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The high value of brane tension has a crucial role in recovering Einstein’s general relativity at low

energies. In the framework of a recently developed formalism with variable brane tension, one can pose

the question of whether it was always that high. In analogy with fluid membranes, in this paper we allow

for temperature-dependent brane tension, according to the corresponding law established by Eötvös. For

cosmological branes this assumption leads to several immediate consequences: (a) The brane universe was

created at a finite temperature Tc and scale factor amin. (b) Both the brane tension and the four-

dimensional gravitational coupling ‘‘constant’’ increase with the scale factor from zero to asymptotic

values. (c) The four-dimensional cosmological constant evolves with a, starting with a huge negative

value, passing through zero, finally reaching a small positive value. Such a scale-factor–dependent

cosmological constant is able to generate a surplus of attraction at small a (as dark matter does) and a

late-time repulsion at large a (dark energy). In the particular toy model discussed here, the evolution of the

brane tension is compensated by energy interchange between the brane and the fifth dimension, such that

the continuity equation holds for the cosmological fluid. The resulting cosmology closely mimics the

standard model at late times, a decelerated phase being followed by an accelerated expansion. The energy

absorption of the brane drives the five-dimensional space-time towards maximal symmetry, becoming

anti–de Sitter.
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I. INTRODUCTION

Physics aims for a unified description of nature, tracing
back all physical laws to four fundamental interactions.
While three of them are quantized, and to certain extent
further unified, gravity is still best described classically. In
contrast with the rest of the interactions about evolving
fields on a flat background, gravity is perceived as the
dynamics of geometry. String theory attempts to unify all
interactions on different grounds, its basic objects being
open or closed strings and higher-dimensional objects,
called branes. The codimension one brane world theory
(generalizing the early Randall-Sundrum model [1]) car-
ries the original geometric spirit of general relativity, in-
corporating arbitrary curvature and matter (for a review see
[2]). The extra dimension is both noncompact and curved
(the remaining dimensions required by string andM-theory
can still be thought of as compactified). Gravity acts in five
dimensions according to Einstein’s equation with a nega-

tive cosmological constant ~�2 ~�, while standard model
fields are confined to the brane, a time-evolving three-
dimensional spacelike hypersurface.

The projection of the five-dimensional (5D) Einstein
equation onto the brane gives an effective Einstein equa-
tion, which in the most generic case reads [3]

Gab ¼ ��gab þ �2Tab þ ~�4Sab � �Eab þ �LTF
ab þ �P ab;

(1)

with Tab, the brane energy-momentum tensor; Sab, a qua-

dratic expression in Tab; and Eab, the electric part of the 5D
Weyl tensor with respect to the brane normal [4], averaged
over the two sides of the brane. The source term �LTF

ab

originates in the asymmetric embedding of the brane and
�P ab is the pullback of generic nonstandard model fields in
five dimensions [3]. The four-dimensional (4D) and gravi-
tational coupling constants �2 and ~�2 are related as 6�2 ¼
~�4�, with � the brane tension. The 4D cosmological ‘‘con-
stant’’ �, apart from contributions of the asymmetric em-
bedding and nonstandard model 5D fields, is defined as

2�0 ¼ �2�þ ~�2 ~�.
Reference [3] gives the most generic form of the gravi-

tational dynamics involving asymmetric embedding [5]
and nonstatic 5D space-time due to radiation fields [6–
15]. Besides cosmological applications in branes em-
bedded into 5D black hole space-times [16,17] or into their
horizon regions [18,19] other aspects of brane world mod-
els have been discussed, including black hole brane worlds
[20–22], gravitational collapse on the brane [23–28], stel-
lar models [29–31], galactic dynamics [32], the dynamics
of clusters of galaxies [33], light deflection [34,35], and
solar system tests [36].
A classical fluid membrane needs tension to exist.

Similarly its higher-dimensional counterpart, the 3-brane,
as it evolves, remains a hypersurface due to the brane
tension. The strongest bound on the minimal value of �
was derived by combining the results of tabletop experi-
ments on possible deviations from Newton’s law, which
probe gravity at submillimeter scales [37] with the known*gergely@physx.u-szeged.hu
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value of the 4D Planck constant. In the 2-brane model [38]
this gives [11] � > 138:59 TeV4. A much milder limit � *
1 MeV4 arises from the constraint that the dominance of
Sab ends before the big bang nucleosynthesis (BBN) [39].
From astrophysical considerations on brane neutron
stars an intermediate value � > 5� 108 MeV4 was
derived [29]. (All these limiting values are for c ¼ 1 ¼
@. In units c ¼ 1 ¼ G the corresponding minimal values of
the brane tension are �tabletop ¼ 4:2� 10�119 eV�2,

�BBN ¼ 3� 10�145 eV�2, and �astro ¼ 1:5�
10�136 eV�2, respectively [28].) For typical stellar den-
sities the condition �star=� � 1 is obeyed with any of these
bounds.

In a cosmological context the brane represents our ob-
servable Universe. Cosmic expansion is realized through
the movement of the brane in the warped extra dimension.
During cosmological evolution the temperature of the
brane changes drastically. Cosmological branes cool
down from a very hot early universe (whose thermal ra-
diation is able to create a black hole in the fifth dimension
[6]), to the present day’s low temperature of the cosmic
microwave background .

In Sec. II we explore the possibility of a variable brane
tension, discussed in detail in Ref. [40], by introducing a
toy model, in which the brane tension literally follows the
temperature dependence of the fluid tensions established
for membranes. Such a model becomes particularly simple
when we assume the continuity equation. We discuss the
emerging cosmological model in Sec. III. A numerical
solution of this toy model, which is compatible with cos-
mological observations, is presented in Sec. IV. Finally,
Sec. V contains the concluding remarks.

Throughout the paper we follow the notations of
Ref. [40].

II. EÖTVÖS BRANES

How justified is it to assume a constant brane tension
during cosmological evolution, which spans over such a
wide range of temperatures? The tension of classical mem-
branes depends on temperature, according to Eötvös’ law
[41]

�fluid ¼ KðTc � TÞ; (2)

K being a constant and Tc a critical temperature represent-
ing the highest temperature for which the membrane exists.

Motivated by this analogy, the covariant gravitational
dynamics on the brane were analyzed in detail for variable
tension brane worlds, with the brane asymetrically em-
bedded into the 5D space-time, both the latter and the
brane containing arbitrary sources [40]. After establishing
the covariant dynamics on the brane in a generic setup, a
specialization to a cosmological situation was presented,
considering a Friedmann brane asymmetrically embedded
into a 5D space-time–containing radiation.

As a first attempt to discuss in more detail the conse-
quences of a temperature-dependent brane tension, we
adopt Eötvös’ law

� ¼ �lt � 6l

~�4a
; (3)

where we have employed the standard relation T / a�1.
We have also denoted KTc ¼ �lt and written the constant
in the second term in a suitable form, such that the 4D
coupling constant takes the simple expression

�2 ¼ �2
lt �

l

a
; (4)

with

�2
lt ¼

~�4�lt

6
: (5)

The subscript ‘‘lt’’ refers to late time, as the second terms
of both � and �2 go to zero with a ! 1.
Such a branewith temperature-dependent tension cannot

exist below the scale factor amin ¼ l=�2
lt; first, because the

tension would become negative, leading to the destruction
of the brane; and second, because the gravitational constant
would also become negative below this limit, leading to
antigravity on the brane. In terms of amin the 4D coupling
constant and the brane tension can be conveniently ex-
pressed as

�2 ¼ �2
lt

�
1� amin

a

�
; (6)

� ¼ �lt

�
1� amin

a

�
: (7)

Both increase from zero to their asymptotic late-time
values (Fig. 1). We also note that

FIG. 1 (color online). The gravitational constant and brane
tension normalized to their late-time values (�2=�2

lt ¼ �=�lt)

represented as functions of x ¼ a=amin. Both the gravitational
constant and brane tension are zero at scale factor amin and
asymptotically increase to their late-time values as a ! 1.
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~� 4 ¼ 6�2

�
¼ 6�2

lt

�lt

: (8)

As the brane tension increases with scale factor according
to the Eötvös law, we may call this model an Eötvös brane
world. The limits derived for the brane world tension from
nucleosynthesis constraints in the case of an Eötvös brane
refer to the value of the brane tension at the time of
nucleosynthesis, and consequently, its present day value
is higher than for constant tension branes.

The �0 contribution to the 4D cosmological constant
evolves according to

�0 ¼ �lt � �2
lt�lt

amin

a

�
1� amin

2a

�
; (9)

(Fig. 2) with its present day (late-time) value given by

2�lt ¼ �2
lt�lt þ ~�2 ~�: (10)

As can be seen from Fig. 2, when the brane is formed at
temperature Tc, the contribution �0 to the cosmological
constant is negative

�c ¼ �lt � �2
lt�lt

2
¼ ~�2 ~�

2
< 0: (11)

Then, as the brane world universe cools down with increas-
ing a, the factor in the second term of Eq. (9) obeys

d

da

�
amin

a

�
1� amin

2a

��
¼ �amin

a2

�
1� amin

a

�
< 0: (12)

Therefore the second term of Eq. (9) is positive, resulting
in an increasing�0 throughout the cosmological evolution,

from �c < 0 to a positive �lt for a ! 1, obeying �lt �
��c.
These features imply the following modifications on the

physics of the early brane world universe, first discussed in
Ref. [42]: (a) brane world effects for an Eötvös brane are
more dominant then for a constant tension brane, due to the
initial smallness of the brane tension (this also implies that
the typical brane world source term �2=�, arising from Sab,
dominates for a longer time); (b) due to the initial small-
ness of �2, gravity is initially quite weak; and (c) the huge
negative value of the cosmological constant generates an
apparent gravitational attraction.

In order to have a small �lt, the values of �lt and
~� have

to be almost perfectly fine tuned. As the astrophysical
lower limit refers to �lt, we can safely assume the usual

high negative value for the 5D cosmological constant ~�2 ~�.
Consequently, the initial 4D cosmological constant�c and
its late-time value �lt obey ��c � �lt. Therefore the 4D
cosmological constant at early times represents a huge
contribution in the balance of sources.

III. COSMOLOGY

According to the Stefan-Boltzmann law the energy den-
sity of the cosmic microwave background (which defines
the temperature T) is proportional to the fourth power of T,
and further, according to the assumption T / a�1, to a�4.
This is possible only if the continuity equation holds.
Because of the variable brane tension and possible ex-

istence of a nonstandard model energy-momentum tensor
~Tcd in the fifth dimension, the energy density of the cos-
mological fluid, however, obeys a more sophisticated bal-
ance equation [40]:

_�þ 3
_a

a
ð�þ pÞ ¼ � _�þ �ðucnd ~TcdÞ: (13)

Here u is the 4-velocity of the fluid flow lines, � denotes
the difference taken on the right and left sides of the brane,
while a dot represents the derivative with respect to cos-
mological time �. Note that the normal vectors on the two
sides of the brane are nR ¼ n and nL ¼ �n; therefore the
second term on the right-hand side of Eq. (13) can be
nonvanishing even in the symmetric case. In order to
have a continuity equation on the brane, the condition

_� ¼ �ðucnd ~TcdÞ (14)

should hold. For an expanding (collapsing) universe _� ¼
ðd�=daÞ _a > 0 (< 0), therefore �ðucnd ~TcdÞ> 0 (< 0) as
well, corresponding to a brane absorbing energy from
(radiating energy into) the 5D space-time.
Any 5D radiation field (in the geometrical optics ap-

proximation) has nonvanishing projection ucnd ~Tcd [3],
such that

�ðucnd ~TcdÞ ¼ 3

~�2a3
X

I¼L;R

�Ið�1Þ�I�I _v
2
I (15)

FIG. 2 (color online). The cosmological constant normalized
to its late-time value (�0=�lt), represented as a function of x ¼
a=amin for the parameter value L ¼ 1þ ~�2 ~�=�2

lt�lt ¼
2�lt=�

2
lt�lt ¼ 0:1 (The parameter L obeys the inequalities 0<

L< 1 due to the negativity of ~� and the positivity of �lt.) The
represented normalized cosmological constant starts at high
negative values, then it becomes positive, increasing asymptoti-
cally to 1 as x ! 1.
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at the location of the brane r ¼ a. Here the function

�ðvÞ ¼ �
dm

dv
(16)

is a measure of the (linear) energy density of radiation, v is
a null coordinate, and mðvÞ the mass function of the 5D
space-time. The 5D space-time is Vaidya–anti-de Sitter
(VAdS5), with line element

d~s2 ¼ �fðv; rÞdv2 þ 2�dvdr

þ r2½d�2 þ �2ðd	2 þ sin2	d
2Þ�; (17)

where for a spatially flat brane

fðv; rÞ ¼ � 2mðvÞ
r2

� ~�2 ~�

6
r2: (18)

The radiation is ingoing (towards r ¼ 0) for � ¼ 1 and
outgoing for � ¼ �1, while � takes the value 1 if the
region contains r ¼ 0, and 0 otherwise. (The null coordi-
nate v is outgoing for � ¼ 1 and ingoing for � ¼ �1.)
Therefore, for an energy-absorbing brane the following
combinations are allowed: ð� ¼ 1; � ¼ �1Þ and ð� ¼
0; � ¼ 1Þ, thus ð�1Þ�� ¼ 1, while for a radiating brane
either ð� ¼ 1; � ¼ 1Þ or ð� ¼ 0; � ¼ �1Þ hold, thus
ð�1Þ�� ¼ �1. The derivatives _v and _r are related as [40]

f _v ¼ � _rþ ð�1Þ�þ1ð _r2 þ fÞ1=2; (19)

the sign of _v being given by ð�1Þ�þ1. From Eqs. (7) and
(14) and the relation between � and m, by defining
ðdm=dvÞ _v ¼ _m (which allows for the introduction of
mð�Þ in the equation), finally inserting the expression
(19) evaluated on the brane in place of the remaining factor
_v, we find

2a _a ¼ ~�2

�2
ltamin

X
I¼L;R

_mI

�Ið�1Þ�I _a� ð _a2 þ fIÞ1=2
fI

: (20)

We chose the simplest case of a symmetrically embedded
brane. By employing the identity

�ð�1Þ� _a� ð _a2 þ fÞ1=2 ¼ �f½�ð�1Þ� _aþ ð _a2 þ fÞ1=2��1;

(21)

Eq. (20) can be rewritten as

_m

a2
¼ �

�
�2
lt�lt

6

�
1=2 amin

a
_a½�ð�1Þ� _aþ ð _a2 þ fÞ1=2�: (22)

It is remarkable that the above equation depends only on
the combined sign �ð�1Þ�. For a brane in the f > 0 region
Eq. (22) implies _m _a<0. Indeed, the brane should absorb
(emit) radiation during expansion (contraction), and
consequently the mass of the bounded 5D region
decreases (increases). The positivity of the radiation en-
ergy density 0<�ðvÞ ¼ �dm=dv ¼ � _m _v�1 implies
�ð�1Þ�þ1sgnð _mÞ> 0, confirming �ð�1Þ� ¼ 1 during ex-
pansion and �ð�1Þ� ¼ �1 during contraction.

The Friedmann equation [3],

_a2

a2
¼ �0

3
þ �2�

3

�
1þ �

2�

�
þ 2m

a4
; (23)

is not affected by the assumption of a variable brane
tension [40], and can be used to eliminate _a from the
right-hand side of Eq. (22). By inserting the a-dependent
expressions of �, �2, and �0, the Friedmann equation
becomes

_a2

a2
¼ �lt

3
þ �2

lt�

3

�
1þ �

2�lt

�
þ 2m

a4

� �2
lt�lt

3

amin

a

�
1þ �

�lt

� amin

2a

�
: (24)

The last term represents first and second order corrections
in amin=a to the constant tension brane world Friedmann
equation. We have checked that the Raychaudhuri equation
and twice-contracted Bianchi identity are consequences of
Eqs. (13) and (24).

IV. NUMERICAL SOLUTION

The continuity equation gives � ¼ �cðamin=aÞn with
n ¼ 3 for matter and n ¼ 4 for radiation. Here �c is the
density at the creation of the brane. Then, by denoting
T 2 ¼ 6=�2

lt�lt, we introduce the following dimensionless

variables:

L ¼ �ltT 2

3
; R ¼ �c

�lt

;

x ¼ a

amin

; y ¼ mT 2

a4min

; t ¼ �

T
:

(25)

The evolution [given by the system of Eqs. (22) and (24)]
of the dimensionless variables x and y, in terms of the
dimensionless time parameter t [the derivative with respect
to t being denoted by a prime, and employing Eqs. (10) and
(18) in the process], becomes

x02 ¼ 1� 2xþ Lx2 þ R

xn�2

�
2� 2

x
þ R

xn

�
þ 2y

x2
; (26)

y0

x
¼ �ð�1Þ�þ1x02 � x0

�
x02 þ ð1� LÞx2 � 2y

x2

�
1=2

: (27)

The variable x increases from 1 and its present day value is
x0 ¼ zmax þ 1 � zBBN � 4:26� 109 (where zmax corre-
sponds to amin). The parameters of the model obey

0< L � 1 (28)

(from the positivity and smallness of �lt, compared to any

of the �2
lt�lt,�~�2 ~�). From the dominance at present day of

the � term over the correction terms containing amin=a and
over the �2=2�lt term of the Friedmann equation we obtain

x20 � R � x30: (29)
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Since today there is approximately twice as much dark
energy (represented by �lt) as matter,

L � 4R=x30: (30)

The present day contribution of the mass term to the
Hubble expansion being also small [14], the condition

y0 � Rx0 (31)

holds.
Numerical integration in this range of parameters gives

an expanding universe, with an initial decelerated phase
followed by an accelerated expansion (Fig. 3). Because of
the energy absorption of the brane, the mass of the VAdS5
region decreases (Fig. 4). For the chosen parameters at
approximately 3 times the time when the dominance of �lt

over matter begins, the mass mð�Þ will reach zero. With no
mass left, the VAdS5 regions reduce to patches of 5D anti–
de Sitter (AdS5) space-time and the expansion on the brane
continues in a de Sitter phase.

V. CONCLUDING REMARKS

The variation of the brane tension introduces an addi-
tional degree of freedom in brane world models. The
particular model discussed here, assuming the Eötvös law
for the temperature dependence of the brane tension, bal-
anced by the energy interchange between the brane and
VAdS5 (such that the continuity equation holds), resulted

in a monotonic increase with scale factor of the brane
tension, gravitational coupling constant, and 4D cosmo-
logical constant. In the early universe both the brane
tension and the 4D gravitational coupling constant are
small, enhancing the dominance of brane world effects.
The temperature-dependent 4D cosmological constant,
being negative for small values of the scale factor, contrib-
utes to mutual attraction, while positive for large a, gen-
erates dark-energy–type repulsion.
We established the range of the model parameters al-

lowed by the confrontation with observations, given by
Eqs. (28)–(31). A particular configuration obeying these
conditions, with R ¼ 1025, x0 ¼ 1011, y0 ¼ 1034 was rep-
resented in Figs. 3 and 4. For the allowed range the evolu-
tion of the fundamental constants basically occur in the
very early universe preceding BBN, after which they
asymptote to constant values. Still, fed by absorbed energy
from the VAdS5 regions, they slightly evolve. This process
eventually will consumemð�Þ, leaving maximally symmet-
ric AdS5 space-time patches on the two sides of the brane,
which further expands in a de Sitter phase.
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FIG. 3 (color online). The evolution of the scale factor for a
matter dominated universe. The initial decelerated expansion is
followed by an ever-accelerating phase. (Plot for R ¼ 1025, yc ¼
109R, and L ¼ 4R=x30, with the inflection point at about x0 �
1011.)

FIG. 4 (color online). The mass function of the 5D space-time
decreases until reaching maximal symmetry (AdS5). Parameters
as for Fig. 3.
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PMC Physics A 1, 4 (2007); G.M. Szabó, L. Á. Gergely,
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