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We study the supersymmetry generators Q, S on the 1-loop vectorless sector of N ¼ 4 super Yang-

Mills theory, by reduction to the plane-wave matrix model. Using a coherent basis in the suð2 j 2Þ sector,
a comparison with the algebra given by Beisert is presented, and some parameters (up to one loop) are

determined. We make a final comparison of these supercharges with the results that can be obtained from

the string action by working in the light-cone gauge and discretizing the string.
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I. INTRODUCTION

The gauge/string duality has been the object of study for
more than a decade by means of the anti–de Sitter/confor-
mal field theory (AdS/CFT) correspondence [1–3], be-
tween IIB superstrings on AdS5 � S5 and N ¼ 4 UðNcÞ
super Yang-Mills (SYM) theory in four dimensions. But
while the results calculated from the gauge theory are
perturbative in ’t Hooft coupling � ¼ g2YMNc, the calcu-
lations on the string side are valid for strong coupling �.

This strong/weak property of the duality limited its
study to operators/states in sectors protected by supersym-
metry, as these would receive no quantum corrections. But
a heuristic comparison of the algebraic structures in the
weak/strong coupling limits was possible by taking the
plane-wave limit, or BMN limit [4]. On the gauge theory
side, the BMN limit is taken by considering single trace
operators, i.e. Nc very large, with large R charge of soð6Þ
J � ffiffiffiffiffiffi

Nc

p
and conformal dimension �, keeping �� J

finite. These operators consist of a chiral primary (trace
of a large number of a complex field) with some impurities
(other complex fields, bosonic or fermionic). Even though
the ’t Hooft coupling � ¼ g2YMNc is very large, one can use
perturbation theory provided some effective coupling �0 ¼
g2YMNc=J

2 � g2YM is kept fixed and small.
On the string side we start from the Green-Schwarz

action on the AdS5 � S5 [5], with J � ffiffiffiffiffiffi
Nc

p
now being

the angular momentum in one of the directions of S5. We
also take the energy E (generator of time translations in
AdS5) to be large, obeying E� J finite, thus originating
pointlike closed strings with large angular momentum in
S5. In light-cone gauge, the quantity E� J is just the light-
cone Hamiltonian, and the light-cone momentum Pþ ¼
Eþ J is very large. In this case, there is an effective

coupling just ~� ¼ 4�=P2þ, which is equivalent to �0 in
the limit J ! 1 (Pþ=2 ! J). This limit allowed a direct
comparison of the dilatation operator in SYM (anomalous
dimensions of operators in the conformal field theory) to
the energies (E� J) of pointlike semiclassical string os-
cillations in the plane-wave geometry.

The algebra of symmetries psuð2; 2 j 4Þ is central in
AdS5=CFT4 correspondence, as both the gauge theory
and its string theory dual have the same underlying super-
symmetry algebra. The two-dimensional sigma model
which gives us the perturbative string theory in AdS5 �
S5 [5] has a manifest global symmetry under PSUð2; 2 j 4Þ
[6,7], which is the same group of internal and space-time
symmetries of the N ¼ 4 SYM. (See [8] and references
therein.)
In particular, one can use the algebra to compare the

scattering of particles in the duality. For large ’t Hooft
coupling the scattering is best described by string theory,
but for small ’t Hooft coupling the spin-chain description is
more adequate. It was shown by Beisert that the nonpertu-
bative S matrix is almost completely determined by the
centrally extended algebra suð2 j 2Þ � suð2 j 2Þ [9,10], up
to an overall dressing phase (determined by a crossing
symmetry restriction [11–14]). Each of these centrally
extended algebras suð2 j 2Þ has the following structure:
bosonic (kinematical) generatorsRa

b,L
�
�, corresponding to

the rotation generators of the bosonic subalgebra suð2Þ �
suð2Þ; fermionic (dynamical) supersymmetry generators

Q�
a , Qyb

� ; and three central charges H, C, and Cy

(Hamiltonian, generator of space translations, and of
boosts).1 Their commutation relations are

½L�
�; J

�� ¼ ��
�J

� � 1
2�

�
�J

�;

½Ra
b; J

c� ¼ �c
bJ

a � 1
2�

a
bJ

c;

½L�
�; J�� ¼ ���

�J� þ 1
2�

�
�J�;

½Ra
b; Jc� ¼ ��a

cJb þ 1
2�

a
bJc;

fQ�
a ;Q

yb
� g ¼ �b

aL
�
� þ ��

�R
b
a þ 1

2�
b
a�

�
�H;

fQ�
a ;Q

�
b g ¼ ����abC;

fQya
� ;Qyb

� g ¼ �ab���C
y:

(1)

In the above expressions, JM (where M 2 fa; �g, a being
bosonic indices and � being the fermionic ones), is any
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1Note that ðQ�
a Þy ¼ Qya

� and the same relation holds to the
central elements C and Cy.
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element of the Lie algebra. From the elements of the
algebra, the dilatation operator (or central charge
Hamiltonian) has been studied in detail (see [8] and refer-
ences therein).

Much has been done on the study of sectors of this
superconformal algebra on the string side [15–19]. On
the gauge side, Beisert perturbatively studied and deter-
mined the action of the generators of the superalgebra
suð2 j 2Þ up to two loops, by first restricting to the sub-
algebra suð2 j 3Þ whose fundamental representation con-
sists of three complex scalars and two complex fermions
[20], and finally considering an infinite chain of one of the
scalar operators [10]. Using Bethe ansatz techniques it was
later conjectured an all loop result in this sector for the
action of the algebra generators [9].

In this work, we present the supersymmetric (SUSY)
algebra in terms of a matrix model reduction of Yang-Mills
theory in the large N limit. The matrix model has played a
very useful role in large N theories. In fact, the 1

2

Bogomol’nyi-Prasad-Sommerfield (BPS) sector of N ¼
4 SYM is completely described in terms of a complex
matrix model [21–25], and the 1

4 BPS generalization is

also of great interest (work in progress). Presently, the
interest is in the detailed construction and comparison of
supercharges and their commutation relations both on the
Yang-Mills theory and on the string side. We will demon-
strate that the algebra given by Beisert in [9] (at least at one
loop) is correctly reproduced from the reduced matrix
model point of view.

In [26] it was seen that the plane-wave matrix theory
[4,27] arises when compactifyingN ¼ 4 SYM in R� S3

followed by a consistent truncation in order to keep only
the lowest Kaluza-Klein modes (see also [28,29]). These
modes have masses proportional to a mass parameter,

given by ðm3Þ3 ¼ 32�2

g2YM
. This theory was shown (in some

sectors) to still be integrable up to four loops [30,31].
The study of this model is simpler than the full N ¼ 4
SYM, and can be found in Sec. II. In this section we
present a detailed study of the supercharges Q and S,
following the approach of [26]. In Sec. III we restrict
the action of the generators of the algebra to a subsector
suð2 j 2Þ. The results presented in this paper are one loop,
and we compare our results with the nonlocal generators
presented in [9], evaluating some of the parameters defin-
ing these generators.

Some methods have been employed in the gauge theory
side that allowed a comparison of the Hamiltonian to string
theory equivalent algebra generator. Such methods include
the use of coherent states [32–34], collective field theory,
and string field theory [35,36]. In this framework one can
compare a discrete (first quantized) version of the super-
charges on the string side with the oscillator expansion of
the charges in SYM, in the BMN limit.

In Sec. III we use a coherent state basis to write the
supercharges, which are then shown, in Sec. IV, to have the

same structure as the first quantized version of the algebra
generators determined from the string action. In Sec. V we
present a summary of the results and some future paths of
investigation.

II. N ¼ 4 SYM ON R� S3: A REVIEW

In this first section, we summarize the method of finding
the supercharges of suð2; 2 j 4Þ up to 1 loop, as can be
found in [26,28].2

The action for N ¼ 4 SYM in four dimensions can be
obtained from dimensional reduction of the N ¼ 1 10-
dimensional SYM on a 6-torus. Using the notation where
theD ¼ 10 Dirac matrices split into SOð1; 3Þ � SOð6Þ, the
action becomes

S ¼ 2

g2YM

Z
d4x

ffiffiffiffiffiffi
jgj

q
Tr

�
� 1

4
F�	F�	 � 1

2
D�
iD�
i

�R
12


2
i þ

1

4
½
i;
j�2 � 2i�y

A�
�D��

A

þ ð�iÞAB�y
Ai�

2½
i; �
�
B� � ð�y

i ÞABð�AÞTi�2½
i; �B�
�
:

We have a vector field A�, six real scalars 
i, and four

Weyl spinors ��A (all in the adjoint representation of the
gauge group). The six scalars transform in a 6 of the
R-symmetry group SOð6Þ � SUð4ÞR, while the spinors
transform in a 4. Coordinate indices are x� ¼ ðt; xaÞ, � ¼
0; . . . ; 3, with the spatial coordinates having (curved) in-
dices a ¼ 1, 2, and 3. The metric is given by

ds2 ¼ �dt2 þ R2ðd
2 þ sin2
dc 2 þ sin2
sin2c d�2Þ;
where R is the radius of S3, andR ¼ 6

R2 is the Ricci scalar.

Some notation.—From this point on we will be consid-
ering �� � ð1; �aÞ and ��� ¼ ð�1; �aÞ, where the �a are
the usual Pauli matrices pulled back to S3. Also, �AB

i �
�AB

i are the Clebsch-Gordan coefficients of SUð4Þ that
relate two 4 irreducible representations (irreps) with one
6. These coefficients have several properties, in particular

�AB
i ¼ 1

2 "
ABCDð�y

i ÞCD, and allow us to write


i ¼ 1
2�

AB
i �AB ¼ 1

2ð�y
i ÞAB�AB:

Finally, one comment about the Weyl spinors. We know
that in D ¼ 10 we start from a 32-component complex
spinor, and by imposing a Majorana-Weyl condition, ob-
tain a 16-component (after fixing the �-symmetry) spinor
L. This spinor can be written in terms of Weyl spinors as

L ¼ ��A

ið�2Þ����
�A

 !
;

2We will be following the notation of [26], in which a different
basis for the � matrices is used. The same procedure could be
done by following [28] choice of basis.
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with � ¼ 1, 2 and A ¼ 1, 2, 3, and 4. The ��A are four 2-
component Weyl spinors.3

A. SUSY transformations and corresponding charges

The SUSY transformations are given by

��A� ¼ 2ið�y
A���

A � �y
A���

AÞ;
���

AB ¼ 2ið��y
Ei�

2"ABEF��
F � ð�AÞTi�2�B

� ð�BÞTi�2�AÞ;
���

A ¼ 1
2F�	�

�	�A þ 2D��
AB ���i�2��

B

þ�AB ���i�2r��
�
B � 2i½�AC;�CB��B:

We want to build the Noether charge Q�. To do so we
need to take into consideration the pairs of canonical
variables. From the action, we have the following (anti-)
commutation relations:

½F0�; A
	� ¼ �	

�;

½D0
i;
j� ¼ �ij ) ½D0�AB;�
CD�

¼ 1
2ð�D

A�
C
B � �C

A�
D
B Þ;

f�ið�y
A�

0Þ�; �B�g ¼ ��
��B

A:

Also one has to take into consideration that ��A are
Killing spinors, which in R� S3 obey the equation
r�� ¼ � i

2R���, and so will give us two solutions ��.
We will then obtain two charges Q � QL and �Q � QR,
corresponding to �þ and ��, respectively.

The fermionic Noether charges are thus4

Q� ¼ 2

g2YM

Z
S3
d�Trf�2i�y

A�
0���

A

� 2ið�AÞT�0���
�
Ag:

For the purposes of this paper, we will simplify the
calculations by setting the vector field to zero (we will be
looking only at the sector of scalars and spinors). This
truncation is consistent with the one-loop calculation we
will be performing.

The nonvector sector of the charges Q� is given by

Q� ¼ � 2

g2YM

Z
S3
d�Trf2i�y

Að2�AB�0i�2��
B

þ 2ra�
AB ��ai�2��

B þ�AB ���i�2r��
�
B

� 2i½�AC;�CB��BÞ þ 2ið�AÞT
�ð�2�ABð ��0ÞTi�2�B � 2ra�ABð ��aÞTi�2�B

��ABð ���ÞTi�2r��
B � 2i½�AC;�

CB���
BÞg;

(2)

where�AB is the momentum conjugate to the bosonic field
�AB.
We now have an expression for the supercharges. The

next step is to evaluate it on R� S3: we expand the four-
dimensional fields in terms of the spherical harmonics of
S3 and then perform the integration of the sphere.

B. Harmonic expansion on S3 and the plane-wave limit

Each field, defined by its spin, will have a decomposition
in spherical harmonics on S3. These spherical harmonics
can be labeled by the irreducible representations ðmL;mRÞ
of the isometry group SOð4Þ � SUð2ÞL 	 SUð2ÞR. As such,
we have
(i) Spin 0: We have scalar spherical harmonics YkI

ð0Þ, in
the irrep ðkþ 1; kþ 1Þ. Their mass will be ðkþ
1Þ=R.

(ii) Spin 1
2 : In this case we will use spinor spherical

harmonics: YkIþ
ð1=2Þ, in the irrep ðkþ 2; kþ 1Þ; YkI�

ð1=2Þ,
in the irrep ðkþ 1; kþ 2Þ. Both have mass ðkþ
3=2Þ=R.

As usual, k labels different irreducible representations, and
I enumerates elements of a particular irreducible represen-
tation (I ¼ 1 
 
 
 d, where d is the dimension of the
representation).
The expansions of the fields in the corresponding har-

monics are


iðx�Þ ¼
X1
k¼0

Xðkþ1Þ2

I¼1


kI
i ðtÞYkI

ð0ÞðxaÞ;

�A
�ðx�Þ ¼

X1
k¼0

Xðkþ1Þðkþ2Þ

I¼1

X
�

�A;kI�ðtÞYkI�
ð1=2Þ�ðxaÞ:

Note that spinor spherical harmonics are 2-dimensional
commuting Weyl spinors. The Killing spinor �A (parame-
ter of the superconformal transformations) will have the
same expansion as �A, with coefficients �A;kI�ðtÞ.
Plane-wave limit [26,27].—We want to truncate the

infinite tower of Kaluza-Klein modes to the lowest super-
multiplet. One can then climb up the various states (with
increasing masses) by acting with the two supercharges
QL ¼ ð2; 1; �4Þ and QR ¼ ð1; 2; 4Þ, where the numbers cor-

3In the basis used in [28], the separation of L into L ¼
ðLþL�ÞT becomes a separation into SUð2ÞL � SUð2ÞR, for
which one uses dotted/undotted indices _� and �. In the basis
used in [26] this separation is not obvious.

4For comparison purposes, one could also write this charge, in
the SUð2ÞL � SUð2ÞR formalism, as

Q� ¼ 2

g2YM

Z
s3
Trfi �� _�

A ��0
_�����

�A þ i ��A
�ð�0Þ� _���� _�Ag:
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respond to representations of SUð2ÞL 	 SUð2ÞR 	 SUð4Þ.
Focusing on the zero modes of the Kaluza-Klein tower we
find 6 scalar spherical harmonics, constant on S3, and 4
lowest spinor spherical harmonics S�̂�� , in irrep ð2; 1Þ �
ð1; 2Þ of SUð2ÞL 	 SUð2ÞR (the hatted index refers to the
degeneracy of the solution), solutions to the killing spinor
equation for a Weyl spinor.

The fields with only these zero modes become


iðx�Þ ¼ XiðtÞ;

�A
�ðx�Þ ¼

X2
�̂¼1

ð
Aþ�̂ ðtÞS�̂þ� ðxaÞ þ 
A��̂ ðtÞS�̂�� ðxaÞÞ:

If we restrict ourselves to half of the supercharges QL,
then together with the bosonic symmetries will generate
the subalgebra suð2j4Þ. The restriction to the QL charges
leads us to consider only the zero modes that are SUð2ÞR
singlets. Then we keep all the lowest scalar harmonics, and
only two spinor harmonics S�̂þ� (instead of the 4 if we
included S�̂�� ). The conjugate momenta �i will have the
same expansion as its conjugate field 
i, that is �iðx�Þ ¼
�iðtÞ.

Now we can proceed to the actual integration on the
supercharges. Going back to (2), we find that5:

QL ¼ Q�þ ¼ Tr

��
1

R
XAB þ 2i�AB

�

þy
A i�2�þ�

B

� ffiffiffi
2

p ½XAC; X
CB�
þA

�̂ "�̂ �̂�þ�
B�̂

þ
�
1

R
XAB � 2i�AB

�
ð
þAÞTi�2�þB

� ffiffiffi
2

p ½XAC; XCB�
þy
A�̂ "

�̂ �̂�þB
�̂

�
¼ Qþ�þ Sþ��:

The final expression for the supercharges is6

Q�̂
A ¼ Tr

�
�
B�̂

�
1

R
XBA � 2i�BA

�

� ffiffiffi
2

p
"�̂ �̂
y

B�̂
½XBC; XCA�

�
;

SA�̂ ¼ Tr

�

y
B�̂

�
1

R
XBA þ 2i�BA

�
� ffiffiffi

2
p ½XBC; X

CA�
B
�̂

�
"�̂ �̂:

(3)

III. THE suð2 j 3Þ SUBSECTOR AND ITS
RESTRICTION TO THE suð2 j 2Þ

We will continue by studying the sector suð2 j 3Þ, as in
[20]. For that we reduce our fields as follows:


� � 
4�̂; 
a � Xa4; � ¼ 1; 2; a ¼ 1; 2; 3:

By construction we have �
a � 
a, and �a ¼ �4a, as well
as XBC ¼ 1

2 "
BCADXAD. The supercharges restricted to this

sector can then be written as

Q�
a ¼ Tr

�
�
4�̂

�
1

R
X4a � 2i�4a

�

� ffiffiffi
2

p

y
4�̂
"�̂ �̂½X4C; XCa�

�

¼ Tr

�

�
�
1

R
�
a þ 2i�a

�
� ffiffiffi

2
p


y�"
��"abc½
c;
b�

�
;

(4)

Sa� ¼ Tr

�

y
4�̂

�
1

R
X4a þ 2i�4a

�
� ffiffiffi

2
p ½X4C;X

Ca�
4
�̂

�
"�̂�̂

¼ Tr

�

y�
�
1

R

a � 2i ��a

�
� ffiffiffi

2
p

"abc½ �
c; �
b�
�"��
�
"��:

(5)

In order to continue, we will need to rewrite the fields in
terms of creation/annihilation operators. First identify 1

R ¼
m
6 , i.e. exchange the parameter R by a mass parameter m

[26]. Then consider the expansion of the six scalars/mo-
menta Xi, �i:8><
>:
ai ¼

ffiffiffi
3
m

q
ði�i þ m

6 XiÞ;
ayi ¼

ffiffiffi
3
m

q
ð�i�i þ m

6 XiÞ;
)

8><
>:
Xi ¼

ffiffiffi
3
m

q
ðai þ ayi Þ;

�i ¼ 1
2i

ffiffiffi
m
3

p ðai � ayi Þ:
The bosons XAB are a combination of two real scalar fields
such that Xa4 ¼ 1

2 ðXa þ iXaþ3Þ, a ¼ 1, 2, 3. If we now

define the creation annihilation operators as aa �
aa þ iaaþ3 and bay ¼ aay þ iaaþ3y, with a ¼ 1, 2, 3,
we then have the following expansions for our (complex)
fields:


a � Xa4 ¼
ffiffiffiffi
3

m

s
ðaa þ byaÞ;

�a � �4a ¼ 1

4i

ffiffiffiffi
m

3

r
ðaya � baÞ;

(6)

with equivalent expressions for fields �
a and ��a.
Introducing also fermionic creation operators, the fermions
become


y� ¼ c� ¼ "��c�; 
� ¼ cy�: (7)

We will be interested in the action of the charges on the
subspace of states that will only have excitations of cy and
by, so we will drop the oscillators a, ay in the bosonic

5In order to obtain the supercharges integrated over S3, we
used the properties of the spherical harmonics, as well as other
properties of the Pauli matrices. These properties can be found in
[26–28], and include ���i�2�T

� ¼ ð ���ÞTi�2�� ¼ �2i�2. In
the same references one can find the expansion of spin 1 vector
fields. We also used an identification between the radius of the
sphere R and the Yang-Mills coupling constant gYM such that
4�2R3=g2YM ! 1. This prefactor shows up when obtaining the
action of the plane-wave matrix theory action from N ¼ 4
SYM action, and would also appear in the charges.

6Note that in our choice of basis the relation S ¼ Qy is not
manifest.
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fields. We find

Q�
a ¼ Tr

� ffiffiffiffi
m

3

r
cy�ba � 3

ffiffiffi
2

p
m

"��"abc½byc; byb�c�
�
;

Sa� ¼ Tr

�
�

ffiffiffiffi
m

3

r
byac� � 3

ffiffiffi
2

p
m

"��"
abccy�½bc; bb�

�
:

(8)

As expected, these results are similar to the ones in [27], up
to a change of basis for the gamma matrices.

A. The suð2 j 2Þ subsector: Vacuum and excitations

The study will focus on states that transform in the
suð2j3Þ sector and are single trace (gauge invariant) op-
erators of the fields (3 bosons and 2 fermions). This spin
chain arises from the large N limit of the gauge theory. In
this sector the action of the algebra generators can be found
in [20]. Consider now the vacuum as a long string of Z �

3 fields. In oscillator notation, we have Z ¼ b3y, and the
vacuum state can be written as

j0; Ji � jZJi � 1ffiffiffi
J

p
NJ=2

Trðb3yJÞj0i:

A generalization of this vacuum consists of an infinitely
long string of Z fields (the asymptotic regime, J ! 1), as
in [10]. The excitations are now the other fields of the
suð2j3Þ algebra, � 2 fc 1; c 2j
1; 
2g, which corresponds
to the suð2j2Þ subsector of the algebra. The excitations can
move through the chain on Z’s with some momentum p.
Thus, in momentum space we can write

� ¼ XN
nk¼1

eipknk�ðnkÞ ¼
XJ
nk¼1

eipknk�k � �ðpkÞ;

where n denotes the position of the impurity/excitation �
on the vacuum string.

A general state with K impurities can then be written as

j�1; . . . ; �K; Ji ¼
X

n1;...;nK¼1

eip1n1þ


þipKnK

� jZ 
 
 
Z�1Z 
 
 
�2 
 
 
�K . . .Zi:
For an asymptotic state (J ! 1) we consider the dilute gas

approximation, where the positions n1; . . . ; nk of the im-
purities obey n1 � n2 � 
 
 
 � nK.
We should note that on shell the physical states are

cyclic (property of the trace), and so we must haveP
K
k¼1 pk ¼ 0.
Now that we have defined the states that the super-

charges will be acting on, we can determine their action.
The first step will be to check what the charges do to just
one excitation on the vacuum. Then one can generalize to
multiexcitation states of the suð2j2Þ subsector of suð2j3Þ.
Oncewe have the action of the charges on a multiexcitation
state, we can determine the commutator of two super-
charges, as a check of our results.
In this subsector the charges (8) become

Q�
a ¼

ffiffiffiffi
m

3

r
Tr

�
c � @

@
a �
� ffiffiffiffi

3

m

s �
3 ffiffiffi

2
p

"ab"
��½Z;
b� @

@c �

�
;

Sa� ¼
ffiffiffiffi
m

3

r
Tr

�
�
a @

@c � �
� ffiffiffiffi

3

m

s �
3 ffiffiffi

2
p

"ab"��c
�

�
�
@

@Z
;

@

@
b

��
;

(9)

where we chose a coherent state basis, such that

cy� ! c �; c� ! @

@c � ;

bya ! 
a; ba ! @

@
a :

For a ¼ 3, we have the identification 
3 � Z. The factorffiffiffi
m
3

p
will appear as an overall factor in every charge calcu-

lated, and will be dropped, as we know that the quadratic
terms come from the free theory gYM ¼ 0.
We now proceed to determine the action of the super-

charge Q (and equivalently S) on a single excitation state
j�; Ji ¼ P

ne
ipnjZn�1�ZJ�nþ1i. If the excitation is bo-

sonic, �‘ ¼ 
‘, then

Q�
a j�; Ji ¼

X
n

eipn�‘
ajZn�1c �ðnÞZJ�nþ1; Ji;

while if the excitation is fermionic, �� ¼ c �, we have

Q�
a j�; Ji ¼ �

� ffiffiffiffi
3

m

s �
3 ffiffiffi

2
p

"ab"
��

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
N1=2jZn�1½Z;
b�ZJ�nþ1; J þ 1i

¼ �
� ffiffiffiffi

3

m

s �
3 ffiffiffi

2
p

"ab"
��

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
N1=2jZn
bðnþ 1ÞZJ�nþ1; J þ 1i þ

� ffiffiffiffi
3

m

s �
3

� ffiffiffi
2

p
"ab"

��

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
N1=2jZn�1
bðnÞZJ�nþ2; J þ 1i

� �
� ffiffiffiffi

3

m

s �
3 ffiffiffi

2
p

"ab"
��
X
n

eipnðe�ip � 1ÞN1=2jZn�1
bðnÞZJ�nþ2; J þ 1i:

It can be seen from the expression above that the insertion of a Z field before the excitation changes its phase by e�ip, while

MATRIX REDUCTION AND THE suð2 j 2Þ . . . PHYSICAL REVIEW D 79, 086014 (2009)

086014-5



the insertion after the excitation leaves that phase untouched. This is a property of the asymptotic state, for which an
infinite number of Z fields exist after the (last) excitation. This was seen in [10] as being equivalent to ‘‘opening’’ the trace.
In the above expression we also kept only the first order in 1

J .
From the results shown above, we can easily determine the generalization to a multiexcitation state. First, rewrite the

state as

j�; Ji � j�1 . . .�K; Ji ¼
X
flig

eip1l1þ


þipKlK�y
1�

y
2 
 
 
�y

Kj0; Ji: (10)

The action of one charge on such state is (zeroth order in 1
J )

Q�
a j�1 . . .�K; Ji ¼

XK
k¼1

X
flig

eip1l1þ


þipKlK

�Yk�1

m¼1

ð�1ÞFðmÞ
�
�y
1�

y
2 
 
 
 ðQ�

a�
y
k Þ 
 
 
�y

Kj0; Ji

¼ XK
k¼1

X
flig

eip1l1þ...þipKlK

�Yk�1

m¼1

ð�1ÞFðmÞ
��
�ð�y

k ; 

bÞ�b

a�
y
1�

y
2 
 
 
 c �ðlkÞ 
 
 
�y

Kj0; Ji

�
ffiffiffiffiffiffiffi
2N

p
M3

�ð�y
k ; c

�Þ
� YK
m¼kþ1

e�ipm

�
ðe�ipk � 1Þ"ab"���y

1�
y
2 
 
 

bðlkÞ 
 
 
�y

Kj0; J þ 1i
�
; (11)

and similarly for the S charge (noticing that the action of S
on a bosonic excitation returns an extra factor of N). In
here �ð�y

k ; 

bÞ means that the excitation �ðlkÞ is bosonic


b, while in �ð�y
k ; c

�Þ the excitation �ðlkÞ is fermionic
c �. The factor ð�1ÞFðmÞ is equal to 1 if �m is bosonic and
�1 if �m is fermionic. Finally we defined M ¼ ffiffiffi

m
3

p
. When

�k is a fermionic excitation, one gets the expected factor of
ðe�ipk � 1Þ, which already showed up in the single excita-
tion case, but one also gets an extra factor ofQ

K
m¼kþ1 e

�ipm . This last factor can also be explained by
the insertion of the Z field. In fact in the single excitation
case we saw that Z changed the momentum if inserted
before the excitation on the chain of fields. But now the
field Z gets inserted before all of the excitations �m with
m> k, hence the change of momenta of all these
excitations.

The results of the action of Q and S on a multiexcitation
state will be summarized next using a nonlocal notation
(see also [9]).

1. Twisted vs nonlocal notations

The supercharges Q and S acting on a general state
j�; Ji can be written in a nonlocal notation:

Q�
a j�; Ji ¼

XK
k¼1

fak�b
a�ð�y

k ; 

bÞj�1 
 
 
 c � 
 
 
�K; Ji

þ bk"ab"
���ð�y

k ; c
�Þ

� j�1 
 
 

b 
 
 
�K; J þ 1ig; (12)

Sa�j�; Ji ¼
XK
k¼1

fck"ab"���ð�y
k ; 


bÞ

� j�1 
 
 
 c � 
 
 
�K; J � 1i
þ dk�

�
��ð�y

k ; c
�Þj�1 
 
 

a 
 
 
�K; Jig; (13)

where the coefficients are given by

ak ¼
Yk�1

m¼1

ð�1ÞFðmÞ;

bk ¼
ffiffiffiffiffiffiffi
2N

p
M3

�Yk�1

m¼1

ð�1ÞFðmÞ
�
ð1� e�ipkÞ

� YK
m¼kþ1

e�ipm

�

¼
ffiffiffiffiffiffiffi
2N

p
M3

e�iPðeipk � 1Þ
�Yk�1

m¼1

ð�1ÞFðmÞeipm

�
;

ck ¼
ffiffiffiffiffiffiffi
2N

p
M3

�Yk�1

m¼1

ð�1ÞFðmÞ
�
ðeipk � 1Þ

� YK
m¼kþ1

eipm

�

¼
ffiffiffiffiffiffiffi
2N

p
M3

eiPð1� e�ipkÞ
�Yk�1

m¼1

ð�1ÞFðmÞe�ipm

�
;

dk ¼ � Yk�1

m¼1

ð�1ÞFðmÞ: (14)

There is one other notation, introduced by Beisert in [9],
called the twisted notation. In this local notation we have

Q�
a;kj 
 
 

b

k 
 
 
i ¼ a0k�
b
aj 
 
 
Yþc �

k 
 
 
i;
Q�

a;kj 
 
 
 c �
k 
 
 
i ¼ b0k"

��"abj 
 
 
ZþY�
b
k 
 
 
i;

Sa�;kj 
 
 

b
k 
 
 
i ¼ c0k"

ab"��j 
 
 
Z�Yþc �
k 
 
 
i;

Sa�;kj 
 
 
 c �
k 
 
 
i ¼ d0k�

�
�j 
 
 
Y�
a

k 
 
 
i:

(15)

We notice the presence of the markers Z� and Y�. These
markers have a simple explanation, up to one loop. The
marker Y� marks the position on the string of fields (the
state) where a fermion field was inserted (Yþ) or removed
(Y�). In the twisted notation we are only given the action
of the supercharge on the field k of the string. But in order
for a supercharge to act on such field it will have to pass by
the previous ones. If these are bosonic fields nothing
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happens, but if they are fermionic, a minus sign will appear
(for each fermionic field it passes). Thus, it is important to
know where the supercharge acted, which is done by the
marker. The marker is shifted around as follows:

j 
 
 
�kY� 
 
 
i ¼ ð�kÞ�1j 
 
 
Y��k 
 
 
i;
where

�k ¼ ð�1ÞFðkÞ ¼
�
1 if �k bosonic;
�1 if �k fermionic:

(16)

The marker Z� marks a position where an extra Z field
was inserted in the string. This changes the length of the
vacuum spin chain, reflecting a change in the momenta of
the excitation fields. But this change in momenta only
affects the excitation fields after the position of the marker.
The marker has the property

j 
 
 
�kZ� 
 
 
i ¼ x�k
x
k

j 
 
 
Z��k 
 
 
i; where
x�k
x
k

¼ e�ipk ;

(17)

with pk being the momenta of the excitation �k, as before.
In summary, the twisted notation is a local notation,

since it only provides the action of the supercharge on
the excitation field �k, plus a set of markers that allow us
to rewrite it in a nonlocal notation, as found in (12) and
(13). We can go from the twisted notation to the nonlocal
one by removing the markers from the first, i.e., shifting
them so that they will be at the right (or left) of all the
excitation fields.

In the local twisted notation we have7

a0k ¼ �d0k ¼ 1; b0k ¼
ffiffiffiffiffiffiffi
2N

p
M3

ð1� e�ipkÞ;

c0k ¼ �
ffiffiffiffiffiffiffi
2N

p
M3

ð1� eipkÞ:

2. Comparison with Beisert at 1 loop

One can find the all-loop version of these coefficients in
[9], for both the nonlocal and the twisted notation. In fact
we can expand the (nonlocal) coefficients given in that
reference to order OðgÞ, and compare them to our results.
These coefficients are

ak ¼ �k

Yk�1

j¼1

ð�1ÞFðjÞ;

bk ¼ g
�

�k

ð1� eipkÞYk�1

j¼1

ðeipkð�1ÞFðjÞÞ;

ck ¼ i
�k

�xþk

Yk�1

j¼1

ðe�ipkð�1ÞFðjÞÞ;

dk ¼ g
xþk
i�k

ð1� e�ipkÞYk�1

j¼1

ð�1ÞFðjÞ:

We used the identifications (16) and (17) into the tran-
scribed coefficients, and also made a rescaling of the
parameter �k ! ffiffiffi

g
p

�k. The expansion in g is hidden in

the dependence of xþ, x� on the coupling constant:

xþ þ 1

xþ
� x� � 1

x�
¼ i

g
: (18)

This last equation, together with (17), allows us to solve for
xþðgÞ:

xþ ¼ i
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16g2sin2ðp=2Þp
2gð1� e�ipÞ :

Then by expanding this expression up to order OðgÞ, we
obtain exact agreement with (14), as long as we identify

�k ¼ ð�1ÞFðkÞ and � ¼ e�iP. Note that the relation be-
tween the normalized ’t Hooft coupling g and the Yang-
Mills coupling constant gYM is g ¼ gYM

4�

ffiffiffiffiffiffi
Nc

p
, from the

gauge group SUðNcÞ.
The other charges that we are interested in determining

are the Hamiltonian H and the central charges of the
extended algebra P, K. These charges arise from commu-
tation relations between the supercharges, which will be
determined next.

B. Commutation relations

At this moment we have calculated only the super-
charges of the full extended algebra suð2j2Þ, up to OðgÞ.
We are interested in having the complete set of charges at
this order, which comprises also the rotations generators L,
R, the dilatation operatorH, and also the central charges of
the extended algebra P, K (bosonic generators of momen-
tum and boosts, which have zero eigenvalues when applied
to physical states). All of these generators can be obtained
to OðgÞ from the commutation relations of the
supercharges.
The central charges of the extended algebra receive no

loop corrections, and as such, can be obtained exactly by
the anticommutation relations fQ;Qg � P and fS; Sg � K,
by knowing the zeroth order of the supercharges. The other
generators will be obtained from the last anticommutator
fQ; Sg / Rþ LþH, but while the zeroth order super-
charges will be enough to determine rotation generators

7The coupling constantM6 ¼ ðm3Þ3 is related to the Yang-Mills
coupling constant gYM in the following way:

1

M6
¼ g2YM

32�2
:

This relation comes from matching the prefactor of the reduced
SYM action with the prefactor of the matrix model action. In fact
we had m ¼ 6

R , where R was the radius of S3. Taking the radius
small corresponds to m � 1 and consequently gYM � 1.
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L and R, the central chargeH will only be known correctly
up to OðgÞ, as we will see below.

In the anticommutator of any two supercharges the only
terms that will not vanish are the ones where the two

supercharges are applied to the same excitation. The anti-
commutator of two Q charges is

fQ�
b ;Q

�
a gj�1 . . .�K; Ji ¼

XK
k¼1

j�1 
 
 
 ðfQ�
b ;Q

�
a g�kÞ 
 
 
�K; Ji ¼

ffiffiffiffiffiffiffi
2N

p
M3

XK
k¼1

�
ð1� e�ipkÞ YK

l¼kþ1

e�ipl

�
j�1 . . .�K; J þ 1i

¼
ffiffiffiffiffiffiffi
2N

p
M3

ð1� e�i
P

K
k¼1

pkÞj�1 . . .�K; J þ 1i:

This is just the action of the central charge fQ;Qg / P of
the extended algebra on a multiexcitation state. The action
of the other central charge of the extended algebra is
obtained from fS; Sg / K:

fSb�; Sa�gj�1 . . .�K; Ji ¼
ffiffiffiffiffiffiffi
2N

p
M3

ð1� ei
P

K
k¼1

pkÞ
� j�1 . . .�K; J � 1i:

We know from [9] that there is an outer automorphism
relating H and the central charges of the extended algebra
P, K, which corresponds to an slð2Þ algebra. Closure of
this algebra on the original commutation relations of the
supercharges requires that

H2 � PK ¼ 1
4: (19)

This relation should only hold when we consider the all
loopH, and not only when we consider the first two orders.
Using nonlocal notation, we find that the product PK is
given by

PK ¼ � 2N

M6
ðe�i

P
K
k¼1

pk � 1Þðeþi
P

K
k¼1

pk � 1Þ

¼ 8N

M6
sin2

�XK
k¼1

pk

2

�
¼ 8N

M6
sin2

�
p

2

�
;

and so H2 ¼ 1
4 þ PK ¼ 1

4 þ 8N
M6 sin

2ðp2Þ, which implies

H ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32N

M6
sin2

�
p

2

�s
¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2YMN

�2
sin2

�
p

2

�s
:

This is the result expected at one loop. The identification of
the matrix model mass parameter with the Yang-Mills
coupling coupling holds at one loop but some mismatches
were seen to appear at higher loop calculations, implying
some kind of BMN scaling breakdown, and a substitution
of the factor 32N

M6 for a function fð N
M6Þ [31].

We now calculate the anticommutator ofQ and S, which
will be proportional to L�

�, R
a
b and the Hamiltonian H:

fQ�
b ; S

a
�gj�1 . . .�K; Ji ¼

XK
k¼1

fckbk"aa0"bb0��
��ð�y

k ; 

a0 Þj�1 
 
 

b0 
 
 
�K; Ji

þ ckbk"
��0

"��0�a
b�ð�y

k ; c
�0 Þj�1 
 
 
 c �0 
 
 
�K; Ji þ akdk�

�
��ð�y

k ; 

bÞj�1 
 
 

a 
 
 
�K; Ji

þ akdk�
a
b�ð�y

k ; c
�Þj�1 
 
 
 c � 
 
 
�K; Jig:

From Eqs. (14) we have that

akdk ¼ �1;

bkck ¼ 4N

M6
ð1� e�ipkÞðeipk � 1Þ ¼ � 16N

M6
sin2

�
pk

2

�
:

Also, we know from the algebra (1) that

L�
�jc �i ¼ ��

�jc �i � 1
2�

�
�jc �i;

Ra
bj
ci ¼ �c

bj
ai � 1
2�

a
bj
ci:

For multiparticle states this generalizes to

L �
�j�1 . . .�K; Ji ¼

XK
k¼1

�y
1 
 
 
L�

�ð�y
k Þ 
 
 
�y

Kj0; Ji;

with a similar result for the charge Ra
b.
8

One can now easily see that

8The charges L and R are the generators of the algebra that
correspond to rotations of the c � suð2Þ algebra and of the 
a

suð2Þ algebras, respectively. As such, L�
�j
ci ¼ 0, and

Ra
bjc �i ¼ 0.
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fQ�
b ; S

a
�gj�1 . . .�K; Ji ¼ ��

�Ra
bj�1 . . .�K; Ji þ �a

bL
�
�j�1 . . .�K; Ji þ ��

��a
b

XK
k¼1

�
1

2
akdk þ bkck

�
j�1 . . .�K; Ji

� ��
�

XK
k¼1

bkck�ð�y
k ; 


bÞj�1 
 
 

a 
 
 
�K; Ji � �a
b

XK
k¼1

bkck�ð�y
k ; c

�Þj�1 
 
 
 c � 
 
 
�K; Ji:

(20)

If we compare with the expected results from commutation
relations given in (1), the last two terms seem to be extra.
But in fact this is the exact result. We (anti-)commuted
only the order g0 and order g1 of the supercharges. That is,
we calculated the nonzero anticommutators fQ0; S0g /
Rþ LþH0 and fQ1; S1g. This last anticommutator con-
tributes to order g2 of the Hamiltonian, H2, but there will
be another contribution to H2: the two-loop terms of the
supercharges, Q2 and S2, will have nonzero commutation
relations with S0 and Q0, respectively, and contribute to
Oðg2Þ. So H2 (the energy central charge of order g2) will
be fully determined by

H2 / fS1; Q1g þ fS2; Q0g þ fS0; Q2g: (21)

Only by considering all of the above anticommutators we
will get the correct result for the H2. For calculations see
Appendix A, and also [20].

C. Supercharges as operators in momentum space

We now present a description of the supercharges in
terms of operators in momentum space. Consider as before
an infinite chain of fields Z. The vacuum state, written
before as j0; Ji ¼ TrðZJÞj0i, can be rewritten, in the

‘‘Hamiltonian formalism’’ introduced in [4] as j0; Ji ¼
ðbyz ÞJj0i, where byz creates an extra Z field in the string.9

Then we can write a state with K impurities as

j�i ¼ X
n1;...;nK

eipjnjbyðn1Þ 
 
 
 byðnKÞj0; Ji

¼ byðp1Þ 
 
 
 byðpKÞj0; Ji:
We are imposing dilute gas approximation, in which we
consider n1 � n2 � 
 
 
 � nK. We will now assume
p1 < p2 < 
 
 
< pK.

In the last expression for j�i we used the creation

operators byðnÞ ¼ ðbyz ÞnbyðbzÞn, which create a boson b
at position n in the string of Z’s. One can also introduce

cyðnÞ ¼ ðbyz ÞncyðbzÞn as a creation operator for a fermion
at position n. The action of the Hamiltonian in this frame-
work can be found in [4], and a further comparison with
lattice strings can be found in [36].

To write the action of the supercharges in terms of these
operators, we also need to introduce a partial momentum

operator

P̂ ðpÞ ¼
Z p

0
dp0p0½byðp0Þbðp0Þ þ cyðp0Þcðp0Þ�;

or the discrete momentum version

P̂ ðpÞ ¼ Xp�1

k¼0

k½byðkÞbðkÞ þ cyðkÞcðkÞ�:

The total momentum operator is just P̂ ¼ P̂ ðpmaxÞ, where
pmax is either1 in the continuum case, or finite (but large)

in the lattice. Also, define an operator �̂ conjugate to the

‘‘R-charge operator’’ Ĵ . In the spin-chain formalism, Ĵ
effectively measures the length of the chain of Z fields, and

�̂ changes that length:

Ĵ e�i�̂j0; Ji ¼ ðJ � 1Þe�i�̂j0; Ji:
We can now proceed to the action of the supercharges. In

momentum space, they become

Q�
b ¼ �

ffiffiffiffiffiffiffi
2N

p
M3

"bb0"
��0

ei�̂e�iP̂
X
p

bb
0yðpÞðeip � 1Þ

� eiP̂ ðpÞc�0 ðpÞ þX
p

c�yðpÞbbðpÞ;

Sa� ¼
ffiffiffiffiffiffiffi
2N

p
M3

"��0"aa
0
e�i�̂eiP̂

X
p

c�
0yðpÞð1� e�ipÞ

� e�iP̂ ðpÞba0 ðpÞ �
X
p

bayðpÞc�ðpÞ:

(22)

It is not hard to check that these definitions give us the
results obtained in the previous section. In the above ex-
pression the sum over momenta has increments of 2�

J .10

Commuting two central charges Q will give us the
central charge P :

fQ;Qg ¼ ei�̂e�iP̂
X
p

byðpÞðeip � 1ÞeiP̂ ðpÞbðpÞ

þ ei�̂e�iP̂
X
p

cyðpÞðeip � 1ÞeiP̂ ðpÞcðpÞ ¼ P :

(23)

9The subscript z is used in this section to distinguish the
creation operator byz for the boson Z from the creation operator
bay for the two bosonic impurities.

10The operator e�i�̂ does not commute with the sum over the
momenta, as it changes the increments in the sum. But in the
very large limit of J, this change will be negligible.
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One can show that the central charge takes the much more
common form11:

P ¼ ei�̂e�iP̂ðeiP̂ � 1Þ ¼ ei�̂ð1� e�iP̂Þ: (24)

To summarize, we found expressions for the supercharges
as operators in momentum space, as well as for their
commutation relations, in the large J limit. These expres-
sions once applied to states with K impurities will result in
the expressions obtained in the previous section.

IV. SUSY GENERATORS IN AdS5 � S5

This section will be devoted to determining the action of
the supercharges from the string action in AdS5 � S5 on a
lattice string, followed by a comparison of its structure to
supercharge actions obtained in the previous Sec. III C.

We now turn to the action of the supercharges from the
AdS5 � S5 perspective. We start from the results of
[16,19]. In Appendix B we find a summary of those results,
and their restriction to the suð2j2Þ subsector. The fermi-
onic supercharges Q and S are given by

S�a ¼�1

2

Z
d�e�ði=2Þx�ði
�ð2PY þ iYÞa� ����ab


y
�Y

0bÞ;

Qa
� ¼ 1

2

Z
d�eði=2Þx�ði
y�ð2PY � iYÞa þ ����

ab
�Y0
bÞ:

Before continuing, let us notice that the coordinate x�ð�Þ
obeys

x�ð�Þ ¼
Z �

�r
d�0x0�ð�0Þ þ x�ð�rÞ

¼
Z �

�r
d�0�wsð�0Þ þ x0�;

where x0� ¼ �wsð�Þ is the world sheet momentum density.
The total world sheet momentum is given by pws ¼R
r
�r d��wsð�Þ.
We now want to perform a mode expansion. To do so we

will follow the notation of [17]. For the bosonic fields we
have

Ya ¼ 1ffiffiffiffi
!

p ðAa þ By
a Þ;

Pa ¼
ffiffiffiffi
!

p
4i

ðAya � BaÞ;

Ya ¼ �Ya ¼ 1ffiffiffiffi
!

p ðAya þ BaÞ;

Pa ¼ �Pa ¼ i

ffiffiffiffi
!

p
4

ðAa � By
a Þ;

(25)

where ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
~�@2�

q
, and ~� is the effective coupling

constant (light-cone gauge) in the pp-wave limit ~� � 4�
P2
þ
,

kept finite when Pþ, � ! 1. For the fermionic fields we
have


� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ 1

!

�s
c�; 
y� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ 1

!

�s
cy�: (26)

With these expansions, we get the following results:

i
�ð2PY þ iYÞa ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!þ 1

2!

s
c�

�
� ffiffiffiffi

!
p
2

ðAa � By
a Þ þ 1ffiffiffiffi

!
p ðAa þ By

a Þ
�
;


y�Y
0b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
!þ 1

2!

s
cy�

ffiffiffiffi
~�

p
@�ffiffiffiffiffiffiffi
2!

p ðAyb þ BbÞ:

We will be keeping Y � By, dropping the oscillators A,

Ay. Then up to order Oð
ffiffiffiffi
~�

p
Þ,

Qa
� ¼ 1

4

Z
d�eði=2Þx�ðcy�Ba þ ffiffiffi

2
p

����
abc�

ffiffiffiffi
~�

p
@�B

y
b Þ:
(27)

The same can be done for the supercharge S, which then
becomes

S�a ¼ 1

4

Z
d�e�ði=2Þx�ðc�By

a þ ffiffiffi
2

p
����abc

y
�

ffiffiffiffi
~�

p
@�B

bÞ:
(28)

For a comparison with the super Yang-Mills super-
charges found in Sec. III C, we need to discretize the above
results. To do so recall that r ¼ Pþ=2, and

R
r
�r d� ¼ Pþ.

Then the lattice version of Q is

Qa
� ¼ 1

4

XPþ

‘¼1

eix
0�=2

�Y‘
k¼0

eði=2Þ�ðkÞ
�
fcy�ð‘ÞBað‘Þ

þ ffiffiffi
2

p
����

abc�ð‘Þ
ffiffiffiffi
~�

p
ðBy

b ð‘Þ � By
b ð‘� 1ÞÞg

¼ 1

4

XPþ

‘¼1

eði=2Þx0�eði=2Þpð‘Þfcy�ð‘ÞBað‘Þ

þ ffiffiffi
2

p
����

ab
ffiffiffiffi
~�

p
ðBy

b ð‘Þ � By
b ð‘� 1ÞÞc�ð‘Þg; (29)

where pð‘Þ ¼ P
‘
k¼1 �ðkÞ.

To continue, we need to write what pð‘Þ does to an
excitation:

eði=2Þpð‘Þ�ð‘kÞe�ði=2Þpð‘Þ ¼
�
�ð‘kÞ ‘k < ‘
�ð‘k þ 1Þ ‘k > ‘

:

By performing the following change of variables, cy�ð‘Þ !
e�ði=2Þx0�e�ði=2Þpð‘Þcy�ð‘Þ, the charge becomes

11It can be proven by using the property (valid for any power n,
proven by induction, and for � fermionic or bosonic)

P̂ nðpÞ�yðp0Þ ¼ �yðp0Þ½
ðp� p0Þp0 þ P̂ ðpÞ�n:
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Qa
� ¼ 1

4

XPþ

‘¼1

fcy�ð‘ÞBað‘Þ þ ffiffiffi
2

p
����

ab
ffiffiffiffi
~�

p
eði=2Þx0�eði=2Þpð‘Þc�ð‘Þeði=2Þpð‘Þeði=2Þx0�ðBy

b ð‘Þ � By
b ð‘� 1ÞÞg

¼ 1

4

XPþ

‘¼1

fcy�ð‘ÞBað‘Þ þ ffiffiffi
2

p
����

ab
ffiffiffiffi
~�

p
eix

0�ðBy
b ð‘Þ � By

b ð‘� 1ÞÞeipð‘Þc�ð‘Þg: (30)

The other supercharge S�a can also be determined to be

S�a ¼ 1

4

XPþ

‘¼1

e�ði=2Þx0�e�ði=2Þpð‘Þðc�ð‘Þeði=2Þpð‘Þeði=2Þx0�By
a ð‘Þ þ

ffiffiffi
2

p
����abe

�ði=2Þx0�e�ði=2Þpð‘Þcy�ð‘Þ
ffiffiffiffi
~�

p
ðBbð‘Þ � Bbð‘� 1ÞÞÞ

¼ 1

4

XPþ

‘¼1

ðBy
a ð‘Þc�ð‘Þ þ

ffiffiffi
2

p
����ab

ffiffiffiffi
~�

p
e�ix0�e�ipð‘Þcy�ð‘ÞðBbð‘Þ � Bbð‘� 1ÞÞÞ: (31)

If we wrote these charges in momentum space, we would obtain the exact structure for the supercharges (22), as long as we
make the correspondence that the conjugate pair ðx0�; PþÞ $ ð�̂; Ĵ Þ. In the above expressions, x0� plays the part of the
length changing operator, as it is the conjugate variable to Pþ, the total light-cone momentum, which is in its turn related to
the width of the world sheet cylinder. For closed strings the total world sheet momentum pws has to vanish (on shell)—-
level-matching condition. If we relax this condition (off shell) and take Pþ ! 1, then we obtain the centrally extended
algebra with extra central charges C, C� added to the Hamiltonian H (the same as the generators of translations P and
boosts K).

One other way of checking the results is by writing the supercharges in the first quantized framework. Choosing again a
state such that

j�1 
 
 
�K;Pþi ¼
XPþ

fmig¼0

eip1m1þ


þipKmK�1ðm1Þ 
 
 
�KðmKÞj0;Pþi;

where �iðmiÞ ¼ bmi
z �ib

�mi
z , with bz being the oscillators equivalent to the field Z. Then

Qa
�j�1 
 
 
�K;Pþi ¼ 1

4

XK
k¼1

�Yk�1

m¼1

ð�1ÞFðmÞ
��
�ð�k; B

y
b Þ�a

bj�1 
 
 
 cy�ðkÞ 
 
 
�K;Pþi

þ
ffiffiffiffiffiffi
2~�

p
�ð�k; c

y
�Þ�ab���

� YK
l¼kþ1

eipl �YK
l¼k

eipl

�
j�1 
 
 
By

b ðkÞ 
 
 
�K;Pþ þ 1i
�
: (32)

Doing the same calculation for the S generator, one gets

S�aj�1 
 
 
�K;Pþi ¼ 1

4

XK
k¼1

�Yk�1

m¼1

ð�1ÞFðmÞ
��
�ð�k; c

y
�Þ��

��1ðm1Þ 
 
 
 ðBy
a ðkÞÞ 
 
 
�KðmKÞj0;Pþi

þ
ffiffiffiffiffiffi
2 ~�

p
�ð�k; B

y
b Þ����ab

� YK
l¼kþ1

e�ipl �YK
l¼k

e�ipl

�
j�1 
 
 
 cy�ðkÞ 
 
 
�K;Pþ � 1i

�
: (33)

From this we can again see that the actions of the
supercharges Q and S have a similar structure at one
loop, on both sides of the correspondence. But while the
results presented in this section are perturbative in ~� (BMN
limit), the results presented in the previous section are
perturbative in the ’t Hooft coupling �, so one cannot
perform a direct comparison.

V. CONCLUSIONS

In this paper we studied in detail the Q, S generators of
the extended algebra suð2j2Þ in the plane-wave matrix
theory formalism. By using a coherent basis we determined
the supercharges in the nonlocal notation of Beisert [9] (as

MATRIX REDUCTION AND THE suð2 j 2Þ . . . PHYSICAL REVIEW D 79, 086014 (2009)

086014-11



well as in the local twisted notation), and determined some
of the coefficients in this notation up to order OðgYMÞ.

We also determined the anticommutation relations of
these supercharges and obtained the expected results for
the central charges P, K, and H. We saw that we needed to
know the Hamiltonian up to two loops in order to have a
closed (anti-)commutation relation between Q and S.

We finally wrote a first quantized formulation of the
supercharges obtained directly from the sigma-model ac-
tion for the string. Having the supercharges written in that
way allowed us to compare their structure with what we
had previously calculated from the gauge side.

The evidence seems to point to N ¼ 4 SYM and IIB
superstring theory being integrable models in the ’t Hooft
limit. We also said that the scattering matrix is completely
defined by the underlying symmetry algebra psuð2; 2j4Þ.
One finds that the S matrix actually retains a symmetry
algebra that is two copies of a central extension of
the psuð2j2Þ algebra, in particular, psuð2j2Þ2R3 ¼
suð2j2Þ2R2. This symmetry of the S matrix is expected
to be a Yangian [37–39], and have an underlying Hopf
algebra [40,41]. (See also [42–44].) Having these new
developments in mind, it would be interesting to apply
the methods used in this paper to the study of the Hopf
algebra related to the central extension and get some results
on the corresponding Yangian generators.

The sector of near 1=2 BPS operators in N ¼ 4 super
Yang-Mills theory has been well studied by the use of
collective methods [35,36], and the same methods can be
used to study the elements of the algebra in the 1=4 BPS
sector (work in progress).
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APPENDIX A: COMMUTING THE suð2j2Þ
SUPERCHARGES UP TO TWO LOOPS

The expressions found here are restrictions to the
suð2j2Þ subsector of the full sector suð2j3Þ found in
[20]. The supercharges at order g0, Q0, and S0, at order
g1, Q1, and S1, and at order g

2, Q2, and S2 in the dilute gas
approximation can be written as follows:

ðQ0Þb� ¼
�
b
�

�
; ðS0Þ�a ¼

�
�
a

�
;

ðQ1Þb� ¼ Affiffiffi
2

p "��0"bb
0
�
�0

b03

�
�
�
�0

3b0

� !
;

ðS1Þ�a ¼ Affiffiffi
2

p "aa0"
��0

�
a03
�0

�
�
�
3a0

�0

� !
;

ðQ2Þb� ¼
�
A2

4
� i

2
�3 þ i

2
�4

� �
b3

�3

�
þ
�
3b

3�

� !

þ
�
�A2

4
� i�1

� �
b3

3�

�
þ
�
3b

�3

� !
;

ðS2Þ�a ¼
�
A2

4
þ i

2
�3 � i

2
�4

� �
�3

a3

�
þ
�
3�

3a

� !

þ
�
�A2

4
þ i�1

� �
�3

3a

�
þ
�
3�

a3

� !
:

We will be using the notation used in [20]. The index 3

above means an insertion of a field Z. The action of f�bc
c�b

g
on a state looks for a sequence of a fermion followed by
two bosons, and permutes them in the order second boson-
fermion–first boson. As an example in suð2j3Þ, where
indices 1, 2, and 3 correspond to bosons and indices 4, 5
correspond to fermions, we have�

�bc
c�b

�
j142 334 452i ¼ j134 234 452i þ j242 334 415i:

Determining the anticommutation relations, we have

2

A2
fðS1Þ�a ; ðQ1Þb�g ¼ �b

a�
�
�

1

A2
H2

� �b
a 2

�
�
�

�
�
�
3�
�3

�
�
�
�3
3�

�� �

� ��
� 2

�
b
a

�
�
�
3b
a3

�
�
�
b3
3a

�� �
;

2

A2
fðS2Þ�a ; ðQ0Þb�g þ

2

A2
fðS0Þ�a ; ðQ2Þb�g

¼ 2 ��
�

�
b
a

�
þ �b

a

�
�
�

�� �
� ��

�

�
3b
a3

�
�
�
b3
3a

�� �

� �b
a

�
3�
�3

�
þ
�
�3
3�

�� �
:

Then the sum of these anticommutators gives

fðS1Þ�a ; ðQ1Þb�g þ fðS2Þ�a ; ðQ0Þb�g þ fðS0Þ�a ; ðQ2Þb�g
¼ 1

2�
b
a�

�
�H2;

where the two-loop contribution for the Hamiltonian (di-
lute gas approx) is
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1

A2
H2 ¼ 2

�
a
a

�
þ 2

�
�
�

�
�
�
a3
3a

�
�
�
3a
a3

�
�
�
�3
3�

�

�
�
3�
�3

�
:

From the results presented above, we can see that we can
only get the complete order g2 of the Hamiltonian from the
commutation of the supercharges if we consider their two-
loop contributions.

APPENDIX B: THE Q SUPERCHARGES IN THE
suð2j2Þ SECTOR, ON THE STRING SIDE

As can be seen in [16,19], we can write the charges as

QM ¼
Z

d�ei�x��ðB1ðx; pÞ þ �B3ðx; pÞ þ 
 
 
Þ
þOð�3Þ; (B1)

where we only kept the term linear in fermion fields, and
kept all the bosonic terms of the expansion [Bnðx; pÞ is the
term with a product of n bosonic fields].

The next step is to determine the Poisson brackets of two
charges with �1 ¼ �2 ¼ 1. For example (see the appendix
of [19]),

fQ�
a ;Q

�
b g � ����ab

Z r

�r
d�e�ix�

�
x0� þ d

d�
fðx; pÞ

�
;

where fðx; pÞ is a local function of the transverse fields.
The result for f �Qa

�; �Q
b
�g can be obtained by conjugation.

Integrating this expression, we get

fQ�
a;Q

�
bg � ����ab

Z r

�r
d�

d

d�
eix�

¼ ����abe
�ix�ð�rÞðe�i½x�ðrÞ�x�ð�rÞ� � 1Þ:

We know that pws ¼ x�ðrÞ � x�ð�rÞ. We also impose
the boundary condition x�ð�rÞ ¼ x0�, which is the zero
mode of x�, conjugate to Pþ. Then

fQ�
a;Q

�
bg �

1

�
����abe

�ix0�ðe�ipws � 1Þ;

f �Qa
�; �Q

b
�g �

1

�
�ab���e

ix0�ðeipws � 1Þ;

and consequently, the central charges are c, c� with

c ¼ 1

�
e�ix0�ð1� eipwsÞe�ipws : (B2)

Looking at the value of the central charge here and the one
obtained from the spin-chain formalism, we can conclude
that the results are correct up to an overall phase e�ipws , as
long as we match fQ; �Qg $ fS;Qg and fC;Cyg $ fK;Pg.
This overall phase is natural, as different boundary con-
ditions for x� will differ from each other by such a phase.
Also the algebra (1) allows a Uð1Þ automorphism, which

means we can always multiply all supercharges by some
phase that can depend on all central charges.

1. Some comments

In the case of Pþ infinite, the zero mode x0� vanishes, but
the same is not true for finite light-cone momentum. This
brings some problems, as for Pþ (which is effectively the
length of the string) finite, the transverse fields do not have
to vanish at the string points, and the symmetry algebra is
thus changed.
At the quantum level, both pws and x0� are promoted to

operators P, X0�, and the central charges are

C ¼ 1

�
e�iX0�ðe�iP � 1Þ; (B3)

and its conjugate Cy. X0� is the conjugate quantum opera-
tor of Pþ. If we consider a state Pþjpþi ¼ pþjpþi, then a
state ei�X

0�jpþi obeys
Pþei�X

0�jpþi ¼ ð�þ pþÞei�X0�jpþi: (B4)

Because Pþ acts as the length of the string, the operator

ei�X
0� will be the length changing operator. The Hilbert

space of the theory will be a direct sum,H ¼ L
pþH pþ ,

of spaces of each of the eigenvalues of Pþ.

2. suð2j2Þ subsector and mode expansion

The explicit form of the charges QM was determined in
[19]. The algebra J includes two psuð2j2Þ subalgebras.
We will be focusing on the psuð2j2ÞR.
The leading quadratic order of (B1) can be read from the

results in [19]. The fermionic charges are at leading order:

Q�
a ¼ � 1

2

Z
d�e�ði=2Þx�½i
�ð2PY þ iYÞa

þ ð2PZ � iZÞ��y
a � 
y�Y0

a � iZ0��a

þ ����abði
�ð2PY þ iYÞb þ ð2PZ � iZÞ��yb

� 
y�Y
0b � iZ0

��
bÞ�; (B5)

�Q�
a ¼ 1

2

Z
d�eði=2Þx�½i
y�ð2PY � iYÞa � ð2PZ þ iZÞ��a

þ 
�Y
0a � iZ0

��
ya þ ����

abði
y�ð2PY � iYÞb
� ð2PZ þ iZÞ��b þ 
�Y0

b � iZ0��y
b Þ�¼ ðQ�

aÞy:
(B6)

We want to restrict ourselves to the suð2j2Þ subsector of
[10]. This corresponds to keeping only the 2 complex
coordinates Ya and the respective conjugate momenta Py.
These will correspond, in the SYM side, to our bosonic
excitations 
a, with a ¼ 1, 2. In terms of the fermions we

will be interested in only keeping 
�, 
y�, which will
correspond to the 2 fermionic fields c �, c

y� from SYM.
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The vacuum of the fields Z in Yang-Mills theory will, in
this case, correspond to [4]

1ffiffiffi
J

p
NJ=2

TrðZJÞ $ j0; pþi:

With these restrictions, the fermionic supercharges (B5)
and (B6) become

S�a ¼�1

2

Z
d�e�ði=2Þx�ði
�ð2PY þ iYÞa � ����ab


y
�Y

0bÞ;

Qa
� ¼ 1

2

Z
d�eði=2Þx�ði
y�ð2PY � iYÞa þ ����

ab
�Y0
bÞ:
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