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We show that the minimal set of necessary ingredients to construct explicit, four-dimensional de Sitter

solutions from IIA string theory at tree level are O6-planes, nonzero Romans mass parameter, form fluxes,

and negative internal curvature. To illustrate our general results, we construct such minimal simple

de Sitter solutions from an orientifold compactification of compact hyperbolic spaces. In this case there

are only two moduli and we demonstrate that they are stabilized to a sufficiently weakly coupled and large

volume regime. We also discuss generalizations of the scenario to more general metric flux constructions.
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I. INTRODUCTION

Among the most surprising and puzzling discoveries in
modern physics is the apparent acceleration of our current
universe [1,2]. These striking cosmological observations,
together with the associated conceptual issues in quantum
gravity, have fueled a decade of studies of de Sitter (dS)
space from string theory. By now, different strategies in
constructing metastable de Sitter vacua have been sug-
gested in various string theory limits [3–12]. Such continu-
ing efforts in scenario building also lend support to the
picture of a string landscape [13–15] realizing, in an inter-
esting microphysical way, Weinberg’s earlier insight on the
cosmological constant problem [16].

In light of the observational evidence for an accelerating
universe and the need for a concrete formulation of a dS/
CFT (conformal field theory) correspondence [17], it is of
pragmatic importance to construct explicit de Sitter solu-
tions from string theory. Attempts to construct fully ex-
plicit examples are severely hampered by a myriad of
moduli. For example, in many constructions such as [3],
nonperturbative effects which are difficult to explicitly
compute are often invoked to stabilize moduli. Although
in other setups, purely ‘‘perturbative’’ ingredients, e.g.,
fluxes, are shown to be sufficient in stabilizing all geomet-
ric moduli [18], such ingredients only lead us to an anti–
de Sitter (AdS) minimum. Additional supersymmetry
breaking localized sources, such as anti–D-branes [3],
KK5-branes, and/or NS5-branes [10,19], are then intro-

duced to uplift the vacuum energy.1 Other than backreac-
tion of these extended objects, the explicit supersymmetry
breaking sources introduced by such uplifting branes make
it hard to analyze and control the corrections to the moduli
stabilizing potential. It thus remains a major challenge to
construct fully explicit and controllable de Sitter vacua
from string theory, especially ones which admit not only
a 4D effective field theory description but can be analyzed
at the level of 10D supergravity equations of motion.
Recently, an interesting scenario was suggested in [10]

by cleverly combining the virtues of [4,6] and of [18]. The
strategy of using manifolds with negative scalar curvature
to generate a positive energy density explored in [4,6] was
maintained, but with the internal space replaced by a
simpler compactification (more precisely, a particular
twisted torus being a product of two Nil 3-manifolds
[10]), such that the machineries developed for toroidal
orientifolds in [18] can be easily generalized and applied.
It was further argued that with additional ingredients in-
cluding KK5-branes and discrete Wilson lines which are
supported on such internal spaces, a metastable de Sitter
vacuum with small cosmological constant can be obtained.
Furthermore, this construction has already motivated new
inflationary scenarios which can give rise to detectable

1One can consider, instead of branes, uplifting by 4D effective
field theory ingredients such as a D-term [20]. However, such an
uplifting D-term vanishes in the absence of an F-term [21] so one
still needs additional ingredients for completeness of the model.
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tensor modes [22]. In view of these potential applications,
it is of interest to understand what really makes such
constructions tick.

In this paper, we determine what is the minimal set of
ingredients that is truly necessary for the construction of
metastable de Sitter vacua. Upon closer investigation, we
found simpler ways to construct such solutions without
invoking the aforementioned localized uplifting sources
and discrete Wilson lines. For simplicity, we use hyper-
bolic spaces as an example to illustrate that such minimal
simple de Sitter solutions exist. Hyperbolic spaces admit
no deformations other than an overall rescaling of their
sizes, making it easier to search for vacua. In principle, one
can extend our analysis to other negatively Ricci curved
compactifications which admit deformations other than the
omnipresent dilaton and volume moduli. In fact, such
extension may be useful for constructing de Sitter vacua
whose energy scale of supersymmetry breaking is para-
metrically below the compactification scale.2 However,
these additional moduli typically lead to new runaway
directions unless the scalar potential has the right moduli
dependence whose criteria we will briefly sketch below.
We leave the search for such examples for future work.

Various no-go theorems exist for the construction of
stable de Sitter vacua [19], based on the consideration of
two-dimensional slices in the full moduli space parame-
trized by the volume and the dilaton moduli of the com-
pactification.3 By revisiting the assumptions made in the
arguments, we find that the minimal set of ingredients
needed to add to the usual Ramond (RR) and Neveu-
Schwarz (NSNS) fluxes and O6/D6 sources to construct
metastable dS vacua in type IIA string theory are geometric
fluxes and a nonvanishing Romans parameter.

The simplicity of our constructions also motivates us to
go beyond the schematic mechanisms demonstrated in
[10], and to carry out fully explicit computations for com-
plete models. Our explicit systematic analysis also makes it
clear what the minimal ingredients are that are needed to
stabilize all moduli, and the role each ingredient (KK5-
branes, discrete Wilson lines, etc.) plays in forbidding new
runaway directions.

The minimalism of our de Sitter solutions has several
advantages. First of all, the fact that only three-level in-
gredients are invoked makes it easier to calculate from first
principle the moduli stabilizing potential, including nu-
merical factors. As we will also demonstrate, the moduli
are stabilized to a sufficiently large volume, weak coupling
regime so it is self-consistent to ignore higher corrections.
Secondly, the absence of uplifting branes frees us from the
concern of their backreaction which is notoriously difficult
to compute. The only backreaction in our model is coming

from the O6-plane. The backreaction of the fluxes is in-
corporated in the 4D effective theory in the reductions we
consider here. Finally, the simplicity and explicitness of
our solutions enable us to analyze the system directly from
the perspective of the 10D equations of motion without the
crutch of 4D effective field theories.

II. SCALAR POTENTIAL BY DIMENSIONAL
REDUCTION

We will dimensionally reduce massive IIA supergravity,
with the action in the string frame given by (in the con-
ventions of [10])

S ¼ 1

2�2
10

Z
e�2�

�
?Rþ 4 ? d� ^ d�� 1

2
? H3 ^H3

�

� ?F2 ^ F2 � ?F4 ^ F4 � ?m2 þ CSþ ðsourcesÞ;
(1)

where 2�2
10 ¼ ð2�Þ7ð�0Þ4 and the field strengths are de-

fined as

H3 ¼ dB2; (2)

F2 ¼ dC1 þmB2; (3)

F4 ¼ dC3 � C1 ^H3 �m

2
B ^ B; (4)

and the Chern-Simons (CS) term reads

� dC3 ^ dC3 ^ B2 þm

3
B ^ B ^ B ^ dC3

�m2

20
B ^ B ^ B ^ B ^ B: (5)

In this paper we are working in the supergravity (plus
localized sources such as D-branes and O-planes) limit; for
explicit solutions, we can and will explicitly check whether
this assumption is valid, finding that we are indeed in the
large volume and (marginally) small string coupling limit,
justifying our usage of the tree-level IIA supergravity
action and its dimensionally reduced effective potential
(1). We will be calling this the tree-level limit, in contrast
to other moduli stabilization techniques such as KKLT [3]
which require explicit 4-dimensional nonperturbative
effects.
The dimensional reduction of the action (1) leads to

several terms which contribute to the effective 4-
dimensional scalar potential.

V ¼ VmetricþVNS
3 þX

p

VRR
p þVO6 þVD6þVNS5 þVKK5;

(6)

where we schematically denoted the contributions coming
from the metric flux, the B-field flux, the RR fluxes, space-
filling O6-planes, D6-branes, KK5-, and NS5-branes.
Before delving into the details of these contributions to

2For hyperbolic spaces which are rigid, supersymmetry is
broken at the compactifcation scale.

3See also [23] for more advanced no-go theorems in the
effective field theory approach.
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the potential, let us consider some general properties of the
potential (6) and its capacity for de Sitter vacua.

We are largely interested in two (real, dimensionless)
moduli, the volume modulus � and the dilaton �, defined
by

� � ðVolÞ1=3; � � e��ðVolÞ1=2: (7)

Additional moduli exist, but depend on the specific model
under consideration.

Recently, it was shown that a ‘‘no-go theorem’’ exists for
inflation and de Sitter vacua in IIA string theory [19]. The
no-go theorem proves that for a vanilla subset of the
possible contributions to the scalar potential in (6) (namely,
NSNS fluxes, RR fluxes, and O6/D6 sources) there is a
bound on the derivatives of the potential,

� �
@V

@�
� 3�

@V

@�
¼ 9V þX

p

pVp � 9V: (8)

For inflation, this leads to a bound on the slow roll pa-
rameter � � 27

13 whenever V > 0. For vacua, we find from

(8) that V ¼ �ðPppVpÞ=9. As long as Vp > 0, we cannot

obtain de Sitter vacua in these models.
A simple way to check for de Sitter vacua in IIA models

by simple inspection of the scalar potential is to arrange the
contributions to the potential in the following way:

V ¼ að�;MÞ��2 � bð�;MÞ��3 þ cð�;MÞ��4: (9)

The quantity að�;MÞ contains contributions from the cur-
vature of the internal manifold, NS 3-form flux, NS 5-
branes, and KK 5-branes,

að�;MÞ ¼
~CfðMÞ
�

þ
~AKK5ðMÞ

�
þ

~ANS5ðMÞ
�2

þ
~AH3ðMÞ
�3

:

(10)

The quantity bð�;MÞ contains contributions from O6-
planes and D6-branes,

bð�;MÞ ¼ þnO6fðMÞ � nD6gðMÞ; (11)

where f and g are functions of moduli different from � and
�. The quantity cð�;MÞ contains contributions from the RR
fluxes (and by extension, fractional Wilson lines),

cð�;MÞ ¼ �3 ~m2 þ � ~A2ðMÞ þ
~Aelec
4 ðMÞ
�

þ
~A6ðMÞ
�3

: (12)

As described in [10] and discussed in more detail in the
Appendix, finding de Sitter vacua with small cosmological
constant (cc) is as easy as using the a, b, c quantities to
search for critical points of

4ac

b2
� 1: (13)

In particular, writing

4ac

b2
¼ 1þ �ð�;MÞ (14)

and denoting minimized quantities with a subscript 0, for
�0 � 0 we have a vacuum solution with positive vacuum
energy

Vmin �
�
b0
2c0

�
4
c0�0: (15)

It is straightforward to show the no-go theorem for
de Sitter vacua using this formalism. In particular, restrict-
ing only to NSNS and RR fluxes and O6/D6 sources we
find that the critical quantity takes the form

4ac

b2
¼ ðconstÞX

p

��p ~ApðMÞ: (16)

It is clear that the minimum of (16) in the � direction is a
runaway, � ! 1, with 4ac=b2 ! 0. Thus, de Sitter vacua
cannot exist with these ingredients.
In order to evade the no-go theorem of [19] we need to

introduce different energy sources with different functional
dependence on the moduli ð�; �Þ. Ideally, one would like to
not include all possible additional sources—it would be
helpful to know what is the minimal set of additional
ingredients needed in order to allow for de Sitter vacua.
Let us allow the possibility of nonzero, negative curva-

ture of the internal space in the scalar potential. Indeed, we
find now that the no-go theorem of [19] does not apply.
More precisely, the critical quantity (13) becomes

4ac

b2
¼ ðconstÞX

p

~Ap½ ~Cf�
2�p þ ~AH3�

�p�: (17)

For simplicity, let us consider the coefficients ~Ap, ~Cf, and
~AH3 to be pure constants, independent of any other moduli.
We now see that (17) no longer has a runaway potential for

� as long as ~Ap � 0 for p < 2, so including negative

internal curvature and nonzero p < 2 flux are the minimal
additional ingredients needed for de Sitter vacua. In IIA the
latter statement translates into a requirement that the IIA
Romans mass parameter is nonzero (in IIB this require-
ment suggests that RR F1 flux is a necessary ingredient), so
we have a minimal set of requirements for de Sitter vacua
in IIA: In order to build de Sitter vacua at tree level in IIA,
in addition to the usual RR and NSNS fluxes and O6/D6
sources, one must minimally have negative curvature
spaces and nonzero Romans parameter.
A simple intuitive way to understand this result is to

investigate the behavior of the potential (9) as a function of
�, as shown in Fig. 1. Without the negative curvature, the
potential has an AdS minimum. Adding in the negative
curvature acts as an uplifting term (slightly shifting the
minimum of the potential), lifting the AdS minimum to a
dS one. Clearly, we see a limitation on the amount of
negative curvature we can turn on in these models and still
obtain stable de Sitter vacua—for too large of the curva-
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ture, the de Sitter minimum of Fig. 1 disappears and the
potential has a runaway to a Minkowski vacuum at � ! 1.
Notice that the argument given above did not require that
the solution is in the large volume and weak coupling
regime—that is an additional constraint that must be im-
posed upon candidate solutions and depends on the details
of the construction.

Below we will discuss a simple model based on the
compact 3-hyperboloid, which has constant negative cur-
vature. Since the compact 3-hyperboloid is rigid, it only
has an overall scale modulus �; we will see that indeed
stable dS vacua can be found for this model by minimizing
the quantity (17).

III. DE SITTER VACUA FOR HYPERBOLIC SPACE

We will be considering massive IIA supergravity with
sources. While it is not yet clear how massive IIA super-
gravity emerges from a perturbative string theory descrip-
tion (see [24] for some discussion), we will assume that
such a supergravity limit exists. For some interesting recent
work on a string/M theory description of the Romans
parameter see [25].

We will start with the action (1) with the string frame
metric

ds210 ¼ gðsÞ	
dx	dx
 þ gmndy
mdyn (18)

¼ gðsÞ	
dx	dx
 þ �0�d~s26; (19)

where we factored out the overall breathing mode � of the
internal space,

�0� �
�R ffiffiffiffiffi

g6
pR ffiffiffiffiffi
~g6

p
�
1=3

(20)

and we take the internal space to be the product of two
identical compact maximally symmetric 3-hyperboloids,

d~s26 ¼ dH2
3ð�Þ þ d~H2

3ð�Þ: (21)

The 3-hyperboloid with curvatureR ¼ �� has the metric

dH2
3ð�Þ ¼ 6

�
ðd’2 þ sinh2ð’Þd�2

2Þ; (22)

where ’ runs over the real line. Algebraically, this space is
the coset SO(3,1)/SO(3). We will compactify the space by
using discrete SO(3,1) identifications. By rescaling � we
can always take � ¼ 1.4

The dimensionless volume of the internal space associ-
ated with d~s26 is a constant, determined by the details of the

compactification of the space,

~V 6 ¼
Z
ðH3�H3Þ=Z2

�3 ^ ~�3 ¼ e2�

2
; (23)

where we defined the volume elements on the 3-
hyperboloids as �3, ~�3, respectively, and we denoted the
volume of the individual 3-hyperboloids as e� � 1. The
number � is discrete and bounded from below. It is related
to the specific discrete identifications one can make [26]. In
the integration domain we inserted a Z2 from the O6-plane
involution. Similarly, we will define the total physical
volume of the internal space as

V6 �
Z ffiffiffiffiffi

g6
p

: (24)

Clearly, from (20) the modulus � is related to these vol-
umes as

�0� ¼ ðV6= ~V6Þ1=3: (25)

Finally, we will define the dimensionless field � as

� � e���3=2; (26)

where e�� ¼ g�1
s is the 10-dimensional string coupling

which appears in (1).
The dimensional reduction of the 10-dimensional Ricci

scalar with the ansatz (19) leads to the noncanonical form
for the 4D Ricci scalar,

Z
d4x

ffiffiffiffiffiffiffi
gðsÞ4

q �
�2�03 ~V6

2�2
10

�
RðsÞ

4 þ � � � ; (27)

where � � � includes terms depending on the curvature of the
internal space. In order to bring the 4-dimensional curva-

ture term into canonical Einstein-Hilbert form SEH ¼R ffiffiffiffiffiffijgjp
1=2M2

plR4 we will make a conformal transforma-

tion gðsÞ	
 ¼ ð�=�0Þ�2gðEÞ	
, where �0 is the stabilized value
of � in the vacuum. Altogether, this gives a 10D metric in a
4D Einstein frame and canonical 4D Planck mass as

ds210 ¼ ð�=�0Þ�2gðEÞ	
dx	dx
 þ ��0d~s26; (28)

FIG. 1 (color online). Simple stable de Sitter solutions (solid
line) can be constructed by uplifting a stable AdS minimum
(dotted line) by negative curvature (dashed line).

4The overall curvature of the internal space in units of �0
equals �2=�.
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M2
p ¼ ~V6�

03�20
�2
10

¼ V6;0

�2
10g

2
s;0

; (29)

with V6;0 and gs;0 are the stabilized values of the total

internal volume and 10D string coupling, respectively.
We further consider an O-plane spacetime action R that

mirrors one 3-hyperboloid to the other:

ðz1; z2; z3; ~z1; ~z2; ~z3Þ $ ð~z1; ~z2; ~z3; z1; z2; z3Þ: (30)

This corresponds to an O6-plane that is 4D space filling
and wraps the three-cycle in the internal manifold formed
by the submanifold �S

3 invariant under the orientifold

action:

�S
3 ¼ ðz1; z2; z3; z1; z2; z3Þ: (31)

A. Scalar potential

Dimensionally reducing (1) on the above space leads to
a scalar potential for the moduli. Since the space is maxi-
mally symmetric there are no deformations of the space
aside from the overall volume modulus �.5 Further, there
are no nontrivial 2- or 4-cycles, so we cannot turn on F2 or
F4 flux in the internal space, nor can we have flux moduli
descending from the gauge potentials. Thus, we see that
there are only two moduli in this model, � and �. As we
will see, it is due to the simplicity of this background that
we will easily find stable de Sitter solutions.

In our conventions the scalar potential V is defined as the
object in the 4D action that appears as follows:

S ¼
Z

dx4
ffiffiffiffiffi
g4

p �
M2

p

2
R4 �

M2
p

2
Gij@�

i@�j � Vð�Þ
�
; (32)

where we took the scalars to be dimensionless.
The potential energy contribution from the curvature is

obtained by simply reducing the internal curvature part of
the 10D Ricci scalar, and going to the 4D Einstein frame,

VCURV ¼ M2
p�

2
0

�0 ��2��1: (33)

In massive IIA, the 0-form flux contributes a potential
energy,

VF0
¼ M2

p�
2
0

�0 ��4�3 f20
16�2

; (34)

where we made use of the quantization of the 0-form flux

m0 ¼ f0

2
ffiffiffi
2

p
�

ffiffiffiffiffi
�0p ; f0 2 Z: (35)

We will also include RR 6-form flux,

F6 ¼ 2k6�3 ^ ~�3: (36)

Using the quantization ruleZ
ðH�HÞ=Z2

F6 ¼ 1ffiffiffi
2

p ð2�
ffiffiffiffiffi
�0p
Þ5f6; f6 2 Z; (37)

we find that

k6 ¼ ð2� ffiffiffiffiffi
�0p Þ5ffiffiffi

2
p

e2�
f6 (38)

which contributes a potential energy

VF6
¼ M2

p�
2
0

�0 ��4��3 ð2�Þ10f26
e4�

: (39)

Because of the orientifold projection, NSNS 3-form flux
must thread a 3-cycle which is odd under the Z2 involution.
We write

H3 ¼ p�A3 (40)

where �A3 is the corresponding form of the antisymmetric 3-

cycle �A3 ¼ ffiffiffi
2

p ð�3 � ~�3Þ. One can show that the volume of

this cycle is Volð�A
3 Þ ¼ 1

2

ffiffiffi
8

p
e��03=2. The field strength is

related to the flux quantum number by

p ¼ 8�2ffiffiffi
8

p
e�

ffiffiffiffiffi
�0p h; h 2 Z: (41)

From this we find the contribution to the energy to be

VH3
¼ M2

p�
2
0

�0
8�4h2

e2�
��2��3h2: (42)

To understand the effect of the O6-plane on the energy
we recall that the Bogomol’nyi-Prasad-Sommerfield O6
source term in the IIA action is (string frame) [18]

2ð2�Þ�6l�7
s

Z
O6

e��
ffiffiffiffiffiffi
jgj

q
� 2

ffiffiffi
2

p ð2�Þ�6l�7
s

Z
O6

C7: (43)

The O-plane contributes to the potential energy via the first
term in Eq. (43). We find

VO6 ¼ �M2
p�

2
0

�0 e��4
ffiffiffi
8

p
���3; (44)

where we made use of the fact that the Z2-symmetric 3-
cycle �S

3 wrapped by the O6-plane has the volume,

Volð�S
3Þ ¼

ffiffiffi
8

p
e�l3S.

The O6-plane also introduces a charge for C7 through
the second term in Eq. (43). This affects the Bianchi
identity for F2

dF2 ¼ m0H3 þ 2�
ffiffiffi
2

p
ls�

A
3 ; (45)

dF4 ¼ �F2 ^H3; (46)

where �A
3 � �A is the antisymmetric 3-form ‘‘orthogonal’’

to the cycle �S
3 that is wrapped by the O6-plane (�A

3 ¼
?6�

S
3). We also presented the Bianchi identity for F4. The

5The scalars that deform the shape are very massive and
naturally stabilized at the value for which the hyperboloid
possesses its maximum symmetry.

MINIMAL SIMPLE DE SITTER SOLUTIONS PHYSICAL REVIEW D 79, 086005 (2009)

086005-5



associated ‘‘tadpole relations’’ are found by integrating
over a cycle and using Gauss’s law. This givesZ

�i
3

m0H3 ¼ �2�
ffiffiffi
2

p
ls
Z
�i

3

�A
3 ; (47)

Z
�5

F2 ^H3 ¼ 0: (48)

The tadpole relation for H3 flux (47) becomes

f0h ¼ 2: (49)

The other tadpole relations are satisfied trivially.
The potential energy from the NSNS flux, in terms of the

Romans flux parameter f0, is

VH3
¼ M2

p�
2
0

2

32�4

e2�f20
��2��3; (50)

where now f0 can only be 1 or 2 in order to satisfy the
tadpole relation (49).

B. Searching for de Sitter vacua

Collecting terms as in (9), and factoring out the overall
factor of M2

p�
2
0=�

0, we have

�0

M2
p�

2
0

að�Þ ¼ 1

�
þ 32�4

e2�f20
��3;

�0

M2
p�

2
0

bð�Þ ¼ e��4
ffiffiffi
8

p
�;

�0

M2
p�

2
0

cð�Þ ¼ f20
16�2

�3 þ ð2�Þ10f26
e4�

��3:

(51)

The scalar potential is thus explicitly calculable in terms of
the microphysical parameters. As discussed earlier, to find
de Sitter vacua we need only to find minima of the a, b, c
quantity near unity,

4ac

b2

��������min
� 1þ � (52)

for � 	 1. Using properties of these vacua, we have that

� ¼ b

2a
þOð�Þ; (53)

from which we find that the stabilized value of the string
coupling is related to the overall volume,

gs ¼ e�

4
ffiffiffi
2

p
�

ffiffiffiffiffiffi
�0

p þ 4
ffiffiffi
2

p
�3

e�f20

1

ð ffiffiffiffiffiffi
�0

p Þ3 : (54)

There is not much freedom in tuning various quantities
and, as a consequence, there is generically a tradeoff
between having gs small and having a separation of scales
between the Kaluza-Klein (KK) masses and the moduli
masses. We shall therefore examine a few solutions and
focus on (i) the value of the string coupling, which deter-

mines whether string loop corrections can be consistently
ignored, (ii) the value of the internal volume which deter-
mines whether �0 corrections can be consistently ignored,
and (iii) the masses of the moduli and the KK particles.
Before we proceed, let us elaborate further on point (iii).

In performing our dimensional reduction to four dimen-
sions, we truncated the KK tower of states from the internal
space, keeping only the zero modes (which we have been
calling ‘‘moduli’’). This procedure is consistent if there
exists a hierarchy of mass scales between the KK modes
and the zero modes. If no hierarchy exists then the KK
modes can contribute to the dynamics of the low energy
theory and the simple dimensional reduction to the zero
modes does not give a complete 4D effective theory.6 In
our specific case, we expect setting the KKmodes to zero is
a consistent truncation in the sense of supergravity reduc-
tion. This is similar to the Freund-Rubin vacua. The vac-
uum solution exists from a 10D point of view but the KK
modes are as important for the 4D physics as the moduli. In
other words, we expect the 10D equations of motion are
solved even though there is no clear separation of scales.
We expect to return to a more complete analysis of the 10D
equations of motion in future work.
Let us now look for an explicit solution. This can easily

be done numerically for various choices of the parameters;
one set of parameters which leads to a de Sitter vacua with
small vacuum energy:

f0 ¼ 2;
4ac

b2
� 1:03;

VdS

M4
p

� 7:9� 10�5;

f6 ¼ 8; �dS � 90:614; �dS � 1:47� 103;

� � 0:

The potential for these flux choices is shown in Fig. 2,
which clearly illustrates a metastable de Sitter vacuum in
the � direction as discussed earlier. In units of �0, the
Planck mass is thus,

M2
p � 5:59

�0 : (55)

Thus, we see that a main limitation of using a rigid
compact 3-hyperboloid is that there are no parameterically
small or large numbers with which to simultaneously make
the volume large and the string coupling small. Instead,
one must rely on the precise numerical factors in order to
satisfy the consistency constraints. For the parameters
given above, we find

6For example, in IIB flux compactifications on Calabi-Yau
spaces the backreaction of the fluxes generates warping factors
in the 10-dimensional metric, and in regions of strong warping
there is generically no separation of scales between the moduli
and the KK modes so one cannot consistently truncate the
effective theory to the zero modes. Further, the warping ends
up modifying the dimensional reduction procedure and affects
the low energy effective theory and cannot be ignored [27–29].
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V6 ¼ 1
2e

2��3
dS � 3:72� 105; gs � 0:56; (56)

so we find that our solution is marginally within the large
volume and weak coupling regime. The actual string loop
expansion parameter for type IIA orientifold in the present
T-dual frame is gs times a numerical factor which can be
deduced (by T duality) from that of type I string theory
discussed in [30,31]. Given the discrepancy in the precise
numerical factor in the literature, we take the more con-
servative estimate7 about the region of validity of pertur-
bation theory in [31] which suggests that the loop
expansion parameter � is � 
 gs

2
ffiffi
2

p . Thus, our solution is

in the perturbative regime.
In order to compute the moduli masses, we first need to

identify the appropriate canonically normalized scalar
fields. It is straightforward to see that the fields �, � have
kinetic terms [19],

Skinetic ¼
Z ffiffiffiffiffiffiffiffi

gðEÞ4

q �
M2

p

ð@�Þ2
�2

þ 3M2
p

4

ð@�Þ2
�2

�
(57)

so that the canonically normalized scalar fields are

�̂ ¼ ffiffiffi
2

p
Mp ln�; (58)

�̂ ¼
ffiffiffi
3

2

s
Mp ln�: (59)

The square root of eigenvalues of the mass matrix com-
puted as Mij ¼ 1

2@i@jV, for i, j ¼ f�̂; �̂g, are, in units of

�0 ¼ 1,

� f0:22; 0:076g: (60)

The KK masses can be estimated in two ways: first, one
can compute the longest length L around the 3-hyperboloid
[26], and identify the KK mass as (again in units of �0)

mKK � cn

�1=2
dS L

� 0:17; (61)

where we found L� 0:61 in string units and cn is some
Oð1Þ number. Alternatively, one can estimate the KK mass
scale from the overall volume,

mKK � an

V1=6
6

� an

ð�0�dSÞ1=2 ~V1=6
6

� 0:11: (62)

Clearly the two estimates are not too far off.
Comparing these KK masses to the moduli masses, we

see that there is no separation of scales between the KK
masses and the moduli masses, as is expected since our
model does not have many tunable parameters with which
to create a separation of scales. This feature is an artifact of
the simple example we have chosen for illustration, as the
rigidity of the hyperbolic spaces also implies that there are
fewer adjustable parameters (like fluxes over a variety of
cycles) to separate these scales. It would be interesting to
construct such examples from compactifications of other
negatively Ricci curved spaces.

IV. DE SITTER VACUA FOR TWISTED 3-TORI

In the previous section we examined a very simple
background which illustrates the minimal ingredients
needed to construct stable, three-level de Sitter solutions
as seen in (17). A key aspect of this construction is that the
coefficients in (17) were constants, independent of the
moduli. Unfortunately, models where these coefficients
are moduli independent are not generic and may be mar-
ginally within the large volume, weak coupling regime at
best.
We can extend our analysis to include a simple set of

models in which the curvature of the internal space comes
from a metric twist; some of these geometries can be
viewed as T dual to spaces with NSNS flux. In fact, for
metric twists which are a product of two twisted 3-tori
G3 �G3, all 3-dimensional Lie algebras were classified by
Bianchi so it is possible to exhaust all possibilities (includ-
ing the Nil manifold considered in [10]).
Let us now briefly consider the classification of twisted

tori of the form G3 �G3.
Given a parametrization of a Lie group G we can define

the Maurer-Cartan forms via

g�1dg ¼ �aTa; (63)

where the Ta are the generators of the Lie algebra G
associated to the Lie group G. Clearly dðg�1dgÞ ¼
�g�1dg ^ g�1dg and hence we can read of the Maurer-
Cartan equations

d�a ¼ �fabc�
b ^ �c; (64)

FIG. 2 (color online). Stable de Sitter vacua with small cos-
mological constant can be obtained with minimal tree-level
ingredients when compactified on spaces of negative curvature.

7We thank A. Hebecker and M. Trapletti for correspondence
on this point.
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where fabc are the structure constants of G. The metric on

the Lie group is then defined via

ds2 ¼ Mab�
a � �b; (65)

where M is any symmetric nonsingular matrix. Since the
�a are left invariant (under g ! �g) this metric has a left
acting isometry group GL. IfM coincides with the Cartan-
Killing metric we also have a right acting isometry such
that in total we have GL �GR.

For a clear discussion on the classification of 3-
dimensional Lie algebras and the applications thereof in
dimensional reduction of supergravity theories we refer the
reader to [32]. The three-dimensional Lie algebras can be
divided into two classes: class A and class B according to
the following property of the Lie algebra:

class A : fnnm ¼ 0; class B: fnnm � 0: (66)

It can be shown that reduction of the action on class B
group manifolds is inconsistent. Instead one has to reduce
the equations of motion and the result is that one obtains
unusual theories with the property that they do not allow a
Lagrangian description, there are only equations of motion
[32].

The class A Lie algebras are taken from [32] and pre-
sented in Table I. The Q’s denote the metric flux through
the following relation:

fabc ¼ �bcdQ
ad; Q ¼

q1
q2

q3

0
@

1
A: (67)

It is straightforward to perform the dimensional reduc-
tion and search for stable de Sitter vacua for each of these
twisted 3-tori. Recall that in order to uplift to de Sitter
solutions the contribution to the potential energy from the
curvature of the internal manifold must be positive, which
implies that the stabilized value of the curvature of the
manifold must be negative. Starting from the bottom of the
list in Table I, the SO(2,1), SO(3), and ISO(2) groups do
not allow stable de Sitter vacua because the curvature for
these spaces is not negative definite, so the stabilized
curvature cannot uplift the AdS vacuum.

The only possible candidate backgrounds, then, are
Heis3, studied in [10], and ISO(1,1). We have studied

both of these examples in detail, and have found that
neither can support a stable de Sitter solution for the
minimal ingredients given in (17). The reason is that the
coefficients in (17) are now moduli dependent, so the
stabilization of � depends on the stabilization of all of
the other moduli as well. In particular, it is straightforward
to show that for the minimal ingredients above, there al-
ways exists a runaway direction.8

As a simple illustration, let us suppose that there is one
additional modulus �, and that the orientifold and H3 flux
contributions are independent of this modulus (this will be
the case for the twisted 3-tori in which the orientifold maps
the 3-manifolds to each other); note also that the coeffi-

cient of the RR 0-form flux ~A0 is also moduli independent,
since it does not involve integrating over any cycles. In
general, then, the coefficients have moduli dependence
which we will parametrize as

~C f ��n; (68)

~A 2 ��mi; (69)

~A 4 ��2‘i ; (70)

where we will assume n > 0without loss of generality, and
we have allowed for the possibility of multiple different
contributions of� to the RR forms, parametrized by differ-
ent powers mi, ‘i. The quantity 4ac=b2 becomes

4ac

b2
� constþ a1�

n�2 þ a2�
nþmi

þ ða3�nþ2‘i þ a4�
miÞ

�2
þOð��4; ��6Þ (71)

� a1 ~�
n þ a2 ~�

nþmi þ a4 ~�
mi

�2ð1þmi=nÞ þ a3
~�nþ2‘i

�4ð1þ‘i=nÞ (72)

where in the third line we made the rescaling� ¼ ~�=�2=n.
We ignored the constant and Oð��4; ��6Þ contributions
coming from the 6-form RR flux because these tend to
destabilize � ! 1, and so they will not be helpful in our
stability analysis. That such a rescaling is possible is due to

the extra moduli dependence in ~Cf; this field redefinition

can remove the manifestly positive power of � coming
from the product of the RR 0-form and the geometric flux
in (71). If it can be shown that stable de Sitter vacua do not
exist for the field redefined quantity (72) then vacua will
not exist for the original function (71) either.
A positive power of � can be regenerated in the other RR

flux terms by the field redefinition if their moduli depen-
dence is just right. In particular, note that if nþmi � 0,
nþ ‘i � 0 for allmi, ‘i, then after the field redefinition we

TABLE I. The different class A 3D Lie algebras. The Qi

represent the metric flux and are all positive numbers.

Bianchi type Algebra ðq1; q2; q3Þ
I Uð1Þ3 (0,0,0)

II Heis3 ð0; 0; Q1Þ
VI0 ISO(1,1) ð0;�Q1; Q2Þ
VII0 ISO(2) ð0; Q1; Q2Þ
VIII SO(2,1) ðQ1;�Q2; Q3Þ
IX SO(3) ðQ1; Q2; Q3Þ

8We would especially like to thank Xi Dong for pointing this
out to us.
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only have negative powers of �, and we have a runaway
� ! 1 in trying to minimize (72). Indeed, it is clear that in
order for a positive power of � to be regenerated in the
expression (72) we need at least one of the moduli depen-
dences of the RR fluxes to satisfy nþmj < 0 for some mj

(alternatively, the same condition applies to the ‘j).

For moduli coming from the metric of twisted 3-tori
M��, we generically expect contributions of the order

~Cf �M2 ��2 ) n ¼ 2;

~A2 �M�2 ���2 ) mi ¼ �2;

~A4 �M�4 ���4 ) ‘i ¼ �2:

These scalings are the dominant scalings—for example, we
generally have mi, ‘i � �2, but we will not have stronger
dependence on � than that listed above (e.g., we will not
have A2, A4 scale with higher negative powers of � than
that listed above). Also, note that these are the same scal-
ings that are expected from fractional Wilson lines as well,
as they contribute to F2, F4 field strengths in similar ways
as normal fluxes. Thus, we find that quite generally we
expect nþmi, nþ ‘i � 0 for twisted 3-tori, which sug-
gests that with just metric flux, O6-planes, RR, and NSNS
flux we do not have the sufficient ingredients to find stable
de Sitter vacua for twisted 3-tori. Notice that while these
ingredients were sufficient to find stable de Sitter vacua for
the case when there were no additional moduli, when
additional moduli are present we find that there generically
exists a runaway direction � ! 1.

As a more explicit check, let us consider the twisted 3-
torus with ISO(1,1) metric twist. There are two metric
moduli, L1, L2. It turns out that the modulus L2 only
appears in the geometric flux; after minimizing with re-
spect to L2, we find that the remaining moduli dependence
on � � 1=L1 is

~Cf � 1=L2
1 ��2 ) n ¼ 2;

~A2 � 1=L4
1 þ L2

1 ��4 þ��2 ) m1 ¼ 4; m2 ¼ �2;

~A4 � L4
1 þ L�2

1 ��2 þ��4 ) ‘1 ¼ �2; ‘2 ¼ 1:

Thus we see that indeed nþmi � 0, nþ ‘i � 0 for allmi,
‘i in this example, so there does not exist a stable de Sitter
solution for finite �: There always exists a field redefini-
tion, discussed above, which removes the positive power of
� such that it is manifest that no stable de Sitter vacua exist.

From the argument above it seems difficult to obtain the
desired power of mi, ‘i in the fluxes in order to have a
stable de Sitter minimum. Instead, one can modify the
moduli dependence in the ‘‘uplifting’’ energy by finding
sources which have a different n dependence on �. In
particular, let us take a KK5 brane, which has the same
� dependence as the geometric flux. The KK5 brane is
wrapped on a 2-cycle in the internal space; thus it will pick
up moduli dependence of the form,

~C KK5 �
Z
�2;KK5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gindð�2;KK5Þ

q
�M�� ) n0 ¼ 1: (73)

Combining the KK5-brane into the constructions above
with geometric, NSNS, and RR fluxes, we see that we
can now easily satisfy the requirement n0 þmi < 0, n0 þ
‘i < 0 for the generic form of mi, ‘i that we expect. Thus,
negative curvature (e.g., geometric flux), NSNS and RR
fluxes (including 0-form), O-planes, and KK5-branes ap-
pear to be necessary ingredients in order to find stable tree-
level de Sitter vacua in IIA for twisted 3-tori.
Unfortunately, it is not clear if constructions with KK5-
branes in massive IIA are under complete control, particu-
larly in twisted tori backgrounds, since backreaction can be
severe.

V. DISCUSSION

It is a difficult problem to construct reliable stable
de Sitter vacua in string theory. We have argued that the
minimal ingredients needed to get de Sitter vacua in type
IIA string theory are nonzero Romans parameter, RR,
NSNS fluxes, and negative internal curvature. For the
explicit example studied here in which the internal space
is a pair of compact, maximally symmetric 3-hyperboloids,
we have shown that one need only choose flux quanta
appropriately to find de Sitter vacua with small cosmologi-
cal constant. Because these solutions have very few tunable
parameters, however, we find that our solution is margin-
ally within the weak coupling regime, with gs � 0:5.9

This simple model has just two moduli which are clearly
stabilized in a dS minimum. Furthermore we found that
there is no separation of scales in this simple model: the
lightest KK modes are of the same order of mass as the
moduli. This is a possible drawback if this solution should
be considered as a semirealistic vacuum. But from the
point of view of the dS/CFT correspondence [17] a sepa-
ration of scales is not something that is required, in the
same way that theAdS5 � S5 solution has light KKmodes.
We have also discussed the generalization of this simple

model to more general metric fluxes, by considering all
twisted, orientable, 6-tori of the form G3 �G3, where G3

represents the covering space. There are 5 such families of
twisted tori (not including the normal torus): Heis3,
ISO(1,1), ISO(2), SO(2,1), and SO(3). As discussed in
Sec. IV, only those twisted tori with negative definite
curvature provide the necessary uplifting energy to create
de Sitter solutions, immediately excluding ISO(2),
SO(2,1), and SO(3). Constructions based on the Heis3
background (also sometimes called the Nil 3-manifold)
and ISO(1,1) background appear to require additional in-
gredients such as KK5 branes in order to stabilize all of the

9However, as pointed out earlier, we have ignored subtleties
with the definition of perturbative string theory with nonzero
Romans mass.
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metric moduli, as in [10]. We showed why this is true by
considering a simple field redefinition which leads to a
runaway minimum for � unless KK5-branes are included.

While we have shown that minimal stable de Sitter
solutions do not exist for manifolds which are a product
of twisted 3-tori in IIA, our analysis does not rule out the
possibility that the minimal set of ingredients can lead to
stable de Sitter solutions for 6-manifolds with negative
curvature which cannot be decomposed as the product of
3-tori. The benefit of simple dS solutions from twisted tori
is that supersymmetry is not broken at the KK scale such
that the dS solution is a spontaneous broken state in an
N ¼ 4 gauged supergravity coupled to six vector multip-
lets [33–36]. The latter theories are rigid in the sense that
the number of vector multiplets and the gauge group al-
most fully determine all interactions. The only freedom
resides in the values of the gauge coupling constants and so
called ‘‘de Roo–Wagemans angles’’ [aka SU(1, 1) angles]
[37]. Especially those angles play a central role in provid-
ing de Sitter vacua in extended supergravity [38–41]. This
construction could offer a string theory embedding of the
de Roo—Wagemans angles which were introduced in su-
pergravity but their relation with string theory is so far only
established in the examples of [42] (and effectively ob-
tained in an N ¼ 1 context). Finally having the gauged
supergravity description at hand allows an easier derivation
of the explicit mass matrix, such that we can work out
whether the minimal simple de Sitter vacua are stable with
respect to all fluctuations. Embedding our constructions
into 4D gauged supergravity also enables us to compute the
gravitino mass, and check whether the bound in [43]
applies.

It would also be interesting to study whether these
simple de Sitter vacua exist in type IIB backgrounds as
well. A geometric background can be looked at for using a
similar derivation as in Sec. II to derive the necessary
ingredients to obtain de Sitter vacua. From this it becomes
apparent that the minimal ingredients are NSNS and geo-
metric flux, Op-plane sources and F1 flux (not necessarily
all together). We thus expect minimal simple de Sitter
solutions to exist in IIB as well, although additional ingre-
dients may be needed in models with more than one
moduli, as seen here. Nevertheless, this may give some
insight into stabilization mechanisms for Kähler moduli in
type IIB which do not rely on nonperturbative effects, as
well as identify possible uplifting sources of energy.

Furthermore, it could be fruitful to use minimal de Sitter
solutions as starting points to construct large-field inflation
models [22,44] and particle physics constructions [45,46]
explored in similar backgrounds. As the low energy chiral
particle physics spectrum depends only on the topological
data of cycles on which the D-branes are wrapped, the
machineries developed for intersecting D-brane models
[47] can be readily adopted to simple extensions of toroidal
backgrounds. When embedded into a single framework,

these investigations may thus allow us to study the inter-
play between cosmology and particle physics.
Finally, the simplicity of our background solution dS4 �

H3 �H3 is of the same simplicity as the Freund-Rubin
vacua AdSn � Sm which allow explicit tests of the AdS/
CFT conjecture. The background presented here is there-
fore a good starting point for testing a hypothetical dS/CFT
correspondence.
We hope to return to all these exciting directions in the

future.
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APPENDIX: a; b; c DE SITTER VACUA

In this Appendix we present a simple derivation, origi-
nally discussed in [10], that searching for de Sitter critical
points with small vacuum energy of the potential

V ¼ að�iÞg2 � bð�iÞg3 þ cð�iÞg4 (A1)

with respect to all of the moduli ðg;�iÞ corresponds
to finding critical points of the quantity 4ac=b2 � 1
as a function of the other moduli �i. Note that in this
notation g ¼ 1=� corresponds to the potential used previ-
ously in (9).
Minimizing the potential (A1) in the g, �i directions

leads to the equations,

ð@�i
aÞ � ð@�i

bÞg0 þ ð@�i
cÞg20 ¼ 0; (A2)

�
g2 � 3b

4c
gþ a

2c

���������g0;�
i
0

¼ 0; (A3)

where ðg0; �i
0Þ are the putative stabilized values of the

moduli, and we will denote a0; b0; c0 as the corresponding
stabilized values of the functions appearing in the potential
(A1). The expression (A3) can be solved for g0 in terms of
the stabilized values of a, b, and c
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g0 ¼ 3b0
8c0

� b0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

16c20
� 1

2c20

�
4a0c0
b20

�s
: (A4)

When 4a0c0
b2
0

’ 1þ �, with � 	 1, we have two possible

solutions

g0 ’ b0
2c0

�
1þ 1

8
�

�
; (A5)

g0 ’ b0
4c0

�
1� 1

4
�

�
: (A6)

The solution g0 ’ b0=ð2c0Þ corresponds to a local mini-
mum in the g direction with positive vacuum energy pro-
portional to � (and is thus the de Sitter vacua we are
interested in)

Vminjg0¼ðb0=2c0Þð1þ1=8�Þ;�i
0
¼ g0c0� (A7)

so we will focus on this solution henceforth.
Now, searching for critical points of 4ac=b2 with respect

to the moduli �i, we obtain (after some basic manipula-
tion)

@�i
a�

�
2a

b

�
@�i

bþ a

c
@�i

c ¼ 0: (A8)

The approach of finding critical points of 4ac=b2 � 1 is
equivalent to finding local de Sitter minima of the entire
potential (A1) if solving the expression (A8) is identical to
solving the expression (A2). It is clear that this is true only
if

g0 ¼ 2a0
b0

; g20 ¼
a0
c0

: (A9)

But using 4a0c0=b
2
0 ¼ 1þ �, it is easy to see in fact that

2a0
b0

¼ b0
2c0

ð1þ �Þ; a0
c0

¼
�
b0
2c0

�
2ð1þ �Þ (A10)

which both imply the solution (A5), g0 ¼ b0=ð2c0Þ þ
Oð�Þ. Thus, the critical point equations (A2) and (A8)
are in fact identical when 4ac=b2 � 1þ � when � 	 1,
so when searching for de Sitter vacua with small vacuum
energy it is sufficient to search for critical points of
4ac=b2 � 1. The advantage of this approach is that in
many cases (as discussed above) it is clear simply by
inspection when 4ac=b2 cannot be minimized at all for
finite values of the moduli; thus, these cases can be imme-
diately ruled out as candidate de Sitter vacua without
needing to solve the entire system of Eqs. (A2) and (A3)
for every specific example.
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