0‘�, (d) D�0�� ��� ) D0‘�,
(e) D��‘� ��‘ ) D0‘�, (f) D0‘� ��‘ ) D�0‘�,
(g) D�0‘� ��‘ ) D�0‘�, (h) D�0�� ��� ) D�0‘�,
(i) D��‘� ��‘ ) D�0‘�, ( j) charge-cross feed reconstructed in
the D0‘� and Dþ‘� channels, (k) charge-cross feed recon-
structed in the D�0‘� and D�þ‘� channels, and
(l) combinatorial background in the four Dð�Þ‘� channels. The
reconstruction channel notation ) and the features of these
distributions are discussed in the text.
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FIG. 6. Distributions of jp�
‘j versus m2

miss for selected data
events in the four signal channels. The structures seen here
can be compared to the distributions from simulation seen in
Fig. 7 and described in the text.
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is also common to most distributions; this narrowing is
partly due to the same kinematic effect as before, the
reduced D� phase space at large jp�

‘j, and partly due to

the fact that the lepton momentum resolution improves at
higher momenta.

Figures 7(c) and 7(d) show similar distributions for
signal events, (c) showing correctly reconstructed B�!
D0�� ��� and (d) showing D

�0 feed-down; in both plots, the
large values of m2

miss due to the three neutrinos are clearly

observed. Again, them2
miss distributions move towards zero

and become narrower at high jp�
‘j, in this case due to the

reduced phase space for the multiple neutrinos, although,
in Fig. 7(d), the effect of the lost�0 or � can also be seen as
a deficit along the lower-left edge of the distribution.
Figure 7(e) shows feed-down from �B ! D��‘� ��‘ into
the D0‘� channel, where, in addition to the neutrino, one
or more �0 mesons or photons from the D�� decay have
been lost. Since �0 mesons from D�� decay typically have
higher momentum than those fromD� decay, them2

miss dis-

tribution is much broader than that in Fig. 7(b). Figure 7(f)
shows the feed-up process D0‘� ��‘)D�0‘�, where a true
D0 meson is paired with a combinatorial �0 or � to fake a
D�0 candidate. In this case, the m2

miss distribution is shifted

in the opposite direction from Fig. 7(b). Figures 7(g)–7(i),
show three additional distributions for events reconstructed
in the D�0‘� channel, D�0‘� ��‘, D�0�� ��� signal, and
D��‘� ��‘ background, respectively; each of these distribu-
tions is similar to the corresponding one in the D0‘�
channel, Figs. 7(a), 7(c), and 7(e), respectively.

Figures 7(j) and 7(k) show charge-cross feed back-

grounds: true �B!Dð�Þ‘� ��‘ events reconstructed with the

wrong charge for both the Btag and Dð�Þ meson. Typically

this occurs when a low momentum�� is swapped between
the two mesons. Note that, even though the event is mis-
reconstructed, this particle misassignment does not sub-
stantially alter the total missing momentum, so that the
m2

miss distribution still peaks at or near zero. While the

events in Fig. 7(k), which are reconstructed in the D�‘�
channels, are very strongly peaked at m2

miss ¼ 0, Fig. 7(j)
includes a large feed-down component, and therefore ex-
hibits the same sloping behavior seen in Fig. 7(b).

Figure 7(l) shows the distribution for combinatorial
background for all four signal channels. This background

is dominated by hadronic B decays such as B ! Dð�ÞDð�Þ
s

that produce a secondary lepton, including events with �
leptons from Ds decay.

In our B �B MC sample, our criteria select D�� control
samples which are 60%–80% pure �B!D��‘� ��‘ events, of

which more than 90% involve true D�� ! Dð�Þ�0 transi-
tions. The remaining events are split between feed-up from
�B!Dð�Þ‘� ��‘ and combinatorial background. In these
control samples, the �B ! D��‘� ��‘ component peaks at

or near zero in m2
miss, just as

�B!Dð�Þ‘� ��‘ does in the four

signal channels. The qualitative features of the other con-
tributions are similar to what is seen in the signal channels.

VI. KINEMATIC CONTROL SAMPLES

The event selection criteria described in Sec. IV are
more complicated than those used in a typical BABAR
analysis, due to the full-event reconstruction of a high-
multiplicity final state and the need to veto events with
extra tracks and neutral clusters. We use two data control
samples to validate our simulation with respect to the
observed behavior in data. The control samples are kine-
matically selected, with no requirement on m2

miss, to be

high purity samples of �B ! Dð�Þ‘� ��‘ events, with little or
no contamination from signal decays.
The first control sample is defined by requiring the re-

constructed lepton to satisfy jp�
‘j>1:5GeV=c, and is there-

fore a subset of our full analysis sample. In simulation,

95% of the selected sample is �B!Dð�Þ‘� ��‘ (the twoD
�‘�

channels are approximately 95% �B!D�‘� ��‘, while the
two D‘� channels include both �B!D‘� ��‘ and large
feed-down from �B!D�‘� ��‘). The remaining 5% of the
sample is composed of about 1%–3% �B!D��‘� ��‘, less

than 1% �B!Dð�Þ�� ���, and 1%–2% of combinatorial
backgrounds.
For the second control sample, we remove the standard

q2 > 4 ðGeV=c2Þ2 selection and require that events instead
satisfy q2 < 5 ðGeV=c2Þ2, with q2 calculated according to
Eq. (10). This control sample has very little overlap with
our final event sample, where we require q2 >
4 ðGeV=c2Þ2. Although the two control samples do have
some overlap, this q2 control sample has the advantage
over the first of allowing us to examine events with low
jp�

‘j, as expected for signal events. In simulation, approxi-

mately 90% of this control sample is �B ! Dð�Þ‘� ��‘ (as in
the first sample, the two D�‘� channels are approximately
90% �B ! D�‘� ��‘, while the two D‘� channels include
D� feed-down). The remainder of the sample is composed

of about 3% �B ! D��‘� ��‘, 3% �B ! Dð�Þ�� ���, and 4%–
5% combinatorial backgrounds.
Figure 8 shows several data-simulation comparisons in

the two control samples. The four Dð�Þ‘� channels have
been combined in these plots as have the two control
samples, and this union of the two control samples is
responsible for the large steps visible in (a) and (b). We
see good agreement between data and simulation in these
plots, as well as in similar studies where the two control

samples are examined separately, the four Dð�Þ‘� channels
are examined separately, the two lepton types are examined
separately, and where the data are split according to
BABAR running period. We have examined variables re-
lated to Btag reconstruction, signal-side reconstruction,

hermeticity and whole-event reconstruction, and missing
momentum. In all cases, we observe that the simulation
does a reasonable job describing the data. Because of the
relative normalization scheme, small differences between
simulation and data have no detrimental effect on the
analysis.
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VII. FIT OF SIGNAL AND BACKGROUND YIELDS

A. Fit Overview

Signal and background yields are extracted using an
extended unbinned maximum likelihood fit to the joint
(m2

miss, jp�
‘j) distribution. The fit is performed simulta-

neously in the four signal channels and the fourD�� control

samples. Two two-dimensional probability density func-
tions (PDFs) are presented in Sec. VII B; each component
in the fit (listed below) is described by one of these two
PDFs, with parameters determined from fits to simulated
event samples. A set of constraints, described in Sec. VII C,
relate fit components in different reconstruction channels.
These constraints are also determined from MC samples,
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FIG. 8. Kinematic control sample plots: (a) jp�
‘j; (b) q2; (c) jpmissj; (d) m2

miss; (e) Eextra; (f) m
2
miss in the D� channels, assuming that

the soft �=� had been lost; multiplicity of (g) charged tracks and (h) neutral clusters used to reconstruct the Btag. In all plots, the points
with error bars are the data and the solid histogram is the simulation, scaled to the data luminosity. Good agreement is seen between
data and simulation in a variety of variables corresponding to reconstruction, kinematics, and hermeticity requirements. Small
differences between data and simulation cancel in the relative measurement and have no detrimental effect on the analysis. The large
steps in (a) and (b) are due to the combination of two control samples, as described in the text. The structure in (g) is caused by the
larger efficiency to reconstruct charged Btag candidates—with an odd number of charged tracks—than neutral candidates, while the
prominent even-odd structure in (h) is due to the fact that most neutral clusters correspond to the process �0 ! �� and so appear in
pairs.
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except for parameters describing the amount of D� feed-
down into the D‘� signal channels, which are determined
directly by the fit to data.

Tables II and III summarize the parameterization of the
fit in the four signal channels and the four D�� control
samples, respectively. In each of the four signal channels,
we describe the data as the sum of seven components:
D�� ���, D��� ���, D‘� ��‘, D�‘� ��‘, D��ð‘�=��Þ ��,
charge-cross feed, and combinatorial background. The

four D�� control samples are described as the sum of five
components: D��ð‘�=��Þ ��, Dð‘�=��Þ ��, D�ð‘�=��Þ ��,
charge-cross feed, and combinatorial background. Each

of these components is described by one of the two PDFs
given in Sec. VII B, with the numerical parameters of the

32 PDFs determined from independent MC samples. The
charge-cross feed components in the two D‘� signal

channels are described by a single PDF, with common
parameters for D0‘� and Dþ‘�, as are the two D�‘�

charge-cross feed components and the fourDð�Þ‘��0 com-
ponents; the four combinatorial background components in
the signal channels are described by a single PDF with
common parameters, as are the four in the D�� control
samples.

�B!Dð�Þ�� ��� events feeding up into the D�� control
samples are expected to contribute 1:8�0:6 events in the
four channels together, so these events are combined with
the light lepton contribution. In both the control samples
and in the signal channels, �B!D���� ��� events are ex-
pected to contribute 3.5%–4.5% of the total D�� yield;
these events are combined with the light lepton contribu-
tion, and the amount of D���� ��� is varied as a systematic
uncertainty.
The fit has 18 free parameters: four signal branching-

fraction ratios R, one for each Dð�Þ meson; four �B!
Dð�Þ‘� ��‘ normalization yields; four �B ! D��‘� ��‘ back-
ground yields; four combinatorial background yields, one
in each of the four D�� control samples; two parameters
describing D� ) D feed-down, one for charged B modes
and one for neutral B modes. The combinatorial back-
ground yields in the four signal channels are fixed in the
fit to the expected value from simulation, as are the charge-
cross feed backgrounds in both the signal channels andD��
control samples; variation of these backgrounds is treated
as a systematic uncertainty below.

TABLE II. Components of the signal extraction fit in the signal
channels, and their approximate abundances in our B �B MC
sample. The structure of the fit is identical between the B�
and �B0 channels. There are seven components in each of the four
signal channels.

Channel Source Abundance in B �B MC (%)

D�0‘� D�0�� ��� signal 5

D0�� ��� signal feed-up 0.5

D�0‘� ��‘ normalization 90

D0‘� ��‘ feed-up 2

D��ð‘�=��Þ �� feed-down 3

Charge-cross feed 0.5

Combinatorial background 1

D0‘� D0�� ��� signal 3

D�0�� ��� signal feed-down 3

D0‘� ��‘ normalization 25

D�0‘� ��‘ feed-down 60

D��‘� ��‘ feed-down 2

Charge-cross feed 2

Combinatorial background 2

D�þ‘� D�þ�� ��� signal 5

Dþ�� ��� signal feed-up 0.1

D�þ‘� ��‘ normalization 90

Dþ‘� ��‘ feed-up 0.5

D��‘� ��‘ feed-down 3

Charge-cross feed 0.1

Combinatorial background 2

Dþ‘� Dþ�� ��� signal 5

D�þ�� ��� signal feed-down 2

Dþ‘� ��‘ normalization 45

D�þ‘� ��‘ feed-down 40

D��‘� ��‘ feed-down 6

Charge-cross feed 1

Combinatorial background 3

TABLE III. Components of the signal extraction fit in the D��
control sample channels, and their approximate abundances in
our B �B MC sample. The structure of the fit is identical between
the B� and �B0 channels. There are five components in each of
the four D�� control sample channels.

Channel Source Abundance in B �B MC (%)

D�0�0‘� D��‘� ��‘ 60

D�0‘� ��‘ feed-up 18

D0‘� ��‘ feed-up 2

Charge-cross feed 1

Combinatorial background 20

D0�0‘� D��‘� ��‘ 70

D�0‘� ��‘ feed-up 10

D0‘� ��‘ feed-up 3

Charge-cross feed 2

Combinatorial background 15

D�þ�0‘� D��‘� ��‘ 65

D�þ‘� ��‘ feed-up 20

Dþ‘� ��‘ feed-up 0.1

Charge-cross feed 0.1

Combinatorial background 15

Dþ�0‘� D��‘� ��‘ 60

D�þ‘� ��‘ feed-up 6

Dþ‘� ��‘ feed-up 3

Charge-cross feed 1

Combinatorial background 30
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We also perform a second, B� � �B0 constrained, fit, by
requiring RðDþÞ ¼ RðD0Þ and RðD�þÞ ¼ RðD�0Þ,7 reduc-
ing the number of free parameters to 16.

B. Probability density functions

We construct an empirical model of the two-dimensional
ðm2

miss; jp�
‘jÞ PDF as the product of two terms: a one-

dimensional function to describe the jp�
‘j distribution, dis-

cussed in Sec. VII B 1; and a jp�
‘j-dependent ‘‘resolution’’

function to describe the m2
miss distribution, to be discussed

in Sec. VII B 2. For processes in which the only missing
particle is a single neutrino, the true m2

miss spectrum is a

delta function located at zero and the observed distribution
is a pure resolution function. For components with multiple
missing particles, the observed m2

miss distribution is the

convolution of the physical m2
miss spectrum with our detec-

tor resolution. The PDFs presented below are used to
describe both of these physical cases, with different nu-
merical parameters describing the different behaviors;
these two PDFs are flexible enough to describe the variety
of physical and resolution processes needed in this
analysis.

1. One-dimensional jp�
‘j parameterization

We use a generalized form of a Gaussian to model the
jp�

‘j distribution. The Gaussian distribution,

G ðjp�
‘jÞ / exp

�
� 1

2
	
��������
jp�

‘j � p0

�

��������
2
�
; (11)

has the same general properties as our distributions: it rises
smoothly from zero to a peak value and then falls smoothly
back to zero again. Here, p0 represents the value of jp�

‘j for
which G peaks and � represents the width of the Gaussian
distribution.

This gross agreement is not enough, however, so we
define a modified Gaussian function,

H ðjp�
‘jÞ / exp

�
�
��������
jp�

‘j � p0

�ðjp�
‘jÞ

��������
�ðjp�

‘
jÞ�
; (12)

where, for convenience, we have absorbed the constant
factor of 2 into the definition of �ðjp�

‘jÞ. By allowing the

width and exponent of the Gaussian to be functions of jp�
‘j,

we are able to describe a greater variety of shapes.
Specifically, we take �ðjp�

‘jÞ to be a linear function,

�ðjp�
‘jÞ ¼ �L þ �H � �L

2:4 GeV=c
	 jp�

‘j; (13)

where �L and �H are the values of the exponential term at
the low and high endpoints of jp�

‘j, fixed at zero and

2:4 GeV=c, respectively. Similarly, we parameterize
�ðjp�

‘jÞ as a bilinear function,

�ðjp�
‘jÞ ¼

��L þ �0��L

p0
	 jp�

‘j jp�
‘j<p0

�0 þ �H��0

2:4 GeV=c�p0
	 ðjp�

‘j � p0Þ jp�
‘j>p0

;

(14)

where�L, �0, and �H represent the widths of the Gaussian
at jp�

‘j ¼ 0, jp�
‘j ¼ p0, and jp�

‘j ¼ 2:4 GeV=c, respec-

tively. Even though this parameterization is discontinuous
at the point jp�

‘j ¼ p0, the resulting function H ðjp�
‘jÞ

remains smooth since the numerator in the exponent,
(jp�

‘j � p0), goes to zero at the same point.

The jp�
‘j parameterization therefore has six free parame-

ters: p0, the peak; �L and �H, describing the exponential
term; and �L, �0, and �H, describing the width. When
performing fits using this PDF, we integrate H numeri-
cally to compute the normalization.

2. Two-dimensional PDF parameterization

We construct two types of two-dimensional PDF,
P 1ðjp�

‘j; m2
missÞ and P 2ðjp�

‘j; m2
missÞ by multiplying the

model of the lepton spectrum above by a resolution func-
tion in m2

miss, where the resolution is a function of jp�
‘j.

Allowing the parameters of the resolution function to be
functions of jp�

‘j produces a correlation between the two fit
variables, and it is these parameters which allow the PDFs
to describe such a wide variety of shapes.
Using the model of the lepton spectrum H ðjp�

‘jÞ intro-
duced above, we construct the PDFs as

P 1ðjp�
‘j; m2

missÞ � H ðjp�
‘jÞ � ½f1ðjp�

‘jÞG1ðjp�
‘j;m2

missÞ
þ ð1� f1ðjp�

‘jÞÞG2ðjp�
‘j;m2

missÞ�
(15)

and

P 2ðjp�
‘j;m2

missÞ �H ðjp�
‘jÞ� ½f1ðjp�

‘jÞG1ðjp�
‘j;m2

missÞ
þf2ðjp�

‘jÞGbðjp�
‘j;m2

missÞþ ð1�f1ðjp�
‘jÞ

�f2ðjp�
‘jÞÞG2ðjp�

‘j;m2
missÞ�: (16)

Here, the functions G1 and G2 are Gaussians and Gb is a
bifurcated Gaussian (Gaussian with different � parameters
on either side of the mean), respectively; all are functions
of m2

miss, with parameters dependent on jp�
‘j.

The jp�
‘j dependence of the various parameters of G1;2

and Gb is listed in Table IV. The total number of free
parameters for P 1 is 18: six for H ðjp�

‘jÞ, five each for

G1 and G2, and two for f1. The total number of free
parameters for P 2 is 24: six for H ðjp�

‘jÞ, five each for

G1 and G2, four for Gb, and two each for f1 and f2.
We use the simpler PDF, P 1, to model most of the

semileptonic fit components (22 out of 32), as well as the
charge-cross feed and combinatorial backgrounds. For the
remaining ten components, however, the more complicated
parameterization P 2 is required to adequately describe the
m2

miss tail. Eight of these components are the ones in which

7This constraint follows from isospin symmetry in both the
signal and normalization modes but is more general.
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the only missing particle is a single neutrino,

D�0‘� ��‘ ) D�0‘� D0‘� ��‘ ) D0‘�

D�þ‘� ��‘ ) D�þ‘� Dþ‘� ��‘ ) Dþ‘�

D��‘� ��‘ ) D�0�0‘� D��‘� ��‘ ) D0�0‘�

D��‘� ��‘ ) D�þ�0‘� D��‘� ��‘ ) Dþ�0‘�;

and the remaining two are components in which a single
neutrino and a soft �0 or � are missing,

D�0‘� ��‘ ) D0‘� D�þ‘� ��‘ ) Dþ‘�:

Figure 9 shows projections of the PDF fit to several
simulated event samples, showing the range of shapes
described by our PDFs.

C. Cross feed constraints

We apply a number of constraints in the fit, relating the
event yields between different reconstruction channels in
order to make use of all available information. These
constraints help to maximize our sensitivity, particularly
to the �B ! D�� ��� signals where the dominant back-
grounds are due to feed-down. There are 20 such con-
straints in the fit, corresponding to 20 different ways in
which a true �B ! D=D�=D��‘� ��‘ event can be recon-
structed with the wrong final-state meson, either as feed-

down (D� ) D and D�� ) D=D�) or as feed-up (D )
D�=Dð�Þ�0 and D� ) Dð�Þ�0).

These constraints are implemented in the fit by requiring
that the number of events of type j correctly reconstructed
in the ith channel (Nij) is related to the number of events of

type j reconstructed in a cross feed channel i0 (Ni0j) by

Ni0j � Nij 	 fi!i0;j; (17)

where fi!i0;j is a cross feed constraint relating the two

yields. The cross feed constraints fi!i0;j are linearly related

to the misreconstruction probability. For feed-down pro-
cesses, in which the probability to lose a low-momentum
�0 or � is high, fi!i0;j typically takes values between 0.2

and 1.0; for feed-up processes, in which the probability to
reconstruct a fake �0 or � in a narrow mass window is low,
fi!i0;j typically takes values between 0.01 and 0.1.

The values for most of the fi!i0;j terms are taken from

simulation, but, in order to reduce systematic effects, the
values of the dominant feed-down components, �B !
D�‘� ��‘ reconstructed in the D‘� signal channels, are
left free in the fit to data. We also use the floating values
of these D� feed-down constraints to apply a small first-
order correction to the corresponding signal feed-down
constraints describing �B ! D��� ��� reconstructed in the
D‘� channels; in this way, we use the high-statistics

TABLE IV. jp�
‘j dependence of the m2

miss PDF parameteriza-
tion. The form of f2 is chosen to allow the Gb term to contribute
at low jp�

‘j, but to drive this term rapidly to zero as jp�
‘j increases.

The form of �H is chosen to allow for a long tail towards high
m2

miss at low jp�
‘j, but to drive this term rapidly to zero as jp�

‘j
increases (note that there is no problem having � approach zero
since the amplitude of this term goes to zero as well; the result is
finite and well behaved). Npar gives the number of free parame-

ters for each term separately.

Function Parameter Dependence on jp�
‘j Npar

G1;2 Mean Quadratic 3

G1;2 � Linear 2

Gb Mean Constant 1

Gb �L Constant 1

Gb �H �H0 	 ½1� ð jp�
‘
j

2:4 GeV=cÞ�� 2

P 1;2 f1 Linear 2

P 2 f2 F 	 ð2:4 GeV=c�jp�
‘
j

2:2 GeV=c Þ� 2

(a)

(b)

(c)

(d)

FIG. 9. Projections of the PDF from fits to MC samples. The
left plots show projections onto m2

miss, while the right plots show

projections onto jp�
‘j. Shown are projections for four of the PDFs

used in the fit: (a) D�0‘� ��‘ ) D�0‘�, (b) D�0‘� ��‘ ) D0‘�,
(c) D�0�� ��� ) D�0‘�, and (d) D��‘� ��‘ ) D�0‘�. The MC
sample is shown as points, and the projection of the fit is shown
as a curve. Note the sharp peak at m2

miss ¼ 0 in (a), while the

peak in (b) is somewhat spread out and shifted to larger values of
m2

miss because of the lost �0 or � from D�0 decay.
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D�‘� ��‘ samples to improve our knowledge of the signal
feed-down probability.

D. Projections of the fit to data

Figures 10–14 show projections of the B� �
�B0-constrained fit. Figure 10 shows projections in m2

miss

for the four signal channels, showing both the low m2
miss

region, which is dominated by the normalization modes
�B ! Dð�Þ‘� ��‘, and the high m2

miss region, which is domi-

nated by the signal modes �B ! Dð�Þ�� ���. Figures 11 and
12 show projections in jp�

‘j for the normalization and

signal regions, respectively, and Figs. 13 and 14 show
projections of both m2

miss and jp�
‘j for the four D�� control

samples. In all cases, we see that the fit does a reasonable
job of describing the observed event sample, both in
background-dominated and signal-dominated regions.

VIII. SIGNAL EXTRACTION AND
NORMALIZATION

The fit described in Sec. VII directly measures, for each
signal mode, the ratio of the number of signal events in the
data sample, Nsig, to the number of corresponding normal-

FIG. 10 (color online). Distributions of events and fit projec-
tions in m2

miss for the four final states: D
�0‘�, D0‘�, D�þ‘�, and

Dþ‘�. The normalization region m2
miss 
 0 is shown with finer

binning in the insets. The fit components are combinatorial
background (white, below dashed line), charge-cross feed back-
ground (white, above dashed line), the �B ! D‘� ��‘ normaliza-
tion mode (forward slanted hatching, yellow), the �B ! D�‘� ��‘

normalization mode (backward slanted hatching, light blue),
�B ! D��‘� ��‘ background (dark, or blue), the �B ! D�� ���

signal (light grey, green), and the �B ! D��� ��� signal (medium
grey, magenta). The fit shown incorporates the B� � �B0 con-
straints.

FIG. 11 (color online). Distributions of events and fit projec-
tions in jp�

‘j for the four final states D�0‘�, D0‘�, D�þ‘�, and
Dþ‘�, shown in the normalization region,m2

miss < 1 ðGeV=c2Þ2.
The fit components are shaded as in Fig. 10.
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ization events, Nnorm. We measure the signal branching-
fraction ratios R as

R � Nsig

Nnorm

	 1

"sig="norm
	 1

Bð�� ! ‘� ��‘��Þ ; (18)

where the relative efficiency "sig="norm is calculated from

signal MC samples as

"sig="norm � Nreco
sig =Ngen

sig

Nreco
norm=N

gen
norm

: (19)

Here, theNgen are the numbers of simulated events, and the
Nreco are the numbers of reconstructed events, including
both correctly reconstructed events and contributions from

feed-up or feed-down. Cross feed is not a large effect,
however, because both the numerator and denominator in
this relative efficiency receive cross feed contributions, and
the net result tends to cancel (this cancellation is not exact,
since the D� momentum spectra are not identical between
signal and normalization modes, but these differences are
already accounted for in our normalization procedure).
Signal efficiencies are given in Table V. The relative

efficiencies for the two �B ! D�� ��� modes are much
larger than unity because of the q2 cut, which is 
 98%
efficient for signal events but rejects about 50% of the �B !
D‘� ��‘ normalization events, as seen in Fig. 1(a). The q2

cut has a similar, but less pronounced, effect on the D�
modes, but, due to the lower efficiency for identifying
secondary leptons in the signal modes, the resulting rela-
tive efficiency is close to unity.

FIG. 13 (color online). Distributions of events and fit projec-
tions in m2

miss for the four D�� control samples D�0�0‘�,
D0�0‘�, D�þ�0‘�, and Dþ�0‘�. The fit components are
shaded as in Fig. 10.

FIG. 12 (color online). Distributions of events and fit projec-
tions in jp�

‘j for the four final states D�0‘�, D0‘�, D�þ‘�, and
Dþ‘�, shown in the signal region, m2

miss > 1 ðGeV=c2Þ2. The fit
components are shaded as in Fig. 10.
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IX. SYSTEMATIC UNCERTAINTIES

Table VI summarizes all of the systematic uncertainties
considered in this analysis. Because our signal is extracted

and normalized relative to �B ! Dð�Þ‘� ��‘, many sources of
systematic uncertainty—especially those related to recon-
struction efficiency—are expected to cancel, either par-
tially or completely, when we take the ratio.

We describe the individual contributions to the system-
atic uncertainty below. We divide the systematics into two
broad categories: additive and multiplicative. Additive
systematic uncertainties are those which affect the fit yields
and therefore reduce the significance of the measured
signals. Multiplicative uncertainties affect the normaliza-
tion of the signals and the numerical results but not the
significance.

A. Additive systematic uncertainties

In order to estimate additive systematic uncertainties, we
perform an ensemble of fits to MC event samples. For each
source of uncertainty, we perform a number of tests where
we modify, as appropriate, the fit shapes, cross feed con-

TABLE V. Relative signal efficiencies "sig="norm for the four
signal modes.

Signal mode "sig="norm

B� ! D0�� ��� 1:85� 0:02
B� ! D�0�� ��� 0:99� 0:01
�B0 ! Dþ�� ��� 1:83� 0:03
�B0 ! D�þ�� ��� 0:91� 0:01

FIG. 14 (color online). Distributions of events and fit projec-
tions in jp�

‘j for the fourD�� control samplesD�0�0‘�,D0�0‘�,
D�þ�0‘�, and Dþ�0‘�. The fit components are shaded as in
Fig. 10.

TABLE VI. Contributions to the total systematic uncertainty.
The additive systematic uncertainties represent uncertainties on
the fit yield, and therefore reduce the statistical significance of
the results. The multiplicative systematic uncertainties represent
uncertainties on the normalization, so they affect the numerical
results but not the statistical significance. The first four columns
summarize errors on the individual branching-fraction ratios; the
last two columns summarize errors on the B� � �B0 constrained
measurement. The totals here refer to errors on the branching-
fraction ratios R; the errors on Bð �B ! Dð�Þ‘� ��‘Þ (discussed in
Sec. X) only apply to the absolute branching fractions, and are
not included in the quoted total error.

Source Fractional uncertainty (%)

D0�� D�0�� Dþ�� D�þ�� D�� D���

Additive systematic uncertainties

MC statistics (PDF shape) 11.5 8.4 4.5 1.8 6.9 4.7

MC statistics (constraints) 4.2 1.9 6.1 1.3 3.6 1.4

Combinatorial BG modeling 7.5 4.1 11.5 2.6 9.1 2.9

D�� modeling 5.7 0.5 1.6 0.2 3.0 0.4
�B ! D� form factors 1.9 0.7 0.8 0.2 1.4 0.4
�B ! D form factors 0.2 0.7 0.6 0.2 0.3 0.4

m2
miss tail modeling 1.5 0.5 1.2 0.4 1.6 0.1

�0 cross feed constraints 0.5 1.1 0.5 0.9 0.5 1.0

D�� feed-down 0.4 0.1 0.1 0.3 0.2 0.2

D���� ��� abundance 0.4 1.3 0.3 0.2 0.3 0.8

Total additive 15.6 9.7 14.0 3.6 12.5 5.8

Multiplicative systematic uncertainties

MC statistics (efficiency) 1.2 1.1 1.5 1.1 1.0 0.8

Bremsstrahlung/FSR 0.6 0.5 0.3 0.4 0.4 0.5

Tracking " 0.0 0.0 0.0 0.0 0.0 0.0

e PID " 0.5 0.5 0.6 0.6 0.6 0.6

� PID " 0.5 0.6 0.7 0.6 0.6 0.6

K PID " 0.2 0.1 0.2 0.0 0.2 0.0

� PID " 0.1 0.1 0.2 0.0 0.1 0.1

K0
S " 0.1 0.0 0.1 0.1 0.1 0.0

Neutral (�0 and �) " 0.0 0.0 0.0 0.1 0.0 0.0

Daughter B’s 0.1 0.3 0.0 0.1 0.1 0.3

Bð�� ! ‘� ��‘��Þ 0.2 0.2 0.2 0.2 0.2 0.2

Total multiplicative 1.6 1.5 1.8 1.4 1.4 1.3

Total 15.6 9.9 14.0 3.9 12.5 6.0

Bð �B ! Dð�Þ‘� ��‘Þ 10.2 7.7 9.4 3.7 6.8 3.4
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straints, and the combinatorial background yields (all of
which are fixed to MC-derived values in the nominal fit)
and perform a signal fit. By doing a large number of such
tests and studying the distribution of fit results in these
ensembles, we are able to estimate the systematic uncer-
tainties. In all of these ensembles, we take the RMS of the
observed distribution, relative to the corresponding mean
fit value, as the systematic uncertainty.

1. Monte Carlo statistics

In order to study the systematic uncertainties due to
limited Monte Carlo statistics, we perform two ensembles
of fits. In the first ensemble, we perform a variation of the
PDF shapes. Each of the 37 PDFs are independently varied
by generating new values for each of the 18 or 24 shape
parameters according to the uncertainties in the PDF fit,
taking into account correlations between the fitted parame-
ters. In the second ensemble, we vary each of the feed-up
and feed-down constraints according to their statistical
uncertainties.

Figure 15 shows distributions of fit results for the en-
semble of PDF shape fits.

2. Combinatorial background modeling

Table VII summarizes the physical sources of combina-
torial background considered in this analysis, including
their approximate abundances in our B �B MC sample after
all event selection. In order to study systematic effects, we

perform an ensemble of fits, reweighting events from the
various combinatorial sources.

In total, the two-body B decays B ! Dð�Þþ
s Dð�Þð�Þ and

B ! Dð�ÞDð�Þ constitute approximately 45% of the total
combinatorial background yield, while the three-body de-

cays B ! Dð�ÞDð�ÞK contribute another 15%. Branching
fractions of most of the relevant two-body B decays (and
some of the three-body decays as well) have previously
been measured. These branching fractions are listed in
Table VIII, along with relevant branching fractions of the
Dþ

s meson.
To study systematic uncertainties related to combinato-

rial background modeling, we perform an ensemble of fits.
In each fit, we reweight events in the simulation. For modes
listed in Table VIII, we reweight the branching fraction,
generating random weights from a Gaussian distribution
based on the measured value (for decays involving a Dþ

s

meson, the weight is the product of weights for both the B

and Dþ
s decays). For charge-cross feed events (true �B !

Dð�Þ‘� ��‘ events where the Btag and signal Dð�Þ swap a

charged particle), the dominant systematic uncertainty is
not the branching fraction, but rather the efficiency to
reconstruct the Btag with the wrong charge. We estimate a

10% uncertainty on the modeling of this process, i.e., we
generate weights for these events using a Gaussian with a
mean of 1 and a width of 0.1. For double-semileptonic

events, with both B mesons decaying to Dð�Þ‘� ��‘, again,
the dominant uncertainty comes from the probability to
misreconstruct a Btag candidate in this event, and we

assume a 10% uncertainty on this number as well. For
events in which the signal lepton is misidentified, we
assign a 10% uncertainty; the typical fake rate measured
in data is 2%–3%, with data-simulation discrepancies gen-
erally 10% or less in the momentum ranges of interest. For
all remaining sources of combinatorial background, in-
cluding high-multiplicity B ! Dhhðh . . .Þ and B !
DDhhðh . . .Þ (where D here represents any charm meson
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FIG. 15. Distributions of fit results for systematic uncertainties
due to Monte Carlo statistics, shown for (a) B� ! D0�� ���,
(b) B� ! D�0�� ���, (c) �B0 ! Dþ�� ���, (d) �B0 ! D�þ�� ���,
(e) �B ! D�� ���, and (f) �B ! D��� ���. In all figures, the
branching-fraction ratio R is shown.

TABLE VII. Sources and approximate abundances of combi-
natorial background in our B �B MC sample. All four signal
channels are combined here. The third and fourth columns
show what fraction of the B decays in each group have previ-
ously been observed. The fourth column is the product of the
second and third, and indicates how much of the estimated
combinatorial background is known from other measurements.

Source % of total BG % B measured

(Relative) (Absolute)

B ! Dð�Þþ
s Dð�Þ (þ light hadrons)

. . .with Dþ
s ! �� 30 90 27

. . .with Dþ
s ! ‘�ð�=
=
0Þ 10 90 9

B ! Dð�ÞDð�Þ (þ light hadrons) 35 65 25

Both �B ! Dð�Þ‘� 15 100 15

Fake lepton 5 0 0

Other misreconstructed 5 0 0

Total 75
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and h any light meson) and other misreconstructed events,
we assume a 50% uncertainty in the relevant rates.

In each test, we fit the reweighted MC sample to gen-
erate new PDF shapes and recalculate the expected yield of
combinatorial events in each channel. Figure 16 shows the
effect of this reweighting on the combinatorial BG PDF in
the signal channels. We note that the reweighting affects
the normalization of the charge-cross feed backgrounds but
not the shape.

3. D�� Modeling

We generate an ensemble ofD�� models, sampling from
the distribution in Table IX. This model is based on the
current world averages [16,28] but includes information
from selected recent measurements [33] and imposes iso-
spin symmetry between charged and neutral B modes.

For each test, we generate random numbers for the six
exclusive modes (D, D�, and the resonant D�� states),
independently for Bþ and B0 decays. We then saturate
the remaining inclusive b ! c‘� ��‘ rate with the four non-
resonant states, maintaining the Monte Carlo ratio of
0:1:0:3:0:2:0:6. Even though we are only interested in the
�B ! D��‘� ��‘ states, we need to generate distributions of

the �B ! Dð�Þ‘� ��‘ branching fractions to allow for suffi-
cient variations in the nonresonant states which are used to
saturate the total rate.
For each test, we reweight both the D��‘� ��‘ PDFs and

cross feed constraints to estimate the systematic
uncertainty.

4. �B ! Dð�Þ Form factors

We reweight the form factors of both signal �B !
Dð�Þ�� ��� and normalization �B ! Dð�Þ‘� ��‘ decays. In
both cases, we use the form factor parameterization of
Caprini, Lellouch, and Neubert [27], with numerical pa-
rameters given in Sec. III. We reweight signal and normal-TABLE VIII. Branching fractions of Dþ

s and two- and three-
body B decays contributing to combinatorial background.
Measurements are taken from [31], except ( y ) which are taken
from [32]. The last column gives the branching fraction used to
generate the BABARMC sample, where each number is shown in
the same scale as the corresponding number in the second
column.

Mode B MC

Dþ
s ! �� ð6:4� 1:5Þ � 10�2 7.0

Dþ
s ! 
‘� ð2:5� 0:7Þ � 10�2 2.6

Dþ
s ! 
0‘� ð8:9� 3:3Þ � 10�3 8.9

Dþ
s ! �‘� ð2:0� 0:5Þ � 10�2 2.0

Dþ
s ! �� ð5:0� 1:9Þ � 10�3 4.6

Bþ ! �D0Dþ
s ð1:3� 0:4Þ � 10�2 1.06

Bþ ! �D0D�þ
s ð9� 4Þ � 10�3 9.1

Bþ ! �D�0Dþ
s ð1:2� 0:5Þ � 10�2 1.02

Bþ ! �D�0D�þ
s ð2:7� 1:0Þ � 10�2 2.28

Bþ ! D��0Dð�Þþ
s ð2:7� 1:2Þ � 10�2 3.0

Bþ ! �D0D�þK0 ð5:2� 1:2Þ � 10�3 5.2

Bþ ! �D�0D�þK0 ð7:8� 2:6Þ � 10�3 7.8

Bþ ! D0 �D0Kþ ð1:37� 0:32Þ � 10�3 1.9

Bþ ! D�0 �D�0Kþ ð5:3� 1:6Þ � 10�3 5.3

Bþ ! D�0 �D0Kþ ð4:7� 1:0Þ � 10�3 4.8

Bþ ! D��DþKþ ð1:5� 0:4Þ � 10�3 0.5

B0 ! D�Dþ
s ð8:0� 3:0Þ � 10�3 7.4

B0 ! D��Dþ
s ð1:07� 0:29Þ � 10�2 1.03

B0 ! D�D�þ
s ð1:0� 0:5Þ � 10�2 0.74

B0 ! D��D�þ
s ð1:9� 0:5Þ � 10�2 1.97

B0 ! D�D0Kþ ð1:7� 0:4Þ � 10�3 1.7

B0 ! D�D�0Kþ ð3:1� 0:6Þ � 10�3 3.1

B0 ! D��D�0Kþ ð1:18� 0:20Þ � 10�2 1.18

B0 ! D��DþK0 ð6:5� 1:6Þ � 10�3 8.1

B0 ! D��D�þK0 ð8:8� 1:9Þ � 10�3 8.8

B0 ! D�þD�� ( y ) ð8:1� 1:2Þ � 10�4 8.3

B0 ! DþD�� ( y ) ð10:4� 2:0Þ � 10�4 6.7

B0 ! DþD� ( y ) ð2:8� 0:7Þ � 10�4 2.7

(a)

(b)

FIG. 16 (color online). Combinatorial background modeling
variation for the four signal channels, showing the projections
onto (a) m2

miss, and (b) jp�
‘j. In both figures, the MC sample

without reweighting is shown as data points, while the light and
dark shaded regions show the 1� and 2� envelopes of the
ensemble of reweighted PDF shapes.
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ization modes simultaneously and generate new PDFs,
cross feed constraints, and relative efficiencies.

5. m2
miss Tail modeling

Studies in the two kinematic control samples show
acceptable overall agreement between data and simulation
for the m2

miss resolution (see Fig. 8(d)), but suggest that the

simulation may underestimate the ratio of the number of
events in the largem2

miss tail region to the number of events

nearm2
miss ¼ 0. We estimate that this tail component of the

resolution may be underestimated by up to 10%. We study
systematic effects related to this by reweighting events at
large m2

miss, greater than 1 ðGeV=c2Þ2, up by 10%, modify-

ing the PDF shapes for �B ! D‘� ��‘ and �B ! Dð�Þ‘� ��‘.
We perform a fit with these modified PDFs and take the
difference from the nominal fit as a systematic uncertainty.

6. �0 Efficiency and Cross feed Constraints

While the systematic uncertainties due to detector effi-
ciencies (described in more detail in Sec. IXB 3) are
primarily multiplicative, the efficiencies for �0 reconstruc-
tion have a large impact on the feed-down efficiencies and
therefore the fit yields. This effect can be enhanced by the
fact that the feed-down constraints are defined as the ratio
of the number of events reconstructed in the D‘� channel
to that in the D�‘� channel, which move in opposite
directions as the �0 efficiency is varied.

We generate an ensemble of fits by varying the �0

efficiency within its uncertainty, 3.0% per �0. The result-

ing changes in the feed-down constraints for both signal
and background modes are propagated through the signal
fit to estimate the resulting systematic uncertainties.

7. D��‘� ��‘ Feed-down

We assign an additional systematic uncertainty on
D��‘� ��‘ feed-down rates due to the fact that the �0

mesons involved in feed-down processes typically have
low momentum, while the 3.0% systematic uncertainty
mentioned above is derived from a control sample with a
broad spectrum. Since we float the constraints describing
D� ) D feed-down in the fit, D� feed-down processes are
insensitive to systematic effects due to the �0 efficiency at
low momentum. The D�� feed-down constraints, however,
are taken from simulation and can therefore be affected.
We compare the fitted values of the D� ) D feed-down

rates to the simulation to estimate that the efficiency for
low-momentum �0 mesons is correctly modeled to within
10%. We generate an ensemble of fits in which we vary the
�0 reconstruction efficiency �10% for �0 mesons with
momentum less than 300 MeV=c. We generate new PDFs
and feed-down constraints which we propagate through the
signal fit to estimate the systematic uncertainties.

8. �B ! D���� ��� Abundance

We vary the fraction of �B ! D���� ��� events in the D��
samples by generating random numbers from a Gaussian
distribution with mean 1.0 and width 0.3, equivalent to a
�30% variation. For each test, we generate new PDFs and
cross feed constraints to estimate the systematic
uncertainty.

B. Multiplicative systematic uncertainties

1. Monte Carlo statistics

The dominant multiplicative systematic uncertainty
is due to limited Monte Carlo statistics. The various
MC samples are independent of one another, so that
there is no cancellation between the signal and normal-
ization.

2. Bremsstrahlung and final-state radiation

Based on a control sample of identified electrons and
studies in MC samples, we estimate the uncertainty on
reconstruction efficiency due to bremsstrahlung and final-
state radiation effects to be 2.1%. This uncertainty applies
to both signal and normalization modes, however, and so
the effect on the relative efficiency is expected to cancel.
The fractions of events in which a photon is radiated are
nearly the same between signal and normalization modes,
within statistical precision of 10%; we therefore treat the
uncertainty between signal and normalization modes as
90% correlated to calculate the final systematic
uncertainty.

TABLE IX. �B ! Xc‘
� ��‘ branching fractions used in the D��

modeling systematic study. The first line, c‘�, represents the
inclusive semileptonic branching fraction. For the six lines
representing the D, D�, and D�� resonant states, the distribution
of these branching fractions is taken to be Gaussian with the
given mean and width. For the last four lines, representing the
nonresonant D�� states, the ranges of variation are not shown in
this table; their distribution is determined by the inclusive rate
and the other exclusive modes, as described in the text. The
generated branching fractions, Bgen, are the same for charged

and neutral B mesons. All numbers are in %.

Mode Bgen Bð �B0Þ BðB�Þ
� � � �

c‘� 10.4 10.17 0 10.9 0

D 2.10 2.14 0.14 2.29 0.16

D� 5.6 5.54 0.25 5.94 0.24

D1 0.56 0.47 0.08 0.58 0.06

D�
2 0.37 0.35 0.07 0.46 0.08

D�
0 0.20 0.46 0.09 0.45 0.09

D0
1 0.37 0.85 0.20 0.83 0.20

D��0 0.1 0.03 — 0.029 —

D�0 0.3 0.09 — 0.088 —

D��� 0.2 0.06 — 0.058 —

D�� 0.6 0.18 — 0.175 —
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3. Detector Efficiencies

We estimate systematic uncertainties related to the de-
tector efficiencies—track and neutral reconstruction and
charged particle identification—by studying these efficien-
cies in several control samples in both data and simulation.
We correct the MC efficiencies to match those seen in the
data, and we take the statistical precision of these studies as
an estimate of the systematic uncertainty on absolute
efficiencies.

Since we normalize our signals to �B ! Dð�Þ‘� ��‘, we
calculate systematic uncertainties on the relative effi-
ciency, treating uncertainties on the signal and normaliza-
tion modes as correlated. The degree of correlation, and
therefore, the degree to which the uncertainty cancels, is
determined by the kinematics of the two samples. For most
of the final-state particles, the kinematic distributions are
very similar between signal and normalization modes and
so the systematic uncertainty cancels almost entirely. For
the charged leptons, however, the momentum spectra are
very different between signal and normalization (see
Fig. 2), and so the associated systematic uncertainty is
larger.

4. Hadronic daughter branching fractions

We reconstruct both signal and normalization modes
using the same set of final states, so uncertainties due to
the branching fractions of these states very nearly cancel.

[TheDð�Þ momentum spectra are slightly different between
signal and normalization modes, so this cancellation is not
perfect.] We take the uncertainty on each of the recon-
structed D�, D, K0

S, and �0 decay modes from [16] and

propagate each of these uncertainties through to the rela-
tive efficiency, using the relative abundance of each decay
chain in the signal and normalization MC samples to
determine the correlation and the degree of cancellation.

5. Leptonic � branching fraction

The � branching fraction Bð�� ! ‘� ��‘��Þ appears
only in the denominator of Eq. (18) and therefore contrib-

utes a 0.2% systematic uncertainty on all modes [16]
without cancellation.

X. RESULTS

Table X summarizes the results from two fits, one in
which all four signal yields can vary independently, and the
second B� � �B0 constrained fit with RðDþÞ ¼ RðD0Þ and
RðD�þÞ ¼ RðD�0Þ. We observe approximately 67 �B !
D�� ��� and 101 �B ! D��� ��� signal events in this B� �
�B0-constrained fit, corresponding to signal branching-
fraction ratios of RðDÞ ¼ ð41:6� 11:7� 5:2Þ% and
RðD�Þ ¼ ð29:7� 5:6� 1:8Þ%, where the first error is sta-
tistical and the second systematic. Normalizing these to
known �B0 branching fractions,8 we obtain Bð �B !
D�� ���Þ ¼ ð0:86� 0:24� 0:11� 0:06Þ% and Bð �B !
D��� ���Þ ¼ ð1:62� 0:31� 0:10� 0:05Þ%, where the
third error is from that on the normalization branching
fraction.
Table X also gives the significances of the signal yields.

The statistical significance is determined from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðlnLÞp

,
where �ðlnLÞ is the change in log-likelihood between the
nominal fit and the no-signal hypothesis. The total signifi-
cances are determined by including the systematic uncer-
tainties on the fit yields in quadrature with the statistical
errors. In the B� � �B0-constrained fit, the signal signifi-
cances are 3:6� and 6:2� for RðDÞ and RðD�Þ,
respectively.
The statistical correlation between RðDÞ and RðD�Þ is

�0:51 in the B� � �B0-constrained fit. This correlation is
due to the fact that most of the events at large m2

miss are

either �B ! D�� ��� or �B ! D��� ��� signal events, and
increasing either of the two signal yields in the fit neces-
sarily decreases the other. The systematic uncertanties
have a correlation of �0:03 between RðDÞ and RðD�Þ;
most of the systematic uncertainties have large negative

TABLE X. Results from fits to data: the signal yield (Nsig), the yield of normalization �B ! Dð�Þ‘� ��‘ events (Nnorm), the relative
systematic error due to the fit yields [ð�R=RÞfit], the relative systematic error due to the efficiency ratios [ð�R=RÞ"], the branching-
fraction ratio (R), the absolute branching fraction (B), and the total and statistical signal significances (�tot and �stat). The first two
errors on R and B are statistical and systematic, respectively; the third error on B represents the uncertainty on the normalization
mode. The last two rows show the results of the fit with the B� � �B0 constraint applied, whereB is expressed for the �B0. The statistical
correlation between RðDÞ and RðD�Þ in this fit is �0:51.

Mode Nsig Nnorm ð�R=RÞfit [%] ð�R=RÞ" [%] R [%] B [%] �tot ð�statÞ
B� ! D0�� ��� 35:6� 19:4 347:9� 23:1 15.5 1.6 31:4� 17:0� 4:9 0:67� 0:37� 0:11� 0:07 1.8 (1.8)

B� ! D�0�� ��� 92:2� 19:6 1629:9� 63:6 9.7 1.5 34:6� 7:3� 3:4 2:25� 0:48� 0:22� 0:17 5.3 (5.8)
�B0 ! Dþ�� ��� 23:3� 7:8 150:2� 13:3 13.9 1.8 48:9� 16:5� 6:9 1:04� 0:35� 0:15� 0:10 3.3 (3.6)
�B0 ! D�þ�� ��� 15:5� 7:2 482:3� 25:5 3.6 1.4 20:7� 9:5� 0:8 1:11� 0:51� 0:04� 0:04 2.7 (2.7)

B ! D�� ��� 66:9� 18:9 497:8� 26:4 12.4 1.4 41:6� 11:7� 5:2 0:86� 0:24� 0:11� 0:06 3.6 (4.0)

B ! D��� ��� 101:4� 19:1 2111:5� 68:1 5.8 1.3 29:7� 5:6� 1:8 1:62� 0:31� 0:10� 0:05 6.2 (6.5)

8We use [16] to normalize the four individual branching
fractions. For the B� � �B0-constrained measurement, we use
our own averages of the values in [16]: Bð �B0 ! Dþ‘� ��‘Þ ¼ð2:07� 0:14Þ% and Bð �B0 ! D�þ‘� ��‘Þ ¼ ð5:46� 0:18Þ%.
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correlations for the same reason that the statistical uncer-
tainty does, but the combinatorial background uncertainty
affects both signal yields in a coherent manner and so
contributes a large positive correlation. The sum of the
two branching fractions, taking all correlations into ac-

count, is Bð �B ! Dð�Þ�� ���Þ ¼ ð2:48� 0:28� 0:15�
0:08Þ%.

Figures 17 and 18 show the observed q2 distributions in
the four signal channels in the low and high m2

miss regions,

respectively. The histograms in these figures are taken from
MC samples of the various components, with each compo-
nent scaled to match the yield in the B� � �B0-constrained
fit; since q2 is not a fit variable, we cannot show a projec-
tion of a continuous PDF as was done in Figs. 10–14. As

before, we observe good agreement between the data and
the expectation from simulation, in both the low and high
m2

miss regions. Since the q
2 distribution is highly dependent

on the form factor model, we note that the CLN model
describes both normalization and signal events within the
available statistics.
Table XI summarizes the results of several cross-checks,

including splitting up the sample according to lepton fla-
vor, lepton charge, and data-taking period. We have done
these checks by performing ‘‘cut-and-count’’ analyses,
both in the data and in simulated event samples. In all
cases, the results in data are consistent with our expecta-
tions from simulation. The first row in this table shows the
fraction of events with muon candidates in data and simu-

FIG. 17 (color online). q2 distributions of events in the four
final states D�0‘�, D0‘�, D�þ‘�, and Dþ‘�, shown in the
normalization region, m2

miss < 1 ðGeV=c2Þ2. The data are shown
as points with error bars. The shaded histograms are taken from
MC samples with normalizations from the fit to data. The
components are shaded as in Fig. 10.

FIG. 18 (color online). q2 distributions of events in the four
final states D�0‘�, D0‘�, D�þ‘�, and Dþ‘�, shown in the
signal region, m2

miss > 1 ðGeV=c2Þ2. The data are shown as

points with error bars. The shaded histograms are taken from
MC samples with normalizations from the fit to data. The
components are shaded as in Fig. 10.
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lation, both for the full-event sample and for the signal-
sensitive region in m2

miss. Electron identification is more

efficient than muon ID, which is why the muon fraction in
the final sample is less than 50%, and, at lower momenta
(which generally correspond to larger m2

miss), this effi-

ciency difference is more pronounced; in both cases, how-
ever, the muon abundance is well modeled by the
simulation. The next row shows the fraction of positively
charged lepton candidates (versus negatively charged can-
didates), and all samples are consistent with the expected
50=50 split. The last row shows the fraction of events
recorded during the Run 4 BABAR data-taking period;
Run 4 had significantly different accelerator background
conditions from Runs 1–3, which could affect missing-
energy analyses. The fraction of events in the Run 4 sub-
sample is consistent with expectations: Run 4 makes up
47% of the total luminosity.

We also check that the yield of normalization events is

consistent with the �B ! Dð�Þ‘� ��‘ branching fractions we
use above. It is difficult to estimate the absolute efficiency
of our Btag reconstruction with sufficient precision to mea-

sure the �B ! Dð�Þ‘� ��‘ branching fractions directly, which
is why we instead base our signal measurement on the
relative normalization. We see normalization event yields
consistent with the known values to within about 20%,
which is what we expect given the uncertainties on our
Btag reconstruction efficiency.

We estimate the goodness of fit using an ensemble of
simulated experiments. We generate 1000 event samples,
using the nominal PDFs for the fit to data and event yields
based on the B� � �B0-constrained fit to data. We fit each of
these samples both with and without the B� � �B0 con-
straints and study the distribution of � logL in these fits.

Figure 19 shows the distribution of � logL for the two
ensembles of fits. In both cases, the value of � logL
obtained in the fit to data is indicated with an arrow, and,
in both cases, this value is found within the central part of
the Monte Carlo distribution, indicating a good fit. In the
unconstrained fit, 11.7% of the simulated experiments have
a value of � logL greater than the value observed in data,

corresponding to the probability that we expect to observe
a fit as bad, or worse, than the one actually observed. This
probability is large, indicating an acceptable goodness of
fit. The corresponding probability for the B� � �B0 con-
strained fit is 11.8%, also large.

XI. CONCLUSIONS

We have presented measurements of the branching frac-
tions for the decays �B ! D�� ��� and �B ! D��� ���, deter-
mined relative to the corresponding decays to light leptons.
We measure the branching-fraction ratios for four individ-

ual Dð�Þ states, as well as two B� � �B0-constrained ratios

RðD0Þ ¼ ð31:4� 17:0� 4:9Þ%;

RðD�0Þ ¼ ð34:6� 7:3� 3:4Þ%;

RðDþÞ ¼ ð48:9� 16:5� 6:9Þ%;

RðD�þÞ ¼ ð20:7� 9:5� 0:8Þ%;

RðDÞ ¼ ð41:6� 11:7� 5:2Þ%;

RðD�Þ ¼ ð29:7� 5:6� 1:8Þ%;

where the first uncertainty is statistical and the second is

TABLE XI. Cross-check studies, splitting the data according
to lepton flavor, lepton charge, and running period. The first row
shows the fraction of events with muon candidates for both data
and MC samples, for both the full-event sample and for the
signal-sensitive region m2

miss > 1 ðGeV=c2Þ2. The second row

shows fractions of events with positively charged lepton candi-
dates, and the third row shows the fractions of events recorded in
Run 4. In all cases, the data are consistent with the simulation
and with expectations.

Full sample High m2
miss

Sample fdata (%) fMC (%) fdata (%) fMC (%)

� 40:0� 0:9 40:9� 0:4 30:7� 2:3 31:9� 1:0
‘þ 50:2� 1:0 49:2� 0:4 49:3� 2:5 48:9� 1:0
Run 4 44:6� 1:0 47:6� 0:5 46:8� 2:5 48:5� 1:2
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0

20

40
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FIG. 19. Distribution of � logL from simulated experiments,
showing (a) the unconstrained fit and (b) the B� � �B0 con-
strained fit. The observed values of � logL in the fit to data
are indicated with arrows. The fraction of experiments with
� logL larger than the observed value is used to estimate the
goodness of fit.
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systematic. The significances of these signals are 1:8�,
5:3�, 3:3�, 2:7�, 3:6�, and 6:2�, respectively. The statis-
tical and systematic uncertainties on RðDÞ and RðD�Þ have
correlations of �0:51 and �0:03, respectively.

From these branching-fraction ratios and known branch-

ing fractions of the normalization modes �B ! Dð�Þ‘� ��‘,
we derive the absolute branching fractions

BðB� ! D0�� ���Þ ¼ ð0:67� 0:37� 0:11� 0:07Þ%;

BðB� ! D�0�� ���Þ ¼ ð2:25� 0:48� 0:22� 0:17Þ%;

Bð �B0 ! Dþ�� ���Þ ¼ ð1:04� 0:35� 0:15� 0:10Þ%;

Bð �B0 ! D�þ�� ���Þ ¼ ð1:11� 0:51� 0:04� 0:04Þ%;

Bð �B ! D�� ���Þ ¼ ð0:86� 0:24� 0:11� 0:06Þ%;

Bð �B ! D��� ���Þ ¼ ð1:62� 0:31� 0:10� 0:05Þ%;

where the third uncertainty reflects that of the normaliza-
tion mode branching fraction.

The measurement of Bð �B0 ! D�þ�� ���Þ is consistent
with the Belle result [17]. The branching-fraction ratios
RðDÞ and RðD�Þ are about 1� higher than the SM predic-
tions but, given the uncertainties, there is still room for a
sizeable non-SM contribution.

We have also presented distributions of the lepton mo-
mentum jp�

‘j and the squared momentum transfer q2 for
�B ! Dð�Þ�� ��� events. In all cases, these distributions are

consistent with expectations based on the SM and the CLN
form factor model with measured form factors.
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