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We discuss the problem of an electron in the presence of a magnetic field in Podolsky’s generalized

electrodynamics. The problem of the energy levels is then formulated using noncommutative coordinates,

and its physical consequences are analyzed.
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I. INTRODUCTION

The idea of quantizing Minkowski space-time while
preserving Lorentz invariance was put forward by H. S.
Snyder [1,2] as a result of his investigations on a viable
solution to the infinities arising in the calculations of
quantum electrodynamics. The quantization of space-
time in general and not only restricted to Minkowski
space-time has, since then, been an active field of research
leading to the concept of noncommutative geometry [3,4].

There has been an increased interest in past years on the
formulation of quantum mechanics on noncommutative
space [5–10]. The main motivation in studying such modi-
fication of quantum mechanics comes from the close rela-
tion observed between the form of both the Hamiltonian in
noncommutative quantum mechanics and the classical
Landau problem [6,9,10]. The Landau problem in non-
commutative space has been studied as part of this line
of research. As stated in [9], it concerns the description of a
particle moving in the noncommutative plane in the pres-
ence of a constant magnetic field derived from a vector

potential ~A.
In this work we shall be interested in using for the

Landau problem, a vector potential ~A obtained from
Podolsky’s generalized electrodynamics [11–13], which
is a higher derivative theory.

Podolsky’s generalized electrodynamics is interesting to
consider because of two complementary aspects: first, it
contains a natural length parameter and several phenome-
nological consequences can be worked out, in particular,
upper bounds on the value of the length scale can be
deduced from experimental data of scattering processes
[14,15]. The second aspect concerns the fact that theories
involving higher derivatives terms are usually related to the
Cauchy problem (higher time derivatives) or to nonlocality
issues (higher spatial derivatives). In the case of Podolsky’s
electrodynamics, the issue of nonlocality arises due to the
presence of a tildon field, whose wave number depends on
the natural length scale, but which actually never appears
in real processes [14].

The outline of the paper is as follows. In Sec. II we
review some aspects of the Landau problem in both in
commutative and noncommutative quantum mechanics.
The inclusion of higher derivatives effects will be studied
in Sec. III. Finally, the interplay between higher derivatives
and noncommutativity will be examined in Sec. IV.

II. LANDAU PROBLEM

Consider a charged particle of electric charge q and
mass m moving in a two-dimensional plane with coordi-
nates x and y. In the presence of a constant magnetic field B
perpendicular to the xy-plane, the Hamiltonian associated
with this system is given by (see, for example, [16])

H ¼ 1

2m

��
px þ qB

2
y

�
2 þ

�
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2
x

�
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�

¼ 1

2m
ðp2
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2
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Lðx2 þ y2Þ �!LLz þ 1

2m
p2
z ;

(1)

where B is the magnetic field, Lz ¼ xpy � ypz is the z

component of the angular momentum, and !L ¼ qB=2m
is Larmor’s frequency.
The solution to the eigenvalue problem with the

Hamiltonian H is based on the decomposition H ¼ Hxy þ
HLz

þHz. The fact that Hxy, HLz
, and Hz commute with

each other allows one to look for a common set of eigen-
vectors so that the eigenvalues ofH are given simply by the
relation E ¼ Exy þ ELz

þ Ez. In fact one has

E ¼ ðN þ 1Þ@!L � n@!L þ @
2k2

2m
; (2)

where N ¼ ð2n0 þ jnjÞ, n0 ¼ 0; 1; 2; . . . , n is the magnetic
quantum number and k the wave number. The eigenfunc-
tions in cylindrical coordinates are of the form

c n0nkð�;�; zÞ ¼ �jmj
2F1ð�n0; jnj þ 1;�2=d2Þ

� e��2=2d2ein�eikz; (3)

where 2F1ða; b; cÞ is the confluent hypergeometric func-

tion [17], �2 :¼ x2 þ y2, and d :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!L

p
is the charac-

teristic length of a harmonic oscillator of frequency !L.
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The noncommutative Landau problem has been dis-
cussed previously in the literature [6,9,10], and it is based
on the introduction of the commutation relation ½x; y�? ¼
i� between spatial coordinates x and y. Here � is a constant
deformation parameter, and ? means the Groenewold-
Moyal (GM) product [18,19].

The Landau problem either in the noncommutative
plane or in the noncommutative phase space can be solved
explicitly using the so-called Bopp shifts. In our case the
Bopp shifts are given by

x ! x� �

2
py ¼ xþ i@�

2
@y;

y ! yþ �

2
px ¼ y� i@�

2
@x;

(4)

where now x and y are considered as commuting variables.
Using these redefinitions the energy eigenvalues for the
noncommutative Landau problem are found to be

E ¼ ðN þ 1Þ@!0
L � n@!0

L þ @
2k2

2m
; (5)

where

B0 :¼ B

1þ qB
4@ �
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ð1þ qB
4@ �Þ2

;

!0
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�
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4@
�

�
:

(6)

The role of the noncommutative parameter � is reflected on
the new effective values of the magnetic field, mass, and
Larmor’s frequency.

III. PODOLSKY’S GENERALIZED
ELECTRODYNAMICS

The Lagrangian for the electromagnetic field in
Podolsky’s theory is given by the expression

L E:M: ¼ � 1

8�

�
1

2
F��F

�� þ a2F�
�
;�F

��
;�

�
(7)

with a an arbitrary constant. The physical interpretation
[11] of the term involving the derivatives of the field
strength F�� is closely related to the theory proposed by

F. Bopp [20,21] and independently discovered by Landé
and Thomas [22–24] as an attempt in the early 1940s to
shed some light on the issue of infinite self-energy of the
electron in quantum electrodynamics.

In the case where only a magnetic field is present, Eq. (7)
simplifies to

L E:M: ¼ � 1

8�
½ ~H2 þ ð ~r� ~HÞ2�; (8)

where ~H ¼ ~r� ~A. In order to determine the potential ~A to
be used in the following calculations, we shall assume that
LE:M: in Eq. (8) has the same functional form as in the
classical Landau problem, namely

L E:M: ¼ � 1

8�
½c0 þ c1ðx2 þ y2Þ�; (9)

with c0 and c1 constants. Taking a time-independent vector
potential

~A ¼
�
� 1

2
By;

1

2
Bx; a0ðx2 þ y2Þ

�
; (10)

we have that

L E:M: ¼ � 1

8�
½B2 þ 4a20ðx2 þ y2Þ þ 16a2a20�: (11)

In these expressions a0 is an arbitrary constant. We should

stress that the form of the vector potential ~A in Eq. (10) is
the simplest one in the sense that the contribution to the
electromagnetic energy due to the higher derivative term is
just a constant. Even though it is not the only possible
choice, it is appealing because of the fact that it is to some
extent a minimal modification of a vector potential pro-
ducing a magnetic field along the z-axis.
A straightforward calculation shows that the

Hamiltonian describing the Landau problem is given by

H ¼ 1
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Therefore, we are led to consider the splitting

H ¼ Hxyz þHLz
þ 1

8�
½B2 þ 16a2a20� (13)

with

Hxyz ¼ 1

2m
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It is not difficult to see that ½Hxyz; HLz
� ¼ 0. In conse-

quence, we can look for a common set of eigenfunctions
for both Hamiltonians. For the eigenfunctions we shall use
the Ansatz

c ðx; y; zÞ ¼ Rð�Þein�eikz: (15)

The Schrödinger equation in this case takes the form

�
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�
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�2
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@
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�4

�
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where
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The characteristic length for the harmonic oscillator in

this case is given by dc :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m ~!L

p
. In terms of the

variable u :¼ �=dc and writing RðuÞ ¼ ujnjHðuÞ, we
have then

½u2@2u þ ð2jnj þ 1Þu@u � u4 � �u6�H ¼ ~�u2H; (18)

where
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@
2
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@
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3
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@ ~!L

�
Exyz � @

2k2

2m

�
:

(19)

Dimensional analysis shows that the parameter � has no
units. Equation (18) describes an anharmonic quartic os-
cillator. Analytic solutions are not known for this system
and only perturbation procedures are available in order to
obtain the energy levels as a series expansion on the
coupling constant [25–28]. However, in the weak coupling
limit ja0j � 1, we can consider only terms of first order in
a0. It follows directly from Eq. (16) that the energy levels
will be given by

E ¼ ðN þ 1Þ@ ~!L;k � n@ ~!L;k þ @
2k2

2m
; (20)

with

~!L;k ¼ !L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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@
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�
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In obtaining the second line in Eq. (21), we have implicitly
restricted the set of values of k such that the second term
under the square root in that expression is small, namely
a0@k � qB2=8. The eigenfunctions can be obtained from
Eq. (3) with the appropriate changes. We should notice that
the contribution of the higher derivative term to the total
energy in Eq. (13) is not necessarily small due to the
presence of the parameter a.

IV. NONCOMMUTATIVE GENERALIZED
ELECTRODYNAMICS CORRECTION

In this section we shall discuss a noncommutative model
based on the Hamiltonian given by Eq. (12). The commu-
tation relation to be considered is the same as in Section II,
namely ½x; y�? ¼ i� with � a constant. The energy eigen-
value equation is in this case given by the expression

H ? c ðx; y; zÞ ¼ Ec ðx; y; zÞ; (22)

with H being the Hamiltonian of Eq. (12) but where we
omit the constant contributions from now on.
After using the Bopp shifts of Eq. (4), we find to lowest

order on the deformation parameter �

H0
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�
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It is interesting to note that there is a value

�0 :¼ � qB

2

1

q2B2

8@ þ a20
2�

; (24)

for which the contribution fromH0
Lz
can be set to vanish. In

the strong field limit B ! 1, we have j�0j � 4@
jqjB � 1.

Furthermore we have in general that ½H0
xyz; H

0
Lz
� ¼ 0.

The common eigenfunctions for H0
xyz and H0

Lz
can be

found using the same Ansatz as the one used in Eq. (15).
We have�
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From this we obtain then

E ¼ ðN þ 1Þ@!̂L;k;n � n@!̂L;k;n þ @
2k2

2m
þ q�

m
n@k; (27)

with
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We should notice that for the value

�00 :¼ � 1

3

qB

@

@
2

m2!2
L

¼ � 4

3

@

qB
(29)

of the deformation parameter, the terms proportional to k in
the frequency !̂L;k;n cancel out so that

!̂ L;k;n ¼ !L

�
1þ �00

�
qB

4@
� 4na0

B2

��
: (30)

This result is indeed due to the suitable combination in the
Hamiltonian of the terms arising from the Bopp shifts
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together with the contributions of the Az component of the
vector potential in Eq. (10).

We should say some words about the expression in

Eq. (10) for the vector potential ~A, which has been used
throughout this work. If we consider a general time-

independent vector potential ~A

~A ¼ ðAx; Ay; AzÞ; (31)

then

c0 þ c1ðx2 þ y2Þ ¼ ð@yAz � @zAyÞ2 þ ð@xAz � @zAxÞ2ðBþ @xAy � @yAxÞ2 þ a2ð@2xyAy þ @2xzAz ��yzAxÞ2
þ a2ð@2xyAx þ @2yzAz � �xzAyÞ2 þ a2ð@2xzAx þ @2yzAy ��xyAzÞ2 (32)

gives the condition to obtain an electromagnetic
Lagrangian LE:M: of the form given in Eq. (9). Here we
have used the short notation �ij :¼ @2i þ @2j .

Even though Eq. (10) is not the only possible solution of
Eq. (32), it is appealing because of the following two facts:
first, it is to some extent a minimal modification of a vector
potential producing a magnetic field along the z-axis.
Second, and perhaps more important, it produces terms
such that the operators H0

xyz and H0
LZ

commute and hence,

it allows that common eigenfunctions can be found for
both operators. It would be certainly more complicated and
it is not clear at first sight if such a result can be obtained by
including a z dependence on the components Ax, Ay, and Az

of the vector potential.

It remains the issue of the dependence of !̂L;k;n on the

magnetic quantum number n. Except for n ¼ 0, the value
of a0 can be chosen in an appropriate way in order to have
!̂L;k;n ¼ !L for at least one value of n. However, for
strong magnetic fields we recover the noncommutative
frequency !0

L, which is due to the particular form in which
the magnetic field B along the z-axis enters into the addi-
tional terms associated with Podolsky’s generalized
electrodynamics.
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