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In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was

presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to

a nondissipative perfect fluid with a constant energy density. Here we show that such a model is

inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution,

the expansion-free condition requires the energy density to be inhomogeneous. As an example we

consider the case of dust, which allows for a complete integration.
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I. INTRODUCTION

In a recent paper [1] a general study on shearing
expansion-free (vanishing expansion scalar �) spherical
fluid evolution is presented, which includes pressure an-
isotropy and dissipation. The interest of such models stems
from the fact that the expansion-free condition necessarily
implies the appearance of a cavity.

Indeed, it is intuitively clear that in the case of an overall
expansion, the increase in volume due to the increasing
area of the external boundary surface must be compensated
with the increase of the area of the internal boundary
surface (delimiting the cavity) in order to keep � vanish-
ing. The argument in the case of collapse is similar.

More rigorously, it was shown in [1] that for two con-
centric fluid shells in the process of expansion, in the
neighborhood of the center, the � ¼ 0 condition is vio-
lated, implying thereby that such a condition requires that
the innermost shell of fluid should be away from the center,
initiating therefrom the formation of the cavity (see [1] for
details).

The natural appearance of a vacuum cavity within the
fluid distribution in expansion-free solutions suggests that
they might be relevant for the modeling of voids observed
at cosmological scales.

In the particular case of a nondissipative isotropic fluid,
with constant energy density, the Skripkin model [2] is
recovered.

The purpose of this Brief Report is twofold. We apply
the results of [1] to prove that the Skripkin model is ruled
out by junction conditions. Second, we consider the case of
dust, and provide a complete integration of this model.

II. THE EXPANSION-FREE SPHERE

We consider a spherically symmetric distribution of

collapsing fluid, bounded by a spherical surface �ðeÞ. The

fluid is assumed to be locally anisotropic (principal stresses
unequal) but nondissipative.

Choosing comoving coordinates inside �ðeÞ, the general
interior metric can be written

ds2� ¼ �A2dt2 þ B2dr2 þ R2ðd�2 þ sin2�d�2Þ; (1)

where A, B, and R are functions of t and r and are assumed
positive. We number the coordinates x0 ¼ t, x1 ¼ r, x2 ¼
�, and x3 ¼ �.

Outside �ðeÞ we assume we have the Schwarzschild
spacetime, described by

ds2 ¼ �
�
1� 2M

r

�
dv2 � 2drdvþ r2ðd�2 þ sin2�d�2Þ;

(2)

where M ¼ const denotes the total mass, and v is the
retarded time.
The matching of (1) to the Schwarzschild spacetime (2)

on �ðeÞ requires the continuity of the first and second
differential forms, which implies (see [1] for details)

mðt; rÞ ¼�ðeÞ
M; Pr ¼�

ðeÞ
0; (3)

where ¼�ðeÞ
means that both sides of the equation are eval-

uated on �ðeÞ, and m is the mass function introduced by
Misner and Sharp [3] (see also [4]) given by

m ¼ R3

2
R23

23 ¼ R

2

�� _R

A

�
2 �

�
R0

B

�
2 þ 1

�
: (4)

As we mentioned in the introduction, the expansion-free

models present an internal vacuum cavity. If we call �ðiÞ
the boundary surface between the cavity and the fluid, then
the matching of the Minkowski spacetime within the cavity
to the fluid distribution, implies

mðt; rÞ ¼�ðiÞ
0; Pr ¼�

ðiÞ
0: (5)

Now, it can be shown (see [1] for details) that as a
consequence of the expansion-free condition and one of
the Einstein field equations, we can write the line element
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as

ds2 ¼ �
�
R2 _R

�1

�
2
dt2 þ 1

R4
dr2 þ R2ðd�2 þ sin2�d�2Þ;

(6)

where �1 is a function of time and the dot stands for
differentiation with respect to t (a unit constant with di-
mensions ½r4� is assumed to multiply dr2). This is the
general metric for a spherically symmetric anisotropic
perfect fluid undergoing shearing and expansion-free evo-
lution (observe that it has the same form as for the isotropic
fluid [5]).

For the line element (6), the Einstein equation G�
00 ¼

8�T�
00, becomes [Eq. (76) in [1] ]

8�� ¼ �2R3R00 � 5R2R02 þ 1

R2
� 3

�21
R6

; (7)

where � is the energy density and the prime stands for r
differentiation. The first integral of (7) is

R02 ¼ 1

R4
þ �2 � 2m

R5
þ �21

R8
; (8)

where �2ðtÞ is an arbitrary function of t.
Using the proper time derivative DT ,

DT ¼ 1

A

@

@t
; (9)

and the proper radial derivative DR,

DR ¼ 1

R0
@

@r
; (10)

where R defines the areal radius of a spherical surface

inside �ðeÞ (as measured from its area), the following
equations are easily obtained. From (4),

DTm ¼ �4�PrUR2; (11)

where Pr denotes the radial pressure and U is the velocity
of the collapsing fluid,

U ¼ DTR < 0 ðin the case of collapseÞ; (12)

being the variation of the areal radius with respect to proper
time. From (4), too, we can obtain

DRm ¼ 4��R2; (13)

implying

m ¼ 4�
Z R

0
�R2dR; (14)

with the assumption of a regular center to the distribution
mð0Þ ¼ 0.

From (6) with (12) it follows

U ¼ _R

A
¼ �1

R2
; B ¼ 1

R2
: (15)

Substituting (15) into (4) and using (8) we obtain

�2 ¼ 0: (16)

The Einstein equation G�
11 ¼ 8�T�

11 reads [Eq. (78) in
[1] ]

8�Pr ¼ �21
R5 _R

�
3

_R

R
� 2

_�1
�1

�
þ R3R0

�
2

_R0
_R
þ 5

R0

R

�
� 1

R2
;

(17)

where Pr denotes the radial pressure. Using (4), (8), and
(15) in (17) we have

8�Pr ¼ � 2 _m

R2 _R
: (18)

Observe that (18) is fully consistent with the junction
conditions (3) and (5). Now, if we assume as Skripkin [2],
that � ¼ �0 ¼ const, we obtain, using (14),

_m ¼ 4��0R
2 _R: (19)

Feeding back (19) into (18) produces

Pr ¼ ��0 ¼ const; (20)

which by virtue of the junction condition

Pr ¼�
ðeÞ
0 (21)

implies

Pr ¼ �0 ¼ 0: (22)

Thus, the Skripkin model is ruled out by junction con-
ditions. Observe that the isotropy of pressure is not explic-
itly used. However this last condition follows from the
constancy of the energy density and the expansion-free
condition, as can be seen from the Bianchi identity

T���
;� V� ¼ 0, where V� denotes the four velocity of the

fluid, reading [Eq. (80) in [1] ]

_�þ 2ðP? � PrÞ
_R

R
¼ 0; (23)

where P? denotes the tangential pressure. From (23) we
have that if the expansion-free fluid is isotropic, Pr ¼ P?,
then the energy density � is only r dependent, and vice
versa.
In the next section we consider the case of dust, P? ¼

Pr ¼ 0, with � ¼ �ðrÞ.

III. THE EXPANSION-FREE DUST

The Bianchi identity T���
;� �� ¼ 0, where �� is a unit

four vector along the radial direction, reads [Eq. (81) in
[1] ]

P0
r þ ð�þ PrÞ

_R0
_R
þ 2ð�þ 2Pr � P?ÞR

0

R
¼ 0; (24)

and for dust it becomes
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_R0
_R
þ 2R0

R
¼ 0; (25)

whose integration gives

_R ¼ fðtÞ
R2

; R0 ¼ gðrÞ
R2

; (26)

with fðtÞ and gðrÞ denoting arbitrary functions of their
arguments. Then from (26) we obtain

R3 ¼ c ðtÞ þ �ðrÞ; (27)

with

c ðtÞ ¼ 3
Z

fðtÞdt �ðrÞ ¼ 3
Z

gðrÞdr: (28)

Without loss of generality we may choose �1ðtÞ ¼ fðtÞ,
implying, because of (6), (15), and (26),

A ¼ 1; U ¼ _R: (29)

Then, from the junction condition (5), using (4) and (6) we
obtain

_R 2 ¼�ðiÞ
g� 1; (30)

producing

R ¼�ðiÞðg� 1Þ1=2tþ Rð0Þ: (31)

Evaluating (27) at �ðiÞ and considering (31) we obtain

c ðtÞ ¼�ðiÞ½ðg� 1Þ1=2tþ Rð0Þ�3 � �; (32)

thereby providing the explicit time dependence of the
models.

In order to find the r dependence (� or �) we proceed as
follows. Because of (23) we know that � ¼ �ðrÞ, then
evaluating (7) at t ¼ 0, we obtain a differential equation
for �ðrÞ [or �ðrÞ], which may be integrated for any given
function � ¼ �ðrÞ.

IV. CONCLUSIONS

We have seen so far that expansion-free condition to-
gether with junction conditions rule out the Skripkin model
(constant energy density and isotropic pressure). In princi-
ple there could be constant energy density models, if we
allow for the presence of dissipation, however we do not
know at this point if such models may satisfy the whole set
of junction and physical conditions.
Next, we consider the case of dust with� ¼ �ðrÞ. These

models can be completely integrated for any given function
�ðrÞ. Of course such models are members of the Lemaı̂tre-
Tolman-Bondi spacetimes [6–8].
Indeed, the general metric [9] for these spacetimes,

ds2 ¼ �dt2 þ R02

1� K
dr2 þ R2ðd�2 þ sin2�d�2Þ; (33)

appears to be identical to (6) with (26) and (29) and the
identification g2 ¼ 1� K.
Before concluding we would like to emphasize once

again that the main appeal of the expansion-free models
resides in the unavoidable appearance of a vacuum cavity
within the fluid distribution.
This fact suggests that such models might be used to

describe the formation of voids observed at cosmological
scales (see [10,11] and references therein) for very differ-
ent kinds of fluid distributions (dust, anisotropic fluids, and
dissipative fluids).
Thus, in the dust case discussed above, analytical solu-

tions are available, which are relatively simple to analyze
but still may contain some of the essential features of a
realistic situation.
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