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We derive several no-go theorems in the context of massive type IIA string theory compactified to four

dimensions in a way that, in the absence of fluxes, preserves N ¼ 1 supersymmetry. Our derivation is

based on the dilaton, Kähler and complex structure moduli dependence of the potential of the four-

dimensional effective field theory, that is generated by the presence of D6-branes, O6-planes, RR fluxes,

NSNS 3-form flux, and geometric fluxes. To demonstrate the usefulness of our theorems, we apply them to

the most commonly studied class of toroidal orientifolds. We show that for all but two of the models in this

class the slow-roll parameter � is bounded from below by numbers of order unity as long as the fluxes

satisfy the Bianchi identities, ruling out slow-roll inflation and even the existence of de Sitter extrema in

these models. For the two cases that avoid the no-go theorems, we provide some details of our numerical

studies, demonstrating that small � can indeed be achieved. We stress that there seems to be an �-problem,

suggesting that none of the models in this class are viable from a cosmological point of view at least at

large volume, small string coupling, and leading order in the �0-expansion.
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I. INTRODUCTION

The increasing precision of cosmological data collected
over the past two decades has strengthened the case for
inflation as the paradigm for early universe cosmology. Not
only is the universe observed to be flat to within one
percent, the density perturbations are also found to be
nearly scale invariant, Gaussian, and adiabatic, just as
predicted by inflation. It may soon be possible to distin-
guish between various classes of inflationary models when
upcoming experiments provide us with a more precise
measurement of the power spectrum of scalar perturba-
tions, measure small departures from Gaussianity or adia-
baticity, or maybe even a B-mode signal, a pattern in the
polarization of the cosmic microwave background radia-
tion that would be the smoking gun of high-scale inflation.
According to the most naive estimates, the scale of infla-
tion may only be few orders of magnitude below the Planck
scale, implying that cosmology might even provide an
experimental test for string theory [1,2], quite likely the
only one in the foreseeable future.

This opportunity has sparked work by many people
toward an understanding of what string theory actually pre-
dicts in this regard, as well as work toward an understand-
ing of the reliability of the approximations made to derive
these predictions. Given that we do not understand why

space-time has four large dimensions, the best we can do is
to take this as an input and construct a reliable four-
dimensional effective theory, with stabilized moduli, that
produces inflation consistent with current observations in a
way that allows us to control the corrections. Most of the
modern approaches are based on flux compactifications. As
explained in [2], one constructs a string inflation model by
specifying the compactification manifold, its dimensional-
ity and topology, the location of orientifold planes and
D-branes, the type and amount of fluxes that are turned
on and through which cycle. The size of the corrections
will depend, among other things, on the value of gs, which
controls the loop expansion, �0, which sets the scale of the
string modes, and the volume of the compactification man-
ifold, which determines the mass scale for the Kałuża-
Klein modes.
Since the ground breaking work of KKLT [3], which

provided a mechanism to stabilize all moduli in the context
of type IIB string theory, a lot of work has been done
toward understanding inflation in string theory setups that
are under control [2,4–9]. This effort has uncovered a
variety of potential mechanisms for inflation which are
usually broadly classified according to the origin of the
inflaton field into moduli inflation or D-brane inflation. A
lot of progress has been made in the context of type IIB
string theory; type IIA on the other hand still remains much
less explored.
In type IIA, work by DeWolfe et al. [10] gave an explicit

construction for moduli stabilization relying on perturba-
tive effects alone, thus making it more reliable as far as
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calculability is concerned and allowing for more explicit
constructions than in type IIB. All is not good, however,
since the presence of orientifolds in these compactifica-
tions may invalidate the usual effective field theory treat-
ment as pointed out by Banks and van den Broek [11].
Although, we lack a good argument to appease those
concerned by the latter point, in this paper we will continue
to ignore the backreaction of the orientifold plane in our
search for inflation in massive type IIA, following
Hertzberg et al. [12,13]. The concerned reader may view
our work as an attempt to derive some expertise and insight
into the analysis of inflation in models with a large number
of fields and fluxes that may also be useful in other
contexts.

Generically, the various moduli fields are coupled to
each other, and one has to search for slow-rolling regions
in the typically rather high-dimensional moduli space. Be-
cause of the large number of fields and the complexity that
comes with it, the existence of a slow-roll path will typi-
cally either be excluded by analytical methods (no-go
theorems) or will have to be confirmed by numerical
analysis.

The original work of HTKSÖ [12] studied three simple
orientifolds of T6 [10,14,15] in the hope to find inflation,
only to be disappointed, and HKTT [13] extended this
work and proved a no-go theorem that applies to compac-
tifications of IIA string theory on general Calabi-Yau
manifolds with standard NSNS fluxes, RR fluxes,
D6-branes, andO6-planes at large volume and small string
coupling. This no-go theorem shows that the slow-roll
parameter � is bounded from below by some positive
number independent of the choice of fluxes, implying
that � cannot be made small enough to allow for slow-
roll inflation. This illustrates that even an infinite number
of vacua does not guarantee that one of them will inflate.

As with any no-go theorem, the most important infor-
mation contained in the theorem are the assumptions that
went into its derivation. Beyond the usual assumptions of
large volume, small string coupling, and leading order in
the �0-expansion, an important assumption in the case of
HKTT was that the models did not include geometric or
nongeometric fluxes. In this work we allow for geometric
fluxes, but otherwise use the same assumptions as [13]. In
addition, we assume that there is a hierarchy between the
mass scales corresponding to the twisted and blowup
modes and the modes of the untwisted sector that we
keep. For those D6-branes whose backreaction cannot be
ignored, we limit ourselves to rigid embeddings, making a
hierarchy between the open string modes and the modes we
keep plausible so that they can be integrated out.1 For
branes that can consistently be treated as probes, this

limitation does not apply. Under these assumptions, we
derive several new no-go theorems,2 and, to demonstrate
their usefulness, apply them to toroidal orientifolds with
Abelian orbifold groups generated by rotations and reflec-
tions, that, in the absence of fluxes and after orientifolding,
preserveN ¼ 1 supersymmetry. We show that in all these
models except for the two Z2 � Z2 cases, even in the
presence of geometric fluxes, the slow-roll parameter � is
bounded from below by numbers of order unity as long as
the fluxes satisfy the Bianchi identities. For these two
special cases, we numerically succeed in identifying re-
gions in moduli space with arbitrarily small �, but all these
regions seem to have too short a period of inflation. In other
words, there is an �-problem similar to the one that has
already appeared in many of the type IIB compactifica-
tions, with the additional feature that at least one of these
directions always turns out to be not only steep but also
tachyonic.
While the original work of HKTT [13] was based ex-

clusively on the dependence of the potential on the dilaton
and volume moduli field our work is based on the depen-
dence of the potential on the dilaton, volume as well as the
Kähler and complex structure moduli. No-go theorems of
this kind are useful because they sharpen our understand-
ing of the ingredients necessary for successful slow-roll
inflation and allow us to exclude entire regions in the large
landscape of solutions of string theory. The analysis of
HKTT shows that localized sources such as NS5-branes
or geometric or nongeometric fluxes are a necessary con-
dition for slow-roll in type IIA string theory, we show that
geometric fluxes alone are not generally sufficient.
There have by now been other studies of type IIA com-

pactifications that have successfully identified regions of
slow-roll inflation or found de Sitter vacua.
In [16], Silverstein constructed de Sitter solutions based

on compactifications of type IIA on a product of two Nil-
manifolds with orientifold planes, fivebranes, fractional
Chern-Simons forms, and fluxes. As was shown by
Silverstein and Westphal [17], in these setups it is not
only possible to realize successful slow-roll inflation, but
even to realize large-field inflation in a controlled way thus
generating an observable tensor signal [17], making these
the most exciting solutions in type IIA from a cosmological
point of view so far.
While these vacua are presumably much closer to what

one might expect a generic vacuum to look like, and one

1Phrased differently, the hierarchy guarantees that the branes
will relax to their static configurations on time scales much
shorter than the time scales we are interested in so that their
dynamics can be ignored.

2As a caveat to the reader, we would like to note that our use of
the phrase ‘‘no-go theorem’’ is probably an abuse of terminology
for most of our cases because they apply to fairly narrow
circumstances and require a relatively large number of assump-
tions (though we believe that our assumptions are reasonable).
We chose this phrase for its familiarity to those who work in the
subject and to evoke a certain set of connotations. However, any
reader who is uncomfortable with this weakening of established
terminology should feel free to substitute the alternative phrase
‘‘no-go lemma’’ at each occurrence.
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might argue that these are a natural place to start looking
for inflation, they clearly are also somewhat less explicit
and hence less controlled. So it seems worthwhile asking
what the minimal set of ingredients for successful inflation
or de Sitter solutions in type IIA is. Our studies are very
much in this spirit, and it is also in this spirit that Haque
et al. [18] studied compactifications on a product of two
maximally symmetric hyperbolic spaces. Another possible
approach to evading the no-go theorem of [13], comple-
mentary to the work here, is to appeal to corrections to the
tree-level effective action. This is the direction pursued by
the authors of [19].

Very recently, compactifications of type IIA on orienti-
folds of SU(3)-structure manifolds with nonvanishing geo-
metric fluxes were studied in [20]. Some of the models
were ruled out in [20] based on our results, for others
numerical studies indicate that there are regions in moduli
space with small �. However, the same�-problem seems to
make an appearance, ruling these out from a cosmological
perspective as well. This seems natural because the models
studied there are in fact close cousins of the models that
lead to small � and an �-problem for us.

The organization of the paper is as follows. In Sec. II A
and II B, we review in some detail the low-energy effective
theory in the presence of both geometric and nongeometric
fluxes. In Sec. II C, we write explicit expressions for the
slow-roll parameters � and � as functions of the moduli
and the fluxes. In Sec. III, we derive several no-go theo-
rems based on the dependence of the effective potential on
the dilaton, as well as Kähler and complex structure mod-
uli. In Sec. IV, we present a classification of the possible
orientifolds of T6 as well as the possible constraints on the
fluxes, Bianchi identities and tadpoles conditions. In
Sec. V, we apply the no-go theorems to the toroidal ori-
entifolds discussed in Sec. IV and show that most of them
cannot have small �, ruling out both slow-roll inflation and
the existence of de Sitter extrema. In Sec. VI, we present
some details of our numerical studies for the models for
which we found small �. We note that there seems to be an
� problem, implying that none of the models in this class
can accommodate extended periods of inflation as seems to
be required by observations. We conclude in Sec. VII. The
appendix contains a summary of our conventions.

II. LOW ENERGY THEORY

A. Metric and nongeometric fluxes

As mentioned above, recent work [13] has shown that
type IIA string theory with only ordinary fluxes (H-flux
and RR fluxes) is not sufficient to allow for slow-roll
inflation. For this reason we would like to include some
extra ingredients in an effort to overcome this obstacle.
There are many objects that one could add, and arguments
that generically their presence will allow for de Sitter
extrema [16], but we would like to look instead for a
minimal set of additional ingredients, and we will focus

on one particular class of ingredients which are known as
generalized NSNS fluxes. Our motivation is that T-duality
guarantees that these fluxes can appear (they should be on
the same footing as ordinary H-flux), and T-duality also
shows us how they must appear for consistency.
It is well known that by T-dualizing a circle that is

threaded byH-flux (that is if the circle isometry contracted
with H is nonzero), one obtains a new solution in which
some components ofH-flux have been exchanged for some
nonconstant metric components, whose effect can be
thought of as a twist of the circle over the rest of the
geometry. These twists can be encoded in components
fijk, analogous to the individual components Hijk of the

H-flux. By performing an explicit Kałuża-Klein reduction
from ten dimensions, one can learn how such objects
appear in the low-energy theory in four dimensions [21–
23]. It turns out that these objects, which are usually called
metric fluxes (or sometimes geometric fluxes) because of
the analogy with H, appear in the low-energy theory in
much the same way that H does. If we started with an
underlying space preservingN ¼ 1, such as a Calabi-Yau
orientifold of IIA, then the objects appear as parameters in
the four-dimensional superpotential and the tadpole con-
straints. It turns out that metric fluxes can also have the
effect of giving a charge to some of the fields (fields that
were RR axions before fluxes were turned on) under the
four-dimensional vector multiplets, with the result that
they can also appear in D-terms in four dimensions
[24,25].
Sometimes there are further T-dualities one can per-

form, converting the metric flux components fijk into new

objects Qij
k known as nongeometric fluxes. In the presence

of these, the six-dimensional compact space is not a geo-
metric manifold anymore, but rather it has the structure of a
torus fiber glued over a base with transition functions that
sit inside the full T-duality group [26,27]. In fact, from a
four-dimensional perspective, it is quite reasonable to ex-

pect a full set of these objects, Hijk, f
i
jk, Q

ij
k , as well as

objects labeled Rijk, but not all of these have been explic-
itly constructed from a ten-dimensional string theory.
However, that does not necessarily stop us from discussing
how they would appear in the low-energy theory, since that
is determined by symmetry considerations [24,25,28–30].
For a review of these constructions, the reader is encour-
aged to refer to the review [31], and references therein.
Here, we will be satisfied to include a few more com-

ments about metric fluxes. Consider the case of T6 in
particular (this will be the starting point for all of our
explicit constructions later). In the presence of fijk, the

underlying geometry changes from a torus to a twisted
torus, and the globally defined one-forms are no longer
the closed forms dxi, but rather forms �i that satisfy

d�i ¼ �1
2f

i
jk�

j ^ �k: (2.1)

SEARCHING FOR SLOW-ROLL MODULI INFLATION IN . . . PHYSICAL REVIEW D 79, 086011 (2009)

086011-3



Simply demanding that d2 ¼ 0 gives us some constraints,

fij½kf
j
‘m� ¼ 0: (2.2)

Similarly, if we now expand H in this basis, H ¼
1
6Hijk�

i ^ �j ^ �k, then the usual condition that H be

closed gives

fi½jkH‘m�i ¼ 0: (2.3)

These two sets of equations will be referred to as Bianchi
identities, and the flux components we turn on must satisfy
them for reasons of consistency. Finally, it turns out to be
much more convenient to express our fluxes instead using a
basis of forms that, in the absence of metric fluxes, would
be the harmonic forms of the underlying space (see the
appendix for our conventions),

H ¼ pKb
K; d!a ¼ �raKb

K; d�� ¼ �r̂K�aK:

(2.4)

Here pK, raK, and r̂K� are linear combinations of Hijk and

fijk. More details can be found in Sec. IVB.

Throughout this paper we will only turn on H-flux and
metric fluxes, and not any of the nongeometric fluxes, since
we generically expect that in the presence of nongeometric
fluxes, some volume moduli will be stuck near the string
scale (since the transition functions involve T-dualities that
include volume inversions). However, it will be useful to
keep the nongeometric fluxes in our minds when thinking
about using T-dualities to convert one configuration of
fluxes into a more useful configuration, as discussed in
Sec. IVC.

B. Effective potential

Our starting point is a Calabi-Yau orientifold of type IIA
string theory. We will add RR fluxes, as well as H-flux and
metric flux from the NSNS sector. Our conventions are
listed in the appendix.

These ingredients then lead to an effective N ¼ 1
supergravity theory in four dimensions. To describe this
effective theory, and particularly the effective potential for
the complex scalar fields ta and NK, we must provide the
Kähler potential K, the holomorphic superpotential W, the
holomorphic gauge kinetic couplings f��, and the gauge

transformations of the scalar fields under the different U(1)
gauge groups arising from the four-dimensional vectors
(i.e. we must give the electric and magnetic charges of
the scalar fields). Then the effective action for the scalars is

S ¼ �
Z
fKa �bdt

a ^ �d�tb þ KI �JdN
I ^ �d �NJ þ V � 1g;

(2.5)

where the scalar potential is

V ¼ eKðKa �bDaWDbW þ KI �JDIWDJW � 3jWj2Þ
þ 1

2ðRefÞ�1��D�D�: (2.6)

Here, � is the four-dimensional Hodge star, Ka �b ¼ @
@ta �

@
@�tb

K, Ka �b is its (transpose) inverse, DaW ¼ @
@ta W þ

ð @
@ta KÞW, and similarly for the NK, and the D-terms are

D� ¼ i

W
ð��t

aDaW þ ��N
KDKWÞ

¼ ið��t
a@aK þ ��N

K@KKÞ þ i
��W

W
; (2.7)

where ����� is the variation of the field � under an
infinitesimal gauge transformation A� ! A� þ d��. One
can also discuss D-terms arising from the magnetic gauge
groups, but the details are similar.
For the IIA orientifolds at hand, we can provide this

information [32]. The Kähler potential is given by3

K ¼ 4D� lnð43ð	v3ÞÞ: (2.8)

In the sector of Kähler moduli, this leads to

@aK ¼ 3i

2

ð	v2Þa
ð	v3Þ ; (2.9)

and

Ka �b ¼ 9
4ð	v3Þ�2ð	v2Það	v2Þb � 3

2ð	v3Þ�1ð	vÞab; (2.10)

with inverse

Ka �b ¼ �2
3ð	v3Þð	vÞ�1ab þ 2vavb: (2.11)

Note that there is a no-scale condition

Ka �b@aK@bK ¼ 3: (2.12)

In the complex structure sector, our moduli are defined by
NK ¼ 1

2

K þ ie�DZK, where D is the four-dimensional

dilaton and the ZK come from the expansion of the hol-
omorphic three-form �. These ZK are not all independent
(there are h2;1 þ 1 of them which are functions of the h2;1

complex structure moduli), and in fact they satisfy a rela-
tion which can always be written as

pnðZÞ ¼ 1; (2.13)

where pnðZÞ is a homogeneous polynomial of degree n ¼
h2;1 þ 1 in the ZK. In terms of this polynomial (which of
course plays the role of a prepotential) we can then write

F K ¼ � i

2n

@

@ZK pnðZÞ; (2.14)

and

D ¼ � 1

n
ln½pnðIÞ�; (2.15)

where IK ¼ ImNK ¼ e�DZK. It then follows that

3Here and in some formulae below we will sometimes drop
certain indices in cases where the contractions are obvious. For
instance, (	v3) will be short hand for 	abcv

avbvc. We hope that
this does not cause the reader too much difficulty.
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@

@NJ
K ¼ 2i

n

@JpnðIÞ
pnðIÞ ¼ 2i

n
eD@JpnðZÞ ¼ �4eDF J;

(2.16)

KJ �K ¼ 1

n
e2D½@JpnðZÞ@KpnðZÞ � @J@KpnðZÞ�: (2.17)

It can be useful to pull out the dilaton dependence here and
define

K̂ JK ¼ e�2DKJ �K ¼ 1

n
½@JpnðZÞ@KpnðZÞ � @J@KpnðZÞ�:

(2.18)

The inverse of K̂JK will simply be denoted by K̂KL, so that

KKL ¼ e�2DK̂KL.
With these results it is easy to verify the identities

K̂ JKZK ¼ 2iF J; K̂JKF K ¼ � i

2
ZJ; (2.19)

Z KF K ¼� i

2
; K̂JKF JF K ¼�1

4; K̂JKZJZK ¼ 1;

(2.20)

and the no-scale-type condition

KJ �K@JK@KK ¼ 4: (2.21)

The gauge kinetic couplings are

f�� ¼ ið	̂tÞ��; (2.22)

with

ðRefÞ�1 ¼ �ð	̂vÞ�1: (2.23)

The corresponding D-terms are

D� ¼ 2ieDðr̂F Þ�; (2.24)

so that the D-term contribution to the potential is

VD ¼ 1
2ðRefÞ�1��D�D� ¼ 2e2Dð	̂vÞ�1ðr̂F Þ2: (2.25)

Unlike the Kähler potential, the superpotential depends on
the fluxes,

W ¼ e0 þ teþ 1
2	t

2mþ 1
6
~mð	t3Þ þ 2Npþ 2Nrt:

(2.26)

The covariant derivatives of W are

DaW ¼ ea þ ð	mtÞa þ 1

2
~mð	t2Þa þ 2ðNrÞa

þ 3i

2

ð	v2Þa
ð	v3Þ W;

DKW ¼ 2pK þ 2ðrtÞK � 4eDF KW: (2.27)

We will also mention that there are tadpole conditions
which the generalized fluxes should satisfy,

� ffiffiffi
2

p ðpK ~m� raKm
aÞ ¼ 2NðO6Þ

K � NðD6Þ
K : (2.28)

where the right-hand side represents the contribution of
localized sources, both O6-planes and D6-branes.

C. Slow-roll parameters

As discussed in [12], we can express the slow-roll
parameters � and � in terms of the scalar potential and
Kähler metric.
The expression for � is

� ¼ V�2

�
Ka �b @

@ta
V

@

@�t
�b
V þ KI �J @

@NI V
@

@ �N
�J
V

�

¼ 1

4
V�2

�
Ka �b

�
@

@va V
@

@vb
V þ @

@ua
V

@

@ub
V

�

þ KI �J

�
@

@ReNI V
@

@ReNJ V þ @

@ ImNI V
@

@ ImNJ V

��
:

(2.29)

If we further define va ¼ ��a, where

	abc�
a�b�c ¼ 6; (2.30)

so that the overall volume is V 6 ¼ �3, and use the ex-
pressions for the Kähler metric above, then we can further
simplify this to

� ¼ V�2

�
1

3
�2

�
@V

@�

�
2 þ 1

4

�
@V

@D

�
2 þ

�
�ð	�Þ�1ab

þ 1

6
�a�b

�
@V

@�a

@V

@�b
þ 1

4
½K̂JK �ZJZK� @V

@ZJ

@V

@ZK

þ �2

�
�ð	�Þ�1ab þ 1

2
�a�b

�
@V

@ua
@V

@ub

þ e�2DK̂JK @V

@
J

@V

@
K

�
: (2.31)

This expression splits � into six non-negative pieces. The
first line involves the overall volume modulus � and the
four-dimensional dilaton D. In this class of models, the
potential V can always be written as a polynomial in � and
eD, so this line is often very easy to compute. The no-go
theorems of [13] have been derived by focusing only on
this line.
The second line involves the angular Kähler moduli, �a

and the complex structure moduli ZJ. Both these sets of

variables are constrained (	�3 ¼ 6, K̂Z2 ¼ 1), so there is
no unique way of writing the potential in terms of them.
However, the metrics which appear in the expression above
are such that � does not depend on these choices. For
example, if a 	�3 appears anywhere in V, then when the
derivative with respect to �a hits it we get a contribution
proportional to 	abc�

b�c, but this is annihilated by the
term in square brackets above. Finally, the third line con-
tains the axions ua and 
J.
The expression for � is slightly more complicated. First

we must define a canonical metric gij on the moduli space
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of real fields, given by

1
2 gijd�

id�j ¼ KA �Bd�
Ad ��B: (2.32)

Here we are using the indices i and j to run over all real
valued fields, while A and B run over all complex-valued
fields, from both the complex structure and Kähler sectors
of the theory. From this metric we can then compute
Christoffel symbols �i

jk, and then we have

� ¼ minimum eigenvalue of

�gikð@k@jV � �‘
kj@‘VÞ

V

�
:

(2.33)

D. Scalar potential with metric fluxes

The full expression for the scalar potential in this case is
given by

V ¼ 3

ð	v3Þ e
2D

�
K̂IJðpI þ raIu

aÞðpJ þ rbJu
bÞ þ K̂IJraIrbJv

avb � 2ðZKraKv
aÞ2 � 2

3
ð	v3Þð	vÞ�1abZIZJraIrbJ

�

þ 2e2Dð	̂vÞ�1��ðr̂I�F IÞðr̂J�F JÞ þ 2e3DZKð ~mpK � raKm
aÞ þ 3

4ð	v3Þ e
4D

��
� 2

3
ð	v3Þð	vÞ�1ab þ 2vavb

�

�
�

IraI þ ea þ ð	muÞa þ 1

2
~mð	u2Þa

��

JrbJ þ eb þ ð	muÞb þ 1

2
~mð	u2Þb

�
þ 4

�

KðpK þ raKu

aÞ þ ~eþ ðeuÞ

þ 1

2
ð	mu2Þ þ 1

6
~mð	u3Þ

�
2 þ

�
� 2

3
ð	v3Þð	vÞab þ ð	v2Það	v2Þb

�
ðma þ ~muaÞðmb þ ~mubÞ þ 1

9
~m2ð	v3Þ2

�
: (2.34)

III. NO-GO THEOREMS

In this section we will prove a series of no-go theorems.
Each one will show that, given some restrictions on the
model, the slow-roll parameter is bounded below by some
positive number of order unity, thus ruling out both slow-
roll inflation and the existence of de Sitter extrema. There
will be two types of restrictions that we will consider. We
might impose conditions on the intersection numbers of the
model, as encoded by the polynomials 	abc, 	̂a�� and the

polynomial pn, and we will further restrict which fluxes
can be turned on.

A. General manifolds

Consider first the case where no restrictions are assumed
on the intersection numbers of the model, that is 	, 	̂, and
pn are unconstrained.

Here we will demonstrate two no-go theorems. The first
was shown by [13] and pertains to the case of no metric
fluxes, that is raK ¼ r̂K� ¼ 0. In this case the scalar poten-
tial simplifies to

V ¼ 1
2�

�3e2DK̂IJpIpJ þ 2 ~me3DZKpK

þ 1
8�

�3e4Df4�2½�ð	�Þ�1ab þ 1
2�

a�b�ðea þ ð	muÞa
þ 1

2
~mð	u2ÞaÞðeb þ ð	muÞb þ 1

2
~mð	u2ÞbÞ þ ½
KpK

þ ~eþ ðeuÞ þ 1
2ð	mu2Þ þ 1

6
~mð	u3Þ�2 þ �4½�4ð	�Þab

þ ð	�2Það	�2Þb�ðma þ ~muaÞðmb þ ~mubÞ þ 4 ~m2�6g:
(3.1)

Note that the metrics [� ð	�Þ�1ab þ 1
2�

a�b] and [�
4ð	�Þab þ ð	�2Það	�2Þb] are both positive definite since

they are equal to 1
4�

�2Ka �b and 16�2Ka �b, respectively, so

that the only term in the potential which can be negative is
the second term on the first line above.

From this we can easily check that

3@DV � �@�V � 9V: (3.2)

Finally, if we also have V > 0, then we can write

� � V�2½13�2ð@�VÞ2 þ 1
4ð@DVÞ2�

¼ V�2½ 139ð3@DV � �@�VÞ2 þ 1
52ð@D þ 4�@�VÞ2� � 27

13:

(3.3)

Let us consider another example of possible interest, where
we allow metric fluxes, but do not allow a Romans mass
parameter, that is we take ~m ¼ 0. This would be the
models one would look at if one wished to have a straight-
forward lift to M-theory, for example. In this case one can
easily check that there is another no-go theorem. Indeed,
we have

@DV � �@�V � 3V; (3.4)

and so

� � V�2½17ð@DV � �@�VÞ2 þ 1
84ð3@DV þ 4�@�VÞ2� � 9

7:

(3.5)

Thus in both these cases there is no possibility of slow-roll
inflation, and no possibility of finding a de Sitter extremum
of the potential anywhere in field space (such a point would
have � ¼ 0, of course). For this reason we will assume that
~m � 0 in subsequent sections, and we will focus on cases
in which some metric fluxes are nonzero. The observation
that a nonzero ~m is necessary for the existence of de Sitter
vacua was made independently in [18].

B. Factorization in the Kähler sector

Now consider a more restricted class of models, in
which there is one distinguished Kähler modulus v0,
such that the only nonzero intersections are
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	0ij ¼ Xij; 	̂0�� ¼ X̂��; (3.6)

and their permutations, where i and j run over the remain-
ing Kähler moduli. When considering general Calabi-Yau
orientifolds, this is a very unnatural condition. However,
frequently one is interested in orientifolds of T6 and there
is a hierarchy between the moduli of the untwisted sector
and those of the twisted sectors. In such a case one typi-
cally truncates to the untwisted moduli, and in this sector
the constraints above on the intersection numbers are not
uncommon; they correspond to the presence of a T2 factor
in the T6 which is preserved by the orientifold group.

In the general case, we found it profitable to split the
Kähler moduli into an overall volume variable � and a set
of angular variables �a. In the factorized case it is more
useful to take v0 and then split the remaining moduli by
defining vi ¼ �i, where the angular variables �i are
constrained by

Xij�
i�j ¼ 2: (3.7)

Then, for instance, the volume of the space isV 6 ¼ v02.
With these conventions we find that the Kähler metric and
its inverse have the form

Ka �b ¼
1

4ðv0Þ2 0

0 1
42 ½ðX�ÞiðX�Þj � Xij�

 !
;

Ka �b ¼ 4ðv0Þ2 0
0 42½�X�1ij þ �i�j�

� �
:

(3.8)

The combinations that appear in the expression for � are

1

4
Ka �b @V

@va

@V

@vb
¼ ðv0Þ2

�
@V

@v0

�
2 þ 1

2
2

�
@V

@

�
2

þ
�
�X�1ij þ 1

2
�i�j

�
@V

@�i

@V

@�j : (3.9)

We can now look for no-go theorems involving the three
variables D, v0, and . For example, suppose r0K ¼ 0, but
we allow nonzero riK and r̂K� , then

V ¼ 1

2v02
e2DfK̂IJðpI þ riIu

iÞðpJ þ rjJu
jÞ þ 2K̂IJriIrjJ�

i�j � 42ZIZJX�1ijriIrjJg

þ 2ðv0Þ�1e2DX̂�1��ðr̂I�F IÞðr̂J�F JÞ þ 2e3DZKð ~mpK � riKm
iÞ þ 1

2v02
e4D

�
ðv0Þ2

�
e0 þ Xijm

iuj þ 1

2
~mXiju

iuj
�
2

þ 2½�X�1ij þ �i�j�ð
IriI þ ei þm0Xiku
k þ u0Xikm

k þ ~mu0Xiku
kÞð
JrjJ þ ej þm0Xjlu

l þ u0Xjlm
l

þ ~mu0Xjlu
lÞ þ

�

KðpK þ riKu

iÞ þ ~eþ e0u
0 þ eiu

i þ 1

2
ðm0 þ ~mu0ÞXiju

iuj þ u0Xijm
iuj
�
2

þ 4ðm0 þ ~mu0Þ2 þ ðv0Þ22½�Xij þ XikXjl�
k�l�ðmi þ ~muiÞðmj þ ~mujÞ þ ~m2ðv0Þ24

�
: (3.10)

In this case it is easy to check that

@DV � v0@v0V � 3V; (3.11)

so that

� � V�2½15ð@DV � v0@v0VÞ2 þ 1
20ð@DV þ 4v0@v0VÞ2� � 9

5: (3.12)

Similarly, if riK ¼ r̂K� ¼ 0, but we have arbitrary r0K, the potential has the form

V ¼ 1

2v02
e2DfK̂IJðpI þ r0Iu

0ÞðpJ þ r0Ju
0Þ þ ðv0Þ2K̂IJr0Ir0Jg þ 2e3DZKð ~mpK � r0Km

0Þ þ 1

2v02
e4D

�
ðv0Þ2

�

Kr0K

þ e0 þ Xijm
iuj þ 1

2
~mXiju

iuj
�
2 þ 2½�X�1ij þ �i�j�ðei þm0Xiku

k þ u0Xikm
k þ ~mu0Xiku

kÞðej þm0Xjlu
l

þ u0Xjlm
l þ ~mu0Xjlu

lÞ þ
�

KðpK þ r0Ku

0Þ þ ~eþ e0u
0 þ eiu

i þ 1

2
ðm0 þ ~mu0ÞXiju

iuj þ u0Xijm
iuj
�
2

þ 4ðm0 þ ~mu0Þ2 þ ðv0Þ22½�Xij þ XikXjl�
k�l�ðmi þ ~muiÞðmj þ ~mujÞ þ ~m2ðv0Þ24

�
; (3.13)

and one can check that

2@DV � @V � 6V; (3.14)

giving

� � V�2½ 118ð2@DV � @VÞ2 þ 1
36ð@DV þ 4@VÞ2� � 2: (3.15)
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Thus in order to get slow-roll inflation, we must have
nonzero metric fluxes both with a 0 index and without,
where by fluxes without a 0 index we mean either riK or r̂K� .

C. Factorization in the complex structure sector

It is possible to find a similar sort of factorization in the
complex structure sector. Recall that the computations of
the Kähler potential in this sector was determined by a
polynomial pn which is homogeneous of degree n ¼
h2;1 þ 1 in n variables. We defined the usual dilaton D
by writing IK ¼ ImðNKÞ ¼ e�DZK, where the ZK were
constrained by pnðZÞ ¼ 1, or alternatively, pnðIÞ ¼ e�nD.

Now suppose that we can divide the IK into two sets, IAð1Þ
and IPð2Þ (we will use letters from different parts of the

alphabet for the different sets), and that the polynomial
pn factorizes as

pnðIÞ ¼ pð1Þ
n1 ðIð1ÞÞ � pð2Þ

n2 ðIð2ÞÞ; (3.16)

where n1 and n2 are the degrees of the polynomials and
satisfy n1 þ n2 ¼ n.4 In this case we can define two dila-
tons, D1 and D2 by

e�n1D1 ¼ pð1Þ
n1 ðIð1ÞÞ; e�n2D2 ¼ pð2Þ

n2 ðIð2ÞÞ; (3.17)

and we can define two sets of Z by ZA
ð1Þ ¼ eD1IAð1Þ and

ZP
ð2Þ ¼ eD2IPð2Þ. Each of these sets will be constrained, since

1 ¼ pð1Þ
n1 ðZð1ÞÞ ¼ pð2Þ

n2 ðZð2ÞÞ. The Kähler potential in this

sector is now given by

K ¼ � 4

n
ln½pnðIÞ� ¼ 4

�
n1
n
D1 þ n2

n
D2

�
: (3.18)

The Kähler metric will then be block diagonal, with
nonzero entries

KA �B ¼ e2D1K̂ð1ÞAB

¼ e2D1
1

n
½@Apð1Þ

n1 ðZð1ÞÞ@Bpð1Þ
n1 ðZð1ÞÞ � @A@Bp

ð1Þ
n1 ðZð1ÞÞ�;

KP �Q ¼ e2D2K̂ð2ÞPQ

¼ e2D2
1

n
½@Ppð2Þ

n2 ðZð2ÞÞ@Qpð2Þ
n2 ðZð2ÞÞ � @P@Qp

ð2Þ
n2 ðZð2ÞÞ�:

(3.19)

Furthermore, in � we will find the combination

1

4
KJ �K @V

@IJ
@V

@IK
¼ n

4n1

�
@V

@D1

�
2 þ n

4n2

�
@V

@D2

�
2

þ 1

4

�
K̂AB

ð1Þ �
n

n1
ZA

ð1ÞZ
B
ð1Þ

�
@V

@ZA
ð1Þ

@V

@ZB
ð1Þ

þ 1

4

�
K̂PQ

ð2Þ �
n

n2
ZP

ð2ÞZ
Q
ð2Þ

�
@V

@ZP
ð2Þ

@V

@ZQ
ð2Þ

:

(3.20)

We can now try to concoct more no-go theorems working
with the variablesD1,D2, and �. However, it turns out that
we only gain an advantage over the general case if the
nonzero flux contributions to the six-brane tadpoles come
from only one of the subsets above, say only the subset
labeled (1). In other words, we need to demand that ~mpP ¼
raPm

a (so that the tadpole contributions with a P-index
vanish), while we allow ~mpA � raAm

a � 0. In this case,
and under certain extra conditions on the fluxes, we can
find no-go theorems. We present three examples, but the
list is not exhaustive.
If raP ¼ r̂A� ¼ 0 and n1 � n2, then we can show that

@D2
V � 4n2

n V, which gives � � 4n2
n . Note in this case that

combining raP ¼ 0 with our assumptions about the tad-
poles forces pP ¼ 0.
If raA ¼ r̂P� ¼ 0 then we have a family of inequalities of

the form 3@D1
V þ x@D2

V � �@�V � 9n1þð4x�3Þn2
n V, where

x is any real number satisfying inequalities

x � 2; x � 5

2
� n1

2n2
; x >

3

4
� 9n1

4n2
: (3.21)

There are always solutions for x and � turns out to always
be maximized by taking x at the top of the allowed interval,
which leads to

� � 49n2
n1 þ 28n2

; n1 � n2;

� � ð9n1 þ 5n2Þ2
nð39n1 þ 19n2Þ ; n1 � n2:

(3.22)

Similarly, if raK ¼ 0 (i.e. both raA and raP vanish, and

hence so also does pP) then we can show that 3@D1
V þ

x@D2
V � �@�V � 9n1þð4x�3Þn2

n V, where now x is a real

number satisfying

x >
3

4
� 9n1

4n2
; x � 5

2
� n1

2n2
;

ðn1 � n2Þx � 4n1 � 2n2:

(3.23)

In this case there are solutions only when 5n2 > 9n1, in
which case the strongest bound is

� � ð9n1 � 5n2Þ2
39n21 � 50n1n2 þ 19n22

: (3.24)4Note that the degrees n1 and n2 do not have to correspond to
the cardinality of the sets IAð1Þ and IPð2Þ.
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D. Factorization in both sectors

Now, finally, let us briefly consider the case where there
is factorization in both the Kähler and complex structure
sectors of the theory, with the notation of the previous two
sections. There are many possible no-go theorems which
can be derived in various situations. One situation is rele-
vant for our analysis below, so we present the derivation
here.

This case occurs when we have r0K ¼ 0 (that is both
r0A ¼ r0P ¼ 0) and riP ¼ pP ¼ r̂A ¼ 0, but allow non-
zero riA, pA, and r̂P. Here we find a family of inequalities,

@D1
V þ x@D2

V � v0@v0V � 3n1þð4x�1Þn2
n V, where the real

number x must satisfy

x >
1

4
� 3n1

4n2
; ðn1 � n2Þx � n1 � n2: (3.25)

These always admit solutions for x, and the corresponding
bound on � is given by

� � 9n1 þ 5n2
5n1 þ n2

; n1 � n2; � � 9

5
; n1 < n2:

(3.26)

IV. TOROIDAL ORIENTIFOLDS

For a generic Calabi-Yau three-fold, it is not presently
understood exactly how to consistently include metric
fluxes or nongeometric fluxes. When the manifold is at a
point in its moduli space that admits a description as an
orbifold of T6, however, we can identify a subset of these
generalized fluxes which can be turned on simply by twist-
ing the torus construction. In this case we can derive the
full set of consistency conditions which must be satisfied,
and it is for this reason that toroidal orbifolds and orienti-
folds are the most well-studied compactifications with
generalized fluxes.

What will follow in the next section is a (partial) clas-
sification of orientifolds of T6 which preserve N ¼ 1
supersymmetry in four dimensions (see also a related
classification in [33]). The goal is simply to generate a
list of examples in which to look for slow-roll inflation or
to test the utility of our no-go theorems.

A. Classification of orientifolds

There is a well-known classification of Abelian orbifold
groups which act on T6 without shifts and which preserve
N ¼ 2 supersymmetry [34–36]. We will not be too con-
cerned with the explicit action on the lattice, except in
some specific cases in Sec. VI. As wewill see, the action on
the lattice only enters the story for us once we attempt to
derive the correct quantization conditions on the general-
ized fluxes, but there is a great deal of information which
can be obtained without these details. With this in mind,
then, we have nine different cyclic groups and eight more
products of cyclic groups which can occur as lattice-

preserving subgroups of SU(3), and hence give rise to
N ¼ 2 orbifolds of T6. Moreover, this list exhausts the
possibilities for Abelian orbifold groups, up to isomor-
phism. These groups are listed in Tables I and II. In each
table, the generator of the orbifold action is written as 1

N �
ðn1; n2; n3Þ, which is shorthand for

ðz1; z2; z3Þ � ðe2�in1=Nz1; e2�in2=Nz2; e2�in3=Nz3Þ: (4.1)

Let us now classify the supersymmetric orientifolds of

these models. An orientifold will be a Z2 extension Ĝ of
the orbifold group G,

1 ! G ! Ĝ ! Z2 ! 1; (4.2)

where each element of Ĝwhich is not in the image ofG (or
equivalently not in the kernel of the map to Z2) must be
accompanied by orientation reversal� and ð�1ÞF. In order
to preserve N ¼ 1 supersymmetry in type IIA, we also
require not only that the elements of G act as linear
holomorphic maps, G � SUð3Þ, but we also demand that

the orientation-reversing elements of Ĝ act as linear anti-
holomorphic maps. Thus for our classification we would
like to find, for each of the orbifold group actions in the list
above, all Z2 extensions, where the extension acts antiho-
lomorphically. To be more explicit, we want to find an
antiholomorphic linear map  such that for every element
g in the orbifold group G, we have gg 2 G. As a set

then, Ĝ ¼ G [ G. In given holomorphic coordinates z1,
z2, z3, we can write each element as a three-by-three
complex matrix with entries gij,

�{
j, and then the condition

TABLE II. ZN � ZM orbifold groups.

Group ZN � ZM First generator
1
N ðn1; n2; n3Þ

Second Generator
1
M ðm1; m2; m3Þ

Z2 � Z2
1
2 ð1; 0; 1Þ 1

2 ð0; 1; 1Þ
Z2 � Z4

1
2 ð1; 0; 1Þ 1

4 ð0; 1; 3Þ
Z2 � Z6

1
2 ð1; 0; 1Þ 1

6 ð0; 1; 5Þ
Z2 � Z0

6
1
2 ð1; 0; 1Þ 1

6 ð1; 1; 4Þ
Z3 � Z3

1
3 ð1; 0; 2Þ 1

3 ð0; 1; 2Þ
Z3 � Z6

1
3 ð1; 0; 2Þ 1

6 ð0; 1; 5Þ
Z4 � Z4

1
4 ð1; 0; 3Þ 1

4 ð0; 1; 3Þ
Z6 � Z6

1
6 ð1; 0; 5Þ 1

6 ð0; 1; 5Þ

TABLE I. Cyclic orbifold groups.

Group ZN Generator 1
N ðn1; n2; n3Þ

Z3
1
3 ð1; 1; 1Þ

Z4
1
4 ð1; 1; 2Þ

Z6�I
1
6 ð1; 1; 4Þ

Z6�II
1
6 ð1; 2; 3Þ

Z7
1
7 ð1; 2; 4Þ

Z8�I
1
8 ð1; 2; 5Þ

Z8�II
1
8 ð1; 3; 4Þ

Z12�I
1
12 ð1; 4; 7Þ

Z12�II
1
12 ð1; 5; 6Þ
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above is

gik �
k
�‘
�g
�‘
�m

�m
j ¼ ðg0Þij; (4.3)

for some g0 2 G.
In all of the examples we will consider, the elements of

G are all diagonal with entries gij ¼ �i
j exp½i�i� (for in-

stance see the generators in Tables I and II), so we haveX
�k

eið�i��kÞ �i
�k


�k
j ¼ �i

je
i�0i ; (4.4)

with no sum over i.
We will now consider different cases.
First consider the cases of cyclic groups whose gener-

ators have �1, �2, �3 all distinct (the last six cases in
Table I). In this case we can show that (4.4) requires

�i
�k


�k
j ¼ 0 for all �k (no sum on �k here) and all i � j.

These equations can be shown to imply that only three
entries of  are nonzero; either  is diagonal, or it is block
diagonal with a one-by-one block and a two-by-two block
with zeros on the diagonal. In the diagonal case, we can
apply phase changes to our holomorphic coordinates in
order to transform  into the three-by-three identity ma-
trix, so that it acts by simple conjugation, zi � �zi. It turns
out that this choice for  will be valid for each of our
orbifold groups, and so we will denote it as the standard
orientifold for each case. These are summarized in
Table III. In the nondiagonal cases, we can again use a
phase rotation to set the one-by-one block to one, and we
can set one of the nonzero entries of the two-by-two block
to one. Then demanding that (4.4) be satisfied for each
element of the orbifold group restricts the possibilities. We
find that there are no allowed nonstandard orientifolds for
Z6�II and Z7, one choice for each of the Z8 groups, and
two choices each for the Z12 groups, where to correctly
count the number of independent choices, we should also

recall that we can relabel our element  as 0 ¼ g, for
any g 2 G, and then drop the prime.
Next let us consider Z4 and Z6�I. In this case we can

easily show that  must be block diagonal with a two-by-
two block for z1 and z2, and a one-by-one block for z3. A
phase rotation can be used to set the latter entry to one (i.e.
 � z3 ¼ �z3), but we have quite a bit more symmetries at
our disposal in the two-by-two block, since any GLð2;CÞ
matrix commutes with the orbifold group. It turns out that
solving the constraints and then using the symmetries
allows us to put  into one of two canonical forms.
Either we can set the two-by-two block to the identity,
giving the standard orientifold, or we can set it to be the
canonical antisymmetric matrix, so that  � ðz1; z2Þ ¼
ð�z2;��z1Þ.
In the case of Z3, we have �1 ¼ �2 ¼ �3 ¼ 2�i=3. Here

(4.4) is the least restrictive, but we also have the most
symmetry, since the full GLð3;CÞ commutes with the
orbifold group. Here we can use this symmetry to always
convert to the standard case.
We move on now to the product groups of Table II. As in

the case of the cyclic groups with distinct angles, we can
show that  must be either diagonal, leading to the stan-
dard case, or block diagonal, with the two-by-two block
having vanishing diagonal entries. Finally, by carefully
examining the remaining constraints and symmetries we
are able to find the independent nonstandard orientifolds in
each case. All of the nonstandard orientifolds are summa-
rized in Table IV.

B. Turning on NSNS fluxes

Now for each of the orientifolds discussed in the last
subsection, we would like to understand which generalized

TABLE III. Standard N ¼ 1 Orientifolds (zi � �zi).

Group h1;1�untw h1;1þuntw h2;1untw

Z3 6 3 0

Z4 4 1 1

Z6�I 4 1 0

Z6�II 3 0 1

Z7 3 0 0

Z8�I 3 0 0

Z8�II 3 0 1

Z12�I 3 0 0

Z12�II 3 0 1

Z2 � Z2 3 0 3

Z2 � Z4 3 0 1

Z2 � Z6 3 0 1

Z2 � Z0
6 3 0 0

Z3 � Z3 3 0 0

Z3 � Z6 3 0 0

Z4 � Z4 3 0 0

Z6 � Z6 3 0 0

TABLE IV. Nonstandard N ¼ 1 orientifolds.

Group  � ðz1; z2; z3Þ h1;1�untw h1;1þuntw h2;1untw

Z4 ð�z2;��z1; �z3Þ 2 3 1

Z6�I ð�z2;��z1; �z3Þ 2 3 0

Z8�I ð�z3; �z2; �zÞ 2 1 0

Z8�II ð�z2; �z1; �z3Þ 2 1 1

Z12�I ð�z3; �z2; �z1Þ 2 1 0

ð�z3; �z2; i�z1Þ 2 1 0

Z12�II ð�z2; �z1; �z3Þ 2 1 1

ð�z2; e�i=3 �z1; �z3Þ 2 1 1

Z2 � Z2 ð�z1; �z3; �z2Þ 2 1 3

Z2 � Z4 ð�z1; �z3; �z2Þ 2 1 1

ð�z1; �z3; i�z2Þ 2 1 1

Z2 � Z6 ð�z1; �z3; �z2Þ 2 1 1

Z2 � Z0
6 ð�z1; �z3; �z2Þ 2 1 0

ð�z2; �z1; �z3Þ 2 1 0

Z3 � Z3 ð�z1; �z3; �z2Þ 2 1 0

Z3 � Z6 ð�z1; �z3; �z2Þ 2 1 0

ð�z1; �z3;� �z2Þ 2 1 0

Z4 � Z4 ð�z1; �z3; �z2Þ 2 1 0

Z6 � Z6 ð�z1; �z3; �z2Þ 2 1 0
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fluxes can be turned on consistently. The discussion will be
very brief, and we will refer the interested reader to [24,25]
for a more careful discussion of our approach.

As explained in Sec. II A, the H-flux and metric fluxes
we would like to turn on can be thought of in terms of their
componentsHijk and f

i
jk, where the indices run over the six

legs of the torus. For each toroidal orientifold, we need
these objects to transform correctly under the quotient
group. This means that both Hijk and f

i
jk must be invariant

under the orbifold group, and Hijk should be odd under the

action of , while fijk should be even.

Next, we must also impose the Bianchi identities, which
in this case take the form

Hi½jkfi‘m� ¼ 0; fij½kf
j
‘m� ¼ 0: (4.5)

In terms of the geometry of the underlying twisted torus,
the latter equation is simply that the exterior derivative is
nilpotent (d2 ¼ 0), and the former condition is simply that
H is a closed three-form (dH ¼ 0). In Sec. V we will
tabulate the fluxes that can be turned on and all solutions
to the Bianchi identities for each of our models. In princi-
ple one could violate the Bianchi identities by including
localized NSNS sources [37], but we will not include such
objects in this paper.

Once we have found the set of independent fluxes which
survive the orientifold quotient, it turns out to be more
convenient, for the purposes of the low-energy theory, to
refer not to the components Hijk and fijk, but instead to

certain coefficients pK, raK, and r̂K� , given by

H¼ pKb
K; d!a ¼�raKb

K; d�� ¼�r̂K�aK; (4.6)

where aK, b
K, !a, and �� are forms which descend from

the untwisted cohomology of the torus without fluxes.
There is an invertible linear map between the pK and the
independent components Hijk. Similarly, the coefficients

raK and r̂K� are always given by linear combinations of the
independent fijk, but in this case the map is not always

invertible; there can be more independent fijk than raK and

r̂K� . In these cases, the extra metric fluxes do appear in the
Bianchi identities, and should be taken into account when
classifying the solutions, but the scalar potential and the
tadpole constraints (see below) depend only on raK and r̂K� .

The Ramond-Ramond tadpoles are given by5

� ffiffiffi
2

p ðpK ~m� raKm
aÞ ¼ 2NðO6Þ

K � NðD6Þ
K ; (4.7)

where the right-hand side of the equation above represents
the contribution from localized sources, both O6-planes,
which sit at the fixed points of the orientation-reversing
elements of the orientifold group, and theD6-branes which
we allow to be added anywhere. We will not really be
viewing these tadpoles as constraints in the present work,
taking the attitude that D6-branes can be added as needed.
Clearly, for a detailed analysis of any given model, one
would have to proceed more carefully, taking into account
RR quantization as well as the action of the orientifold on
the open string sector.
From the perspective of the low-energy effective theory,

these seem to be the only constraints that need to be
obeyed. Indeed, we will find that for most models, these
constraints are already enough for us to be able to apply our
no-go theorems and rule out slow-roll inflation and
de Sitter extrema from the corresponding scalar potential.
However, we would like to understand exactly which mod-
els can be constructed consistently from a ten-dimensional
perspective. There are at least two approaches to this
problem, via the coset constructions of [38–40], and the
base-fiber twisted torus constructions of [24], which are
inspired by [26,27] and others. In the present work we will
focus mainly on the latter approach when we want explicit
constructions, so we will now briefly review it.
For a given orientifold of T6, we first pick a division of

the torus into a base and a fiber, in such a way so that the
orientifold group does not mix the two. More precisely, we
require the tangent spaces of the base and fiber to be
invariant subspaces of the orientifold action on the tangent
space of the T6. Once this splitting has been chosen, then
for each direction in the base, labeled by an index i ¼
1; . . . ; n, we will choose a matrix Mi 2 soð6� n; 6� nÞ.
The entries of these matrices will correspond to the com-
ponents of our fluxes,

ðMiÞ ¼ �fbia Hiab

�Qab
i faib

� �
: (4.8)

Here a and b are indices in the fiber directions. Qab
i are

nongeometric fluxes which we do not want to turn on in
this work, so the matrices in our examples will be upper-
block-diagonal. Note that using these constructions we can
only turn on sets of fluxes that have one lower index lying
along the base, and the other two indices (upper or lower)
lying along the fiber.
Using this language, it is straightforward to restrict to

matrices that are compatible with the orientifold group.
The Bianchi identities are reproduced simply by demand-
ing that Mi and Mj commute for all i and j. Finally,

quantization conditions for the generalized fluxes become
simply the condition

exp½ ~� � ~M� 2 SOð6; 6;ZÞ; ~� 2 � ffi Z6 (4.9)

5This expression is actually not exactly correct. Rather, this is
a cohomological condition (in the sense of the cohomology of
the torus without metric fluxes). There is an exact tadpole
constraint of the schematic form DF ¼ J, where D is the
generalized derivative (dþH on the twisted torus), F is the
formal sum of the RR fluxes, and J is a delta function form
describing the configuration of O6-planes and D6-branes.
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where � ffi Z6 is the lattice of torus identifications em-
bedded in the tangent space of T6, and where we identify
the Mi with a Lie algebra valued cotangent vector. One of
the great values of the base-fiber construction is that it
enables one to identify the correct quantization conditions
on the generalized fluxes, something that is not apparent
from considerations of the low energy theory alone. And,
in fact, there can be cases where the quantization condi-
tions forbid us from turning on certain components of
metric fluxes, for instance. These constructions are slightly
generalized and formulated more precisely in [41].

C. Residual symmetries

Each of the no-go theorems we derived requires certain
assumptions about which fluxes can be nonvanishing.
Sometimes a solution of the Bianchi identities will auto-
matically satisfy the assumptions for one of our theorems,
but there will also be cases which do not appear to fall into
one of these cases, but which we found numerically to still
satisfy a bound on �. In almost all of these cases we were
able to find a symmetry (that is a field redefinition that
preserved the form of the potential while simply changing
which fluxes were turned on) that mapped us into a con-
figuration for which the no-go theorems apply. For this
reason, it is important to identify the group of symmetries
which can act in this way.

This turns out to be fairly straightforward. Recall that
type IIA on T6 has a group of T-duality symmetries
SOð6; 6;ZÞ, or, somewhat more precisely, we should use
the double cover, Spinð6; 6;ZÞ. This group includes large
diffeomorphisms of the torus (living in a GLð6;ZÞ sub-
group), shifts of the B-field, and also nongeometric sym-
metries such as performing a T-duality on a T2 � T6. In

fact, the orientifold group Ĝ by which we are to quotient
can also be considered as a subgroup of this T-duality
group. The orbifold group G sits inside SUð3Þ �
GLð6;ZÞ, while the orientation-reversing elements of Ĝ
sit inside of a Z2 extension of GLð6;ZÞ in Spinð6; 6;ZÞ
[24]. The resulting space will still have a group of duality
symmetries given by the elements h of the full T-duality
group which satisfy

hĜh�1 ¼ Ĝ: (4.10)

All of the fields and fluxes (here we should include the
full set of nongeometric fluxes), as well as the Bianchi
identities and tadpole constraints, will transform as repre-
sentations of these residual symmetries. We will find situ-
ations where we can use these symmetries to map one set
of fluxes which solves the Bianchi identities, to a new set of
fluxes which still solves the Bianchi identities, but also
satisfy the assumptions of one of our no-go theorems. The
resulting bound on � will apply to both configurations of
fluxes (since we have simply performed a field
redefinition).

V. APPLICATION OF THE NO-GO THEOREMS TO
TOROIDAL ORIENTIFOLDS

In this section we will apply our no-go theorems to the
toroidal orientifold models discussed above. Since we are
restricting to the untwisted sector we have 11 different
models that are uniquely determined by their triple inter-
section numbers (A2) and the prepotential in the complex
structure sector (2.13). These models are summarized in
Table V. Note that for all but the Z3 quotient we have a
factorization in the Kähler sector and for all models with
h2;1 > 0 we have a factorization in the complex structure
sector.
For the benefit of the reader primarily interested in the

results rather than how they arise, we summarize the
weakest bounds on the slow-roll parameter � for the vari-
ous cases in Table VI. There are several special cases
that can be shown to satisfy stronger bounds. These are
omitted from Table VI, but they are discussed in some
detail below.
We will now discuss the solutions to the Bianchi iden-

tities for all of these cases and check which of our no-go
theorems can be applied. We have also minimized � nu-
merically by allowing the moduli and fluxes to vary. We
found generically that the bound given by the no-go theo-
rem can be attained which proves that it is impossible to
derive a stronger no-go theorem. For the two models X and
XI we will find solutions to the Bianchi identities that
escape all of our no-go theorems. In these cases it is
possible to get vanishing � and we will discuss this in
detail in the next section.

A. Case I

There are two special quotients Z7 and Z8�I in this first
case. Both of these have extra metric fluxes that are not
contained in the matrix raK.
The generic solution to the Bianchi identities for all

models in case I has only one of the three entries in the r
vector nonzero. (For Z7 and Z8�I the extra metric fluxes
are zero.) For these solutions there is an SLð2;RÞ subgroup
of the residual T-duality symmetries (see section IVC)
under which p1 and the nonvanishing r-flux transform as
a doublet. This symmetry can be used to set the r-flux to
zero (note that if other components of r were nonzero, then
these T-dualities would mix them with nongeometric
fluxes). A more pedestrian way to see this is that a shift
in one of the B-axions allows us to set p1 ¼ 0. A T-duality
then takes us to a configuration that has no metric flux, and
we find the bound � � 27

13 .

For Z8�I there is one more solution to the Bianchi
identities due to the extra metric fluxes, which we call f1
and f2. It reads r21 ¼ 0, r11r31 ¼ �f21 ¼ �f22. The facto-
rization in the Kähler sector allows us to apply our no-go
theorem since r21 ¼ ”r01” ¼ 0, and we obtain � � 9

5 .
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B. Case II

As before,Z8�I is special because it has two extra metric
fluxes f1, f2 that are not contained in the r matrix.

The solution to the Bianchi identities common to all
quotients forces r21 ¼ r̂11 ¼ 0, (f1 ¼ f2 ¼ 0) so that we
are again left with only one single metric flux that can be
mapped to H-flux just as discussed in case I, and we again
find � � 27

13 .

For Z8�I there is one more solution to the Bianchi
identities r11 ¼ r21 ¼ p1 ¼ 0, r̂11¼f21þf22. From the fac-
torization in the Kähler sector and using r11 ¼ ”r0K” ¼ 0
we find � � 9

5 .

C. Case III

This case has two solutions to the Bianchi identities
r21 ¼ r31 ¼ r41 ¼ r̂11 ¼ 0 and r11 ¼ 2r21r31 � r241 ¼
r̂11 ¼ 0. The second case can be brought into a form where
only one of the r21, r31, r41 is nonzero using field redefi-
nitions as described in subsection IVC. To see this, note
that the potential has an SO(2, 1) symmetry under which
r21, r31, and r41 transform as the components of a null
vector. This means we can boost to a configuration that has
only r21 or r31 nonzero. After shifting one of the B-axions
to absorb p1, both configurations can be T-dualized to a
case with only H-flux resulting in � � 27

13 .

D. Case IV

This case again has only one nonvanishing entry in the r
matrix since the Bianchi identities are r21 ¼ r̂1� ¼ 0,
8� 2 f1; 2; 3g. Using a shift in one of the axions together
with a T-duality transformation, we see that the configu-
ration is equivalent to one with H-flux and no metric flux.
Therefore, we find � � 27

13 .

E. Case V

The Bianchi identities are r̂1�¼0, 2r11r41þr51r61¼
2r21r51þr41r61¼2r31r61þr41r51¼0, 4r11r21�r261¼
4r11r31�r251¼4r21r31�r241¼0. These have two classes

of solutions.
The first class is characterized by the vanishing of two of

the fluxes r41, r51, and r61. With the others being related to
this by symmetries, let us consider r51 ¼ r61 ¼ 0, for
definiteness. The remaining Bianchi identities then are
r11r21 ¼ 0, r11r31 ¼ 0, and 4r21r31 � r241 ¼ 0. One ob-

vious solution is r21 ¼ r31 ¼ r41 ¼ 0, but this is equivalent
by symmetries to a special case of the solution r11 ¼ 0, and
4r21r31 � r241 ¼ 0, so let us focus on the latter solution.

The potential has a manifest SO(2, 1) symmetry under
which r21, r31, r41 transform as the components of a vector.
The Bianchi identity enforces this vector to be null. We can
perform a boost such that only r21 or r31 is nonzero. At
least locally, we can also redefine one of the B-axions to set
p1 ¼ 0. It is then easy to see that the remaining configu-
ration is T-dual to a configuration with H-flux but no
metric fluxes, which implies � � 27

13 .

A naively inequivalent class of solutions has r41, r51, and
r61 nonzero. The Bianchi identities then determine r11, r21,
r31 in terms of these as r11 ¼ �r51r61=2r41, r21 ¼
�r41r61=2r51, r31 ¼ �r51r61=2r41. This class turns out to
be related by symmetries to the first class, and conse-
quently also obeys � � 27

13 . To see this, we can pick our

TABLE VI. This table presents a summary of the weakest
bounds on the slow-roll parameter � for the various cases. The
Z8�I-quotient turns out to be special for both case I and II, and
we denote it by I’ and II’.

Case I, II, III, IV, V VII I’, II’, VI, VIII, IX X, XI

� � 27
13 2 9

5 0

TABLE V. This table summarizes the models we are considering. It contains the number of invariant forms and the nonvanishing
triple intersection numbers (A2) together with the prepotential for the complex structure sector (2.13).

# h2;1h1;1þ h1;1� 	; 	̂ pnðZÞð¼ 1Þ Group

I 0 0 3 	123 ¼ 1 2Z1 Z7, Z8�I , Z12�I , Z2 � Z60 , Z3 � Z3,

Z3 � Z6, Z4 � Z4, Z6 � Z6

II 0 1 2 	122 ¼ 1, 	̂111 ¼ �1 2Z1 Z8�I , Z12�I , Z2 � Z60 , Z3 � Z3,

Z3 � Z6, Z4 � Z4, Z6 � Z6

III 0 1 4 	123 ¼ 1, 	144 ¼ �1, 	̂111 ¼ �1 2Z1 Z6�I

IV 0 2 3 	122 ¼ 1, 	̂1�� ¼ �1, � 2 f1; 2; 3g 2Z1 Z6�I

V 0 3 6 	123 ¼ 1, 	456 ¼ �2, 	144 ¼ 	255 ¼ 	366 ¼ �2,
	̂111 ¼ 	̂222 ¼ 	̂333 ¼ �1, 	̂423 ¼ 	̂513 ¼ 	̂612 ¼ 1,

2Z1 Z3

VI 1 0 3 	123 ¼ 1 22Z1Z2 Z6�II, Z8�II, Z12�II , Z2 � Z4, Z2 � Z6

VII 1 1 2 	122 ¼ 1, 	̂111 ¼ �1 22Z1Z2 Z8�II, Z12�II , Z2 � Z4, Z2 � Z6

VIII 1 1 4 	123 ¼ 1, 	144 ¼ �1, 	̂111 ¼ �1 22Z1Z2 Z4

IX 1 3 2 	122 ¼ 1, 	̂1�� ¼ �1, � 2 f1; 2; 3g 22Z1Z2 Z4

X 3 0 3 	123 ¼ 1 24Z1Z2Z3Z4 Z2 � Z2

XI 3 1 2 	122 ¼ 1, 	̂111 ¼ �1 24ðZ1Þ2ðZ2Z3 � ðZ4Þ2Þ Z2 � Z2
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favorite among r11, r21, and r31, which, without loss of
generality, we will take to be r21. Let us make use of
another SO(2,1) symmetry of the potential under which
r21 transforms as a scalar, r11, r31, and r51 as the compo-
nents of a vector, and r41 and r61 as the components of a
spinor. We can use the SO(2) subgroup of SO(2,1) to set
one component of the spinor to zero, say, r61. The Bianchi
identities together with the invariance of r21 guarantee that
as we take r61 to zero, because r41 remains finite, r51 must
vanish such that r41r61=r51 remains constant. With r51 and
r61 zero, we are back to the first class of solutions, and a
boost of our earlier SO(2,1) group followed by a field
redefinition of one of the axions and a T-duality again
takes us to a configuration without metric flux implying
� � 27

13 .

F. Case VI

The Z6�II quotient is special because it allows for one
extra metric flux we denote f1 that is not contained in the r
matrix.

We can exclude all solutions by using our two no-go
theorems that rely on the factorization in the Kähler sector.
There are two solutions up to permutation of the a 2
f1; 2; 3g index that are common to all models (and for
which the extra flux f1 vanishes). The first has r2K ¼
r3K ¼ 0, 8K 2 f1; 2g and our no-go theorem gives � �
2. The other solution reads r1K ¼ r21r32 þ r22r31 ¼ 0,
8K 2 f1; 2g and we find � � 9

5 .

Finally, for Z6�II we have one more solution for which
the extra metric flux is nonvanishing: r1K ¼ 0, 8K 2
f1; 2g, r2L ¼ r3M ¼ 0, r2Mr3L ¼ f21, L � M, L, M 2
f1; 2g. We again find � � 9

5 .

G. Case VII

Here we have four different solutions to the Bianchi
identities that can be dealt with using four different no-
go theorems.

The first solution is r̂K ¼ r1K ¼ 0, 8K 2 f1; 2g and r21
or r22 ¼ 0. We are left with one single entry in the rmatrix.
A field redefinition relates this to a configuration with only
H-flux and we again have � � 27

13 .

Another solution is r̂K ¼ r2K ¼ 0, 8K 2 f1; 2g and our
no-go theorem for factorization in the Kähler sector gives
� � 2.

The third solution is r2K ¼ 0, 8K 2 f1; 2g, r̂L ¼ pM ¼
r1M ¼ 0, L � M, L, M 2 f1; 2g. Here we can use the
factorization in pnðZÞ and apply one of our no-go theorem
for n1 ¼ n2 ¼ 1 and find � � 4n2

n1þn2
¼ 2.

Using the factorization in both complex and Kähler
sector we can show that the last solution r1K ¼ 0, 8K 2
f1; 2g, r̂L ¼ pM ¼ r2M ¼ 0, L � M, L, M 2 f1; 2g has

� � 9n1þ5n2
5n1þn2

¼ 7
3 , where we used n1 ¼ n2 ¼ 1.

H. Case VIII

This case has six different solutions to the Bianchi
identities. Three of those are
(i) r1K¼ r̂K1 ¼0, 8K2f1;2g, r21r32þr22r31�r41r42¼

0
(ii) r1K¼ r4K¼pKr̂

K
1 ¼ r2Kr̂

K
1 ¼ r3Kr̂

K
1 ¼0, 8K2

f1;2g, 2r2Lr3Lþðr̂M1 Þ2¼�LMpLr2M¼0, 2r2Lr3M�
r̂11r̂

2
1¼0, �LMpLr3M¼0, L�M, L, M2f1;2g

(iii) r1K ¼ pKr̂
K
1 ¼ raKr̂

K
1 ¼ 0, 8K 2 f1; 2g, 2r2Lr3L �

ðr4LÞ2 þ ðr̂M1 Þ2 ¼ 0, �LMpLraM ¼ 0, 2r2Lr3M �
r41r42 � r̂11r̂

2
1 ¼ 0, �LMr4LraM ¼ 0, L � M, L,M 2

f1; 2g
These all have r1K ¼ 0 and we can use the factorization in
the Kähler sector to show that � � 9

5 .

The next solution r̂K1 ¼ r2K ¼ r3K ¼ r4K ¼ 0, 8K 2
f1; 2g has � � 2 again due to the factorization in the
Kähler sector.
The fifth solution r2K ¼ r3K ¼ r4K ¼ 0, 8K 2 f1; 2g,

r̂L1 ¼ pM ¼ r1M ¼ 0, L � M, L, M 2 f1; 2g has � �
4n2

n1þn2
¼ 2. This follows from the no-go theorem that relies

on the factorization of the complex structure sector and we
have used n1 ¼ n2 ¼ 1.
The last case r1K ¼ 0, 8K 2 f1; 2g r̂L1 ¼ pM ¼ r2M ¼

r3M ¼ r4M ¼ 0, L � M, L, M 2 f1; 2g, can be dealt with
using the no-go theorem that relies on the factorization in

both complex and Kähler sector and has � � 9n1þ5n2
5n1þn2

¼ 7
3

since n1 ¼ n2 ¼ 1.

I. Case IX

In this case we again need several different no-go
theorems.
The first class of solutions r1K ¼ r̂K� ¼ 0, 8K 2 f1; 2g,

8� 2 f1; 2; 3g and r21 ¼ 0 or r22 ¼ 0 has only one non-
vanishing metric flux, and the configuration is dual to one
with only H-flux, so we find � � 27

13 .

The next solution r2K ¼ r̂K� ¼ 0, 8K 2 f1; 2g, 8� 2
f1; 2; 3g gives � � 2 due to the factorization in the Kähler
sector.
From the factorization in the complex structure sector

we find � � 4n2
n1þn2

¼ 2 for n1 ¼ n2 ¼ 1 for the third solu-

tion r2K ¼ 0, 8K 2 f1; 2g and r̂L1 ¼ pM ¼ r2M ¼ 0, L �
M, L, M 2 f1; 2g. The next solution raK ¼ pK ¼P

�r̂
1
�r̂

2
� ¼ 0, 8a, K 2 f1; 2g satisfies the condition for

our no-go based on the factorization in the Kähler sector
and we find � � 9

5 .

Using the factorization in both complex and Kähler
sector we can show that the last solution r1K ¼ 0, 8K 2
f1; 2g, r̂L� ¼ pM ¼ r2M ¼ 0, 8� 2 f1; 2; 3g, L � M, L,

M 2 f1; 2g has �� 9n1þ5n2
5n1þn2

¼ 7
3 , where we used n1¼n2¼1.

J. Case X

Here the solutions to the Bianchi identities can be
grouped into five different classes.
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The first class of solutions has two of the three rows in
the rmatrix equal to zero. The third one is arbitrary and can
be identified with ‘‘r0K’’ and our no-go theorem that relies
on the factorization of the Kähler sector can be used to
obtain � � 2.

The next case has partially nonvanishing entries in two
rows and at least two columns. The entire third row is zero
so that we have this time ‘‘r0K ¼ 0’’ and � � 9

5 .

The third class encompasses four solutions that each
have only three nonvanishing entries with one in each
row. The nonvanishing r components for the four different
cases are 1) r11, r24, r33 � 0, 2) r12, r23, r34 � 0, 3) r13, r22,
r31 � 0, 4) r14, r21, r32 � 0. Each of these cases leads
numerically to � 
 1:577 21. We leave it up to the inter-
ested reader to try to find a no-go theorem that gives this
value using the residual symmetries and factorization in
both Kähler and complex structure sector.

The fourth class of solutions has one of the four columns
of the r matrix nonvanishing and arbitrary. Numerically
one obtains � 
 4

3 and we leave it again to the interested

reader to find the corresponding no-go theorem.
The last class has two, three, or all four columns non-

zero. The nonzero metric fluxes are not all independent but
have to satisfy constraints that result from the Bianchi
identities. The most generic case has all 12 entries in the
r matrix nonzero. There are six constraints so that we are
left with six independent metric fluxes. For this class there
cannot be a bound on � from a no-go theorem since one can
find numerically solutions that have � 
 0. We will discuss
an explicit example in more detail in subsection VIA.

K. Case XI

The solutions to the Bianchi identities can be again
grouped into five classes.

The first class has r11 ¼ r21 ¼ p1 ¼ r̂21 ¼ r̂31 ¼ r̂41 ¼ 0
and 2r13r22 þ 2r12r23 � r14r24 ¼ 0. From the factoriza-

tion in the complex sector we find � � 4n2
n1þn2

¼ 2, where

now n1 ¼ n2 ¼ 2. The next class has r1K ¼ 0, 8K 2
f1; 2; 3; 4g. The remaining NSNS fluxes r2K, r̂

K
1 , pK are

constrained by the remaining Bianchi identities. We can
use the factorization in the Kähler moduli sector since
r1K ¼ ”r0K” ¼ 0 to obtain � � 9

5 .

The third class has r21 ¼ r̂11 ¼ 0 and r11 � 0. The

Bianchi identities then reduce to pKr̂
K
1 ¼ r1Kr̂

K
1 ¼ 0 and

r22 ¼ �r14 r̂
3
1
�2r12 r̂

4
1

2r11
, r23 ¼ r14 r̂

2
1
þ2r13 r̂

4
1

2r11
, r24 ¼ r12 r̂

2
1
�r13 r̂

3
1

r11
.

None of the no-go theorems apply and numerically one
finds � 
 0. We will discuss this class and the next two that
all allow for extremal points with very small � in
subsection VIB in greater detail.

The next class has r11 ¼ r21 ¼ r̂11 ¼ 0. The remaining

fluxes are again constrained by the Bianchi identities.
Numerically we find vanishing � in the limit where we
have r̂K1 
 0, 8K 2 f1; 2; 3; 4g. In this limit the only

Bianchi identity that constrains the nonvanishing NSNS
fluxes is 2r13r22 þ 2r12r23 � r14r24 ¼ 0.
The last class of solutions has r11 ¼ 0 but r21 � 0.

Again there are several Bianchi identities that constrain
the remaining fluxes. Nevertheless, it is generically pos-
sible to obtain small � so that there cannot be a no-go
theorem. We will present some of the details of our nu-
merical studies of this case in the next section.

VI. EXAMPLES WITH SMALL �

In the previous section, we have shown that our no-go
theorems rule out slow-roll inflation and de Sitter vacua in
large classes of models. However, there were solutions to
the Bianchi identities for the two Z2 � Z2 orbifold models
that escaped all no-go theorems. In this section we give
explicit examples for the models that have regions in
moduli space with (very) small � that likely correspond
to de Sitter extrema.6 Since we are now presenting explicit
solutions rather than no-go theorems some words of cau-
tion are in order. ‘‘Adding metric fluxes’’ to an existing
geometry only leads to a well-defined compact space if the
fluxes are properly quantized. One way to explicitly con-
struct a space with metric fluxes is the base-fiber splitting
framework [24,26,27]. This framework also allows us to
derive the quantization conditions for all the NSNS fluxes.
We will therefore check whether we can explicitly con-
struct the compact spaces that lead to de Sitter extrema or
whether the base-fiber approach is not compatible with the
solutions to the Bianchi identities that gave small �.
Further constraints on these models arise from the quanti-
zation of the RR fluxes and the tadpole cancellation con-
dition. To ensure the validity of the supergravity
approximation, one also has to check that the volume of
the internal space is large in string units and that the string
coupling is small. Since we always find at least one ta-
chyonic direction for the extremal points with vanishing �
we will only consider the restrictions from the base-fiber
constructions in the subsections below.

A. Standard orientifold of Z2 � Z2

The solutions to the Bianchi identities that allow for
vanishing � have at least nonvanishing entries in two
columns and all three rows. For simplicity we take the
case where ra3 ¼ ra4 ¼ 0, 8a 2 f1; 2; 3g. Assuming that
r22 � 0 we can solve the remaining Bianchi identities and
find r11 ¼ � r12r21

r22
, r31 ¼ r21r32

r22
. Minimizing � by letting all

the moduli and remaining fluxes vary, we find � 
 10�21

6Since the analysis is purely numerical, it is impossible to tell
whether these are extrema with all derivatives of the potential
vanishing. All we know is that the values we find are compatible
with zero to within our working precision, but they might just be
very shallow.

SEARCHING FOR SLOW-ROLL MODULI INFLATION IN . . . PHYSICAL REVIEW D 79, 086011 (2009)

086011-15



for the following values7 of the fluxes and moduli8

~m 
 �0:2026; m1 ¼ m2 ¼ m3 
 0:6990;

e1 ¼ e2 ¼ e3 
 �1:076; e0 ¼ 0; p1 ¼ p2 ¼ 0;

p3 ¼ p4 
 �1:310; r12 
 0:6215;

r21 
 0:5004; r22 
 �0:022 31; r32 
 �0:1930;


1 
 �0:1504; 
2 
 2:682; 
3 þ 
4 
 �2:573;

u1 ¼ u2 ¼ u3 
 1:336; eD 
 0:3481;

Z1 
 0:1845; Z2 
 2:333; Z3 ¼ Z4 
 0:3810;

v1 
 2:202; v2 
 18:73; v3 
 4:023:

Since we have � 
 0 this corresponds to a de Sitter extre-
mum. Calculating the � parameter for this solution we find
� 
 �3:7. So this solution is not a minimum but rather a
saddle point. From the mass matrix for the moduli one sees
that there is exactly one tachyonic direction that is a
mixture of several moduli including the axions. We have
looked at several extremal points for this model but always
found at least one tachyonic direction with � & �2:4. We
did not pursue this model further since it is not compatible
with the base-fiber construction mentioned above. Splitting
the compact space into a base and a fiber always results in
an r matrix that has one row equal to zero. Because of the
factorization in the Kähler sector we therefore find � � 9

5

for all models that can be obtained from the base-fiber
construction. In a related work [20] the authors searched
for slow-roll inflation and de Sitter vacua in coset spaces
[38–40]. They found that for an orientifold of SUð2Þ �
SUð2Þ one can obtain de Sitter extrema with one tachyonic
direction. This orientifold of SUð2Þ � SUð2Þ can be
thought of as a Z2 � Z2 quotient of T

6 with metric fluxes
as was discussed in [30]. This means that at least a subset
of the compact spaces exists although it is not possible to
obtain them from the base-fiber construction. The authors
of [20] also checked whether the no-go theorems related to
the � parameter [42,43] can be applied to their SUð2Þ �
SUð2Þ orientifold but found that this is not the case. It
would be interesting to study this model further to verify
whether all solutions to the Bianchi identities that give
small � have a corresponding compact space and whether
it is possible to find de Sitter vacua that have no tachyonic
directions.

B. Nonstandard orientifold of Z2 � Z2

For the nonstandard orientifold projection we can ex-
plicitly construct solutions to the Bianchi identities that
lead to vanishing �. The two interesting cases have the 2-
dimensional submanifolds spanned by the 3 and 5 or 4 and
6 directions as base and the other four transverse directions
as fiber. The first case leads to p1, p4, r11, r14, r23, r̂

2
1 fluxes

with all other NSNS fluxes equal to zero. The nonzero
fluxes have to satisfy the Bianchi identity 2r11r23 �
r14r̂

2
1 ¼ 0. The second case with the 4 and 6 direction as

base allows for p1, p4, r11, r14, r22, r̂
3
1 fluxes with all other

NSNS fluxes equal to zero. The nonzero fluxes have to
satisfy the Bianchi identity 2r11r22 � r14r̂

3
1 ¼ 0. This case

is related to the first one by symmetry so we will only focus
on the first case with the 3 and 5 direction as base. In the
first case we can solve the remaining Bianchi identity
2r11r23 ¼ r14r̂

2
1 by setting one of the metric fluxes appear-

ing on either side to zero. If we have r23 ¼ r̂21 ¼ 0 or r11 ¼
r14 ¼ 0 our no-go theorems based on the factorization in
the Kähler sector give � � 2 and � � 9

5 , respectively. The

other two possibilities r11 ¼ r̂2 ¼ 0 and r23 ¼ r14 ¼ 0
give numerically � 
 4

3 and � 
 :2, so that we focus on

solutions that have 2r11r23 ¼ r14r̂
2
1 � 0. For 2r11r23 ¼

r14r̂
2
1 < 0 we find numerically that � � :2 where the lower

bound is attained in the limit where r23 ¼ r14 
 0. So the
only solution to the Bianchi identities that leads to vanish-
ing � is 2r11r23 ¼ r14r̂

2
1 > 0. The quantization condition in

this case forces 2r11r23 ¼ r14r̂
2
1 ¼ n2�2, n 2 Z. There are

two different solutions. For n ¼ 2k even we find

r14 ¼ n1
n2

r11; r̂21 ¼
4k2�2n2
n1r11

; r23 ¼ 2k2�2

r11
;

p1 ¼ n2

�
12

ffiffiffi
2

p þ p4

n1

�
; k; n1; n2 2 Z: (6.1)

For n ¼ 2kþ 1 odd we find

r14¼�r11; r̂21 ¼�ð2kþ1Þ2�2

r11
; r23¼ð2kþ1Þ2�2

2r11
;

(6.2)

p1 ¼ 6ð ffiffiffi
2

p
n1 þ n2r11Þ; p4 ¼ �6ð ffiffiffi

2
p

n1 � n2r11Þ;
k; n1; n2 2 Z: (6.3)

Note that not all metric fluxes are quantized. r11 can take
arbitrary values. Both solutions respect the symmetry aris-
ing from shifting the B field and H flux. Under a shift of
u1 ! u1 þ a1 we have p1 ! r11a

1 and p4 ! r14a
1 so that

we can set one of p1 and p4 equal to zero. Wewill set p4 ¼
0 and minimize � numerically for integers k, n1, n2 2 Z.

7For cosmetic reasons, the following values are rounded to
four digits and give � 
 10�4.

8The C3 axions 
K appear in the potential only through the
linear combinations pK


K and raK

K. Since in this simple case r

has rank two we can stabilize only three linear combinations of
them. In particular 
3 � 
4 is a flat direction. By allowing for at
least three nonvanishing columns in the r matrix one finds
examples without flat directions.
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One particular solution for n ¼ 2k even with � 
 10�19 is9

~m 
 �3:748 54; m1 
 �32:5482;

m2 
 �22:5086; e1 
 2:767 17;

e2 
 �2:921 92; e0 
 �0:251 057;

k ¼ 1; n1 ¼ �3; n2 ¼ �1;

r11 
 �1:628 09; 
1 
 �6:390 13;


2 
 unstabilized; 
3 
 �1:665 84;


4 
 �15:7204; u1 
 �2:493 21;

u2 
 3:163 22; v1 
 3:323 39;

v2 
 11:6507; eD 
 0:074 514 5;

Z1 
 0:413 947; Z2 
 38:0222;

Z3 
 0:360 619; Z4 
 3:653 32:

This particular solution has one tachyonic direction and
� 
 �2:5. The tachyon is a mixture of several moduli
including the axions. We have scanned over ranges where
the flux quanta n1, n2, k are of order 1 for both n even and
odd and found dozens of solutions. All of these solutions
had at least one tachyonic direction that generically is a
mixture of all moduli. We generically found that� & �2:4
and solutions close to that bound have only one single
tachyonic directions. The no-go theorems of [42,43] can-
not be applied to this particular model since we have
D-terms. It would be very interesting to understand this
tachyonic direction that appears in both of the models in
this section better. We, of course, cannot rule out that there
are solutions corresponding to metastable de Sitter vacua
since we only did a numerical study but due to the large
number of solutions that all have this tachyonic direction
with roughly the same value for � that furthermore is
independent of fluxes, we suspect that this model has no
metastable de Sitter vacua. We have examined the vicinity
of our extrema in which � is still small to see whether this
enables us to find small j�j to satisfy the conditions for
slow-roll inflation, but we found that � changes at most by
a factor of 2 in this region. We have also minimized � with
constraints ensuring small j�j, but have not been able to
find small � in this case. We take this as a strong indication
that these models are incompatible with slow-roll inflation.
However, we do not have an analytic proof of this, and it

would be very interesting to investigate this further. We
will leave this for future research.

VII. CONCLUSIONS

We have explored the possibility of slow-roll inflation
and de Sitter vacua in type IIA compactifications that
include standard NSNS 3-form fluxes, RR fluxes,
D6-branes and O6-planes as well as metric fluxes. We
have derived a set of no-go theorems based on the depen-
dence of the potential on the dilaton, volume, Kähler and
complex structure moduli, extending previous work by
HKTT [13]. Theorems of this kind are valuable because
they specify the minimal set of ingredients required to have
slow-roll inflation or de Sitter vacua in this type of com-
pactifications, or put differently they rule out entire regions
in the vast landscape of solutions of string theory. To
demonstrate their usefulness, we applied these no-go the-
orems to toroidal orientifolds with Abelian orbifold groups
generated by rotations and reflections, that, in the absence
of fluxes and after orientifolding, preserve N ¼ 1 super-
symmetry. As we showed, the application of the no-go
theorems is straightforward in some cases while in others
T-dualities and field redefinitions play a crucial role. We
find that under the assumptions made in deriving the no-go
theorems, the slow-roll parameter � is bounded from below
in all models of this class except the two Z2 � Z2 cases. In
those cases, we have succeeded in finding regions of
parameter space where the slow-roll parameter � is very
small numerically, but unfortunately � turns out to be such
that inflation is much too short, making these compactifi-
cations uninteresting from a cosmological perspective.
While it would be more satisfying and insightful to have

no-go theorems for � and � simultaneously, the ones
obtained in this paper are exclusively for �. Our explora-
tion of the range of� has always been numerical. We either
computed � where � had already been found to be small or
have failed to find a small value for � when we restricted
the minimization procedure to keeping � small. Thus,
although we are confident of our results we lack the insight
as to why the necessary conditions for small � are not
compatible with those for small �.
There are several effects we have not considered. We

have ignored twisted sector modes and blowup modes. We
have also ignored more general brane configurations such
as backreacting D6-branes that do not wrap rigid cycles
and are far from their static configuration, coisotropic
branes, or NSNS sources. Even though this is by no means
guaranteed, all of these ingredients might render the no-go
theorems invalid and may be interesting to investigate
further. We leave this for future work.
There is an orthogonal line of research pursued in [44]

that comes to similar conclusions. While we have not had
the chance to do so, we think it would be interesting to
understand if there is a relation between the two.

9The following values are rounded to six digits and give � 

10�4. Note also, that similar to the previous case, the C3 axions

K appear in the potential only through the linear combinations
pK


K and raK

K. Since for this model r has two rows we can

stabilize only three linear combinations of them. In particular for
p4 ¼ 0 we can stabilize p1


1, r11

1 þ r14


4 and r23

3. This

means that 
2 remains unstabilized.
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APPENDIX: CONVENTIONS

Our conventions largely follow [32].
Consider type IIA string theory on a Calabi-Yau three-

fold X, equipped with a Z2 orientifold action which in-
cludes an antiholomorphic involution . The cohomology
of X then splits into even and odd parts, depending upon
the behavior of each class under . We will take the
following basis of representative forms:

(i) The zero-form 1,
(ii) a set of odd two-forms !a, a ¼ 1; . . . ; h1;1� ,
(iii) a set of even two-forms ��, � ¼ 1; . . . ; h1;1þ ,
(iv) a set of even four-forms ~!a, a ¼ 1; . . . ; h1;1� ,
(v) a set of odd four-forms ~��, � ¼ 1; . . . ; h1;1þ ,
(vi) a six form ’, odd under ,
(vii) a set of even three-forms aK, K ¼ 1; . . . ; h2;1 þ 1,
(viii) and a set of odd three-forms bK, K ¼ 1; . . . ; h2;1 þ 1.
Additionally, it turns out that we can always choose the aK
and bK to form a symplectic basis such that the only
nonvanishing intersections areZ

X
aK ^ bJ ¼ �J

K: (A1)

Similarly, we can take the even-degree forms to obeyZ
X
’ ¼ 1;

Z
X
!a ^!b ^!c ¼ 	abc;Z

X
!a^�� ^�� ¼ 	̂a��;

Z
X
!a ^ ~!b ¼ �b

a;Z
X
�� ^ ~�� ¼ ��

�: (A2)

Now let us describe the four-dimensional fields of this
class of compactifications, restricting ourselves, for sim-
plicity, to the bosonic sector. First we have the Kähler
moduli, parametrized by complex scalar fields ta ¼ ua þ
iva coming from the expansion

Bþ iJ ¼ Jc ¼ ta!a; (A3)

where the complexified Kähler form Jc must be odd under
. Note that the Kähler form J ¼ va!a determines the
compactification volume (in string frame) via

V 6 ¼ 1

3!

Z
X
J ^ J ^ J ¼ 1

6
	abcv

avbvc: (A4)

To describe the complex moduli, let us write the holo-
morphic three-form as

� ¼ ZKaK �F Kb
K: (A5)

We will use conventions in which

i
Z
X
� ^ �� ¼ 1; �� ¼ ��; (A6)

so that theZK are real functions of the complex moduli and
F K are pure imaginary, and together they satisfy the con-
straint ZKF K ¼ �i=2. We can now define a complexified
version [32]

�c ¼ C3 þ 2ie�D Re� ¼ ð
K þ 2ie�DZKÞaK; (A7)

where e�D ¼ V 1=2
6 e�� contains the dilaton and we ex-

pand the periods of C3 (which must be even under  in
order to survive the orientifold projection) as C3 ¼ 
KaK.
Note that we abuse notation somewhat here as we ignore
other pieces which contribute to the ten-dimensional RR
three-form potential C3, namely, pieces that give rise to
four-dimensional vectors and (local) pieces that give the
four-form RR flux, both of which will be discussed below.
The complex moduli NK ¼ 1

2

K þ ie�DZK are then sim-

ply given by the expansion

�c ¼ 2NKaK; (A8)

and include the complex structure moduli of the metric, the
dilaton, and the RR three-form periods.

There are also h1;1þ four-dimensional vectors from the
decomposition of the RR three-form potential, which in-
cludes a contribution

C3 ¼ A� ^��: (A9)

We can now consider turning on fluxes. In the RR sector,
this leads us to include

F0 ¼ ~m; F2 ¼ma!a; F4 ¼ ea ~!
a; F6 ¼ ~e’:

(A10)

From the NSNS sector, we can include the usual H-flux,

H ¼ pKb
K; (A11)

but we can also consider generalized metric fluxes. For
more details, please refer to Secs. II A and IVB, but for
completeness we list the definitions of our parameters raK
and r̂K� ,

d!a ¼ �raKb
K; d�� ¼ �r̂K�aK: (A12)
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