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We study the properties of two-dimensional dilatonic black holes from the viewpoint of geometro-

thermodynamics. We show that the thermodynamic curvature of the equilibrium space vanishes only in

the case of a flat spacetime, and it reproduces correctly the behavior of the thermodynamic interaction and

phase transition structure of the corresponding black hole configurations.
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I. INTRODUCTION

For the study of the geometrothermodynamics (GTD)
[1] of black holes, the thermodynamic phase space T is
assumed to be coordinatized by the set of independent
coordinates f�; Ea; Iag, a ¼ 1; . . . ; n, where � represents
the thermodynamic potential, and Ea and Ia are the exten-
sive and intensive thermodynamic variables, respectively.
The positive integer n indicates the number of thermody-
namic degrees of freedom of the black hole configuration.
Moreover, the phase space is endowed with the Gibbs one-
form � ¼ d�� �abI

adEb, �ab ¼ diagð1; . . . ; 1Þ, and a
particular metric

G ¼ ðd�� �abI
adEbÞ2 þ ð�abE

aIbÞð�cddE
cdIdÞ;

�ab ¼ diagð�1; 1; . . . ; 1Þ; (1)

which is invariant with respect to Legendre transforma-

tions f�; Ea; Iag ! f ~�; ~Ea; ~Iag, with � ¼ ~�� �ab
~Ea~Ib,

Ea ¼ �~Ia, and Ia ¼ ~Ea, [2]. The equilibrium space E �
T is defined by the map ’: E ! T or, in local coordi-
nates, ’: fEag � f�; Ea; Iag, satisfying the condition
’�ð�Þ ¼ 0, i.e., on E it holds the first law of thermody-
namics, d� ¼ �abI

adEb, and the conditions of equilib-
rium Ia ¼ �ab@�=@Eb which relate the extensive
variables Ea with the intensive ones Ia. Then, the pullback
’� induces on E, by means of g ¼ ’�ðGÞ, the thermody-
namic metric

g ¼
�
Ec @�

@Ec

��
�ab�

bc @2�

@Ec@Ed
dEadEd

�
: (2)

For the construction of this thermodynamic metric it is
only necessary to know explicitly the thermodynamic po-
tential in terms of the extensive variables � ¼ �ðEaÞ. In
black hole thermodynamics, the total mass M is usually

considered as the thermodynamic potential (canonical en-
semble) in the energy representation and the fundamental
equation M ¼ MðEaÞ can be obtained from the area-
entropy relationship S ¼ A=4.
In previous works we have shown that the above ther-

modynamic metric reproduces the phase transition struc-
ture of all four-dimensional black holes [3], all known
higher dimensional black holes with and without cosmo-
logical constant [4], and generalized three-dimensional
black holes [5]. The main purpose of the present work is
to show that the above thermodynamic metric can be used
to reproduce correctly the thermodynamics of two-
dimensional dilatonic black holes. This case has been
analyzed previously in [6] by using a different approach
in which Legendre invariance is not taken into account.

II. DILATONIC BLACK HOLES IN TWO
DIMENSIONS

The two-dimensional Einstein-Hilbert action is just the
Gauss-Bonnet topological term and, therefore, the corre-
sponding gravitational models are locally trivial, unless
additional matter fields are introduced. The most popular
models are the generalized dilaton theories which are
described by the action (for a recent review, see [7])

I ¼ 1

8�2

Z
d2x

ffiffiffiffiffiffiffi�h
p ½XRþUðXÞðrXÞ2 � �VðXÞ�; (3)

where h ¼ detðh��Þ, R is the Ricci scalar corresponding to

the metric h��, X is the dimensionless dilatonic field, U

and V are arbitrary functions which define the theory, and �
is a constant parameter. It can be shown that the general
solution to the corresponding field equations leads in the
Eddington-Finkelstein gauge to the line element

ds2 ¼ eQðXÞ½ðMþ �!Þdu2 þ 2dudX�; (4)

where Q0ðXÞ ¼ �UðXÞ, !0ðXÞ ¼ eQðXÞVðXÞ, the prime
represents differentiation with respect to X, and M is a
constant of motion that can be interpreted as the mass.
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Clearly, the line element (4) possesses a Killing vector � ¼
@u with norm j�j ¼ eQðXÞðMþ �!Þ. Consequently, the
solutions of Mþ �!ðXÞ ¼ 0 represent Killing horizons
which determine two-dimensional black hole configura-
tions. In this case, it can be shown [8] that the
Bekenstein-Hawking entropy is given by S ¼ Xh, where
Xh is the ‘‘radius’’ of the outermost Killing horizon, i.e., Xh

satisfies the equation Mþ �!ðXhÞ ¼ 0. Furthermore, the
potential VðXÞ depends on an additional constant parame-
ter q which is usually interpreted as the dilatonic charge.
Then, on the outermost horizon we have that

M ¼ ��!ðS; qÞ: (5)

This equation relates the total mass of the black hole with
its entropy and dilatonic charge. If we furthermore inter-
pretM as representing the internal energy of the black hole
configuration, then Eq. (5) represents a fundamental equa-
tion M ¼ MðEaÞ with E1 ¼ S and E2 ¼ q being the ex-
tensive variables. As mentioned above, in GTD the
fundamental equation contains all the information that is
required to construct the metric of the equilibrium space.
Indeed, from Eq. (2) we obtain the thermodynamic metric

g ¼
�
S
@M

@S
þ q

@M

@q

��
� @2M

@S2
dS2 þ @2M

@q2
dq2

�
: (6)

On the other hand, the condition ’�ð�Þ ¼ 0 for � ¼
dM� TdS� c dq generates the first law of thermody-
namics and the equilibrium conditions

T ¼ @M

@S
¼

���������
@!

@S

��������¼ j�!0ðXÞjX¼Xh
;

c ¼ @M

@q
¼ ��

@!

@q
;

(7)

where T is the temperature and c is the dilatonic potential.
This expression for the temperature coincides with the
result derived from the definition in terms of the surface
gravity [9]. A useful thermodynamic variable is the heat
capacity at constant dilatonic charge

C ¼ T

�
@S

@T

�
q
¼ @M

@S

�
@2M

@S2

��1
(8)

the divergencies of which are interpreted in standard black
hole thermodynamics [10] as indicating the existence of
second-order phase transitions. Notice that the determinant
of the thermodynamic metric

detðgÞ ¼ �@2M

@S2
@2M

@q2

�
S
@M

@S
þ q

@M

@q

�
2

(9)

vanishes at the points @2M=@S2 ¼ 0 where the heat ca-
pacity diverges, indicating a possible relationship between
points of phase transitions and zero-volume singularities.
In fact, we will show below in concrete examples that
phase transitions correspond to singularities at the level
of the thermodynamic curvature.

Recently in [11], an interesting symmetry of the action
(3) was found that interchanges the role of the integration
constant M and the action parameter �. Consider the dual

variables and functions d ~X ¼ dX=!ðXÞ, e
~Qð ~XÞd ~X ¼

eQðXÞdX, ~!ð ~XÞ ¼ 1=!ðXÞ and construct the dual action

~I ¼ 1

8�2

Z
d2x

ffiffiffiffiffiffiffi�h
p ½ ~XRþ ~Uð ~XÞðr ~XÞ2 �M ~Vð ~XÞ�;

(10)

where ~Uð ~XÞ ¼ !ðXÞUðXÞ � eQðXÞVðXÞ and ~Vð ~XÞ ¼
�VðXÞ=!2ðXÞ. Then, by analogy to (4), the general solu-
tion of the field equations following from the dual action
(10) leads to the line element

ds2 ¼ e
~Qð ~XÞ½ð�þM ~!Þdu2 þ 2dud ~X�: (11)

Since the constant � appears now as an integration constant
and M is inside the dual action, the roles of � and M are
interchanged. Although the dilaton field changes under a
dual transformation, the line element remains invariant and
represents the general solutions to the equations of two
different actions. The dual line element (11) has a Killing
horizon at �þM ~!ð ~XÞ ¼ 0. From here it follows the fun-
damental equation

M ¼ � �

~!ð~S; qÞ ; (12)

where ~S ¼ ~Xh is the value of the dual dilaton field on the
outermost horizon. According to the description of GTD
presented in Sec. I, the fundamental equation (12) com-
pletely determines the geometry of the corresponding equi-
librium space. Then, to determine if a dual transformation
leaves invariant the structure of the equilibrium space, it is
sufficient to demand equivalence between the dual funda-
mental equation (12) and the original one given in Eq. (5).

This condition is satisfied if ~!ð~S; qÞ ¼ 1=!ðS; qÞ, i.e.,
~!ð ~XhÞ ¼ 1=!ðXhÞ must hold on the outermost horizons.
Since the zeros of �þM ~!ð ~XÞ ¼ 0 are also zeros of Mþ
�!ðXÞ ¼ 0, a horizon of the original black hole corre-
sponds to a horizon of the dual configuration. In particular,
on the original outermost horizon we have that Mþ
�!ðXhÞ ¼ 0, i.e., !ðXhÞ ¼ �M=�, whereas on the
‘‘dual’’ outermost horizon it holds that �þM ~!ð ~XhÞ ¼
0, i.e., ~!ð ~XhÞ ¼ ��=M. It then follows that ~!ð ~XhÞ ¼
1=!ðXhÞ; this result is in agreement with the definition of
a dual transformation which demands that ~!ð ~XÞ ¼ 1=!ðXÞ
in general. Consequently, we have shown that the geomet-
ric description of dilatonic black hole thermodynamics,
using the formalism of GTD, is duality invariant.
We now consider explicit examples of dilatonic black

hole configurations which follow from the action (3). For
simplicity we choose � ¼ 2 and rescale the mass as M !
2M. An entire class of black hole configurations can be
obtained by choosing different values for the potentials
UðXÞ and VðXÞ (see [12] for a review of the most important
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cases). Each choice leads to a specific value for the auxil-
iary function !ðXÞ. A family of such solutions [6] is
characterized by the fundamental equation (b � �1 � c)

M ¼ A

bþ 1
Sbþ1 þ B

2ðcþ 1ÞS
cþ1q2; (13)

which includes the ab family [13] and its Reissner-
Nordström generalization for different values of the con-
stants A, B, b, and c. The corresponding thermodynamic
metric (6) becomes

g ¼
�
ASb þ Bðcþ 3Þ

2ðcþ 1Þ S
cq2

��
�
�
AbSb þ Bc

2
Scq2

�
dS2

þ B

cþ 1
Scþ2dq2

�
; (14)

and the relevant thermodynamic variables are

T ¼ 1

2
ð2ASb þ BScq2Þ;

C ¼ 2ASbþ1 þ BScþ1q2

2AbSb þ BcScq2
¼ 2ST

2bT � ðb� cÞBScq2 :
(15)

From the expression for the heat capacity it follows that
phase transitions take place at those points where 2bT �
ðb� cÞBScq2 ¼ 0. Clearly, this equation has nontrivial
solutions. The thermodynamic curvature of the metric
(14) can be written as

R ¼ 8Aðcþ 1Þ2Sb½�2A2bðcþ 1ÞP 1S
2b þ Bðcþ 3ÞScq2ðAbP 2S

b � BP 3S
cq2Þ�

½2Aðcþ 1ÞSb þ Bðcþ 3ÞScq2�3½2AbSb þ BcScq2�2S2 ; (16)

where the P 1, P 2, and P 3 are constant polynomials

P 1 ¼ ðbþ cÞ2 þ 8b;

P 2 ¼ b2 � 4bcþ 2b� 5c2 � 6c;

P 3 ¼ 3b2 þ bc2 � 3bcþ 2c2 þ c3:

(17)

The first term in squared brackets in the denominator of R
is proportional to the conformal factor of (14) and can be
shown [1] to be also proportional to the thermodynamic
potential M, by virtue of Euler’s identity. Consequently,
this term cannot vanish. The second term in squared brack-
ets coincides with the denominator of the heat capacity
(15). When this term vanishes, it can be shown that the
numerator of R remains finite. This means that the diver-
gencies of C correspond to singularities of R.
Consequently, the thermodynamic curvature (16) describes
the phase transition structure of this particular family of
dilatonic black holes.

It is interesting to find out if the thermodynamic metric
can be flat. From the above expression for R, one can see
that the choice b ¼ 0 and c ¼ �3 leads to a vanishing R.
This special case corresponds to the Rindler ground state
solution [14] for which the curvature of spacetime van-
ishes. In a flat spacetime it is reasonable to expect that no
thermodynamic interaction exists. The above result repro-
duces this behavior since thermodynamic curvature is con-
sidered in GTD as a measure of thermodynamic
interaction; in the absence of thermodynamic interaction,
the thermodynamic curvature should vanish. An additional
solution with flat thermodynamic curvature is obtained for
c ¼ �3 and P 1 ¼ 0. However, it is easy to verify that no
real value of b satisfies this condition. The only remaining
possibility is P 1 ¼ P 2 ¼ P 3 ¼ 0. Introducing the solu-
tion for b2 obtained from P 1 ¼ 0 into the equation P 2 ¼
0, we obtain ðbþ cÞðcþ 1Þ ¼ 0. Since c � �1, we have

that b ¼ �c, a solution that, when substituted back into
P 1 ¼ 0, implies that b ¼ 0. Hence this case corresponds
also to the Rindler solution. This analysis shows that,
except for the case b ¼ 0, the above family of dilatonic
black holes is characterized by a nonvanishing thermody-
namic curvature, indicating the presence of thermody-
namic interaction.
In two-dimensional gravity additional models are known

which correspond to different choices of the potentials
UðXÞ and VðXÞ. In each case, the resulting function !ðXÞ
characterizes the model. We investigated the particular
models [12] arising from string theory [15], Kaluza-Klein
reduced gravitational Chern-Simons term [16,17], and
Liouville gravity [18] which correspond to

!ST ¼ �2b2Xþ b2q2

8�
lnX;

!CS ¼ � 1

8
ðq� X2Þ2; !LG ¼ b

q
eqX:

(18)

GTD delivers a particular thermodynamic metric for each
case and in all of them we could corroborate that the
thermodynamic curvature is nonzero and its singularities
reproduce the phase transition structure which follows
from the divergencies of the heat capacity.

III. CONCLUSIONS

In this work we applied the formalism of GTD to study
the thermodynamics of dilaton black holes in two dimen-
sions. We considered a family of solutions which contains
the most representative examples of two-dimensional
black hole configurations, and found that the (flat)
Rindler ground state solution is the only solution for which
the thermodynamic curvature vanishes. In all the remain-
ing cases, the singularities of the thermodynamic curvature
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correspond to points where the heat capacity diverges and
phase transitions take place. We interpret this result as an
additional indication that the thermodynamic curvature, as
defined in GTD, can be used as a measure of thermody-
namic interaction. In fact, it has been shown [19] that in the
case of more realistic thermodynamic systems [20], the
ideal gas is also characterized by a vanishing thermody-
namic curvature, whereas the van derWaals gas generates a
nonvanishing curvature whose singularities reproduce the
respective phase transition structure.

We analyzed the duality symmetry of dilaton gravity and
found the condition for which the results of GTD remain
invariant under a dual transformation. Furthermore, it was
shown that this condition is always satisfied; we can there-
fore conclude that GTD is, in general, duality invariant.
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