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We study diffractive vector-meson photoproduction using string theory via AdS/CFT. The large s

behavior of the cross sections for the scattering of the vector meson V on a proton is dominated by the soft

Pomeron, �V � s2��2�0
P=B, where from the string theory model of [arXiv:hep-th/0501039], � is approxi-

mately 1=7 below 10 GeV, and 1=11 for higher, but still sub-Froissart, energies. This is due to the

production of black holes in the dual gravity. In � photoproduction the mesonic Regge poles do not

contribute, so that we deal with a pure Pomeron contribution. This allows for an experimental test. At the

gauge theory ‘‘Planck scale’’ of about 1–2 GeV, the ratios of the soft Pomeron contributions to the

photoproduction cross sections of different vector mesons involve not only the obvious quark model

factors, but also the Boltzmann factors e�4MV=T0 , with T0 the temperature of the dual black hole. The

presence of these factors is confirmed in the experimental data for �, !, �, J=c , and c ð2SÞ photo-
production and is compatible with the meager � photoproduction data. Throughout, we use vector-meson

dominance, and from the data we obtain T0 of about 1.3 GeV, i.e. the gauge theory ‘‘Planck scale,’’ as

expected. The ratio of the experimental soft Pomeron onset scale ÊR � 9 GeV and of the gauge theory

Planck scale, T0 � 1:3 GeV, conforms to the theoretical prediction of N2
c=N

1=4
c .
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I. INTRODUCTION

AdS/CFT [1] started as a duality between the conformal
SUðNÞ super-Yang-Mills (SYM) field theory in four di-
mensions at large N, and string theory in the curved ten-
dimensional space, AdS5 � S5, in the low energy super-
gravity limit. The power of this approach derives from the
fact that it relates a strong coupling theory—SUðNÞ SYM
at large N and large g2YMN—to a weakly coupled string
theory, where one can calculate. In [2] the duality was
extended to actual string theory, away from the supergrav-
ity limit, but only for the gauge theory sector involving
operators with very large R charge.

The duality was extended to various theories with less
supersymmetry and/or conformal invariance. Interesting
examples are given e.g., by [3,4]. But the difficulty in
applying AdS/CFT to real QCD stems not only from the
absence of a gravity dual to a nonsupersymmetric gauge
theory with light quarks. The problem is that a calculable
version with broken supersymmetry, with Nf=Nc fixed,

with light quarks has not yet been found, much as one
can impose each of these requirements by itself. Moreover,
in real QCDN ¼ 3 and g2YMN are both finite. In QCD, g2YM
runs, but g2YMN never becomes large enough. In AdS/CFT
the 1=N and 1=ðg2YMNÞ corrections are mapped to string �0
and gs corrections. String �0 corrections are world sheet
corrections, i.e. two-dimensional field theory quantum
corrections, whereas gs corrections are string spacetime
quantum corrections.

String theory is defined only perturbatively, with non-
perturbative definitions available only in special cases.
Moreover, string theory calculations in the strong coupling

regime are hard. Thus, in order to apply AdS/CFT to real
QCD, we need to first make sure that string corrections are
small in the dual theory. That is in general not true, as finite
N and g2YMN translate into large quantum corrections in
string theory.
Recently, a lot of work has been devoted to gravity dual

models of QCD for phenomenological purposes, most
notably the Sakai-Sugimoto model [5], but in that case
we have effectively a quenched approximation, as the dual
gravity background contains no backreaction of the D8-
brane where the quarks live, thus effectively one works
withNf=Nc ! 0. Another popular way of applying gravity

dual results to describe RHIC physics [6] uses N ¼ 4
SYM models at finite temperature, corresponding to a
static black hole in AdS5. While in these models one can
perform explicit calculations, it is not completely clear
why one should be allowed to use N ¼ 4 SYM instead
of nonsupersymmetric QCD, even if both are at finite
temperature. Moreover, neither the string theory quantum
corrections nor the corresponding QCD 1=N and
1=ðg2YMNÞ corrections are under control.
However, in [7–10] it was noticed that there exists a

particular class of problems for which quantum corrections
in the dual theory are small, and one can use AdS/CFT for
real QCD as well. The case in point is that of soft high
energy scattering. It was shown that the total QCD cross
section at large center-of-mass energy squared s can be
calculated, and the behavior �tot � s� and its later unitar-
ization to ln2ðs=s0Þ can be derived and matched against
experiment. In the gravity dual this corresponds to the
creation of black holes, which in the RHIC energy regime
can be mapped to the fireball observed in the nucleus-
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nucleus collisions [10,11]. Later models for the RHIC
fireball introduce a time dependence, like for instance the
model in [12], where a dual black hole moves towards the
IR, or the model in [13], where the evolution of a black
hole horizon is mapped to the cooling of the RHIC plasma,
but they generically cannot account for the presence of the
mass scale in QCD. It is also not clear whether an evolving
horizon makes sense, which is a subject of recent debate.

A natural next step is to consider diffractive vector-
meson photoproduction, which is governed by the same
soft Pomeron physics, and for which a wealth of experi-
mental data is available. In this paper, we take this step, and
find that � photoproduction which is known [14] to pro-
vide the cleanest test of soft Pomeron behavior, matches
well with the experimental evidence. We also analyze the
ratios of the production cross sections of various vector
mesons in the soft regime, and find a formula which
reproduces the data for all known mesons, and allows us
to extract from experiment a ‘‘gauge theory Planck scale’’
of about 1.3 GeV.

In Sec. II we describe the gravity dual picture for the soft
physics. In Sec. III we present the general picture of
diffractive vector-meson photoproduction and show how
to extract the soft Pomeron contribution. In Sec. IV we
discuss the gravity dual picture for diffractive vector-
meson photoproduction and compare it with experimental
data. Finally, in Sec. V we present our conclusions.

II. BLACK HOLE PRODUCTION IN THE GRAVITY
DUAL AND THE POMERON

At energies above a gravitational theory’s Planck scale,
i.e. at

ffiffiffi
s

p
>MPl, scattering of any two particles should

produce black holes. The hard, large t scattering, however,
will still be governed by string amplitudes, since a black
hole radiates particles thermally, at generically low ener-
gies. On the other hand, soft small t scattering, or processes
with many particles and small average emitted energy in
the final state, will be dominated by black hole creation.

In [15] the process of black hole creation was analyzed
using an old idea of ’t Hooft [16], modeling the two
colliding particles by Aichelburg-Sexl (AS) gravitational
shockwaves [17]:

ds2 ¼ 2dxþdx� ��ðxiÞ�ðxþÞðdxþÞ2 þ d~x2: (2.1)

According to an argument of ’t Hooft, quantum gravity
corrections are negligible because massive interactions
have finite range, but at small distances the gravitational
shockwave gives a diverging time delay for the interaction
[�ðr ! 0Þ ! 1], making the corrections irrelevant,
whereas for the massless interactions, classical gravity
reproduces the correct physics. It would be important to
obtain a definitive proof of this statement. In [15], the cross
section for black hole formation in the higher dimensional
curved space scattering was calculated, by scattering two
AS waves, based on earlier work [18] in flat four-

dimensional space. String corrections were also calculated,
by scattering string-corrected AS shockwaves. It was
found that in flat four-dimensional space string corrections
are exponentially small at energies beyond E0 �M2

P=Ms,
which is of the order of the Planck scale if the Planck and
string scales are not too far apart.
On the other hand, AdS/CFT [1] relates gauge theories

living on systems of D-branes with gravitational theories.
In particular, a four-dimensional conformal field theory
will have a gravity dual of the type

ds2 ¼ �r2

R2
d~x2 þ R2

r2
d�r2 þ R2ds2X

¼ e�2y=Rd ~x2 þ dy2 þ R2ds2X: (2.2)

Here the first two terms give the line element of the AdS5
space of size R, and the last term gives the line element of
the S5 of radius R.
A nonconformal theory will have a gravity dual modi-

fied in the IR, i.e. small �r or large y. In the simplest model
of this type, one describes the unknown modification by an
‘‘IR brane,’’ a cutoff at �rmin � R2�QCD with �QCD the

lightest excitation of the theory [19].
This simple model is dual to a pure glue gauge theory. To

model the pion, the lightest excitation of real QCD, which
is a q �q state, one assumes the position of the cutoff to be a
dynamical brane. Its fluctuation, the radion, corresponds to
a simple scalar ‘‘pion’’ [20].
High energy scattering in the gauge theory of modes

with momentum p and wave function eipx was mapped in
[19] to scattering in the gravity dual with local AdS mo-
mentum ~p� ¼ ðR=�rÞp� and wave function eipxc ðr;�Þ.
The gauge amplitude is given by the gravitational ampli-
tude, integrated over the extra coordinates, and convoluted

with the wave functions. The string tension �0 ¼
R2=ðgsNÞ1=2 corresponds to the gauge theory string tension
�̂0 ¼ ��2

QCD=ðg2YMNÞ1=2, and
ffiffiffiffiffi
�0p

~pstring �
ffiffiffiffiffi
�̂0p
pQCD: (2.3)

This formalism was applied in [7,9] to the case of soft
scattering with black hole formation. It was found that
most of the integral over the coordinate �r is supported in
the IR region of small �r, close to the cutoff. For self-
consistency though, it still has to be supported away from
�rmin. The cross section for black hole creation in the gravity
dual was calculated in the classical shockwave scattering
picture mentioned before, and then using a simple eikonal
model, an elastic 2 ! 2 quantum amplitude was derived,
and used in the Polchinski-Strassler formalism [19]. Let us
emphasize again that in the soft scattering regime, the
black holes are produced on the average close to the IR
cutoff, i.e., to the IR brane, but still away from it.
In the gravity dual, there are three energy scales of

interest: the Planck scale MP, the scale ER ¼ N2R�1 at
which the produced black holes reach the AdS size, and the
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scale EF at which the black holes are big enough to reach
the IR brane. This last scale clearly cannot be calculated
without knowing the details of the IR modification of the
gravity dual to a given gauge theory. The simple cutoff
model cannot be used to calculate it. According to
Eq. (2.3), in gauge theory these energy scales correspond

to M̂P ¼ �QCDN
1=4, ÊR ¼ �QCDN

2, and an unknown ÊF.

It was found [7,9,20] that between M̂P and ÊR, when in the
gravity dual one produces black holes small enough to be
considered approximately in flat space, the gauge theory
cross section grows like

�gauge;tot ’ Kðs=s0Þ� ¼ Kðs=M̂2
PÞ1=7: (2.4)

where K is a constant, as are �K and K0 in the next two

equations. Between the energies ÊR and ÊF, in the gravity
dual the black holes are large enough to feel the AdS size,
but not the size of X5. Therefore they grow in AdS5 � X5

with X5 large, giving the gauge theory cross section [9]

�gauge;tot ’ �Kðs=�s0Þ� ¼ �Kðs=Ê2
RÞ1=11: (2.5)

Above ÊF, in the gravity dual the black holes become so
large that they reach the IR brane. The gauge theory cross
section then saturates the Froissart bound [7,8,20–22]:

�gauge;tot ’ K0 �
M2

1

ln2
s

s1
; (2.6)

where the mass M1 corresponds to the lightest state in the
theory. In the simple cutoff model, this is the mass gap, or
the lightest glueball in the gauge theory. In QCD, where the
pion is a pseudo-Nambu-Goldstone boson, M1 is replaced
by the pion mass m�. As mentioned, this Nambu-
Goldstone boson is modeled by the radion, or equivalently,
by the position of the IR brane in the gravity dual. There is
then also a different Froissart onset scale E0

F � EF, and

therefore Ê0
F � ÊF in the gauge theory. This corresponds

to the scale at which brane bending reaches the black hole.
As mentioned in the Introduction, for this analysis to

apply at finite N and finite g2YMN, as in real QCD, we have
to make sure that string corrections are small. They are not
small for hard scattering, but for soft scattering at t fixed
and s ! 1, these string corrections are small above an
energy scale �M2

P=Ms for flat four-dimensional space. If
’t Hooft’s argument is valid, this should be actually around
MP. Making use of the optical theorem �totalðsÞ ¼
ImAðs; t ¼ 0Þ=s, the same analysis holds for the total cross
section.

Note that string corrections to the background itself will
be large, and this will translate into modifications of the
various energy scales, in particular, of �QCD, the dual of

the AdS size R�1. A priori, this also entails modifications

of the ratios M̂P=�QCD, ÊR=�QCD, and of ÊF.

By contrast, string corrections to soft scattering in a
given background are small, meaning that we can trust
the cross-section calculations. This allowed for a success-

ful match [9] of the ‘‘soft Pomeron’’ exponent �tot �
s1=11 ’ s0:0909, expected to set in at N2

cM1;glueball �
10 GeV with the energy dependence �tot � s0:0933�0:0024,
observed experimentally as of 9 GeV [23,24].

III. DIFFRACTIVE VECTOR-MESON
PHOTOPRODUCTION (DVMP)

A. Vector-meson dominance model of vector-meson
photoproduction

Before applying AdS/CFT ideas to diffractive vector-
meson photoproduction processes, let us briefly recall how
the ‘‘soft Pomeron’’ dominates them. A particularly simple
and intuitive picture [25] for the photoproduction 	p !
Vp of the vector meson V is obtained in the vector-meson
dominance (VMD) approximation. One treats the photon 	
as undergoing a transition to the a virtual vector meson V
which then scatters elastically on the target proton. This
involves the corresponding 	 ! V transition matrix ele-
ment

h0jj�ð0ÞjVai ¼ fVm
2
V
�a (3.1)

(with 
�a the Minkowski metric), as well as a V propa-

gator evaluated on the photon’s mass shell. This propagator
then cancels the factorm2

V , used for notational simplicity in
the definition of fV in Eq. (3.1) for the transition matrix
element. Also for notational simplicity this definition al-
ready includes the electromagnetic coupling constant. This
way the amplitude A	p!Vpðs; tÞ, with s and t the usual

Mandelstam variables, is given in terms of the Vp elastic
scattering amplitude AVpðs; tÞ as

A	p!Vpðs; tÞ ¼ fVAVpðs; tÞ: (3.2)

With VMD, understanding diffractive vector-meson photo-
production reduces to understanding diffractive vector-me-
son-proton elastic scattering and this calls for Regge
theory, and specifically for Pomeron dominance.

B. Regge theory for Vp scattering

Consider the amplitude AVpðs; tÞ for Vp ! Vp scatter-

ing. In gauge theories, it was found that one can generically
describe the various Regge limits in terms of a tree level
theory of effective particle (’’Reggeon’’) interactions. In
the case of QCD, the leading trajectory is the Pomeron. It is
an effective particle made up of gluon interactions, and in
the case of soft scattering, we have the ‘‘soft Pomeron.’’ It
was found that several effective particles can account for
several regimes. For t � 0 fixed and s ! 1 Regge theory
gives

AVpðs; tÞ � �VðtÞsigPðtÞs�PðtÞ; (3.3)

where

�PðtÞ ¼ �Pð0Þ þ �0
Ptþ � � � (3.4)
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is the Pomeron trajectory, and

sig PðtÞ ¼ �1� e�i��PðtÞ

sin��PðtÞ (3.5)

its signature factor.1 The Pomeron Regge residue in Vp
scattering �VðtÞ is real for t � 0. If �Pð0Þ ’ 1, as can be
seen from total cross-section data even at energies below
the onset of the Froissart regime, then sigPðtÞ ’ i.

The total cross section for Vp scattering, �Vp;totalðsÞ is
given by the optical theorem,

�Vp;totalðsÞ ¼
ImAVpðs; t ¼ 0Þ

s
’ �Vð0Þs�Pð0Þ�1

� �Vð0Þs�: (3.6)

Therefore � ¼ �Pð0Þ � 1, and from the gravity dual de-
scription in Sec. II, we should have � ’ 1=7 below 10 GeV,

and ’ 1=11 between 10 GeV and ÊF, the onset of the
Froissart saturation behavior.

On the other hand, the elastic differential cross section
for Vp ! Vp scattering is

d�Vpðs; tÞ
dt

¼ 1

16�s2
jAVpðs; tÞj2

’ 1

16�
j�VðtÞsigPðtÞj2s2ð�PðtÞ�1Þ

� FVðtÞs2�þ2�0
Ptþ���: (3.7)

For small t, such that �1 GeV2 < t � 0, the prefactor is
well approximated by an exponential in t,

FVðtÞ ¼ 1

16�
j�VðtÞsigPðtÞj2 ’ FVð0ÞeBt: (3.8)

At large jtj it becomes a power law.
By integrating the differential cross section over t, we

obtain �Vp;elasticðsÞ, the total elastic cross section. Because
of the integrand’s rapid exponential falloff, one can extend
the integral to �1. Thus,

�Vp;elasticðsÞ ¼
Z 0

�1
dt

d�Vpðs; tÞ
dt

’
Z 0

�1
dtFVðtÞs2�þ2�0

Ptþ���

’ FVð0Þ
B

s2�
�
1þ 2

�0
P

B
lns

��1
: (3.9)

On the other hand, �0
P=B < � � 1, since roughly �0

P �
0:2 GeV�2 and B� 2–4 GeV�2), which means that we
can bring the corresponding term into the exponent, and
obtain

�Vp;elasticðsÞ ’ FVð0Þ
B

s2��2�0
P=B � FVð0Þ

B
s2ð�PðhtiÞ�1Þ;

(3.10)

where by definition hti ¼ �1=B is the average t of the
integral.
As we shall see, the experimentally observed value of hti

is close to ��=ð2�0
PÞ.

C. Regge theory of DVMP

We can now use vector-meson dominance (VMD) to
relate the analysis of the previous subsection to diffractive
vector-meson photoproduction (DVMP).
Combining Eqs. (3.2) and (3.7), the differential photo-

production cross section is

d�	p!Vpðs; tÞ
dt

¼ 1

16�s2
jA	p!Vpðs; tÞj2

¼ jfV j2
d�Vpðs; tÞ

dt

¼ jfV j2FVðtÞs2�þ2�0
Ptþ���: (3.11)

Integrating over t we get the total V meson photoproduc-
tion cross section,

�	p!VpðsÞ �
Z 0

�1
dt

d

dt
�	p!Vpðs; tÞ ’ jfVj2�Vp;elasticðsÞ

¼ jfV j2 FVð0Þ
B

s2ð�PðhtiÞ�1Þx: (3.12)

On the other hand, the Compton scattering amplitude
A	pðs; tÞ can be obtained by a double application of

VMD. We can relate the elastic process 	p ! 	p with
the elastic process Vp ! Vp by separating a transition
element on both the incoming and the outgoing 	, and
summing over all vector mesons V, with the result

A	pðs; tÞ ’
X
V

fVAVpðs; tÞf	V; (3.13)

where we have discarded the much smaller off-diagonal
Vp ! V0p terms. Making use at this point of the optical
theorem gives

�	p;totalðsÞ ¼
ImA	pðs; t ¼ 0Þ

s
’ X

V

jfV j2
ImAVpðs; t ¼ 0Þ

s

¼ X
V

jfV j2�Vp;totalðsÞ; (3.14)

so that

�	p;totalðsÞ ’
�X

V

jfV j2�Vð0Þ
�
s�: (3.15)

In (3.12), the value of hti ¼ �1=B is the same for all light
V mesons, but for each heavy meson both hti and � ¼
�Pð0Þ � 1 take different values, and give a different
exponent.

1The Pomeron has even signature. Other Regge trajectories
can have odd signatures.
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In order to emphasize the difference between the
Pomeron parameters for heavy and for light mesons, we
write �P;V and htiV in (3.12), which thus becomes

�	p!VpðsÞ � jfV j2 FVð0Þ
B

s2ð�P;V ðhtiV Þ�1Þ: (3.16)

Allowing for such a flavor dependence in the Pomeron,
heretic though it may seem from the point of view of Regge
theory, has the virtue of agreeing with what is experimen-
tally observed. Earlier work has introduced a flavor depen-
dence of the Pomeron residues [26,27], from the point of
Regge theory both acceptable and required, but what we
are doing here amounts to allowing a flavor dependence of
what seems to be the very position of the Pomeron singu-
larity in the complex angular momentum plane. Among
other effects, this type of ‘‘Pomeron flavoring’’ would
destroy the factorization properties of the Pomeron. This
Pomeron flavoring can be understood by taking note of the
different kinematic regimes for light and heavy vector-
meson photoproduction. Because of the large masses of
the J=c , c ð2SÞ, and �, large momentum transfers are set
into play and one moves away from the diffractive soft
Pomeron peak relevant for the photoproduction of the light
vector mesons, into a region where the hard Pomeron takes
over and where such a flavoring is not ruled out.2

We now normalize the s behavior to a fixed s0, and write

�	p!VpðsÞ ’ jfV j2 FVð0Þ
B

s2ð�P;V ð<t>V Þ�1Þ

� jfV j2CVðs=s0Þ~�V ; (3.17)

whereCV depends on the choice of s0 and the exponent of s
is called ~�V . For the comparison of cross sections to have
predictive power, the value s0 must be singled out by the
theory. In the gravity dual calculation in the next section, s0
will indeed be set at s0 � M̂2

P, and we will predict ratios of
CV for this value of s0.

IV. GRAVITY DUAL PICTURE AND MATCHING
WITH EXPERIMENT

A. Theory

Let us now look at vector-meson photoproduction from
the dual point of view. As we saw, for all practical pur-
poses, we are dealing with large s Vp scattering, a soft
Pomeron process. This means that it should be related to

black hole production. The total QCD cross section is due
to black hole production.
We are thus led to consider the process p �p ! V �V

around the gauge theory Planck scale. As we argued in
Sec. II, above the gauge theory Planck scale this process
should be governed by black hole production in the gravity
dual. Specifically, a mini-black hole should be produced
near the IR brane, i.e. at an average position rav away from
the IR brane rmin, but close to it. Then this black hole
decays into particles.
At this scale, one might wonder whether it is possible to

even speak of a black hole. Yet in string theory there are
good reasons to believe that the production and decay of a
black hole is a quantum process, and the apparent black
hole loss of information due to the black hole temperature
is just an illusion, i.e. the temperature is not indicative of
information loss. How this can happen in the case of a near
extremal black hole has been discussed in [29].
Furthermore in [30] for a simple scalar field theory toy
model for the pion, a solution was found which mimics the
properties of the gravity dual black hole, with an effective
temperature and with apparent information loss, even
though the quantum field theory from which one started
is unitary. Thus, although a pure quantum process takes
place, the effect of the black hole being produced is simply
to give an effective temperature.
Therefore since the energy is small enough for the decay

to produce on the average just two particles—the least
number needed for momentum conservation—the simplest
decay mode of the Planck-sized black hole is into a
particle-antiparticle pair. The decay of the dual black
hole is mapped in QCD to a gluonic interaction followed
by decay into vector mesons. Thus, the dual black hole’s
only observable effect in the QCD p �p scattering is the
existence of well-defined relative probabilities of decay for
various vector-meson pairs, so that

�V �VðtÞ
�V0 �V0 ðtÞ �

PV

PV0
¼ e�ð2ðMV�MV0 Þ=T0Þ; (4.1)

where t is the Mandelstam variable for the p �p ! V �V ‘‘t
channel,’’ MV and MV0 are the vector-meson masses, T0 is
the temperature of the Planck-sized (MP) black hole, and
the factor 2 in the exponent corresponds to the meson pair.3

2Note that hard scattering physics was the first to be under-
stood in AdS/CFT using the toy model for QCD used in [19], of
AdS space with an IR cutoff or rmin ¼ R2�QCD. However,
having both hard and soft scattering in the same AdS/CFT
description is also very difficult. Such a description was at-
tempted, for instance, in [28], where hard scattering was con-
nected to a Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution
equation. We will therefore not give an explanation for the flavor
dependence of the Pomeron within our model, but we will leave
it as an experimental fact.

3Of course, any kind of particles can be produced in the p �p
collision, but we will be focusing on the case of production of a
meson pair, as it can be related by crossing to Vp ! Vp. Within
AdS/CFT, it is clear that the black hole creation and decay is
actually unitary, so the V �V creation should be described by a
well-defined quantum amplitude Ap �p!V �V . Alternatively, one can
think of the production of quark-antiquark pairs in the t channel.
This way one can account for the observed equality of the �N
and say �N diffractive amplitudes, because they involve the
same quarks. In terms of the black hole Boltzmann factors, this
would have the sole effect of renormalizing the temperature by a
factor 1=2, given that the constituent quarks weigh in at essen-
tially half the corresponding vector-meson masses. Otherwise all
arguments would remain unchanged.
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Since the black hole is minimal (of Planck size), it cannot
evolve or cool off, like in the alternative models for the
RHIC fireball in [12,13], where the dual black hole is large,
but rather it has to quickly decay into hadrons.

In QCD this involves a highly nonperturbative process,
so that the effect of the dual black hole would in principle
be reproduced by very complicated QCD interactions.

QCD being a quantum theory, the process is unitary, as
we said, and therefore the effect on the quantum amplitude
for p �p ! V �V is that it factorizes into a universal piece
aðs; tÞ independent of V, and a V-dependent Boltzmann
factor,

Ap �p!V �Vðs; tÞ � e�ð2MV=T0Þaðs; tÞ: (4.2)

Let us now look at this process in the crossed Vp ! Vp s
channel. If this is in the soft regime, due to gluon inter-
actions, or equivalently ‘‘Pomeron exchange,’’ then the
above picture should apply, and we have

AVpðs; tÞ � AVp!Vpðs; tÞ � e�ð2MV=T0Þaðs; tÞ; (4.3)

where aðs; tÞ is a universal 2 ! 2 amplitude in the Regge
regime. We can now use this relation in (3.3) and (3.8) to

obtain �VðtÞ ¼ e�ð2MV=T0Þ�ðtÞ and FVðtÞ ¼ e�ð4MV=T0ÞFðtÞ.
Then, since the process we are interested in is actually

	p ! Vp, we can use VMD as in Secs. III A and III B,
obtaining the amplitude

A 	p!Vpðs; tÞ � fVe
�ð2MV=T0Þaðs; tÞ (4.4)

and the V meson photoproduction cross section

�	p!VpðsÞ ’ jfV j2e�ð4MV=T0ÞCðs=s0Þ2ð�P;V ðhtiV Þ�1Þ

¼ jfV j2e�ð4MV=T0ÞCðs=s0Þ2�V�2ð�0
P=BV Þ (4.5)

or CV ¼ Ce�ð4MV=T0Þ in (3.17). This is our main result,
which we will confront with experiment.

First, however, let us go back and reexamine the as-
sumption of the black hole whose temperature T0 is of
Planck size, and also understand the scale s0 at which the
comparison of ratios is to be made.

Why are Planck-sized black holes with T0 �MP rele-
vant? After all, we argued that for the total QCD cross
section in the gravity dual one has black holes of growing
size, thus decreasing temperature, that stops at Tmin ¼
a4M1=� (with a a suitable numerical factor) correspond-
ing in QCD to T ¼ a4m�=� [10]. The growing size of the
produced black holes is responsible for the s� behavior of
�totðsÞ.

But for the temperature factor we have gone from the
p �p ! V �V amplitude to the s channel, exchanging the
original t with s. The original t had to be 
 MP to create
black holes, but for pV ! pV we need jtj � MP, thus t ’
MP for p �p ! V �V and so indeed T0 �MP. A similar argu-
ment can be made exchanging s with t, yielding a Planck

scale value s0 � M̂2
P of the Mandelstam variable s at which

the soft Pomeron behavior sets in for the pV ! pV s
channel.

Thus, for V photoproduction at
ffiffiffi
s

p ¼ ffiffiffiffiffi
s0

p � M̂P, the

soft Pomeron contribution, dual to black hole production,

should be distributed according to temperature T0 � M̂P.
Beyond that energy, one should have the s~�V behavior. For

light vector mesons, with massMV < M̂P, ~�V should be the
soft Pomeron exponent 2�� 2�0

P=B. As we saw, this is
numerically close to �. On the other hand, for heavy vector

mesons, withMV > M̂P, ~�V should be an exponent defined
by hard scattering. The reason for that is purely kinematic,
as it is well known: the photon has Q2 ¼ 0, whereas the
vector meson has P2 ¼ M2

V , as if M
2
V had been effectively

added to it. Thus, if MV > M̂P, the physics is no longer
dominated by the lightest glueball.
Also, for kinematic reasons, production of a heavy

meson V with MV > M̂P will start above
ffiffiffi
s

p ¼ MVV in-

stead of at
ffiffiffiffiffi
s0

p � M̂P, and as we said will be dominated by

hard scattering. We expect that if we extrapolate the hard

scattering formula �V;hard � s~�hard down to
ffiffiffiffiffi
s0

p ¼ M̂P, the

soft formula should apply. In other words, the formula hasffiffiffiffiffi
s0

p � M̂P for heavy mesons also, even though it only

applies for s >M2
V .

In conclusion, the theoretical expectation for the
Pomeron contribution to �V is as sketched in Fig. 1. For

light mesons MV � M̂P, we have the soft Pomeron expo-
nent ~� � 2�� 2�0

P=B, which as we saw is numerically

close to �. For heavy mesons MV 
 M̂P, we have the hard
Pomeron exponent, but both the soft and hard Pomeron

lines extrapolated down to about M̂P should be distributed
according to (4.5).

B. Comparison with experiment

Let us now compare the main formula (4.5) to the
experimental data, and extract the experimental value of
T0. For all light mesons, the fits show the same soft
Pomeron exponent, so that we can compare the ratios of
cross sections at any s, in particular large values of s, where
neglecting Regge exchanges beyond the Pomeron is a good
approximation. By contrast, different heavy mesons yield
different Pomeron ‘‘trajectories,’’ so that the powers of s
differ and these different exponents are not predicted by
theory. We will therefore extrapolate the data to the energyffiffiffiffiffi
s0

p � M̂P � 1–2 GeV, even though, as we already said,

for heavy mesons the formula itself starts applying only at
a higher energy. We will then work out the relevant cross
section ratios from the so extrapolated data.
Our procedure will amount to a simple graphical analy-

sis taking advantage of best fit lines to the high energy data.
A more extensive data analysis is not warranted at this
point, since there are large theoretical uncertainties. For
instance, what is the precise value of s0 at which we make
the comparison, and what kind of corrections do we expect

to the black hole exponential factor e�4MV=T0? Given these
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uncertainties, it makes little sense to try a more sophisti-
cated statistical analysis of the data at this point.

The graph that we will be using for our analysis is Fig. 2
of Ref. [31] (see also for instance, the review [32]), repro-
duced here for convenience in Fig. 2. The values of the
exponents for the best fit lines at high energies are ~�� ¼
~�! ¼ ~�� ¼ 0:11, ~�J=�¼0:41, ~�c ð2SÞ ¼0:55, and ~��¼0:9.

Among the light mesons, � photoproduction is the
cleanest test of the soft Pomeron exponent, because in
this case all mesonic Regge poles decouple [14]. We there-
fore identify the cross-section curve for� photoproduction
with the soft Pomeron contribution. For the other light
vector mesons, we look at data at higher energies,

ffiffiffi
s

p �
10 GeV, where the Pomeron contribution dominates. We

then extrapolate down to M̂P, parallel with the � line. The
next cleanest line, also well split from �, is the J=c line,
where also all mesonic Regge poles decouple. We there-
fore use the J=c :� split to determine T0 and then with the
so-obtained value of T0 check the formula for the vector
mesons for which the photoproduction cross-section mea-
surements carry larger errors. We also extrapolate the

heavy meson lines down to s0 � M̂2
P � 1–2 GeV2. For

concreteness, we at first choose s0 ¼ 2 GeV2.
Numerically, as mentioned already, the energy depen-

dence of total cross section is close to that of the light

meson photoproduction cross sections. This way for light
mesons ~� ’ � ’ 0:11, even though all one had a right to
expect was ~� ¼ 2�� 2�0

P=B. In some sense it is as if we
were testing the behavior of �V � s�. The fact that in the
photoproduction cross sections the switch from one power
law to the other occurs around 9 GeV is particularly
significant in that it does not depend on whether ~� ’ � is
true or not.
The � photoproduction cross-section data have the gen-

eral features that we expect. Most of the data are around
10 GeV, which from previous work [9] corresponds to the

scale ÊR at which in the dual gravity picture the black hole
size reaches the AdS size. This is the transition region
between the � ¼ 1

7 and � ¼ 1
11 . Consequently, one mea-

sures mostly the energy dependence at 10 GeV, which
should be of the form s� with � between 1

7 and 1
11 , and

indeed one finds � ¼ 0:11 ’ ð17 þ 1
11Þ=2. Moreover, from

the graph one can clearly see that � is larger below 10 GeV.
In fact one nicely fits the data with � ¼ 0:15, which is close
to 1

7 ’ 0:143.

Encouraged by this fit, let us turn to the formula at s ¼
s0. The masses of the relevant mesons are

M�0 ¼ 775:8� 0:5 MeV;

M! ¼ 782:59� 0:11 MeV;

M� ¼ 1019:456� 0:020 MeV;

MJ=� ¼ 3096:916� 0:011 MeV;

Mc ð2SÞ ¼ 3686:093� 0:034 MeV;

M� ¼ 9460:30� 0:26 MeV:

(4.6)

FIG. 2 (color online). Energy (W) dependence of the exclusive
photoproduction of light and heavy vector mesons, Fig. 2 of [31].

10 GeV ?1−2 GeV

soft Pomeron
trajectories

hard Pomeron

trajectories

1/7

1/11
Froissart

log(cross

section)

log (s)

FIG. 1. Predicted soft Pomeron contribution to the scattering
cross section (due to production of dual black holes). The first

energy scale is the gauge theory Planck scale, M̂P ¼
N1=4

c M1;glueball � 1–2 GeV. The second is ÊR ¼ N2
cM1;glueball �

10 GeV, and the third is the a priori unknown Froissart scale,
ÊF, above which �� log2ðsÞ, thus logð�Þ � 2 logðlogðsÞÞ. For
vector-meson photoproduction, the exponent is ~� ¼
2�� 2�0

P=B, which as was already mentioned is seen to be
close to the numerical value of � (the equality is true numeri-
cally, though not clear if true theoretically). For vector mesons
with masses above M1;glueball, we have hard scattering, with a

larger exponent. One could have a priori also a scale at which
the exponent changes, as for the soft Pomeron exponent. At M̂P,
the various mesons should be distributed according to the
corresponding Boltzmann factors.
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For mesons that are close by in mass and wave functions,
the relevant VMD factor f2V should be dominated by the
group theory factor HV � ðTrQV Þ2, where in
ðu; d; s; c; bÞ space, Q ¼ diagð2=3;�1=3;�1=3;
2=3;�1=3Þ is the electric charge matrix of the quarks,
and V is the quark content matrix of the vector-meson.
Since we have approximately

�0 ’ u �u� d �dffiffiffi
2

p ; ! ’ u �uþ d �dffiffiffi
2

p ; � ’ s�sJ=c ’ c �c;

c ð2SÞ ’ c �c; � ’ b �b; (4.7)

it follows that

V �0 ’ 1ffiffiffi
2

p �3;ðu;dÞ; V! ¼ 1ffiffiffi
2

p 1ðu;dÞ; V� ¼ 1s;

V J=c ¼ V c ð2SÞ ¼ 1c; V� ¼ 1b (4.8)

and so

H�0 :H!:H�:HJ=c :Hc ð2SÞ:H� ¼ 9:1:2:8:8:2: (4.9)

The � and ! mesons being almost mass degenerate, the
ratio of their photoproduction cross sections at high s
should be 9:1, as has been known for a long time, see
e.g. [25], and can also be read off the experimental data.

The �:J=� split.—If we extrapolate the J=c photo-
production cross section down to about 2 GeV, we find
��

�J=c
� 100, which when compared with Eqs. (4.5) and (4.9)

sets the temperature T0 at 1.3 GeV.
The !:� split.—With the temperature determined this

way, we predict

�!

��
¼ 1

2
eð4ðM��M!Þ=T0Þ � 1:03 (4.10)

in agreement with experiment.
Here it is worth mentioning that the meson-dominated

Pomeron picture [26,27], calls for a suppression of heavier
vector-meson photoproduction cross sections inverse pro-
portional to the fourth power of the vector-meson mass.
This replaces our Boltzmann factors. For the � versus �
photoproduction, this means that the Boltzmann factor

eð4ðM��M�Þ=T0Þ � 2 is to be replaced by
M4

�

M4
�
� 3. Including

the group theory factors, this yields
��

��
� 13:5, as opposed

to our result of 9. At high energies, where the soft Pomeron
dominates, both pictures are compatible with experiment,
within the stated errors.

The J=c :c ð2SÞ split.—Here J=c and c ð2SÞ are n ¼ 1,
and n ¼ 2 c �c S states, respectively. Yet the corresponding
fVM

2
V are not the same, as the J=c and c ð2SÞ wave

functions differ. The n ¼ 2 state will localize the quarks
further from the origin, for instance. In order to extract the
matrix element ratio, we use VMD, and start from the
decay rates of J=c :c ð2SÞ into a lepton pair. In fact,

�J=c ðeþe�Þ
�c ð2SÞðeþe�Þ ¼ jfJ=c j2

jfc ð2SÞj2
MJ=c

Mc ð2SÞ
; (4.11)

where the ratio of masses on the right-hand side
comes from the phase space factors of these S-wave de-
cays. Experimentally this ratio of widths is
5:37 keV=2:10 keV ¼ 2:55. This way

�J=c

�c ð2SÞ

�������� ffiffi
s

p ¼ ffiffiffiffi
s0

p �M̂P�2 GeV
¼ jfJ=c j2

jfc ð2SÞj2
eð4ðMc ð2SÞ�MJ=c Þ=T0Þ

¼ 101:27: (4.12)

The experimental graph gives a split of about 101:25.
The J=c :� split.—In this case the group theory and

Boltzmann factors give

�J=c

��

�������� ffiffi
s

p ¼ ffiffiffiffi
s0

p �2 GeV
¼ 8

2
eð4ðM��MJ=c Þ=T0Þ ’ 109; (4.13)

i.e. nine decades difference. The experimental graph,
blindly extrapolated to 2 GeV, yields a difference of about
4.5 decades. But the � ‘‘line’’ consists of just two close-by
points with huge error bars, so that its slope could easily
reach double the value suggested by the best fit. The
meson-dominated soft Pomeron picture is hardly appli-
cable here, given the large momentum transfers kinemati-
cally required on account of the large�mass. This calls for
the hard Pomeron in� photoproduction and eliminates the
fourth-power mass dependence characteristic of the
meson-dominated soft Pomeron picture, which though
valid for � photoproduction, fails for � photoproduction.
A better determination of the � line through more

accurate � photoproduction data will allow for an impor-
tant additional test of these ideas.
On the whole, so far, our main formula with its charac-

teristic Boltzmann factors compares quite well with ex-
perimental results.
We were led to a Planck temperature of about 1.3 GeV

by the data. This should be thought of as the QCD Planck

scale M̂P ¼ N1=4�QCD.

Also experimentally, the �tot � s1=11 behavior sets in at
about 9 GeV [23,24], which we can thus identify with

ÊR ¼ N2�QCD. Again, from the data we found ÊR=M̂P ¼
9 GeV=1:3 GeV, which agrees embarrassingly well with

the theoretical prediction N2=N1=4 ¼ 9=1:316 for N ¼ 3
colors. This is all the more mysterious, since, as mentioned
in Sec. II, the values of energy scales can get possibly large
string corrections. Could it be that, in the ratios of energy
scales, the string corrections cancel?
We could have made a more rigorous analysis of the

data, but as we already pointed out, there are several
theoretical uncertainties, that could slightly modify the
results, so it is not clear that it is useful getting better fits
from the current experimental data, not until there is a
better control on the theoretical uncertainties, even just in
evaluating their size.
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On the theoretical side we have already mentioned the
uncertainties in the exact value of s0 and the unknown
potential corrections to the black hole Boltzmann factor.
Also the hard Pomeron exponents ~�V for heavy vector
mesons could change at a lower scale along our extrapo-
lation. This could parallel what happens for the soft
Pomeron in the gravity dual model. This would slightly

affect the extrapolation to M̂P.
Then, the behavior of the extrapolation of the hard

Pomeron from MV down to M̂P could also be slightly
changed, as one needs at least

ffiffiffi
s

p ¼ MV to even produce
the mesons. For J=c and c ð2SÞ that difference between

the M̂P and MV extrapolation is relatively small, but for �
it could be larger, and it could contribute along with the
large experimental errors to the observed discrepancy.
Finally, we have assumed that the hard Pomeron extrapo-

lated down to M̂P gives the soft Pomeron contribution at

M̂P, but the soft Pomeron contribution could be slightly
smaller.

V. CONCLUSIONS

In this paper we have analyzed diffractive vector-meson
photoproduction using AdS/CFT. The soft Pomeron be-
havior of QCD was argued to be due to production of dual
black holes. The photoproduction of the � meson is the
cleanest test of the soft Pomeron. Indeed the � mass is
sufficiently small for the applicability of the soft Pomeron
picture, and moreover mesonic Regge poles do not con-
tribute to � photoproduction [14].

For vector-meson photoproduction, the power ~� ¼ 2��
2�0

P=B differs in principle from the power � determined
from the energy behavior of total cross sections, but they
are numerically surprisingly close. Assuming outright
equality, ~� ¼ �, the � data match the s�-like theoretical

prediction: �V � s1=7 below 9 GeV and �V � s1=11 above
9 GeV. The measured exponent of 0.11 is mostly due to
data in the transition region around 9 GeV, and can be fit
with an exponent of ð1=7þ 1=11Þ=2 ¼ 0:117, though of
course a more detailed analysis of the AdS/CFT scattering
is needed to determine if the matching is relevant. We
emphasize though the absence of any theoretical under-
standing whatsoever for such an equality ~� ¼ � in the case
of light vector mesons.

Then we have tested the general formula at s ¼ s0. The
predicted ratios of soft Pomeron contribution to �V at

about 1–2 GeV were successfully compared with experi-
ment. This allowed us to extract the temperature T0 �
1:3 GeV. This T0 has to be close to M̂P, and we therefore
identified their values. This led us to the value
9 GeV=1:3 GeV for the ratio of the soft Pomeron onset

scale, ÊR, to M̂P. As was pointed out, this agrees well

beyond all expectation with the prediction ÊR=M̂P ¼
N2

c=N
1=4
c ¼ 9=1:316, though it is unclear why we have

such good agreement, when a priori there could be dual
string corrections.
We should emphasize that, while the Fermi-Landau

statistical model also gives an effective temperature for
the soft high energy scattering, the AdS/CFT description
provides an understanding of the temperature T0 in a
quantum theory, as being due to a unitary process of dual
black hole creation and decay. AdS/CFT also gives a

prediction for T0 � M̂P that we tested experimentally. Of
course, QCD is a good description for the scattering, so it
should also be possible to modify the Fermi-Landau model
[33,34] to obtain the same result.
An important further test of the ideas of this paper could

be obtained from a more precise determination of the s
dependence of the� photoproduction cross section, allow-
ing for a better determination of the extrapolated J=�:�
split at s0 � 1–2 GeV2.
Finally, we have used AdS/CFT, together with Regge

theory, to describe vector-meson photoproduction, and
both were needed to derive our results. But it should be
in principle possible to find the same formulas from QCD,
at least on the lattice, if not analytically.
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