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We study n-point boundary correlation functions in timelike boundary Liouville theory, relevant for

open string multiproduction by a decaying unstable D brane. We give an exact result for the one-point

function of the tachyon vertex operator and show that it is consistent with a previously proposed relation to

a conserved charge in string theory. We also discuss when the one-point amplitude vanishes. Using a

straightforward perturbative expansion, we find an explicit expression for a tachyon n-point amplitude for

all n, however the result is still a toy model. The calculation uses a new asymptotic approximation for

Toeplitz determinants, derived by relating the system to a Dyson gas at finite temperature.
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I. INTRODUCTION AND SUMMARY

String theory contains D branes of opposite charge, so
one should be able to understand their annihilation process.
A related problem is the decay of a single unstable brane,
such as aD brane in bosonic string theory. A simple model
for theD-brane decay describes a process starting from the
infinite past, involving a spatially homogenous tachyon
field rolling towards the true minimum of its effective
potential [1,2]. A basic open problem is to calculate tree-
level string scattering amplitudes in the rolling tachyon
background, corresponding to production of multiple
closed or open strings by the decaying brane. There are
both conceptual and technical aspects to this problem.
Because the background is time dependent, there are dif-
ferent ways to define the notion of vacuum and asymptotic
states. A technical framework for the bosonic homogene-
ous brane decay is the timelike boundary Liouville theory
(TBL) coupled to 25 free massless spacelike bosons, and
the problem of computing n-point correlation functions
[3]. Calculations are difficult since they involve compli-
cated coupled integrals and/or nonintuitive analytic
continuations.

In this paper we focus on calculating boundary n-point
functions in TBL. The two-point function, associated to the
rate of open string pair production by a decaying brane, has
been investigated before [3,4], and also in a curved space-
time (AdS3) in [5]. (Other string production work is found
in [6–16].) A simple toy model is obtained by moving to
the minisuperspace approximation, where strings are
pointlike, and the problem reduces to a relatively simple
quantum mechanical scattering problem. Returning back
to the original setup, the standard prescription is to start
from spacelike boundary Liouville theory (SBL), where

the two-point and three-point functions have known well-
defined analytic expressions [17–19], and then continue to
the timelike theory by b ! i, � ! iX0. However, the
continuation must involve a prescription to avoid the ac-
cumulation of an infinite number of poles and zeroes which
would render the answer ill defined. One way to motivate a
prescription is by aiming to make contact with the minis-
uperspace analysis. This procedure gives a physically
pleasant answer, exponentially suppressed open string
pair production at high energies. However, some doubt
remains, as the prescription for the analytic continuation
was not unique and some of the steps involved are rather
indirect. It is desirable to pursue alternative approaches;
they may give further support to the previous analysis or
lead to other reasonable prescriptions. Moreover, the pre-
vious method is difficult to extend beyond the two-point
function.
An alternative method to compute correlation functions

in TBL was given in [15]. Instead of indirect arguments,
the method [15] is based on a straightforward perturbative
expansion, and the observation that random matrix theory
(RMT) [20] techniques become applicable to the ensuing
integrals. This method was successfully applied to com-
pute the bulk-boundary function [15,16]. On the other
hand, the same problem was also considered by Liouville
theory methods. The bulk-boundary function was calcu-
lated in spacelike Liouville theory in [21]. Reference [22]
then investigated the analytic continuation from spacelike
Liouville theory to timelike theory and found a result for
the bulk-boundary function which is similar to that of [15].
In the method of [15], correlation functions are related to

expectation values of periodic functions (Fisher-Hartwig
symbols) in the circular ensemble of unitary matrices
(CUE), also equivalent to Toeplitz determinants of
Fourier coefficients. This observation was extended to
n-point functions and superstrings in [16]. Alternatively,
the n-point functions can be related to thermal expectation
values in a classical log gas of unit charges in two dimen-
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sions, e.g., the Dyson gas. In [15], this observation was
made at a formal level, while the problem of actually
finding explicit answers for the correlation functions still
remained.

In the present paper, we use the interpretation of the
correlations functions as thermal Dyson gas expectation
values and then use physical insight to find analytic ex-
pressions. We are able to derive an expression for an
n-point amplitude. The virtue of our approach is that it is
relatively straightforward, and it is powerful enough to for
a first time yield an analytic expression for an n-point
amplitude for all n. The downside is that at the moment
we do not have quantitative control of our approximations
by the time we compute the amplitude. Consequently, we
do not yet know how to compare the result with the
previous one for the open string pair creation amplitude.
Nevertheless, we consider the techniques that we have
developed to be a step forward towards full control of the
scattering problem.

The paper is organized as follows. Section II begins with
a review of some facts of TBL. We present some prelimi-
nary calculations and discuss the one-point function and
the vanishing one-point amplitude. Next, we present a
contour integration trick which is powerful in summing
the series expansion for the correlation functions. We then
use the one-point function formula to test a recently pro-
posed master formula [23] for a string theoretic definition
of a conserved charge. Section III reviews the relation of
TBL to Dyson gas at finite temperature. In Sec. IV, we use
this connection to derive an approximation for the integrals
which appear as coefficients in the series expansion of an
n-point amplitude, then use the approximation for the
coefficients and the contour integration trick of Sec. II to
derive a toy model result for the amplitudes. Some calcula-
tional details are left in Appendices A, B, and C.

II. BOUNDARYAMPLITUDES IN TIMELIKE
LIOUVILLE THEORY

Let us first review some facts to identify the problem of
interest. Full scattering amplitudes in bosonic string theory
involve contributions from the timelike X0 and the 25

spacelike directions ~X ¼ ðXIÞ. However, as discussed in
[7], one can simplify the calculations by adopting a gauge
where the string vertex operators factorize into a form

V ¼ ei!X0
Vspð ~XÞ; (1)

so that all dependence on X0 is in the simple exponential
factor, while Vsp contains the more complicated polariza-

tion tensor factor and only depends on the spacelike direc-

tions ~X. For a homogeneous rolling tachyon background
depending only on X0, all the complications arise from
contractions in the X0 direction between the background
and the vertex operators, while contractions in the spatial
directions give a simple contribution. Correspondingly, the

n-point correlation functions in the homogeneous rolling
tachyon background factorize into a product of an n-point

function of ei!aX
0ð�aÞ (where the label a ¼ 1; . . . ; n) in the

TBL theory and an n-point function of Vspð ~ka; ~Xð�aÞÞ in the
theory of free spacelike bosons,

�Yn
a¼1

ei!aX
0ð�aÞ

�
TBL

�Yn
a¼1

Vspð ~ka; ~Xð�aÞÞ
�
free

� e
�i
P
a

~ka� ~x�Yn
a¼1

ei!aX
0ð�aÞ

�
TBL

Ffree½ð ~kaÞ; ð�aÞ�; (2)

where we separated the spacelike zero modes. The on-shell

conditions k2a ¼ �!2
a þ ~k2a ¼ �m2

a can be satisfied for a
range of values of !a. The problem of interest is to
calculate n-point functions in TBL for generic !a. We
will also try to compute the full scattering amplitude for
n open string tachyons.
The action of the TBL theory is

STBL ¼ � 1

2�

Z
disk

@X0 �@X0 þ �
I

dteX
0
: (3)

Eventually we will be interested in the open string n-point
tachyon amplitude

Anð!1; ~k1; . . . ;!n; ~knÞ ¼
Z

dp ~xe
�i
P
a

~ka� ~x Z Yn
a¼1

d�a
2�

� Ffree½ð ~kaÞ; ð�aÞ�
Z

DX0e�STBL

� Yn
a¼1

ei!aX
0ð�aÞ; (4)

at tree level, where the momenta ~ka are in the spacelike
directions of the decaying p-dimensional brane, �a denote
points on the boundary of the disk (unit circle).1 For
tachyons the contribution from the spacelike directions
(with divergent self-contractions removed) is

Ffree½ð ~kaÞ; ð�aÞ� ¼
Y
a<b

jei�a � ei�b j2 ~ka� ~kb ; (5)

with the on-shell condition k2a ¼ �!2
a þ ~k2a ¼ 1. The con-

servation of spatial momentum has been discussed, e.g., in
[15]. As discussed in the introduction, different approaches
have been used for the calculation. We will follow the
approach of [1,15] and first expand An as a power series,
in powers of the boundary interaction. We also separate out
the overall zero mode x0 dependence, so An becomes

1We could use the conformal Killing group (CKG) PSLð2; RÞ
to fix three of the vertex operator coordinates �a, but we have
chosen to leave them unfixed and average over the locations.
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An ¼ �0;
P
a

~ka

Z Yn
a¼1

d�a
2�

F½� � ��

�
Z

dx0eix
0
P

n
a¼1

!a
X1
N¼0

ð�2��ex
0Þ

N!

Z YN
i¼1

dti
2�

�
�
eX

00ðt1Þ � � � eX00ðtNÞ
Yn
a¼1

ei!aX
00ð�aÞ

�
: (6)

After the Wick contractions and substituting the Green’s
functions, the amplitude takes the form of a power series of
coupled integrals.

The amplitude An then becomes

Anð�1; . . . ; �nÞ ¼ �0;
P
a

~ka

Z
dx0 exp

�
x0

Xn
a¼1

�a

�

� �Anð2��ex0Þ;

where �AnðzÞ ¼
X1
N¼0

ð�zÞNI�1;...;�nðNÞ; (7)

where we have adopted the notation

z � 2��ex
0
; �a � i!a; (8)

and the integrals

I�1;...;�nðNÞ ¼ 1

N!

Z YN
i¼1

dti
2�

Yn
a¼1

d�a
2�

� Y
1�i<j�N

jeiti � eitj j2
�

�
�YN
i¼1

Yn
a¼1

jei�a � eiti j2�a

�

�
� Y
1�a<b�n

jei�a � ei�b j2�a�bþ2 ~ka� ~kb
�
; (9)

which include the spacelike contribution F. In order to do
the sum over N we need to work out the ti integrals for
arbitrary N. When calculating the integrals it is often
useful to assume that �a are positive real numbers and
continue to imaginary �a, i.e., to real energies !a, in the
end. This is not problematic since the ti integrals converge
for Re�a >�1=2 and thus define an analytic function of
�a in this region.

A. Some preliminary considerations

The simplest case to consider is n ¼ 1, the one-point
boundary amplitude. Invariance under translation requires
the one-point function to vanish unless the operator at the
boundary has zero conformal weight, rendering the case
trivial. However, it turns out that some calculations will be
useful for the nontrivial case n > 1. It is also known that in
a noncompact conformal field theory (CFT) (integrated)
one-point functions can be nonzero [23,24]. Reference [23]
proposed a relation between a one-point function and a
spacetime boundary term. In our case, we can use a TBL

one-point function as a check of the master formula in [23]
and find it to be consistent.
Let us postpone other discussions for a moment and just

focus on a straightforward calculation. We consider the
series that appears in (7), with n ¼ 1,

�A 1ðzÞ ¼
X1
N¼0

ð�zÞN � I�ðNÞ; (10)

where now

I�ðNÞ ¼ 1

N!

Z 2�

0

d�

2�

Z �YN
i¼1

dti
2�

jei� � eiti j2i!
�

�
� Y
1�i<j�N

jeiti � eitj j2
�

(11)

¼ 1

N!

Z �YN
i¼1

dti
2�

j1� eiti j2�
�� Y

1�i<j�N

jeiti � eitj j2
�
:

(12)

Here we denoted � ¼ i!, where ! is the energy of the
open string.2 It is interesting to note that the integrand is
independent of �, the coordinate of the vertex operator at
the boundary, so that the � integral is trivial. In other words,
the integrand is invariant under translations along the
boundary, independently of � ¼ i!. However, the total
one-point function also contains the contribution from
the spacelike directions with a �0;k factor, which along

with the on-shell condition will constrain !. But let us
focus back to the properties of the series (10).
The same series has been considered in the context of a

general bulk-boundary amplitude, which has been calcu-
lated in closed form in [15,16]. The bulk-boundary ampli-
tude involves

Â 1þ1ð!c;!oÞ �
Z

dx0eið!oþ!cÞx0
X1
N¼0

ð�zÞNIi!o
ðNÞ;

(13)

where !c is the energy of the bulk operator
expfi!cX

0ðz; �zÞg and Ii!o
ðNÞ is the integral (11) evaluated

at � ¼ i!o, where !o is the energy of the boundary
operator.3 First, the integral evaluates to the relatively
simple expression

I�ðNÞ ¼ YN
j¼1

�ðjÞ�ðjþ 2�Þ
�ðjþ �Þ2

¼ Gð�þ 1Þ2
Gð2�þ 1Þ

GðN þ 2�þ 1ÞGðN þ 1Þ
GðN þ �þ 1Þ2 ; (14)

2Note that (after removing the self-contractions in the space-
like directions) Ffree ¼ 1.

3The one-point amplitude is formally the limit !c ! 0 of the
bulk-boundary amplitude (13). We also omitted a �-function
term [see Subsection II B].
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where G is the Barnes G function. After converting to
integral representation of the � functions, the sum over N
in (10) can be done [15,16], leading to the result

Â1þ1ð!c;!oÞ ¼ �i�
ð2��Þ�ið!cþ!oÞ

sinh�ð!c þ!oÞ
� exp

�Z 1

0

dtð1� e�i!otÞ2
2tð1� coshtÞ

� ð1� eið!cþ!oÞtÞ
�
: (15)

We would first like to point out an interesting feature,
which was not investigated in [15,16]. Let us write it in
terms of the Barnes G functions, using the integral repre-
sentation

logGðzþ 1Þ ¼
Z 1

0

dt

t
e�t

�
zðz� 1Þ

2
� z

1� e�t

þ 1� e�zt

ð1� e�tÞ2
�
; ReðzÞ>�1: (16)

We find

Â1þ1ð!c;!oÞ ¼ �i�
ð2��Þ�ið!cþ!oÞ

sinh�ð!c þ!oÞ Ji!o
ðið!c þ!oÞÞ;

(17)

where

J�ðsÞ ¼ Gð�þ 1Þ2
Gð2�þ 1Þ

Gð2�� sþ 1ÞGð�sþ 1Þ
Gð�� sþ 1Þ2 : (18)

The asymptotic behavior [15,16] follows easily from
(18),

Ji!o
ðið!c þ!oÞÞ �!c!1 !�!2

o
c ; (19)

by using the asymptotic series of the Barnes G function

logGðzþ 1Þ ¼ z2
�
1

2
logz� 3

4

�
þ z

2
log2�� 1

12
logz

þ � 0ð�1Þ þOð1=z2Þ: (20)

An interesting feature is that (18) is a natural continu-
ation of (14) to noninteger values, replacing N ! �s, but
(14) was the Nth coefficient in the series (13), while (18) is
essentially the sum.4 We will show how coefficients con-
vert to the sum in the next Subsection II B, by a new
contour integral trick which also allows a more controlled
investigation of the convergence of the series (13). The
other benefit of the calculation is that it can also be applied
to n-point amplitudes. But let us first continue with the
one-point function.

As seen by comparing (10) and (13), we can formally
use the result (17) to obtain a formula for the Fourier

transform of (10) by setting !c ¼ 0 and !o ¼ !, giving

Â1ð!Þ ¼ Â1þ1ð0; !Þ

¼ �i�
ð2��Þ�i!

sinh�!
exp

�
�
Z 1

0
dt

� ð1� e�i!tÞð1� cos!tÞ
tð1� coshtÞ

�

¼ ð2��Þ�i!�ði!ÞGði!þ 1Þ3Gð2� i!Þ
Gð2i!þ 1Þ : (21)

Notice that we will carefully rederive this formula in the
next subsection. The singularities and zeroes of this func-
tion are listed in Appendix C. In particular, the zeroes are
located at the imaginary axis, at ! ¼ in, where n is an
integer, except at n ¼ 0, �1. Consider then the full one-
point tachyon amplitude (the n ¼ 1 case of (7))

A 1ð!Þ ¼ �0; ~k

Z
dx0 expði!x0ÞA1ð2��ex0Þ

¼ �0;kÂ1ð!Þ: (22)

The momentum conservation condition ~k ¼ 0 along with

!2 ¼ �1þ ~k2 demands ! ¼ �i so that the amplitude
involves the operator expð	X0Þ. The result is

A 1ð!Þ ¼ �0; ~k
1
2ð��Þ�1: (23)

Note that the choice ! ¼ �i is related to the disk partition
function by

Â 1ð! ¼ �iÞ ¼ � 1

2�

Z
dx0

@

@�
Zdisk;�ðx0Þ ¼ 1

2��
;

(24)

where Zdisk;�ðx0Þ ¼ �A0ðx0Þ ¼ 1=ð1þ 2��ex
0Þ.

Conversely, for ! � �i, the on-shell condition requires
~k � 0 so that the one-point amplitude vanishes. Even
though the amplitude vanishes for generic !, the expres-
sion (21) will be met again in the context of higher point
amplitudes. It will be interesting to know its asymptotic
behavior in the limit j!j ! 1. It can be calculated to
arbitrary order by using the asymptotics of Barnes G
(20). The leading terms are

Â1ð!Þ ¼ �i�
ð2��Þ�i!

sinh�!
exp

�
!2

�
i�

2
sgnðRe!Þ þ 2 log2

�

� 1

4
logði!Þ � i�

12
sgnðRe!Þ þ 1

12
log2

þ 3� 0ð�1Þ
�
½1þOð!�2Þ�; (25)

where argð!Þ � ��=2.

B. A contour integral method

Next we calculate the integrated amplitude using a con-
tour integration trick which allows us to sum the series over

4A similar observation has been made in the case of bulk
amplitudes in spacelike Liouville theory in [25].
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N in (7) and analytically continue the resulting amplitude
to the region where the defining sum is not convergent. The
essential required feature of the coefficients I�ðNÞ is that
they should not diverge too fast for large N. For concrete-
ness and simplicity wewill first consider the series (10) and
(13). However, our method can also be applied to higher
point functions as we will discuss in Sec. IV. More pre-
cisely, the calculation can be generalized to the case of the
n-point amplitude (7) if we use a suitable approximate
form for the integral coefficients I�1;...;�nðNÞ. As the contour
integration method enables us to control the convergence
of the sum and the integral it is more rigorous than the
original calculation in [15,16].

We begin by studying the analytic structure of J�ðsÞ of
(18) and the asymptotics of I�ðNÞ for large N. We will first

consider the case where � is real and positive. Recall the
continuation of the coefficient formula (14) to noninteger
values of N ¼ �s, given by (18). From the asymptotic
formula of the Barnes G funtion (20) it immediately fol-
lows that J�ðsÞ has a powerlike behavior for large s,

J�ðsÞ ¼ Gð�þ 1Þ2
Gð2�þ 1Þ ð�sÞ�2

�
1þO

�
1

s

��
; args � 0:

(26)

In addition, sinceGðzþ 1Þ is an entire function with zeroes
at z ¼ �1;�2; . . . , the poles of J�ðsÞ are located at5 s ¼
�þ 1; �þ 2; . . . .

Thus in the region jzj< 1, where the sum in (13) con-
verges, the asymptotic behavior of J� in (26) enables us to

write the sum as

�A 1ðzÞ ¼
X1
N¼0

ð�zÞN � I�ðNÞ ¼ 1

2�i

I
C

�z�s

sin�s
J�ðsÞds;

(27)

where the contour C wraps around the negative real s axis
as depicted in Fig. 1, picking up the residues at the poles of
1= sinð�sÞ at s ¼ 0;�1;�2; . . . which produce the terms
in the series. Note that the zeroes of Gð1� sÞ in J�ðsÞ
cancel the poles of 1= sinð�sÞ for s ¼ 1; 2; 3; . . . Since
1= sinð�sÞ vanishes exponentially for large imaginary s,
we may deform the contour (keeping jzj< 1) in (27) to

�A 1ðzÞ ¼ 1

2�i

Z �þi1

��i1
�z�s

sin�s
J�ðsÞds; (28)

where 0< �< �þ 1. This integral converges everywhere
except for negative real z (if the principal branch of z�s

with j argzj<� is used) and thus defines the analytic

continuation of �A1ðzÞ to jzj 
 1, j argzj<�. Moreover,
for jzj> 1 we can continue to deform the contour to

�A 1ðzÞ ¼ 1

2�i

I
C0

�z�s

sin�s
J�ðsÞds; (29)

where C0 wraps around the positive real s axis as shown in
Fig. 1. The integral is convergent for all jzj> 1 so there are
no singularities in this region but a logarithmic branch cut
ending at z ¼ 1 which arises from the factor z�s. The
residue contributions at the poles of J�ðsÞ at s ¼
�þ 1; �þ 2; . . . give the 1=z expansion

�A 1ðzÞ ¼ ðC� þD� logzÞz���1

�
1þO

�
1

z

��
; (30)

where the constants C�, D� can be calculated using (18).

To summarize, from the different integral representa-
tions (27)–(29) it follows that the only singular points of
�A1ðzÞ are z ¼ �1 and z ¼ 1. In particular, on the inte-
gration path in the one-point amplitude

Â 1ð�Þ ¼
Z 1

�1
dx0e�x

0 �A1ðx0Þ (31)

i.e., z ¼ 2��ex
0 ¼ 0 . . .1, �A1ðzÞ has no singularities.

Using the series in (27) and in (30) we see that the inte-
grand vanishes exponentially

e�x
0 �A1ðx0Þ �x0!1 e�x0 ; e�x

0 �A1ðx0Þ �x0!�1 e�x
0

(32)

for large �x0 so the integral over x0 in (31) is convergent.
Moreover, note that inserting the definition of z in (28) we
find

�A 1ðx0Þ ¼
Z �þi1

��i1
�ð2��Þ�s

2�i

e�sx0

sin�s
J�ðsÞds (33)

which defines the inverse of the (bilateral) Laplace trans-
form. The inverse relation then gives the master formula
for the one-point amplitude in terms of J�ðsÞ,

>|z|   1

x x x x x x
γ

s

οοοοο

|z|   1>

c c’

FIG. 1. The different integration contours on the s plane that
define the analytic continuation of �A1ðzÞ for all values of z.
Integration over the contours C, �þ iR, and C0, converge for
jzj< 1, j argzj<�, and jzj> 1, respectively. The x’s and the o’s
denote the poles of J�ðsÞ= sin�s.

5For � ¼ 1; 2; . . . the poles are found at s ¼ 2�; 2�þ 1; . . . .
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fAðsÞ �
Z 1

�1
dx0esx

0 �A1ðx0Þ ¼ �ð2��Þ�s

sin�s
J�ðsÞ: (34)

The steps from (27) to (34) show how the analytic con-
tinuation of the coefficients of the series ends up as its sum.

From the asymptotics of �A1ðx0Þ we see that (34) con-
verges for 0< s < �þ 1, as expected from the positions of
poles of J�ðsÞ= sin�s [and the choice of � in (28)]. In

particular,

Â 1ð�Þ ¼ fAðs ¼ �Þ ¼ �ð2��Þ��

sin��
J�ð�Þ

¼ ð2��Þ���ð�ÞGð1þ �Þ3Gð2� �Þ
Gð2�þ 1Þ (35)

reproducing the result (21) above.
In the end, we want to continue the result (35) for the

integrated amplitude for imaginary � ¼ i!. For imaginary
� the above analysis is not essentially changed: the poles of
J�ðsÞ move to s ¼ i!þ 1; i!þ 2; . . . but still lie to the

right of the imaginary axis, so that �A1ðx0Þ vanishes ex-

ponentially �A1ðx0Þ � e�x0 for x0 ! 1. However, after
inserting s ¼ i! in (34) the convergence in the opposite
direction x0 ! �1 is lost. We find instead

ei!x0 �A1ðx0Þ �x0!�1 ei!x0 (36)

which signals the presence of a � function. Indeed, the
integral can be interpreted as6

Â 1ð!Þ ¼ ��ð!Þ þ ð2��Þ�i!�ði!Þ

� Gð1þ i!Þ3Gð2� i!Þ
Gð2i!þ 1Þ

¼ ð2��Þ�i!�ðið!� i	ÞÞGð1þ i!Þ3Gð2� i!Þ
Gð2i!þ 1Þ ;

(37)

where the i	 changes the value of ! slightly to that
direction where the x0 integral is convergent.

C. The one-point function as a boundary term in
spacetime

As discussed in [23], one difference between CFTs in
compact and noncompact target spacetimes is that in the
latter case boundary terms can spoil the holomorphicity of
the stress tensor. This modifies its operator-product expan-
sion (OPE) with other operators, and lead [23] to derive a
master formula relating the one-point function (on a sphere
or at the boundary of a disk) to a boundary term in space-
time, so as to give a string theoretic definition for a con-
served charge, as an extension from field theory. For a disk

one-point function, the master formula is

hOðz; �zÞi ¼ fN Z
dDx@


�Z
D2

d2z0e2!ðz0;�z0Þ
��

z0 þ z

2z

�
ðz0 � zÞ

� h@X
ðz0; �z0ÞOðz; �zÞiD2
þ
�
�z0 þ �z

2�z

�
ð�z0 � �zÞ

� h@X
ðz0; �z0ÞOðz; �zÞiD2

��
; (38)

where fN is a normalization factor, the metric on the disk

is ds2 ¼ e2!ðz;�zÞdzdz0, and Oðz; �zÞ is a local boundary
operator in the CFT with D-dimensional target space.
Reference [23] considered various applications where

open or closed string background gauge fields or gravita-
tional field were turned on. The open string rolling tachyon
background gives a nice new nontrivial example to test the
master formula (38). The world sheet action is nonpolyno-
mial, and the master formula involves two-point functions
in the interacting theory. We choose the local boundary
operator to be the exponential, O ¼ expfi!X0g, inserted
at7 z ¼ ei�. Its one-point amplitude is (21), which already
is a (space)time integral. So we need to show that the

integrand �A1ðx0Þ can be rewritten as a total derivative as in
(38). Our convention for the metric of the disk is ds2 ¼
dwd �w, so the relation to check is

�A 1ðx0Þ ¼ @Bðx0Þ
@x0

; (39)

where

Bðx0Þ ¼ fN Z
disk

d2w

�
w2 � e2i�

2ei�
h@X0ðw; �wÞei!X0ð�Þi0TBL

þ �w2 � e�2i�

2e�i� h �@X0ðw; �wÞei!X0ð�Þi0TBL
�
; (40)

where the primes indicate that we have separated the zero
mode x0. To show that this relation holds, we evaluate the
right-hand side. The details of this calculation are relegated
to Appendix A, in part because they involve a step that is
discussed in the next Sec. III. The end result is that (39)
holds, so that the one-point function is consistent with the
general expectation from (38).

III. ON COULOMB GAS RELATION

The TBL is related to a statistical mechanical system,
the Dyson gas of particles on a unit circle [26,27].8 The key
property is that the two-dimensional Green’s functions can
be interpreted as coming from two interacting Coulomb
gas particles confined on a circle,

6The result can be checked explicitly by writing �A1ðx0Þ ¼
�A1ðx0Þj!¼0 þ ½ �A1ðx0Þ � �A1ðx0Þj!¼0� where the first term is
simple to integrate and the latter does not contribute to the
singularity.

7The one-point function is eventually independent of the
location.

8The analogy has recently been extended to full S brane (or
timelike boundary sine-Gordon theory) [28] and to non-BPS half
S brane [29].
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Vðeiti ; eitjÞ ¼ � logjeiti � eitj j; (41)

where ti, tj are the respective angles. The perturbation

expansion in � of (3) becomes related to the grand canoni-
cal ensemble of unit charges on the circle,

ZG ¼ X1
N¼0

zN

N!

Z �YN
i¼1

dti
2�

�
e��H; (42)

where the inverse temperature is fixed to � ¼ 2, z is the
fugacity, and N! accounts for identical particles. The
Hamiltonian contains only a potential energy term9

H ¼ X
pairs

Vðti; tjÞ ¼ � X
1�i<j�N

logjeiti � eitj j: (43)

In this paper we focus only on the canonical ensemble.
As discussed in [27], correlators in TBL are related to
adding additional particles into the ensemble. The one-
point function (10) requires one additional particle with
an arbitrary charge � at an angle �. The Hamiltonian
becomes

H� ¼ � X
1�i<j�N

logjeiti � eitj j � �
X

i�i<j<N

logjei� � eiti j;

(44)

and the canonical partition function is

Z� ¼ 1

N!

Z d�

2�

Z �Y
i

dti
2�

�
e��H� (45)

¼ 1

N!

Z d�

2�

�Y
i

dti
2�

�Y
i<j

jeiti � eitj j2Y
i

jei� � eiti j2�:

(46)

The integrand does not depend on the angle �, hence it can
be consistently set to zero. We recognize Z� ¼ I�ðNÞ of
(11).

We can now draw insight from the physical interpreta-
tion to better understand the integrals and their various
extensions. As an example, consider the integral corre-
sponding to the canonical ensemble expectation value�XN
i¼1

cosð�� tiÞ
�
can

� 1

Z�

� 1

N!

Z Y
i

dti
2�

Y
i<j

jeiti � eitj j2

�Y
i

jei� � eiti j2�X
i

cosð�� tiÞ;

(47)

which corresponds to the sum of the projected relative
distances of the original charges to the additional charge.
In part by inspired guesswork we have found a result�XN

i¼1

cosð�� tiÞ
�
can

¼ � N�

N þ �
(48)

for the integral. We have not constructed a proof for this
formula, but have checked it for � ¼ 0, 1, 2, 3, 4 and for
any N, and a consistency check will be given in
Appendix B.10 We can visualize the � ! 1 limit (at finite
N) of the result (48) easily in Fig. 2: as the additional
charge becomes stronger, it forces the unit charges further
towards the antipodal point of the circle.

IV. THE n-POINT BOUNDARYAMPLITUDE

The full n-point amplitude (7) is very complicated and
so are the integral coefficients (9) even at small N, nð>1Þ.
In this section we will consider an approximation or a toy
model version of a full calculation. We begin by studying
the integrals (9). We interpret them as Toeplitz determi-
nants. One can then consider a known approximation in the
large N limit and try to improve it to be good enough to be
used in the series expansion (7) at every N, while hoping
for it to be simple enough so that the series can be summed.
We use the Coulomb gas analogue and find a physically

ξ
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+1

+1
+1

+1
+1
+1

+1
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+1

+1

+1

+1

+1
+1 +1
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+1

FIG. 2. Depicted is the interpretation of (48). On the unit circle, embedded in a heat bath, there are N positive unit charges and an
additional positive charge �. As the charge strength � increases, the repulsive force acting on the unit charges wins over their mutual
repulsion, forcing the unit charges closer to each other on the other side of the circle.

9See the discussion on the physical interpretation in the
original paper by F. Dyson [26].

10After the first version of this work was finished, we were
informed by H. Schomerus that he has constructed a proof [30]
of this formula. We thank him for bringing this to our attention.
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motivated improved asymptotic approximation of (9). This
approximation agrees with the previously known asymp-
totics at leading order in 1=N, but reproduces the next-to-
leading 1=N corrections to the asymptotics of the integrals
better than the old result (but not exactly). Even more
importantly, it is found to work well for small values of
N even up to N ¼ 0, which contribute significantly in the
final amplitude in the end. However, the approximation is
still simple enough to sum the series in N to calculate the
integrated n-point amplitude. In the approximation, essen-
tially the ‘‘interactions’’ between the �a insertions can be
neglected. In our end result, the n-point amplitude factor-
izes to a product of n independent one-point amplitudes.
We also present a simple example that helps to understand
and motivate the derivation in Appendix B.

A. Large N asymptotics

To start with, the ti integrals in (9) can be done [15,16]
giving

I�1;...;�n
ðNÞ ¼

Z Yn
a¼1

d�a
2�

� Y
1�a<b�n

jei�a � ei�b j2�a�bþ2 ~ka� ~kb
�

� detTN½f�; (49)

where detTN½f� is the N � N Toeplitz determinant of
Fourier coefficients of the function

f�1;...;�nðtÞ ¼
Yn
a¼1

jei�a � eitj2�a ; (50)

see [15,16] for more details.
The determinant is too complicated to allow us to sum

the series (7). However, Toeplitz determinants are known
to simplify at large N. In particular, the large N asymp-
totics of the determinant detTN½f� is known for (50). It
reads [31,32] (see also [33])

detTN½f� ¼ N
P

n

a¼1
�2
a

Y
1�a<b�n

jei�a � ei�b j�2�a�b

� Yn
a¼1

Gð�a þ 1Þ2
Gð2�a þ 1Þ

�
1þO

�
1

N

��
: (51)

Moreover, the asymptotic behavior of (49) factorizes

T�1;...;�nðNÞ � detTN½f�
Y

1�a<b�n

jei�a � ei�b j2�a�b

¼ Yn
a¼1

N�2
a
Gð�a þ 1Þ2
Gð2�a þ 1Þ

�
1þO

�
1

N

��

¼ Yn
a¼1

Gð�a þ 1Þ2
Gð2�a þ 1Þ

GðN þ 2�a þ 1ÞGðN þ 1Þ
GðN þ �a þ 1Þ2

�
�
1þO

�
1

N

��

¼ Yn
a¼1

T�a
ðNÞ

�
1þO

�
1

N

��
; (52)

where T�1;...;�nðNÞ is the asymptotically �a independent

factor of detTN½f� and we used (20) to write the asymp-
totics in terms of Barnes G functions (see also (26)). Here
T�ðNÞ ¼ I�ðNÞ is the one-point function discussed above

in Sec. II.
The asymptotic formula (52) has a nice physical inter-

pretation in terms of the classical Coulomb gas on a circle,
where T�1;...;�nðNÞ is the partition function for N identical

unit charges at the inverse temperature � ¼ 2, with n
additional particles having charges �1; . . . ; �n at fixed an-
gles �1; . . . ; �n. Let us assume for a moment that all �a are
positive integers.11 Then each particle with charge �a can
be thought to be a cluster of �a unit charges. We can then
imagine constructing a typical configuration of the gas
with the n test charges, from a gas of N þP

a�a unit
charges, by clustering unit charges at distinct locations to
form the test charges �a. For n <

P
n
a¼1 �a � N, the typi-

cal separation of unit charges is �1=N, much less than the
typical separation between the test charges/charge clusters.

Now, we can first interpret the N�2
a factors in (52) arising

from the self-energies of the charge clusters. For a cluster
with charge �a, the self-energy is given by12

Eself ¼ � X
1�i<j��a

logjxi � xjj ’
X

1�i<j��a

logN

’ �2
a

2
logN (53)

giving the contribution

e2Eself � N�2
a (54)

to the partition function. Second, the factorization of (52)
can be understood as the absence of intercluster interac-
tions at this level of approximation. A heuristic argument
could be the following. Consider a large number of unit
charges on the real axis (a piece of the unit circle after
magnification) with a typical separation d ’ 2�=N.
Choose � � N charges at x1; . . . ; x� near the origin (so

that x� � d) and perturb their locations, xk ! xk � �k, by

�k � d symmetrically such that
P�

k¼1 �k ¼ 0, to create a

cluster of charge �. The change in the electrostatic poten-
tial after creating the cluster is then

�VðxÞ ¼ �X�
k¼1

log

�
1þ �k

x� xk

�
(55)

as felt at point x outside the cluster, x > xk. For x � d we
find that the deformation of the potential vanishes rapidly,

11This is potentially a dangerous assumption, since eventually
we want to set �a ¼ i!a where typically !a are real, and naive
continuation from integers to complex plane is known to be
problematic—see, e.g., the discussion in [15]. We will return to
this issue in the end of the section.
12In fact, one obtains Eself ’ �að�a � 1Þ logN=2, but the term
��a logN=2 cancels against a change in the 1=N! factors which
are discussed below.
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�V � �

�
d

x

�
2
; (56)

and the contribution to the change in the total energy in the
leading order must thus come from the interaction of the
cluster between the unit charges within the region x� d�
1=N. However, at the distance to the neighboring clusters,
the change is negligible, so the intercluster interactions are
suppressed.

The analysis suggests a natural way to try to improve the
asymptotic formula (52). As explained above, in (52)
intercluster interactions are absent. However, the 1=N
corrections due to these interactions can be added almost
completely in a very simple manner. Naturally, each of the
�a charges must feel the Coulomb force of the N unit
charges and the other clusters with �b charges, a � b.
An easy modification of (52) to accommodate these is
the following. Increase the number of background unit
charges acting on the �a cluster from N to ~Na ¼
N þP

b�a�b in the asymptotic formula (52). This indeed
replaces the Coulomb force of each �b charge as a cluster
of �b separate unit charges. The total effective number of
unit charges in the gas then becomes ~N ¼ ~Na þ �a ¼ N þP

n
a¼1 �a. We write the improved asymptotic formula for a

renormalized Toeplitz determinant T̂�1;...;�nðNÞ, which is

simply related to T�1;...;�nðNÞ of (52). The modification is

needed since T�1;...;�nðNÞ contains the normalization factor

1=N! which we want to be replaced by 1= ~N!:

T̂�1;...;�n
ðNÞ ¼ N!

�ð ~N þ 1ÞT�1;...;�n
ðNÞ

¼ 1

�ð ~N þ 1Þ
� Y
1�a<b�n

jei�a � ei�b j2�a�b

�

�
Z YN

i¼1

dti
2�

� Y
1�i<j�N

jeiti � eitj j2
�

�
�YN
i¼1

Yn
a¼1

jei�a � eiti j2�a

�
: (57)

Following the discussion above, we replace the asymp-
totic formula (52) by an improved formula for (57),

T̂ �1;...;�nðNÞ ¼ Yn
a¼1

T̂�að ~NaÞ
�
1þO

�
1

N

��
; (58)

where

T̂�a
ð ~NaÞ ¼ �ð ~Na þ 1Þ

�ð ~N þ 1Þ T�að ~NaÞ

¼ 1

�ð ~N þ 1Þ
Z Y~Na

i¼1

dti
2�

� Y
1�i<j� ~Na

jeiti � eitj j2
�

�
�Y~Na

i¼1

j1� eiti j2�a

�
(59)

is the properly normalized partition function for an �a

charge in the background of ~Na unit charges. Inverting
the relation (57), we can rewrite (58) as an improved
approximation for T�1;...;�n ,

T�1;...;�nðNÞ  Tnorm

Yn
a¼1

T�a
ð ~NaÞ

¼ Tnorm

Yn
a¼1

Gð ~N þ �a þ 1ÞGð ~N � �a þ 1Þ
Gð ~N þ 1Þ2

� Gð�a þ 1Þ2
Gð2�a þ 1Þ

� T
aprx
�1;...;�n

ðNÞ; (60)

where we introduced the notation T
aprx
�1;...;�n

ðNÞ for the im-

proved asymptotics and the normalization factor reads

Tnorm ¼
Q

n
a¼1 �ð ~Na þ 1Þ

�ð ~N þ 1Þn�1N!
: (61)

Note that T
aprx
�1;...;�n

reduces to (52) for N ! 1 and still has

1=N corrections, but they are expected to be essentially
smaller than for (52). In Appendix B we discuss the
simplest nontrivial example ð�1; �2Þ ¼ ð2; 2Þ, where the
exact results are known [34,35] and find that the improved
asymptotics (64) reduces the deviation from the exact
result by more than an order of magnitude at large N.
The new asymptotics continues to be a very good approxi-
mation to the exact result even for small values of N.
Moreover, note that setting, e.g., �n ¼ 1 in (64) correctly
reproduces T

aprx
�1;...;�n�1

ðN þ 1Þ.
Finally, we collect our results in a new asymptotic

approximation for the Toeplitz determinant:

detTN½f�
Y

1�a<b�n

jei�a �ei�b j�2�a�b

�ðNþP
a
�aþ1Þ

�ðNþ1Þ

�Yn
a¼1

�ðN��aþP
b

�bþ1Þ
�ðNþP

b

�bþ1Þ
Gð�aþ1Þ2
Gð2�aþ1Þ

�
GðNþ�aþ

P
b

�bþ1ÞGðN��aþ
P
b

�bþ1Þ
GðNþP

b

�bþ1Þ2 :

(62)

If we substitute this to (49), we note that the integrals
over �a give

I�1¼0;...;�n¼0ðNÞ ¼
Z Yn

a¼1

d�a
2�

� Y
1�a<b�n

jei�a � ei�b j2 ~ka� ~kb
�

� N ½ð ~kaÞ�; (63)

and the result for the integral becomes

N-POINT FUNCTIONS IN ROLLING TACHYON BACKGROUND PHYSICAL REVIEW D 79, 086013 (2009)

086013-9



I�1;...;�n
ðNÞ I

aprx
�1;...;�n

ðNÞ

�N ½ð ~kaÞ�
�ðNþP

a
�aþ1Þ

�ðNþ1Þ

�Yn
a¼1

�ðN��aþ
P
b

�bþ1Þ
�ðNþP

b

�bþ1Þ
Gð�aþ1Þ2
Gð2�aþ1Þ

�
GðNþ�aþ

P
b

�bþ1ÞGðN��aþ
P
b

�bþ1Þ
GðNþP

b

�bþ1Þ2 :

(64)

The kIa dependence thus completely factorizes into the
normalization factor N .

There is, however, a caveat in the above derivation: the
result (64) only makes sense when the normalization in-
tegral N is convergent. From the definition (63) we see
that the integral is singular whenever any of the products
~ka � ~kb ! �1=2, which can easily occur for physical mo-
mentum values. These singularities are unphysical and
they are absent in the original integral of (9). What happens

is that for ~ka � ~kb ! �1=2 the � integrals become heavily
peaked at �a ’ �b. More precisely, the dominant contribu-
tion to the integral comes from the region where �b � �a �
1=N. In this region the largeN limit does not reproduce the
� dependence correctly: for positive �a�b the integrand
vanishes more rapidly than suggested by the large N limit
as �a � �b ! 0, which creates a cutoff for the normaliza-
tion integral N .

To avoid this caveat we shall assume that ~ka � ~kb >
�1=2 which can be satisfied together with momentum
conservation only if all spatial momenta are small. Even
when this condition is not met, the result (64) may work as
a reasonable model for the � and N dependencies of (49).
We are planning to study the � dependence of the Toeplitz
determinant more closely in a forthcoming publication.

B. A model amplitude

Let us now study what can be said about the integrated
amplitude

A n ¼ �0;
P
a

~ka

Z
dx0 exp

�
x0

Xn
a¼1

�a

�
�Anð2��ex0Þ

¼ �0;
P
a

~ka

Z
dx0 exp

�
x0

Xn
a¼1

�a

� X1
N¼0

ð�zÞNI�1;...;�nðNÞ

(65)

based on the asymptotic formula (64). Notice that since the
coefficients I�1;...;�nðNÞ are asymptotically equal to a prod-

uct of one-point functions they also exhibit a powerlike
behavior for large N [see (26)]. This fact strongly suggests
that the analysis of Subsection II B can be extended to

higher point functions, which requires that there is an
analytic continuation J�1;...;�nðsÞ of I�1;...;�n

ðNÞ to complex

values ofN ¼ �s that has a powerlike behavior for s ! 1
in all sectors of the complex s plane. At least, as we shall
see below, the continuation exists for the asymptotic for-
mula (64) (and also (52)). Also, we calculated I�1;...;�nðNÞ
for sets of small positive integers �a and for ~ka � ~kb ¼ 0 in
[34], and found that they are, in fact, polynomials ofN. See
also Appendix B where we treat a simple case, ð�1; �2Þ ¼
ð2; 2Þ, as an example.
This motivates us to check what is the result if one

simply inserts the improved asymptotic formula (64) to
(7) and to repeat the analysis of Subsection II B. For the
sake of concreteness, we discuss the two-point function.13

As explained above, it is required that there is such an
analytic continuation of Iaprx�1;�2

ðNÞ of (64) to complex s ¼
�N that does not blow up exponentially for jsj ! 1.
Remarkably, the simplest continuation of (64) works:

J
aprx
�1;�2

ðsÞ ¼ N ½ ~k1�
�ð1� sÞ�ð�1 þ �2 � sþ 1Þ

Y2
a¼1

Gð�a þ 1Þ2
Gð2�a þ 1Þ

� Gð�sþ �1 þ �2 þ �a þ 1ÞGð2� sþ �aÞ
Gð�sþ �1 þ �2 þ 1Þ2

(66)

indeed has a powerlike asymptotic behavior for large jsj as
can be verified using the formulae (64) and (52) above.
Further, we need to check that the singularities of Japrx�1;�2

ðsÞ
do not conflict with the contour deformations of
Subsection II B. If �1;2 > 0 the poles of Japrx�1;�2

ðsÞ are located
at s ¼ �1 þ �2 þ 1; �1 þ �2 þ 2; . . . As for the one-point
amplitude in Subsection II B, they are to the right of s ¼
�1 þ �2, where we will evaluate Japrx�1;�2

ðsÞ in the end [see

(68) below]. As discussed in Subsection II B, this means
that the model two-point function

�A aprx
2 ðzÞ ¼ X1

N¼0

ð�zÞNIaprx�1;�2
ðNÞ (67)

has no singularities for z > 0 and vanishes sufficiently fast
for x0 ! 1 to make the integral over x0 in (65) convergent.
Notice that this is not the case if the ‘‘naive’’ asymptotic
formula (52) is used instead of (64).14 In particular, as
discussed in Appendix B, (67) has the correct asymptotic
behavior for z ! þ1 for integer ð�1; �2Þ only if one uses
(64).
The above checks ensure that following the analysis in

Subsection II B (see Eqs. (34), (35), and (37)) we can sum
and integrate the approximated integrals I

aprx
�1;�2

of (64). The

result is a model two-point amplitude,

13For the two-point function spatial momentum conservation
and on-shell conditions actually fix !1 ¼ !2.
14However, also the naive formula leads to a well-defined
integral for imaginary �a ¼ i!a which we will need in the end.
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A2  �0; ~k1þ ~k2

�i�ð2��Þ�ið!1þ!2Þ

sinh�ð!1 þ!2Þ J
aprx
i!1;i!2

ði!1 þ i!2Þ

¼ �0; ~k1þ ~k2
N ½ ~k1�ð2��Þ�ið!1þ!2Þ�ði!1 þ i!2Þ

� Y2
a¼1

Gði!a þ 1Þ3Gð2� i!aÞ
Gð2i!a þ 1Þ ; (68)

where we already rotated to imaginary �a ¼ i!a and
omitted a �-term. Notice the similarity to (21) which stems
from the factorized form of the asymptotics (64).

Similarly as the one-point amplitude in (37), the final
result (68) is expected to include a term / �ð!Þ. The delta
term arises in the x0 integration of �A2ðx0Þ from the oscil-
lations in the region x0 ! �1: indeed, for imaginary � ¼
�1 þ �2 ¼ i!1 þ i!2 the integrand eið!1þ!2Þx0 �A2ðx0Þ
continues to vanish exponentially for x0 ! þ1, but for

x0 ! �1 the function �A2 approaches a constant, which
leads to oscillating behavior. The resulting � contribution
can be isolated as follows. Write

A2 ¼�0; ~k1þ ~k2

Z
dx0eið!1þ!2Þx0 �Aaprx

2 ðx0Þ

¼�0; ~k1þ ~k2

�
Iaprxi!1;i!2

ðN¼ 0Þ
Z
dx0eið!1þ!2Þx0 �A1ðx0Þj!¼0

þ
Z
dx0eið!1þ!2Þx0½ �Aaprx

2 ðx0Þ� Iaprxi!1;i!2
ðN¼ 0Þ

� �A1ðx0Þj!¼0�
�
; (69)

where �A1ðx0Þj!¼0 ¼ �A0ðx0Þ ¼ 1=ð1þ 2��ex
0Þ. Then

the integrand of the first term has a simple form and
oscillates for x0 ! �1 while that of the second one is
complicated but vanishes exponentially in both directions
x0 ! �1. Hence the � contribution comes solely from the
first term which can be integrated exactly, while for the
second integral is well defined even for imaginary �1 þ �2

and the analytic continuation of (68) from the region of
Reð�1 þ �2Þ> 0 can be trusted. The �-term that adds to
(68) is seen to be15

A 2;� ¼ ��0; ~k1þ ~k2
I
aprx
i!1;i!2

ðN ¼ 0Þ�ð!1 þ!2Þ: (70)

Naively, since we effectively replaceN ! �ið!1 þ!2Þ
in the asymptotic expansion (64), one would expect the
improved asymptotic formula (68) to be a good estimate
for large energies for which 1=N is small. Unfortunately,
the correction to (64) is likely to include terms which are
�!a=N (or worse) and become (at least) Oð1Þ at N �!a.
Thus the result (68) only serves as a model of the exact
result for any values of the energies. However, note that the
calculations of Appendix B suggest that the correction
terms are small: the improved approximation is seen to

work well also for small values of N and also when
continued to negative (but small) values of N.
It is straightforward to check that the analysis of

Subsection II B can be similarly applied to the approximate
asymptotic formula (64) for n > 2. The consequent gen-
eralization of (68) can be simplified to read

A n  �0;
P
a

~ka
N ½ð ~kaÞ�ð2��Þ

�i
P
a

!a

�

�
i
X
a

!a

�

� Yn
a¼1

Gði!a þ 1Þ3Gð2� i!aÞ
Gð2i!a þ 1Þ : (71)

As discussed in Subsection IVA the ~ka dependence factor-

izes into the factor N ½ð ~kaÞ� at least for small ~ka. We give
the singularities and the asymptotic behavior of the model
amplitude in Appendix C.
Notice that our approximation is not restricted to only

positive integer valued �a. The original asymptotic for-
mula (52) is valid (see [33]) for Re�a >�1=2. While our
improved formula (64) was motivated using integer �a, it
approaches the original one (52) at N ! 1 for any set of
(complex) �a’s. In Appendix B it was demonstrated that
the improved asymptotics works much better than (52) for
sets of integer �a. There is no reason to believe why it
should fail to be an improvement also for imaginary �a ¼
i!a.
Final comments. We conclude with some final thoughts.

We have presented a method to calculate n-point boundary
functions. It would be important to develop similar meth-
ods for n-point bulk correlators. The main obstacle for a
straightforward generalization of our calculations is the
following. The boundary operators correspond to test
charges that we constructed from unit charges of the
Dyson gas. However, the bulk operators cannot similarly
be made of the unit charges on the boundary—a different
trick must be found for the bulk correlation function cal-
culations. Another important issue is to develop a clear
estimate how good an estimate (C5) is for the amplitude. A
promising way to test our method would be to work
directly in spacelike boundary Liouville theory, use our
method to compute the boundary two-point function, and
then compare with the exact known result of [17–19].
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15Naturally, a similar term also appears in the exact amplitude
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APPENDIX A: ON KRS RELATION

In this appendix we check (39). Following [23],
Eq. (4.7), we need to calculate

B ¼
Z
disk

d2w

�
w2 � e2i�

2ei�
h@X0ðw; �wÞei!X0ð�Þe�Sbdryi0

þ �w2 � e�2i�

2e�i� h �@X0ðw; �wÞei!X0ð�Þe�Sbdryi0
�
; (A1)

where the primes of the expectation values indicate that the
zero mode x0 is left unintegrated. We start from (straight-
forward use of Wick theorem)

C ¼
�
ei!cX

0ðw; �wÞei!X0ð�ÞYN
i¼1

eX
0ðtiÞ

�0
¼ j1� w �wj�!2

c=2jw� ei�j�2!!c

Y
i<j

jeiti � eitj j2

�Y
i

jei� � eiti j2i!jw� eiti j2i!c (A2)

which is to be integrated over ti ¼ 0 . . . 2� and summed
over N. Notice that�
@X0ðw; �wÞe�X0ð�ÞY

i

eX
0ðtiÞ

�0

¼ �i
@2

@w@!c

Cj!c¼0

¼
�X

i

1

w� eiti
þ �

w� ei�

�Y
i<j

jeiti � eitj j2

�Y
i

jei� � eiti j2� (A3)

and similarly for the term containing �@ in (A1). Recall that
� ¼ i!. Let us do the w integration first. The w-dependent
part reads

Iw ¼
Z

d2w

�
w2 � e2i�

2ei�

�X
i

1

w� eiti
þ �

w� ei�

�
þ H:c:

�
;

(A4)

where the H.c. assumes real �. Developing the integrand at

w, �w ¼ 0 we see that only the constant term survives,

Iw ¼ ��þ �

2

X
i

ðei��iti þ e�i�þitiÞ

¼ �

�
�þX

i

cosð�� tiÞ
�
: (A5)

Let us then do the ti integrations. The integral /� is the
I�ðNÞ discussed above, and for the second term we use

(48). Putting the results together,

B ¼ �e�x
0
X
N

ð�zÞN
�
�� N�

N þ �

�
I�ðNÞ

¼ ��2e�x
0
X
N

ð�zÞN
N þ �

I�ðNÞ

¼ ��2

z�

Z z

0
dz0ðz0Þ��1 �A1ðz0Þ: (A6)

Moreover, the x0 dependencies of the 1=z� and the e�x
0

exactly cancel, whence after derivating with respect to x0

[23]
@B
@x0

¼ ��2 �A1: (A7)

We have thus checked the formula (3.14) of [23] in this
special case. The �2 in the proportionality constant arises

from the conformal dimension of the operator e�X
0
, which

is included in the normalization factor fN of
Subsection II C.

APPENDIX B: A SPECIAL CASE OF THE n-POINT
AMPLITUDE

To clarify the involved derivation of the model for the
n-point amplitude in Sec. IV, we consider here the simplest

nontrivial example, ð�1; �2Þ ¼ ð2; 2Þ and ~k1 � ~k2 ¼ 0,16 that
can be calculated also exactly. We have also checked other
cases of sets of small integers, and found similar results.
Let us start with the results for the integral I2;2ðNÞ of (9)

which equals I2ðN; 2Þ=N! of [34]. Hence we have

I2;2ðNÞ ¼ 2

8!

�
35

ðN þ 8Þ!
N!

þ 77
ðN þ 7Þ!
ðN � 1Þ!þ 27

ðN þ 6Þ!
ðN � 2Þ!þ

ðN þ 5Þ!
ðN � 3Þ!

�

¼ 35N3 þ 467N2 þ 2046N þ 2940

5040

Y5
k¼1

ðN þ kÞIasymp
2;2 ðNÞ ¼

�ðN þ 3ÞðN þ 2Þ2ðN þ 1Þ
12

�
2

¼ ðN þ 3Þ2ðN þ 2Þ4ðN þ 1Þ2
144

I
aprx
2;2 ðNÞ ¼ ðN þ 2ÞðN þ 1Þ

ðN þ 4ÞðN þ 3Þ
�ðN þ 5ÞðN þ 4Þ2ðN þ 3Þ

12

�
2

¼ ðN þ 5ÞðN þ 4Þ2
144

Y5
k¼1

ðN þ kÞ; (B1)

16Notice that the condition ~k1 � ~k2 ¼ 0 eliminates all dependence on spatial momentum. It actually conflicts with momentum
conservation.
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where the first, the second, and third formula are the exact
result, the one obtained from the asymptotic formula (52),
and the improved asymptotic formula (64), respectively.
For N ! 1 we find

Iasymp
2;2 ðNÞ
I2;2ðNÞ ¼ 1� 432

35N
þ 142 384

1225N2
þO

�
1

N3

�
Iaprx2;2 ðNÞ
I2;2ðNÞ

¼ 1� 12

35N
þ 2594

1225N2
þO

�
1

N3

�
: (B2)

Some of the values of the integrals are tabulated in Table I.
The improved formula works much better, in particular, for
low values of N. For higher values of �a the improvement
is even more drastic, basically since the difference between
the effective number of unit charges ~N ¼ N þP

n
a¼1 �a,

which is used in the improved asymptotics, and the actual
number of unit charges N increases.

The two-point function

�A 2ðx0Þj�1¼�2¼2 ¼
X1
N¼0

ð�zÞNI2;2ðNÞ; (B3)

where z ¼ 2��ex
0
, can be calculated explicitly for all the

results (B1). In particular, for large x0 we have

�A2ðx0Þ ¼� 2

ð2��Þ6 e
�6x0 þ 72

ð2��Þ7 e
�7x0 þOðe�8x0Þ;

�Aasymp
2 ðx0Þ ¼� 1

ð2��Þ4 e
�4x0 þ 36

ð2��Þ5 e
�5x0 þOðe�6x0Þ;

�Aaprx
2 ðx0Þ ¼� 10

3ð2��Þ6 e
�6x0 þ 90

ð2��Þ7 e
�7x0 þOðe�8x0Þ:

(B4)

The improved asymptotic formula produces also the large

x0 asymptotics nicely: �Aaprx
2 is correct up to the propor-

tionality constant for x0 ! 1.
The analytic continuation of I2;2ðNÞ, J2;2ðsÞ is found by

letting N ! �s in (B1). The result for the integrated
amplitude is then obtained by applying (68) to the three
different cases of (B1), which gives

A 2j�1¼�2¼2 ¼ lim
s!4

�ð2��Þ�4

sin�s
J2;2ðsÞ

¼ � 1

70ð2��Þ4 ;1; 0; (B5)

where the first, the second, and the third numbers are the
exact result, the result for the naive asymptotic formula
(52), and the result for the improved formula (64), respec-

tively. Both the asymptotic approximations give an incor-
rect result by an infinite factor. However, the numerical
factor �1=70 of the exact result is extremely small when
compared, e.g., to the series coefficients of Table I, whence
the zero result obtained by the improved asymptotic for-
mula should be, in fact, considered as a good approxima-
tion. It would be interesting to be able to compare our
model amplitude to the exact result for more physical,
noninteger values of �a where no accidental zeroes or
infinities are expected to occur.
We end this appendix by an encouraging observation in a

more general setup. It is straightforward to check that, in
fact, for any sets of integer ð�1; . . .�nÞ the expected exact
asymptotic behavior [34]

�A nðx0Þ � exp

�
�x0

X
a

�a � x0 maxf�ag
�
; (B6)

is reproduced by �Aaprx
n similarly as for ð�1; �2Þ ¼ ð2; 2Þ in

(B4). We denote the analytic continuation of I
aprx
�1;...�n

ðNÞ of
(64) to complex s ¼ �N by J

aprx
�1;...�n

ðsÞ in analogue to (18),
(66) above. Using the behavior of Barnes G near its zeroes
from Appendix C, a lengthy calculation shows that the first
pole of J

aprx
�1;...�n

ðsÞ= sin�s on the positive real axis occurs at

s ¼ P
a�a þmaxaf�ag in the special case of integer �a.

Hence, for the n-point function and integer �a, (30) indeed
becomes

�A aprx
n ðx0Þ � exp

�
�x0

X
a

�a � x0 maxf�ag
�
: (B7)

In other words, the corresponding poles of Japrx�1;...�n
and the

exact analytic continuation J�1;...�n
coincide. Note that

these poles lie at positive s, i.e., negative N, while Japrx�1;...�n

results from an asymptotic formula (64) for large positive
N. This observation gives more confidence to the model
amplitude of (68) and (71) which was derived using (64).

APPENDIX C: SINGULARITIES AND
ASYMPTOTICS OF THE MODEL AMPLITUDE

Barnes GðzÞ is an entire function and has its zeroes on
the negative real axis,

Gðzþ 1Þ ¼ ð�1Þnðn�1Þ=2Gðnþ 1Þ
� ðzþ nÞn½1þOðzþ nÞ�; (C1)

for n ¼ 1; 2; . . . Hence all the special points (zeroes or

TABLE I. Exact and approximated values of the integral I2;2ðNÞ. The first tabulated row is the
exact result of the integral, while the two others are given by the asymptotic formulae (52) and
(64), written explicitly in (B1).

N 0 1 2 3 5 10 100

I2;2ðNÞ 70 784 4590 18 968 175 320 7 514 650 91 680 976 745 020

Iasymp
2;2 ðNÞ 1 36 400 2500 38 416 2 944 656 81 349 594 398 801

Iaprx2;2 ðNÞ 200/3 750 4410 54 880/3 170 100 7 357 350 91 384 995 374 400
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singularities) of the one-point amplitude Â1ð!Þ of (21) lie
on the imaginary axis,

Â1 ¼ ð�1Þnðn�1Þ=2ð2��Þ�nGðnþ 1Þ4
Gð2nþ 1Þ

� ði!� nÞn�1½1þOði!� nÞ�;

Â1 ¼ ð�1Þnðn�1Þ=2ð2��ÞnGðnþ 1Þ4
22nGð2nþ 1Þ

� ði!þ nÞn�1½1þOði!þ nÞ�;

Â1 ¼ ��ð2��Þnþ1=2Gð1=2� nÞ3Gð3=2þ nÞ
22nþ1Gð2nþ 2Þ

� ði!þ nþ 1=2Þ�2n�1½1þOði!þ nþ 1=2Þ�
(C2)

for any n ¼ 0; 1; 2; . . . In particular, poles are found at! ¼
0 (where Â1 � 1=i!) and at ! ¼ i=2; 3i=2; 5i=2; . . .
The singularities of the model n-point amplitude

Â n  ð2��Þ
�i
P
a

!a

�

�
i
X
a

!a

�

� Yn
a¼1

Gði!a þ 1Þ3Gð2� i!aÞ
Gð2i!a þ 1Þ (C3)

arise similarly from the poles of �ðiPa!aÞ and from the
zeroes of eachGð2i!a þ 1Þ. As above, the hat denotes that
we dropped the ~ka dependent terms. At the possible singu-
larities

P
a!a ’ �m, i!b ’ �m, i!b ’ mþ 1, and i!b ’

�m� 1=2, we find

Ân ¼ ð�2��Þm
m!

Yn
a¼1

Gði!a þ 1Þ3Gð2� i!aÞ
Gð2i!a þ 1Þ

								i
P
a

!a¼�m

1

i
P
a
!a þm

�
1þO

�
i
X
a

!a þm

��
;

Ân ¼
ð�1Þmðmþ1Þ=2ð2��Þmð2��Þ

�i
P
a�b

!a

�ði P
a�b

!a �mÞGðmþ 1Þ3Gð2þmÞ
22mGð2mþ 1Þ

Y
a�b

Gði!a þ 1Þ3Gð2� i!aÞ
Gð2i!a þ 1Þ

� ði!b þmÞm½1þOði!b þmÞ�;

Ân ¼
ð�1Þmðmþ1Þ=2ð2��Þ

�i
P
a�b

!a

�ði P
a�b

!a þmþ 1ÞGðmþ 2Þ3Gðmþ 1Þ
ð2��Þmþ1Gð2mþ 3Þ

Y
a�b

Gði!a þ 1Þ3Gð2� i!aÞ
Gð2i!a þ 1Þ

� ði!b �m� 1Þm � ½1þOði!b �m� 1Þ�;

Ân ¼
ð�1Þmð2��Þ

mþ1=2�i
P
a�b

!a

�ði P
a�b

!a �m� 1=2ÞGð1=2�mÞ3Gð5=2þmÞ
22mþ1Gð2mþ 2Þ

Y
a�b

Gði!a þ 1Þ3Gð2� i!aÞ
Gð2i!a þ 1Þ

� ði!b þmþ 1=2Þ�2m�1½1þOði!b þmþ 1=2Þ� (C4)

respectively, for each m ¼ 0; 1; 2; . . . and b ¼ 1; 2; . . . ; n, and assuming that the singularities are distinct (which requires
n > 1). We thus find poles only at negative integer values of i

P
a!a and at negative half-integer values of each i!b whereas

the amplitude vanishes for almost all integer values of each i!b.
Since the model amplitude has a factorized form, its asymptotics can be immediately written down based on the one-

point result (25). It reads

Ân ¼ ð2��Þ
�i
P
a

!a

�

�
i
Xn
a¼1

!a

�Yn
a¼1

�ð1� i!aÞ exp
�Xn
a¼1

�
!2

a

�
i�

2
sgnðRe!aÞ þ 2 log2

�
� 1

4
logði!aÞ

� i�

12
sgnðRe!aÞ þ 1

12
log2þ 3� 0ð�1Þ

��Yn
a¼1

½1þOð!�2
a Þ�: (C5)

Note that the prefactor vanishes exponentially for any !a ! 1 and thus does not affect the leading asymptotic behavior
� exp½!2

a�, which is similar to that of the one-point amplitude in (25).

NIKO JOKELA, MATTI JÄRVINEN, AND ESKO KESKI-VAKKURI PHYSICAL REVIEW D 79, 086013 (2009)

086013-14



[1] A. Sen, J. High Energy Phys. 04 (2002) 048; F. Larsen, A.
Naqvi, and S. Terashima, J. High Energy Phys. 02 (2003)
039.

[2] A. Sen, Int. J. Mod. Phys. A 20, 5513 (2005).
[3] M. Gutperle and A. Strominger, Phys. Rev. D 67, 126002

(2003).
[4] A. Strominger, arXiv:hep-th/0209090.
[5] D. Israel and E. Rabinovici, J. High Energy Phys. 01

(2007) 069.
[6] D. Gaiotto, N. Itzhaki, and L. Rastelli, Nucl. Phys. B688,

70 (2004).
[7] N. D. Lambert, H. Liu, and J.M. Maldacena, J. High

Energy Phys. 03 (2007) 014.
[8] N. R. Constable and F. Larsen, J. High Energy Phys. 06

(2003) 017.
[9] J. Shelton, J. High Energy Phys. 01 (2005) 037.
[10] K. Okuyama, J. High Energy Phys. 09 (2003) 053.
[11] J. L. Karczmarek, H. Liu, J.M. Maldacena, and A.

Strominger, J. High Energy Phys. 11 (2003) 042.
[12] K. Nagami, J. High Energy Phys. 01 (2004) 005.
[13] M. Gutperle and P. Yi, J. High Energy Phys. 01 (2005)

015.
[14] O. Bergman and S. S. Razamat, J. High Energy Phys. 06

(2004) 046.
[15] V. Balasubramanian, E. Keski-Vakkuri, P. Kraus, and A.

Naqvi, Commun. Math. Phys. 257, 363 (2005).
[16] N. Jokela, E. Keski-Vakkuri, and J. Majumder, Phys. Rev.

D 73, 046007 (2006).
[17] V. Fateev, A. B. Zamolodchikov, and A. B.

Zamolodchikov, arXiv:hep-th/0001012.
[18] J. Teschner, arXiv:hep-th/0009138.

[19] B. Ponsot and J. Teschner, Nucl. Phys. B622, 309 (2002).
[20] M. L. Mehta, Random Matrices (Academic, New York,

1991), 2nd ed.; T. Guhr, A. Muller-Groeling, and H.A.
Weidenmuller, Phys. Rep. 299, 189 (1998); N. C. Snaith,
P. J. Forrester, and J. J.M. Verbaarschot, J. Phys. A 36, R1
(2003); M. Mineev-Weinstein, M. Putinar, and R.
Teodorescu, arXiv:0805.0049.

[21] K. Hosomichi, J. High Energy Phys. 11 (2001) 044.
[22] S. Fredenhagen and V. Schomerus, J. High Energy Phys.

05 (2005) 025.
[23] P. Kraus, A. Ryzhov, and M. Shigemori, Phys. Rev. D 66,

106001 (2002).
[24] N. Seiberg, Prog. Theor. Phys. Suppl. 102, 319 (1990).
[25] A. B. Zamolodchikov and A. B. Zamolodchikov, Nucl.

Phys. B477, 577 (1996).
[26] F. J. Dyson, J. Math. Phys. (N.Y.) 3, 140 (1962).
[27] V. Balasubramanian, N. Jokela, E. Keski-Vakkuri, and J.

Majumder, Phys. Rev. D 75, 063515 (2007).
[28] N. Jokela, E. Keski-Vakkuri, and J. Majumder, Phys. Rev.

D 77, 023523 (2008).
[29] J. A. Hutasoit and N. Jokela, Phys. Rev. D 77, 023521

(2008).
[30] H. Schomerus, J. Phys. A 41, 332002 (2008).
[31] M. E. Fisher and R. E. Hartwig, Adv. Chem. Phys. 15, 333

(1969).
[32] H. Widom, Am. J. Math. 95, 333 (1973).
[33] E. Basor, Trans. Am. Math. Soc. 239, 33 (1978).
[34] N. Jokela, M. Järvinen, E. Keski-Vakkuri, and J.

Majumder, J. Phys. A 41, 015402 (2008).
[35] N. Jokela, M. Järvinen, and E. Keski-Vakkuri, J. Phys. A

41, 145003 (2008).

N-POINT FUNCTIONS IN ROLLING TACHYON BACKGROUND PHYSICAL REVIEW D 79, 086013 (2009)

086013-15


