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As is well known, when D6 branes wrap a special Lagrangian cycle on a noncompact Calabi-Yau

threefold in such a way that the internal string frame metric is a Kähler one there exists a dual description,

which is given in terms of a purely geometrical 11-dimensional background with an internal metric of G2

holonomy. It is also known that when D6 branes wrap a coassociative cycle of a noncompact G2 manifold

in the presence of a self-dual two-form strength the internal part of the string frame metric is conformal to

the G2 metric and there exists a dual description, which is expressed in terms of a purely geometrical 11-

dimensional background with an internal noncompact metric of spin(7) holonomy. In the present work it is

shown that any G2 metric participating in the first of these dualities necessarily participates in one of the

second type. Additionally, several explicit spin(7) holonomy metrics admitting a G2 holonomy reduction

along one isometry are constructed. These metrics can be described as R fibrations over a 6-dimensional

Kähler metric, thus realizing the pattern spinð7Þ ! G2 ! ðKahlerÞ mentioned above. Several of these

examples are further described as fibrations over the Eguchi-Hanson gravitational instanton and, to the

best of our knowledge, have not been previously considered in the literature.
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I. INTRODUCTION

Spaces of G2 and spin(7) holonomy were the only two
cases of the Berger list of the possible holonomy groups for
Riemanian geometries [1] whose existence was not clear.
This situation completely changed with the construction of
explicit noncompact examples in [2,3] and the proof of the
existence of compact ones given in [4,5]. Since the appear-
ance of these works, further special holonomy metrics
were found in [6–21]. The reduction of the holonomy
from SOð7Þ or SOð8Þ to G2 or spin(7) implies that these
metrics are Ricci flat, that is, Rij ¼ 0 being Rij the Ricci

tensor constructed with the special holonomy metric under
consideration. Another of their salient features is the pres-
ence of at least one covariantly constant Killing spinor �,
that is, a globally defined spinor satisfying D� ¼ 0 being
D the standard covariant derivative in the representation of
the field. If the holonomy is exactly G2 or spin(7) there is
only one of such spinors, in other cases the holonomy will
be reduced to a smaller subgroup. In fact, the presence of a
parallel spinor�makes these spaces relevant for construct-
ing supersymmetric solutions of supergravity theories or
even vacuum solutions of superstring theories. This comes
from the general fact that the number of supersymmetries
preserved by these solutions is related to the number of
independent parallel spinors that the internal manifold

admits. Compactifications of M theory (or its low energy
limit, 11-dimensional supergravity) on G2 or spin(7)
spaces give N ¼ 1 supersymmetric theories in four and
three dimensions, respectively. Additionally, compactifica-
tions of heterotic string theory on these spaces also provide
N ¼ 1 supersymmetry in three and two dimensions, re-
spectively [22].
From a phenomenological point of view, compactifica-

tions of 11-dimensional supergravity over G2 holonomy
spaces constitute an attractive possibility, as the resulting
low energy theory is four dimensional. But if the internal
space is smooth then the four-dimensional theory will be
N ¼ 1 supergravity coupled to Abelian vector fields, and
no chiral matter on non-Abelian vector fields will appear.
Nevertheless, nonperturbative effects arising by singular-
ities may generate chiral matter and non-Abelian gauge
fields in four dimensions [23]. For this reason special
attention was paid to G2 holonomy spaces developing
conical singularities. Another motivation for studying spe-
cial holonomy manifolds appears in the context of dual-
ities, as the present understanding of the dynamics of
N ¼ 1 supersymmetric theories relies partially in the ex-
istence of dual realizations of a given theory. An old
example was considered in [24–26] where it was shown
that type IIA propagating on the deformed conifold withD
branes and IIA on the resolved conifold with Ramond-
Ramond (RR) fluxes are dual to each other. This duality
has been derived by lifting both backgrounds to purely
geometrical M-theory ones with two G2 holonomy mani-
folds admitting a smooth interpolation. As D branes con-
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tain gauge fields, this allows to study infrared dynamics by
means of M theory on G2 manifolds. Other contexts in
which these spaces appear are in [27–45].

New dual descriptions involving special holonomy
manifolds were reported in [46]. In this reference the
geometries corresponding to D6 branes wrapping a super-
symmetric 3-cycle in noncompact Calabi-Yau (CY) three-
fold and toD6 branes wrapping a coassociative 4-cycle in a
noncompact G2 holonomy space were described from an
11-dimensional perspective. Both cases give N ¼ 1 super-
symmetry. For the CY case it was shown that if the ten-
dimensional string frame is a wrapped product with an
internal Kähler metric then the supersymmetry generator
becomes a covariantly constant gauge spinor. This require-
ment, which is stronger than N ¼ 1 supersymmetry, is
known as a ‘‘strong supersymmetry condition’’ and is
translated into a system of equations involving the dilaton
and the RR two-form. These equations are a sort of
‘‘monopole equations’’ describing the special Lagrangian
cycles the D6 branes wrap and the backreaction of the
branes on the physical metric. The lift of these IIA solu-
tions to 11 dimensions results in a purely geometrical
background with an internal G2 holonomy metric.
Similarly, for D6 branes wrapping a coassociative cycle
on aG2 manifold with self-dual two-form field strength the
ten-dimensional string frame is a wrapped product with an
internal metric conformal to the G2 holonomy one. As for
the previous case, the lift of these IIA solutions to 11
dimensions results in a purely geometrical background,
but the internal metric is now of spin(7) holonomy.

There are two inherent mathematical problems that arise
in the context of the dualities mentioned above. One is the
classification of the G2 holonomy metrics possessing an
isometry action preserving the closed G2 structure in such
a way that the quotient of the seven-dimensional structure
by this action is a Kähler one; the other is the classification
of the spin(7) holonomymetrics with a structure preserving
isometry such a quotient of the 8-metric by this action
gives a 7-metric conformal to a G2 holonomy one. The
former situation has been studied in more detail. In fact in
[47], one of the authors has identified theseG2 metrics with
the ones discovered independently in [20], and the relation
between the generalized monopole equation and those
classifying the G2 geometry in [20] was pointed out ex-
plicitly. Besides, an infinite class of explicit examples were
presented in [21]. All these examples are described as
fibrations over hyper-Kähler metrics of the Gibbons-
Hawking type. Instead, the situation corresponding to
spin(7) manifolds is less understood and one of the pur-
poses of the present work is to study it further. A natural
question is whether or not the G2 metrics participating in
both dualities are related. In the present work it is shown
that any G2 metric admitting a six-dimensional Kähler
reduction along an isometry can be obtained by a quotient
of a closed spin(7) structure by a structure preserving

isometry. We are not able to prove or reject the inverse
statement. The conclusion is that the set of G2 metrics
obtained by reduction of a spin(7) holonomy manifold in
the way described above is equal or bigger than the ones
that admit six-dimensional Kähler reductions.
It is tempting to connect the mathematical and physical

aspects of the dualities described above by saying that
whenever a G2 metric provides a dual description for D6
branes wrapping a special Lagrangian cycle on a CY
manifold satisfying the strong supersymmetry conditions
it also describes a configuration of D6 branes wrapping a
coassociative cycle inside the G2 manifold in the presence
of a self-dual RR two-form. The fact that the correspond-
ing backgrounds are completely determined in terms of the
G2 metric may suggest that those D6 brane configurations
are dual to each other, and the link between them is
provided by the G2 structure. This is a very interesting
statement but we are still cautious for the following reason.
A configuration of D6 branes wrapping a special
Lagrangian cycle in a CY manifold will appear only if
magnetic sources for the RR two-form F are present, that
is, dF ¼ N�. Consider the G2 metric dual to one of such
configurations. By use of the result of the present work, one
can lift it to a spin(7) metric and construct an 11-
dimensional background which is the direct sum of this
metric with the Minkowski one in three dimensions.
Clearly, the usual Kaluza-Klein reduction along an isome-
try gives a IIA background with a nontrivial dilaton and a
self-dual RR two-form F0, and the internal metric is con-
formal to the G2 holonomy metric. If there are delta types
of sources for F0, then this configuration will correspond to
D6 branes wrapping a coassociative cycle and the duality
we are talking about seems to be plausible. But we did not
find a formal argument which insures that such singular-
ities will appear, even if they were present for the initial
configurations. One can argue that dF0 ¼ 0 everywhere,
but F0 is nontrivial due to bad asymptotics at infinity. In our
opinion this is not the case, up to possible pathological
counterexamples. In any case, we suspect that our result
encodes very interesting class dualities between D6 brane
configurations.
In addition, we are able to find new G2 holonomy

examples not considered in [20] and their lift to spin(7)
metrics. All these examples arise as fibrations over the
Eguchi-Hanson gravitational instanton and the fiber quan-
tities are defined over a complex submanifold of the
Eguchi-Hanson space. In this situation all the fiber quan-
tities are defined by the solution of a Laplace type equation
on the curved instanton metric, otherwise the underlying
problem becomes nonlinear and in consequence, harder to
solve.
The present work is organized as follows. In Sec. II a

system of equations is presented describing the lift of a G2

holonomy metric to a spin(7) one, which is essentially the
one considered in [46]. In addition, a brief characterization
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of the G2 holonomy metrics which admit a Kähler reduc-
tion is given. In particular, it is shown that any of these G2

metrics can be lifted to a spin(7) one by means of these
equations, which is one of the main results of the present
work. In Sec. III some known examples of theseG2 metrics
[20,21] are presented and the lifting to spin(7) metrics is
performed explicitly. In Sec. IV we review a method for
constructing G2 holonomy metrics admitting Kähler re-
ductions in terms of an initial hyper-Kähler four-
dimensional metric together with certain quantities defined
over a complex submanifold of the hyper-Kähler manifold
[20]. We show that this method linearizes the otherwise
nonlinear system describing this geometry and converts it
into a Laplace type equation on the curved hyper-Kähler
metric. We find a nontrivial solution when the hyper-
Kähler manifold is the Eguchi-Hanson gravitational in-
stanton and construct the corresponding special holonomy
metrics. In the last section we make a brief discussion of
the presented results.

II. SPIN(7) METRICS ADMITTING G2

REDUCTIONS

A. The defining equations

As was mentioned in the introduction, a configuration of
D6 branes wrapping a coassociative submanifold of a G2

manifold in such a way that the field strengthFab satisfying
the self-duality condition

4Fab þ cabcdFcd ¼ 0; (2.1)

is described in terms of a type IIA background with an
internal 7-metric which, in the string frame, is conformal to
a G2 holonomy metric [46]. Here cabcd are the duals of the
octonion multiplication constants. Any of these IIA back-
grounds can be lifted to a purely geometrical solution of
11-dimensional supergravity of the form

g11 ¼ gð1;2Þ þ g8; (2.2)

being g8 a spin(7) holonomy metric possessing a Killing
vector preserving also the spin(7) calibration four-form.
Here g1;2 is the Minkowski metric in three dimensions. The

purpose of the section is to clarify the relation between
these G2 and spin(7) holonomy metrics.

Consider an eight-dimensional space M8 with metric

g8 ¼ e6fðdzþ AÞ2 þ e�2fg7 (2.3)

such that the one-form A, the 7-metric g7, and the function
f are independent on the coordinate z. This condition
means that V ¼ @z is a local Killing vector, which induces
a local decomposition M8 ¼ M7 � Rz if z is noncompact
or M8 ¼ M7 �Uð1Þz if z is an angular coordinate. In the
following we will impose that g8 is of spin(7) holonomy
and that g7 is of G2 holonomy and we will derive the
consequences of this statement, with the further assump-
tion that V ¼ @z also preserves the spin(7) structure.

By defining the one-form e8 ¼ e3fðdzþ AÞ the spin(7)
calibration four-form corresponding to g8 can be decom-
posed in the following form:

�8 ¼ e8 ^ ~�þ � ~�: (2.4)

Here ~� and � ~� are a pair of G2 invariant three and four-
forms for the metric e�2fg7. As the function f appearing in
the expression (2.4) is z independent, it follows that the
whole four-form (2.4) will be preserved by V ¼ @z.

Furthermore ~� ¼ e�3f� and � ~� ¼ e�4f �� being �
and �� certain G2 invariant three and four-forms for the
metric g7. The four-form (2.4) can be expressed in terms of
� and �� as

�8 ¼ ðdzþ AÞ ^�þ e�4f ��: (2.5)

As g7, by assumption, has holonomy in G2 it follows that
d� ¼ d �� ¼ 0. Then the condition for spin(7) holon-
omy d�8 ¼ 0 will be equivalent to the following system:

F ^�þ dðe�4fÞ ^ �� ¼ 0; (2.6)

being F ¼ dA. By construction F is a closed two-form.
In principle, if one starts with a closed G2 structure and

solves (2.6) then the result is a spin(7) holonomy metric.
The problem is that, in general, it is not easy to find a
nontrivial solution. In fact, if one starts with an arbitraryG2

metric it can be a hard task to guess an anzatz for F and f in
such a way that the resulting system of equations takes a
manageable form. Let us also note that this system does not
classify completely all the spin(7) metrics admitting a G2

holonomy reduction. Even if d� ¼ d �� � 0 there could
exist a rotation of the tetrad frame of g7 such that d�0 ¼
d ��0 ¼ 0 for certain new calibration forms. We will try
not to classify all the possible solutions of (2.6), but instead
we will find some particular ones. The G2 metrics from
which we will start are a special class of G2 holonomy
metrics which are defined by admitting Kähler reductions
[20,21,46,47]. Fortunately, we will be able to solve (2.4)
for all these metrics.
Clearly, the spin(7) metrics presented above can be

extended to a purely geometrical background of the form
(2.2). This background can be rewritten in the IIA form

g11 ¼ e��g10 þ e2�ðdzþH3Þ2; (2.7)

V ¼ @z being the corresponding Killing vector. The usual
reduction to IIA supergravity gives

gIIA ¼ �1=3gð1;2Þ þ ��1=9g7; F ¼ !3; (2.8)

g7 being the G2 holonomy metric and where the dilaton �

is defined through the relation e2� ¼ ��2=3. The seven-
dimensional internal part of the background (2.8) is then
conformal to the G2 metric, in accordance with [46] and
our previous discussion.
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B. G2 holonomy metrics admitting Kähler reductions

The next step is to find nontrivial solutions of the system
(2.6), or equivalently, to construct nontrivial spin(7) met-
rics possessing an isometry such that the orbits of the
Killing vector induce a seven-dimensional metric confor-
mal to a G2 holonomy metric. As we will show below, the
system (2.6) can be solved for the large class of G2 metrics
considered in [20] and independently in [46]. These met-
rics always possess a Killing vector which preserves the
whole G2 structure such that the induced metric by taking
the quotient with respect to this isometry is a six-
dimensional Kähler metric. In [46] the local form of these
metrics is described in terms of ‘‘generalized monopole
equations’’ while in [20] the description is given in terms
of a nonlinear system that we will describe below. In
addition, the analysis of [47] shows that both descriptions
are equivalent. The reason for choosing the second formal-
ism is that, as we will see, it considerably simplifies the
lifting equation (2.6).

In general, if a G2 holonomy metric possesses an isome-
try preserving the whole G2 structure, then the orbits of the
Killing vector induce an SUð3Þ structure with generically
nonzero torsion classes [48]. But if the associated SUð3Þ
structure is Kähler, then the initialG2 has another isometry
which commutes with the former one [20]. Therefore any
of such G2 metrics is toric from the very beginning. In
addition, it is possible to make a further reduction with
respect to the second isometry and describe the G2 and
Kähler metrics as fibrations over a certain Kähler four-
dimensional metric which we will specify below.1

Let us describe schematically the local form of the G2

holonomy metrics in question; further details can be found
in the original reference [20]. Their local form is

g7 ¼ ðd�þH2Þ2
�2

þ�

�
ud�2 þ ðd�þH1Þ2

u
þ g4ð�Þ

�
:

(2.9)

All the quantities defining g7 are independent on the
coordinates � and �, therefore (2.9) is toric with Killing
vectors V1 ¼ @� and V2 ¼ @�. The metric g4ð�Þ is Kähler
and defined over a four manifoldM and it depends on� as
a parameter. It also admits a complex �-independent sym-
plectic two-form � ¼ !2 þ i!3, where being ‘‘symplec-
tic’’ means that it is closed, d� ¼ 0. On the other hand,
being ‘‘complex’’ implies that

!2 ^!2 ¼ !3 ^!3; !2 ^!3 ¼ 0; (2.10)

and that the equation

!2ðJ1�; �Þ ¼ !3ð�; �Þ (2.11)

defines a complex structure J1. In other words, the

Niejenhuis tensor of J1 vanishes identically or equivalently
J1 is integrable. The two-form ~!1ð�Þ constructed by low-
ering the indices of J1 with g4ð�Þ is in general � depen-
dent and closed on M. It is also orthogonal to !2 and !3

with respect to the wedge product, that is

~!ð�Þ ^!2 ¼ ~!ð�Þ ^!3 ¼ 0: (2.12)

The function u in (2.9) depends on the coordinates of M
and on the parameter �, and it is defined through the
relation

2� ~!1ð�Þ ^ ~!1ð�Þ ¼ u� ^ ��: (2.13)

This function always exists because the wedge products in
(2.13) are proportional to the volume form Vðg4Þ of g4ð�Þ.
In fact

~! 1ð�Þ ^ ~!1ð�Þ ¼ Vðg4Þ:
The forms H1 and H2 are defined on M�R� and M,

respectively, by the equations

dH1 ¼ ðdcMuÞ ^ d�þ @ ~!1

@�
; dH2 ¼ �!2; (2.14)

with dcM ¼ J1dM. The last equation can always be solved
locally as the forms ~!1 and!2 are closed. The integrability
condition associated to the first (2.14) is the evolution
equation

@2 ~!1

@2�
¼ �dMd

c
Mu: (2.15)

Now a theorem given in [20] insures that if the system of
equations described above are satisfied then the metric
(2.9) are of G2 holonomy. This statement is not difficult
to see. The calibration three-form corresponding to the
metrics (2.9) is

� ¼ ~!1ð�Þ ^ ðd�þH2Þ þ d� ^ ðd�þH1Þ
^ ðd�þH2Þ þ�ð!2 ^ ðd�þH1Þ þ u!3 ^ d�Þ;

(2.16)

and the dual form �� corresponding to (2.16) is given by
[21]

�� ¼ �2 ~!1ð�Þ ^ d� ^ ðd�þH1Þ þ u!2 ^ ðd�þH2Þ
^ d�þ!3 ^ ðd�þH1Þ ^ ðd�þH2Þ
þ�2 ~!1ð�Þ ^ ~!1ð�Þ: (2.17)

By means of (2.14), (2.15), and (2.13) it follows that d� ¼
d �� ¼ 0.
The G2 metrics (2.9) are fibered over the six-

dimensional metric

g6 ¼ ud�2 þ ðd�þH1Þ2
u

þ g4ð�Þ; (2.18)

which is Kähler with Kähler form

1Note that the lifting of these metrics to eight dimensions by
(2.6) will give a spin(7) metric with three commuting isometries,
as the initial G2 metric is toric.
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K ¼ ðd�þH1Þ ^ d�þ ~!1: (2.19)

The converse of these statements are also true. That is, for
given a G2 holonomy manifold Y with a metric g7 possess-
ing a Killing vector that preserves the calibration forms �
and �� and such that the six-dimensional metric g6 ob-
tained from the orbits of the Killing vector is Kähler, there
exists a coordinate system in which g7 takes the form (2.9)
g4ð�Þ being a one-parameter four-dimensional metric ad-
mitting a complex symplectic structure � and a complex
structure J1, the quantities appearing in this expression
being related by (2.11) and the conditions (2.14), (2.15),
and (2.13). This is the most involved part of the proofs and
we refer the reader to the original Ref. [20].

The class metrics presented in this section include as
particular cases theG2 metrics which are dual toD6 branes
wrapping a special Lagrangian cycle and satisfying the
strong supersymmetric conditions, i.e., the conditions for
the supersymmetry generator to be a covariantly constant
gauge spinor. These conditions will hold only if in the
string frame the IIA string metric has a Kähler internal
part, which forces the G2 dual metric to be in our class.
Note that the Killing vector fields preserve the metric and
�, thus it preserves �� and the whole G2 structure.
Another interesting fact is that

��jM ¼ Vðg4Þ;
therefore the Kähler base g4 is a coassociative submani-
fold. In the same way for a fixed value of the coordinates of
g4 one obtains from (2.9) the three-dimensional metric

g3 ¼ d�2

�2
þ ud�2 þ�

d�2

u
(2.20)

defined on certain space M3, and it follows that

��jM3
¼ Vðg3Þ;

therefore M3 is an associative submanifold. These are
calibrated submanifolds [49] and are supersymmetric
from the physical point of view [50].

C. Uplifting to spin(7) metrics

In the present subsection it will be shown that any of the
G2 holonomy metrics (2.9) described above can be lifted to
a spin(7) holonomy one by means of the lifting formula
(2.6). The two-form F ¼ dA appearing in this formula
must be closed. From the fact that � ¼ !2 þ i!3 is sym-
pletic and that dH2 ¼ �!2 (see (2.14)) the most natural
anzatz is

F ¼ dA ¼ �!3: (2.21)

The system (2.6) reduces in this case to

!3 ^� ¼ dðe�4fÞ ^ ��: (2.22)

From (2.17) it follows that the right-hand side of (2.22) is

dðe4fÞ ^ �� ¼ dðe�4fÞ ^ ð�2 ~!1ð�Þ ^ d� ^ ðd�þH1Þ
þ u!2 ^ ðd�þH2Þ ^ d�þ!3

^ ðd�þH1Þ ^ ðd�þH2Þ
þ�2 ~!1ð�Þ ^ ~!1ð�ÞÞ: (2.23)

The left-hand side is obtained from (2.16) and is

!3 ^� ¼ ~!1ð�Þ ^ ðd�þH2Þ ^!3 þ d� ^ ðd�þH1Þ
^ ðd�þH2Þ ^!3 þ�ð!2 ^ ðd�þH1Þ
þ u!3 ^ d�Þ ^!3: (2.24)

But from (2.13) we see that !2 ^!3 ¼ ~!1 ^!3 ¼ 0 and
also that

u!3 ^!3 ¼ � ~!1 ^ ~!1:

Taking into account these relations the formula (2.24) is
simplified to

!3 ^� ¼ d� ^ ððd�þH1Þ ^ ðd�þH2Þ ^!3

þ�2 ~!1 ^ ~!1Þ: (2.25)

Equating (2.25) to (2.23) gives the equation

dðe�4fÞ ^ d� ^ ð�2 ~!1ð�Þ ^ ðd�þH1Þ � u!2

^ ðd�þH2ÞÞ þ dðe�4fÞ ^ ð!3 ^ ðd�þH1Þ
^ ðd�þH2Þ þ�2 ~!1ð�Þ ^ ~!1ð�ÞÞ

¼ d� ^ ð!3 ^ ðd�þH1Þ ^ ðd�þH2Þ
þ�2 ~!1ð�Þ ^ ~!1ð�ÞÞ: (2.26)

The solution of this system is immediate. If dðe�4fÞ ¼ d�
the two first terms of the left-hand side vanishes and the
two last ones are equal to the right-hand side. We choose
then e�4f ¼ �þ b and our spin(7) metrics become

g8 ¼ ðdzþH3Þ2
ð�þ bÞ3=2 þ ð�þ bÞ1=2g7 (2.27)

being dH3 ¼ �!3 and g7 the G2 holonomy metrics de-
scribed in the previous section. Thus, we have found the
spin(7) metrics we were looking for. The reason for which
the family is infinite is because the G2 family over which
are fibered is also infinite [20,21].

III. EXPLICIT SPIN(7) EXAMPLES

The local expression (2.27) describes an infinite family
of spin(7) metrics admitting G2 reductions. In this section
we found the metrics corresponding to known G2 holon-
omy cases [21]. The lift in this case presents no difficulties
but serves as warm-up for the next section, in which less
trivial examples will be worked out.
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A. Two different general solutions

Any of the spin(7) metrics (2.27) are fibrations over aG2

holonomy metric g7 of the type described in Sec. II B,
which are constructed in terms of solutions of the
Eqs. (2.11), (2.12), (2.13), and (2.14). The one-form H3

satisfies dH3 ¼ �!3. A simple example is obtained by
assuming that the function u defined in (2.13) does not vary
when we move on M but depends on the coordinate �.
Then Eq. (2.15) gives that ~!1 ¼ ðc�þ dÞ!1 being !1

independent on �. In addition ~!1 is closed on M4 from
where it follows that d4!1 ¼ 0. This means that if one
starts with a hyper-Kähler triplet !i of some hyper-Kähler
manifold M all the conditions (2.9), (2.10), (2.11), (2.12),
(2.13), and (2.14) are solved except (2.13), which becomes
then an algebraic equation defining u. The solution is u ¼
�ðc�þ dÞ2. Also g4ð�Þ ¼ ðc�þ dÞ �g4 being �g4 the
hyper-Kähler metric corresponding to !i. The resulting
7-metrics (2.9) have the following expression:

g7 ¼ ðd�þH2Þ2
�2

þ ðd�þH1Þ2
ðc�2 þ dÞ2 þ�2ðc�þ dÞ2d�2

þ�ðc�þ dÞ �g4: (3.1)

Moreover Eqs. (2.14) are in this case

dH1 ¼ !1; dH2 ¼ �!2: (3.2)

These metrics are usually well behaved away from the
point � ¼ 0 or � ¼ �b if b < 0.

A second type of metrics are obtained with a function u
which depends on � and also varies on M. This case is
more difficult to deal with but still we will find below
several explicit examples. Consider as before a hyper-
Kähler structure!i with its Ricci flat metric �g4 and deform
one of the Kähler two-forms, say !1, to a new one ~!1ð�Þ
of the form

~! 1ð�Þ ¼ !1 � d4d
c
4G; (3.3)

G being a function on M� R�. Then the compatibility

conditions (2.10), (2.11), and (2.12) are satisfied by (3.3).
Inserting (3.3) into the evolution equation (2.15) gives

@2�G ¼ 2u; (3.4)

therefore u is completely determined in terms of G. The
equation forG is found from (2.14) as follows. The relation

~!1ð�Þ ^ ~!1ð�Þ ¼ ð!1 � d4d
c
4GÞ ^ ð!1 � d4d

c
4GÞ

¼ MðGÞ!1 ^!1 (3.5)

defines a nonlinear operator MðGÞ. This operator always
exists as all the terms in (3.5) are proportional to the
volume form of g4ð�Þ. Then the insertion of (3.4) into
(2.14) gives

2�MðGÞ ¼ @2�G; (3.6)

which is the equation we were looking for. Also, from

(2.15) it follows that

H1 ¼ �dc4@�G: (3.7)

Note that in general, the metric tensor g4ð�Þ in (2.9) is not
the hyper-Kähler metric �g4 in general. If K denotes the
Kähler potential corresponding to!1 then the metric g4ð�Þ
is the one which corresponds to the modified Kähler po-
tential �K ¼ K �G. This metric is obviously Kähler, but
not necessarily hyper-Kähler. Equations (3.4), (3.5), (3.6),
and (3.7) define a new family of G2 metrics and all the
objects defining the metric are related essentially to a
single function G satisfying (3.6).
To find the general solution of the previous equations is

extremely complicated because MðGÞ is a nonlinear op-
erator. The source of nonlinearity is given by the term
d4d

c
4G ^ d4d

c
4G in (3.5). Nevertheless, there exist special

cases in which

d4d
c
4G ^ d4d

c
4G ¼ 0: (3.8)

In these situations the operator MðGÞ reduces to the linear
operator [20]

MðGÞ ¼ 1þ �4G

�4 being the Laplacian over the starting hyper-Kähler
metric �g4. In fact, the full system describing the G2 ge-
ometry is linear in these cases. The condition (3.8) is
satisfied when the function G is defined over a complex
submanifold on the hyper-Kähler manifold M [51]. This
statement means the following. The starting hyper-Kähler
structure !i is obviously Kähler, thus M is complex and
parametrized in terms of certain complex coordinates
ðz1; z2; �z1; �z2Þ which diagonalize J1. Equation (3.8) will
be satisfied when the function G is of the form G ¼
Gðw; �wÞ w being a single complex function of the zi and
�w its complex conjugate. In particular, Eq. (3.6) defining
the G2 geometry will be reduced to

2�ð1þ �4GÞ ¼ @2�G: (3.9)

This is an important simplification, although the task of
finding solutions of a Laplace equation in a curved space is
not easy in general. In the next section we will find an
explicit solution by taking the Eguchi-Hanson gravita-
tional instanton as our initial hyper-Kähler structure.

B. Simple known examples

The solution generating techniques described in the
previous subsection require an initial hyper-Kähler struc-
ture. The simplest hyper-Kähler manifold is R4 with its flat
metric g4 ¼ dx2 þ dy2 þ dz2 þ d&2 and with the closed
hyper-Kähler triplet

!1 ¼ d& ^ dy� dz ^ dx; !2 ¼ d& ^ dx� dy ^ dz;

!3 ¼ d& ^ dz� dx ^ dy:

This innocent looking case is indeed very interesting. Let
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us construct the metrics (3.1) corresponding to this struc-
ture. The forms Hi such that dHi ¼ !i are simply

H1 ¼ �xdzþ yd&; H2 ¼ �ydzþ xd&;

H3 ¼ �ydxþ zd&
(3.10)

and by selecting c ¼ 1 and d ¼ 0 in (3.1) the resulting G2

metric is

g7 ¼ ðd�� xdzþ yd&Þ2
�2

þ ðd�� ydz� xd&Þ2
�2

þ�4d�2 þ�2ðdx2 þ dy2 þ dz2 þ d&2Þ: (3.11)

The metrics (3.11) have been already obtained in the
physical literature [19] and are interpreted in terms of
domain wall configurations. Even in this simple case and
though the base 4-metric has trivial holonomy, it has been
shown that (3.11) is irreducible and has holonomy exactly
G2, not a subgroup.

Turning on the attention to the second ramification, a
possible choice of complex coordinates for R4 is z1 ¼ xþ
iy, z2 ¼ zþ i& and complex conjugates. If the functional
dependence of the function G is assumed to be G ¼
Gð�; z1; �z1Þ then the operator MðGÞ reduces to the
Laplacian operator in flat space

G00 þ�ð@xxGþ @yyGÞ ¼ 2�: (3.12)

The separable solutions in the variable � are of the form

G ¼ 1
3�

3 þ Vðx; yÞKð�Þ:
By introducing G ¼ Gð�; x; yÞ into (3.12) it follows that
Kð�Þ and Vðx; yÞ are solutions of the equations

K00ð�Þ ¼ p�Kð�Þ; @xxV þ @yyV þ pV ¼ 0;

(3.13)

p being a parameter. By defining the ~� ¼ �=p1=3 the first
of Eqs. (3.13) reduce to the Airy equation. The second is
reduced to find eigenfunctions of the two-dimensional
Laplace operator, which is a well-known problem in elec-
trostatics. For p > 0 periodical solutions are obtained and
for p < 0 there will appear exponential solutions.

A simple example is obtained with the eigenfunction
V ¼ q sinðpxÞ, q being a constant. A solution of the Airy
equation is given by

K ¼ Aið ~�Þ ¼ 1

3
~�1=2ðJ1=3ð�Þ þ J�1=3ð�ÞÞ;

� ¼ i
2�3=2

3p1=2
:

Then the function G is

G ¼ 1

3
�3 þ q sinðpxÞAi

�
�

p1=3

�
:

From (3.7) it is obtained that

H1 ¼ �pqAið ~�Þ0 cosðpxÞdy;
u ¼ �ð1þ pqAið ~�Þ sinðpxÞÞ;

(3.14)

g4ð�Þ ¼ u

�
ðdx2 þ dy2Þ þ dz2 þ d&2:

In terms of the quantities defined above the generic G2

holonomy metric (2.9) becomes [20]

g7 ¼ ðd�� xdzþ yd&Þ2
�2

þ ðd	� pqAið ~�Þ0 cosðpxÞdyÞ2
H

þ�ðHdx2 þHdy2 þ dz2 þ d&2Þ þ�2Hd�2;

(3.15)

where the function Hð�; x; yÞ ¼ ð1þ pqAið ~�Þ sinðpxÞÞ
has been introduced. As before, the holonomy is exactly
G2 [20].
It is straightforward to construct from (3.15) or (3.11) a

pair of holonomy spin(7) metrics, which are obtained from
(2.27) and (3.10). The result is

g8 ¼ ðdzþ ydx� zd&Þ2
ð�þ bÞ3=2 þ ð�þ bÞ1=2g7 (3.16)

g7 being any of (3.15) or (3.11). The curvature tensor is
irreducible for these metrics and the holonomy is not
reduced to a subgroup.

IV. TWO FIBRATIONS OVER THE EGUCHI-
HANSON GRAVITATIONAL INSTANTON

A. The Eguchi-Hanson metric as an ALE space

In this section the solutions of the two ramifications
described above will be worked in the situation in which
the Eguchi-Hanson gravitational instanton is the initial
hyper-Kähler metric [52]. As is well known, this metric
is preserved by an isometry which also preserves its Kähler
forms !i, namely

L K!1 ¼ LK!2 ¼ LK!3 ¼ 0

K being the corresponding Killing vector. Such Killing
vector K is called triholomorphic and it also preserves
the complex structures Ji defined by the Kähler forms
and the metric, thus it is also tri-Hamiltonian. For any
four-dimensional hyper-Kähler structure with this property
there exists a local system of coordinates in which K ¼ @t
and for which the metric takes generically the Gibbons-
Hawking form [53]

g ¼ V�1ðdtþ AÞ2 þ Vdxidxj�
ij; (4.1)

with a one-form A and a function V satisfying the linear
system of equations

rV ¼ r� A: (4.2)

In addition the hyper-Kähler triplet in this coordinate is
given by
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!1 ¼ ðdtþ AÞ ^ dx� Vdy ^ dz;

!2 ¼ ðdtþ AÞ ^ dy� Vdz ^ dx;

!3 ¼ ðdtþ AÞ ^ dz� Vdx ^ dy;

(4.3)

which is actually t independent. The Eguchi-Hanson solu-
tion corresponds to two monopoles on the z axis. Without
losing generality, it can be considered that the monopoles
are located in the positions ð0; 0;�cÞ. The potentials for
this configurations are

V ¼ 1

rþ
þ 1

r�
;

A ¼ Aþ þ A� ¼
�
zþ
rþ

þ z�
r�

�
d arctanðy=xÞ;

r2� ¼ x2 þ y2 þ ðz� cÞ2:
The resulting metric (4.1) in Cartesian coordinates is

g ¼
�
1

rþ
þ 1

r�

��1
�
d�þ

�
zþ
rþ

þ z�
r�

�
d arctanðy=xÞ

�
2

þ
�
1

rþ
þ 1

r�

�
ðdx2 þ dy2 þ dz2Þ; (4.4)

where z� ¼ z� c. In order to recognize the Eguchi-
Hanson metric in its standard form it is convenient to
introduce a new parameter a2 ¼ 8c and the elliptic coor-
dinates defined by [54]

x ¼ r2

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða=rÞ4

q
sin’ cos
;

y ¼ r2

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða=rÞ4

q
sin’ sin
;

z ¼ r2

8
cos’:

It is not difficult to check that in these coordinates

r� ¼ r2

8
ð1� ða=rÞ2 cos’Þ;

z� ¼ r2

8
ðcos’� ða=rÞ2Þ;

V ¼ 16

r2
ð1� ða=rÞ4cos2’Þ�1;

A ¼ 2ð1� ða=rÞ4cos2’Þ�1ð1� ða=rÞ4Þ cos’d
;
and, with the help of these expressions, it is found that

g ¼ r2

4
ð1� ða=rÞ4Þðd
þ cos’d�Þ2 þ ð1� ða=rÞ4Þ�1dr2

þ r2

4
ðd’2 þ sin2’d�Þ: (4.5)

This is actually a more familiar expression for the Eguchi-
Hanson instanton indeed. Its isometry group is Uð2Þ ¼
Uð1Þ � SUð2Þ=Z2. The holomorphic Killing vector is @�.
This space is asymptotically locally Euclidean (ALE),

which means that it asymptotically approaches the
Euclidean metric; and therefore the boundary at infinity
is locally S3. However, the situation is rather different in
what regards its global properties. This can be seen by
defining the new coordinate

u2 ¼ r2ð1� ða=rÞ4Þ
for which the metric is rewritten as

g ¼ u2

4
ðd
þ cos’d�Þ2 þ ð1þ ða=rÞ4Þ�2du2

þ r2

4
ðd’2 þ sin2’d�Þ: (4.6)

The apparent singularity at r ¼ a has been moved now to
u ¼ 0. Near the singularity, the metric looks like

g ’ u2

4
ðd
þ cos’d�Þ2 þ 1

4
du2 þ a2

4
ðd’2 þ sin2’d�Þ;

and, at fixed � and ’, it becomes

g ’ u2

4
d
2 þ 1

4
du2:

This expression ‘‘locally’’ looks like the removable singu-
larity ofR2 that appears in polar coordinates. However, for
actual polar coordinates, the range of 
 covers from 0 to
2�, while in spherical coordinates in R3, 0 � 
 < �. This
means that the opposite points on the geometry turn out to
be identified and thus the boundary at infinity is the lens
space S3=Z2.

B. The first type of metrics

The task to find the G2 metrics (3.1) that correspond to
the Eguchi-Hanson instanton was already solved in [21].
The explicit expression of the one-forms Hi satisfying
dHi ¼ !i, !i being the Kähler forms (4.3), is the follow-
ing:

H1 ¼ �xd�þ ðlogðrþ þ zþÞ þ logðr� þ z�ÞÞdy
� 2axd arctanðy=xÞ; (4.7)

H2 ¼ þyd�þ ðlogðrþ þ zþÞ þ logðr� þ z�ÞÞdx
þ 2ayd arctanðy=xÞ; (4.8)

H3 ¼ �zd�� aðrþ þ r�Þd arctanðy=xÞ: (4.9)

These expressions are defined up to a redefinition by a total
differential and, together with (3.1), define the following
G2 metric:

g7 ¼ ðd�þH2Þ2
�2

þ ðd�þH1Þ2
ðc�2 þ dÞ2 þ�2ðc�þ dÞ2d�2

þ�ðc�þ dÞ �g4; (4.10)

where �g4 the Eguchi-Hanson metric. In addition, a spin(7)
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holonomy metric is obtained directly from (4.10) and
(2.27).

C. The new examples

In this subsection we construct a family of G2 and spin
(7) metrics fibered over the Eguchi-Hanson instanton
which, to our knowledge, have not been previously con-
sidered. For this it is convenient to define a new radial
coordinate � ¼ r2=4 for Eguchi-Hanson metric (4.5) while
keeping the angular coordinates unchanged. In terms of
these coordinates (4.5) takes the form

gEH ¼ �

�2 � a2
d�2 þ �ð
2

1 þ 
2
2Þ þ

�2 � a2

�

2

3 (4.11)

being


1 ¼ 1
2ðcos
d’þ sin
 sin’d�Þ;


2 ¼ 1
2ð� sin
d’þ cos
 sin’d�Þ;


3 ¼ 1
2ðd
þ cos’d�Þ:

The Kähler forms are given by

!i ¼ e0 ^ ei � �ijke
j ^ ek; (4.12)

ei being the tetrad basis

e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

�2 � a2

s
d�; e1;2 ¼ ffiffiffiffi

�
p


1;2;

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � a2

�

s

3:

As usual, the hyper-Kähler structure (4.11) and (4.12) will
be the starting point for constructing a G2 holonomy
metric. This is achieved with the help of a function G
satisfying the Laplace type equation (3.9) together with
the condition (3.8). As the last condition implies that G is
defined on a complex submanifold of the hyper-Kähler
space, it is necessary to find a complex coordinate system
for (4.11). A well-known coordinate system is the one
which diagonalizes the complex structure J3 corresponding
to the Kähler form !3. These coordinates are [55]

z1 ¼ ð�2 � a2Þ1=4 cos
�
’

2

�
exp

�
i

þ �

2

�
;

z2 ¼ ð�2 � a2Þ1=4 sin
�
’

2

�
exp

�
i

� �

2

�
:

(4.13)

The hyper-Kähler metric (4.11) is expressed in this coor-
dinate as

g1�1 ¼
�2jz2j2 þ �2jz1j2

��2
; (4.14)

g2�2 ¼
�2jz1j2 þ �2jz2j2

��2
; (4.15)

g1�2 ¼
�2 � �2

��2
z2 �z1; (4.16)

which is symmetric under the interchange z1 $ z2. We

have denoted � ¼ jz1j2 þ jz2j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � a2

p
. The advan-

tages of considering this coordinate are clear when calcu-
lating the Laplacian

�EH ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp @ið

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

q
gij@jÞ:

In this coordinate detðgÞ ¼ 1 and the inverse metric is
simply

g1
�1 ¼ g2�2; g2

�2 ¼ g1�1; g1
�2 ¼ �g2�1:

Moreover, after certain calculation is obtained,

@1ðg1�1Þ ¼ �@2ðg2�1Þ; @�1ðg�11Þ ¼ �@�2ðg�21Þ:
The last equalities are more easily checked with
Mathematica than by hand. From them it follows that the
action of the Laplacian acting on a function Uðz1; �z1Þ is
simply

�EHU ¼ g1
�1@1@�1U: (4.17)

As we have explained, Eq. (3.6) will become linear if the
dependence of G with respect to the complex coordinates
is G ¼ Gðw; �wÞ, w ¼ wðz1; z2Þ being a holomorphic func-
tion of z1 and z2 and �w its complex conjugate. If addition-
ally wðz1; z2Þ ¼ z1 then the action of the Laplacian will be
simply (4.17). For this reason we assume that G ¼
Gð�; z1; �z1Þ. Equation (3.9) is simplified with this ansatz to

�ð1þ g1
�1@1@�1GÞ ¼ @2�G: (4.18)

But the component g1
�1 is a function of z2 and G, by our

assumption, is not. This observation together with (4.18)
implies that

@1@�1G ¼ 0; @2�G ¼ �: (4.19)

The most general solution of (4.19) is simply

G ¼ �3

3
þ�ðFðz1Þ þ �Fð�z1ÞÞ þHðz1Þ þ �Hð�z1Þ; (4.20)

F and H being functions on the complex coordinate z1 and
�F and �H their complex conjugated.
The function G found above determines completely a

family of special holonomy metrics given by (2.9) and
(2.27). The fiber quantities in these expressions are ob-
tained as follows. From (3.4) and (4.20) it follows that
2u ¼ �. The expression of the exterior derivatives over
the Eguchi-Hanson manifold in our complex coordinates is

d4 ¼ @zidz
i þ @�zid�z

i; dc4 ¼ i@zidz
i � i@�zid�zi

and their action over (4.20) gives

d4d
c
4G ¼ 0:
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From (3.3) and the last equation it is obtained that ~!1ð�Þ ¼
!1 which means that g4 ¼ �g4 is the Eguchi-Hanson metric
gEH. Note that this equality is accidental, for other initial
hyper-Kähler structures it may not hold. From (3.7) it is
obtained that

H1 ¼ i�ðF0dz1 � �F0d�z1Þ þ iðH0dz1 � �H0d�z1Þ
¼ =ðð�F0 þH0Þdz1Þ (4.21)

and is clear that it takes real values. Here 0 means the

derivative with respect to the argument. The corresponding
G2 and spin(7) metrics are easily constructed from (2.9)
and (2.27) and the quantities defined above, the result is

g7 ¼ �2

2
d�2 þ ðd�þ=ðFÞd�Þ2 þ ðd�þH2Þ2

�2
þ�gEH

(4.22)

for the G2 holonomy metrics and

g8 ¼ ðdzþH3Þ2
ð�þ bÞ3=2 þ ð�þ bÞ1=2

�
�2

2
d�2 þ 2ðd�

þ=ðFÞd�Þ2 þ ðd�þH2Þ2
�2

þ�gEH

�
; (4.23)

for the spin(7) holonomy ones. Here d� has been redefined
by adding a total differential and H1 and H2 are the forms
(4.7) or (4.8).

A simple inspection shows that neither of the special
holonomy metrics constructed above has a signature
change problem. By defining the proper coordinate � ¼
�2=2 the G2 metric (4.22) becomes

g7 ¼ d�2 þ ð�d�þ=ðFÞd�Þ2
�

þ ðd�þH2Þ2
�

þ �1=2gEH;

(4.24)

and we see from the square root that � takes positive values
and there is no change in the signature. Also, by selecting

b ¼ 0 in the spin(7) metric and defining � ¼ �9=4 the
following expression is obtained:

g8 ¼ d�2 þ ð�5=9d�þ=ðFÞd�Þ2
�8=9

þ ðdzþH3Þ2
�2=3

þ ðd�þH2Þ2
�2=3

þ �2=3gEH (4.25)

for (4.23) and in this case the powers of � are all even and
there is not signature change as � goes from positive to
negative values.

The class of metrics (4.23) and (4.22) depend on an
arbitrary choice of a holomorphic function Fðz1Þ. This is
the only freedom to construct them. In fact both metrics
arise as an R� fibration and their quotient by the � isome-

try gives the same six or seven-dimensional metric. The
function F indicates the way the lift of these six or seven-
dimensional metrics to a G2 or spin(7) holonomy one is
performed. Therefore (4.23) and (4.22) describe an infinite
family of special holonomy metrics.

V. DISCUSSION

The main result of the present work is the prove that any
metric of G2 holonomy with an isometry action preserving
the metric and the calibration three and four-forms in such
a way that the quotient of the G2 structure by this action is
Kähler admits a lift to a closed spin(7) structure. As the
initial seven-metric always possesses two commuting
Killing vectors, the underlying spin(7) holonomy metric
will possess three commuting Killing vectors. All these
special holonomy manifolds are noncompact in view of the
description given in [20] for the G2 case. Additionally, we
have constructed several families of special holonomy
metrics and we remark (4.25) and (4.22) which, in our
opinion, are new examples. We were unable to show
whether or not a G2 holonomy metric obtained by the
quotient of a closed spin(7) structure by an isometry pre-
serving it admits a further reduction to a Kähler six-
dimensional structure. This is an open question.
Although our results are formulated in mathematical

terms, they have physical consequences. The class of G2

holonomy metrics admitting Kähler reductions include the
examples which realize a dual description of configura-
tions of D6 branes wrapping a special Lagrangian cycle in
a noncompact CY threefold and satisfying the strong su-
persymmetry conditions, which are the conditions that
convert the supersymmetry generator into a covariantly
constant gauge spinor. The presence of the D6 branes is
due to sources for the RR two-form F, that is, dF� N�.
The dual description is achieved in terms of an 11-
dimensional background and is the direct sum of the G2

metric plus the flat Minkowski metric in four dimensions.
As our results imply that any of such G2 metrics can be
lifted to one of spin(7) holonomy, one can construct as well
a purely geometrical background in 11 dimensions which
is the direct sum of the spin(7) metric plus the flat
Minkowski metric in three dimensions. The usual
Kaluza-Klein reduction along one of the isometries will
give a new IIA background with a nontrivial dilaton and a
self-dual RR two-form F0 in such a way that the 10-
dimensional metric in the string frame contains an internal
part conformal to the G2 metric. It seems reasonable to
postulate that delta sources for the RR two-form F0 will be
present as well, and the new IIA background will describe
a configuration of D6 branes wrapping a coassociative 4-
cycle of the G2 holonomy manifold. Unfortunately, this
statement concerning the singularities of the RR two-form
does not follow directly from our analysis. One can argue
that there may be no delta singularities for the new con-
figuration but instead, the new RR two-form is nontrivial
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due to a bad behavior at infinity. We believe that this will
not be the case when the initial configuration corresponds
to D6 branes, but we do not have proof. This is an im-
portant problem for the following reason. The IIA back-
grounds described above are completely determined in
terms of the G2 holonomy metric. If a given G2 metric is
determining completely a pair of such D6 brane configu-
rations, then there may be a duality connecting the corre-
sponding supersymmetric theories, and the link is provided

by theG2 structure. In our opinion, this possibility deserves
further attention, as this duality will connect theories in
three and four dimensions.
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