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Using the anti-de Sitter/conformal field theory correspondence, we calculate a fermionic spectral

function in a 2þ 1 dimensional nonrelativistic quantum field theory which is dual to a gravitational theory

in the AdS4 background with a charged black hole. The spectral function shows no quasiparticle peak but

the Fermi surface is still well-defined. Interestingly, all momentum points inside the Fermi surface are

critical and the gapless modes are defined in a critical Fermi ball in the momentum space.
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Landau Fermi liquid theory is a low energy effective
theory for degenerate many-body Fermi systems. In Fermi
liquid states, the curvature of a Fermi surface suppresses
nonforward scatterings, which makes it possible for well-
defined quasiparticles to exist in the low energy limit [1,2].
Then noninteracting Fermi gases essentially capture the
qualitative nature of interacting Fermi systems. Although
the Fermi liquid theory provides correct descriptions for
most metals, strongly correlated systems including the
high temperature superconductors [3] and heavy fermion
compounds [4,5] are not described by the Fermi liquid
theory. These so called non-Fermi liquid states are differ-
ent states of conducting matters and an understanding of
those states is very important not only for applications but
also from a fundamental physics point of view. However,
theoretical understandings of non-Fermi liquid states are
still limited. In particular, there is no general theoretical
tool which enables one to make quantitative predictions.
The fundamental difficulty lies in the fact that for strongly
correlated non-Fermi liquid states the well-developed stan-
dard perturbation theories usually break down.

On the other hand, there have been significant develop-
ments in understanding a class of strongly coupled quan-
tum field theories. In the AdS/CFT correspondence, a
gravitational theory in the anti-de Sitter (AdS) space is
dual to a strongly coupled conformal field theory (CFT)
defined on the boundary of the AdS space [6–8]. In a large
N limit, the gravitational theory is reduced to a classical
gravity from which one can understand nontrivial strong
coupling physics of the boundary CFT. Recently the AdS/
CFT correspondence has been applied to various phe-
nomena which arise in the context of condensed matter
systems [9–16]. Therefore it is of interest to find a dual
gravitational description for a non-Fermi liquid state. The
goal of this paper is to study dynamical properties of a
strongly interacting nonrelativistic quantum field theory by
calculating a fermionic spectral function from the AdS/
CFT correspondence. For this, we consider a gravitational
background of a charged black hole where the charge
induces a nonzero density of fermions in the boundary
quantum field theory.
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Here x� ¼ ðt; x; y; zÞ is the space-time coordinate with
signature ð�1; 1; 1; 1Þ. R is the scalar curvature and F�� ¼
@�A� � @�A� is the field strength tensor of a U(1) gauge

field A�. c is a four-component Dirac spinor, !bc
� is the

spin connection, and �bc ¼ 1
4 ½�b;�c� is the generator of

the local Lorentz transformation with �a, the gamma ma-
trices. �� ¼ e

�
a �a where e

�
a is the tetrad. The action

describes the U(1) gauge field and the Dirac spinor coupled
with gravity in the background with a negative cosmologi-
cal constant which is set to be�1 in our unit. The last term
in the action is a boundary term defined at z ¼ � where g�
is the determinant of the induced metric on the 2þ 1D
space. Although the boundary term does not affect the
equation of motion in the bulk, it is important for obtaining
a nontrivial dependence of the saddle point action on the
boundary value of the spinor field [17].
The above action has an AdS4 black hole solution given

by

ds2 ¼ 1
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where fðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2z4 � ð1þ q2Þz3p

. This is a special
case of a more general dyonic black hole solution consid-
ered in Ref. [9]. In this coordinate system, the horizon of
the black hole is at z ¼ 1. The metric describes the AdS4
space near the boundary at z ¼ 0. The Hawking tempera-
ture of the black hole is TH ¼ �

4� ð3� q2Þ [9]. For nonzero
q and �, the black hole carries a nonzero charge.
Nonvanishing components of the spin connection are
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!t̂ ẑ
t̂
¼ z2ðfzÞ0 and !x̂ ẑ

x̂ ¼ !ŷ ẑ
ŷ ¼ �f, where ðt̂; x̂; ŷ; ẑÞ rep-

resents the local Lorentz coordinate.
According to the AdS/CFT correspondence, we can

view this classical gravitational theory as a strongly
coupled 2þ 1D quantum field theory in a large N limit.
The Hawking temperature corresponds to the temperature
of the boundary field theory. This theory can be motivated
from the M theory defined in AdS4 � S7 which describes
the low energy physics of the 2þ 1D supersymmetric
Yang-Mills theory with 16 supercharges. If the infinite
tower of the Kaluza-Klein modes are truncated self con-
sistently in the M theory, the resulting theory would con-
tain the above theory with particular values of the
fermionic mass. Here, we will not restrict ourselves to
the M theory and we will regard the fermionic mass as a
free parameter which characterizes the corresponding 2þ
1D quantum field theory. In particular, we will focus on the
case with m ¼ 0 where the chiral symmetry simplifies the
calculation significantly.

Recently, it has been proposed that a 2þ 1 dimensional
UðNÞ � UðNÞ Chern-Simons matter theory at level k is
dual to the type IIA string theory on AdS4 � CP3 in a ’t
Hooft limit with a fixed � ¼ N=k[18]. The present gravi-
tational theory may be related to the Chern-Simons matter
theory in the strong coupling limit (� � 1) at a finite
chemical potential. In this paper, instead of attempting to
establish a precise connection with a microscopic theory,
we take the gravitational theory in Eq. (1) as our starting
point and examine the dynamics of the fermion, in a hope
that the gravity description may capture some universal
features of strongly interacting fermions at finite density.

The Dirac spinor is a source field which is linearly
coupled with a fermionic field in the boundary theory.
The gauge field is coupled with a conserved U(1) current
which includes the current of the fermion. The electrostatic
potential induces a nonzero density of the boundary fer-
mions. The chemical potential of the boundary theory is
given by� ¼ A0ðz ¼ 0Þ ¼ �q�. This is crucial in obtain-
ing a system of fermions with a finite density. It is noted
that the fermionic field that couples with the Dirac spinor
can be a composite field in the ultraviolet theory. In the
following, we will calculate the ‘‘single particle’’ spectral
function of the fermion which is possibly a composite
particle.

For m ¼ 0, the chiral symmetry enables us to focus on
one chiral mode. Because of the 2þ 1 dimensional trans-
lational symmetry, we can assume a plane wave solution
for the left chiral modes c� and �c� which satisfy
�5c� ¼ �c� and �c��5 ¼ � �c�,

c ðt; x; y; zÞ ¼ e�ið!t�k�rÞc�ðzÞ;
�c ðt; x; y; zÞ ¼ eið!t�k�rÞ �c�ðzÞ;

(3)

where r ¼ ðx; yÞ and k ¼ ðkx; kyÞ. In the chiral representa-
tion with
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where	i are the Pauli matrices with i ¼ x, y, z, and I is the
2� 2 identity matrix, the equation of motion for the two-
component chiral spinors becomes
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At T ¼ 0 (q2 ¼ 3), the solution near the horizon (z ! 1)

reads c�ðzÞ � e�i!ð1=ð6�ð1�zÞÞÞ	z
C, �c�ðzÞ �

�Ce�i!ð1=ð6�ð1�zÞÞÞ	z
in the leading order of (1� z) for

some fixed spinors C, �C. To maintain the causality in the
boundary theory, we impose the ingoing boundary condi-
tion

c�ðzÞ � ei!ð1=ð6�ð1�zÞÞÞ 0
1

� �
;

�c T�ðzÞ � e�i!ð1=ð6�ð1�zÞÞÞ 1
0

� � (5)

as z ! 1. At a finite temperature with q2 < 3, the boundary
condition is modified to be

c� � e�i!ððlnð1�zÞÞ=ð�ð3�q2ÞÞÞ 0
1

� �

and

�c T� � ei!ððlnð1�zÞÞ=ð�ð3�q2ÞÞÞ 1
0

� �
:

Therefore there is a family of solutions parametrized by a
complex number for each c� and �c� that satisfies the
ingoing boundary condition near the horizon. Near the
boundary of the AdS space (z ! 0), the spinors behave

as c�ðzÞ � z3=2
 and �c�ðzÞ � z3=2 �
, where 
 and �

should be chosen so that the solution satisfies the ingoing
boundary condition near the horizon. We represent the
solution near the boundary as
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(6)

where � and �� are Grassmann numbers (not spinors) that
we use to impose boundary data. Once the second compo-
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nents of the spinors are chosen to be � and��, the complex
functions Pð!; kÞ and Qð!; kÞ are uniquely determined
from the boundary condition near the horizon. It is noted
that we could have chosen the boundary condition near z ¼
0 in different ways. This is because the two components of
the spinors decay in the same power [19]. Different bound-
ary conditions may correspond to different field theories on
the boundary [20]. However, we note that Eq. (6) is a
natural choice for the following reasons. First, the vector
ð0; 1Þ along which we impose boundary data is an eigen-
vector of 	z, the generator of the rotation in the x� y
plane. Therefore, this prescription is independent of mo-
mentum direction, which guarantees that the propagator
that we will calculate below is invariant under the rotation.
Second, once the second component of c� is chosen as
boundary data, it is natural to choose the second compo-
nent of �c� as boundary data. This can be seen by turning
on a small fermion mass which mixes c� and cþ, and
identifying �c� � c y

þ. Although not shown here, if we
choose the (1, 0) component as our boundary data, which
is another possible choice consistent with the above con-
ditions, we obtain the same spectral function.

From the AdS/CFT dictionary, the Green’s function of

the fermion in the boundary theory is given by Gð!;kÞ ¼
i @

2S½��;��
@�@�� , where S½��; �� is the gravity action evaluated

for the saddle configuration of the spinor fields which

satisfy the boundary conditions, Eqs. (5) and (6). The
bulk spinor action in Eq. (1) vanishes at saddle points.
Only the boundary term contributes to the action and we
obtain the Green’s function

Gð!;kÞ ¼ iðPð!;kÞQð!;kÞ þ 1Þ: (7)

The quantity of physical importance is the spectral func-
tion, Að!;kÞ ¼ lim�!0þImGð!þ i�;kÞ which measures
how much spectral weight a fermion with momentum k
has at energy !.
We numerically integrate the equation of motion (4) to

obtain the spectral function as a function of ! and k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Because of the rotational symmetry, Að!;kÞ

does not depend on momentum direction. In Fig. 1, we
show the spectral function at zero temperature. For a large
momentum, the spectral function as a function of energy
shows a broad peak which is centered at a negative energy
!0. The broad peak does not disperse significantly as
momentum changes. However, the width of the broad
peak becomes larger as momentum increases and the edges
of the broad peak disperse as !edge � 	kþ!0. There is

no quasiparticle peak, which implies that the fermions are
in a non-Fermi liquid state.
Although there is no delta function peak, the spectral

function shows sharp peaks at zero energy for momenta
smaller than a critical momentum kc. To closely examine
the low energy structure, we display the spectral function
as a function of energy for fixed values of momentum in
Fig. 2. The sharp peak appears to have an algebraic singu-
larity at ! ¼ 0. In the next paragraph, we will provide
numerical evidence that there exists a true singularity at
zero energy. We emphasize that this is not a quasiparticle
peak. As is shown in Fig. 2, the zero energy peak is more
pronounced at a smaller momentum and the size of the
peak decreases as momentum increases. The critical mo-
mentum kc above which the zero energy peak disappears
coincides with the momentum at which the edge of the
broad peak crosses the Fermi energy! ¼ 0. Therefore, we
interpret kc as Fermi momentum. The most striking feature
is that the algebraic singularities at zero energy exist for all
momenta below the Fermi momentum. Namely, all mo-
mentum points inside a two dimensional disk with jkj< kc
has the singular peak at zero energy.We call the set of these
momentum points a critical Fermi ball. It is noted that
possibilities of obtaining flat bands which are similar to
the Fermi ball have been previously considered in con-
densed matter systems [21]. Although not shown here, the
Fermi momentum and the absolute value of the energy of
the broad peak increases as � increases. If we switch the
sign of q, the broad peak is centered at a positive energy.
However, the position of the critical Fermi ball does not
change.
To show that there is true singularity at ! ¼ 0, the

spectral function at a momentum below kc is shown as a
function of imaginary frequency in Fig. 3. Indeed, the

60 40 20 0 20 40
0

10

20

30

40

50

ω
FIG. 1 (color online). The contour plot of the zero temperature
spectral function as a function of energy and momentum for q ¼
� ffiffiffi

3
p

and � ¼ 10. The darkest region represents the area with no
spectral weight and the brightest region, the highest value of the
spectral function.
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spectral function has a strong singularity near! ¼ 0 along
the imaginary axis. A careful reader may note that the
height of the peak is still finite and the position of the
peak is slightly away from ! ¼ 0. These are artifacts that
originated from the fact that Eq. (4) has been numerically
integrated over a range ½0; 1� �� with a small but nonzero
� to avoid the divergence in the equations at z ¼ 1. As a
smaller � is used, the position of the peak moves to ! ¼ 0
and the singularity is enhanced systematically. This im-
plies that the singularity at ! ¼ 0 is genuine.

Unlike the Fermi liquid state or a non-Fermi liquid state
with a critical Fermi surface [22] where low energy ex-
citations exist only near a Fermi surface, in the present
non-Fermi liquid state all momentum points below the
Fermi surface are important at low energies. Therefore
we expect that the low energy properties of this state to
be drastically different from a Fermi liquid state or a non-
Fermi liquid state with a critical Fermi surface. For ex-
ample, some low temperature thermodynamic properties of
this 2þ 1D non-Fermi liquid state with a critical Fermi

ball will behave like a 3þ 1D critical Fermi surface. In a
sense, this ‘‘dimensional lift’’ is not surprising because the
2þ 1D non-Fermi liquid theory is described by the 3þ 1D
gravity.
What would be the origin of the non-Fermi liquid be-

havior? In the most trivial scenario, the non-Fermi liquid
behavior can be caused by a composite nature of the
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FIG. 2 (color online). The energy distribution curves of the spectral function for q ¼ � ffiffiffi
3

p
and � ¼ 10 at momenta (a) k ¼ 3,

(b) k ¼ 5, (c) k ¼ 7, (d) k ¼ 9, (e) k ¼ 11, and (f) k ¼ 13.
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FIG. 3 (color online). The spectral function at k ¼ 3 as a
function of imaginary frequency with the same parameters
used in Fig. 2.
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fermion field. If the fermion is a composite of weakly
interacting fields, it will decay into multiple modes and
the spectral function will show a broad feature without a
quasiparticle peak. However, the sharp zero energy peak in
the spectral function suggests that the fermion field is not a
mere composite of weakly interacting fields. The fermion
is a rather well-defined excitation at low energies irrespec-
tive of whether it is a fundamental or composite particle.
Then the non-Fermi liquid behavior can be due to strong
interactions between the fermions.

Although the occurrence of the critical Fermi ball is
somewhat counter-intuitive, one may understand it as a
consequence of strong interactions. Since the gravitational
description is valid in the strong coupling limit, where the
interaction energy scale is presumably larger than the

Fermi energy, even those fermions which are deep inside
the Fermi surface can participate in the low energy physics,
overcoming the kinetic energy penalty.
Until now, we have examined the zero temperature

spectral function. In Fig. 4, we compare the spectral func-
tion at zero temperature and finite temperatures. As ex-
pected, the singular zero energy peak is rounded at finite
temperatures due to thermal fluctuations. If the tempera-
ture is high enough, the sharp peak completely disappears.
At finite temperatures, the Fermi momentum is not sharply
defined, but the position of the broad peak is not sensitive
to temperature.
In summary, we solved the Dirac equation in a charged

black hole background to extract a fermionic spectral
function of a 2þ 1 dimensional strongly coupled field
theory at finite chemical potentials. The spectral function
revealed a critical Fermi ball in the momentum space
where all momentum points inside the Fermi ball are
critical.
In the future, it would be interesting to study the physical

properties of the critical Fermi ball in more detail, such as
possible instabilities and thermodynamic/transport proper-
ties. Because of the presence of extensive gapless modes, it
is expected that there are infinitely many singular channels
of particle-hole and particle-particle excitations with dif-
ferent momenta which compete with each other.
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FIG. 4 (color online). Temperature dependence of the spectral
function at k ¼ 6. With a fixed � ¼ 10, q is changed to tune
temperatures to T ¼ 0 (solid line), T ¼ 1

4� (dashed line), and

T ¼ 10
4� (dotted line).
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