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I. INTRODUCTION

The recent developments on the duality between N ¼
6 superconformal Chern-Simons theory in three dimen-
sions and superstrings moving on AdS4 � P3 [1–9] have
prompted the study of superstrings on OspðN j4Þ back-
grounds [10–13]. The main issue is of course the integra-
bility of the system and this has been already studied in a
series of papers [14–25]. On the other side, one would like
also to consider the string theory in a framework where all
symmetries are manifest and which takes the RR fields of
the background properly into account. In [13], the limit for
large RR fields is analyzed and it has been shown the
relation with a topological model on the Grassmannian
Ospð6j4Þ=SOð6Þ � Spð4Þ. The exactness of the background
is also discussed in [13].

The pure spinor formalism is well suited to the present
situation and in a previous paper [12] two of the present
authors provided the pure spinor version of the AdS4 � P3

sigma model, described as the coset space Ospð6j4Þ=
SOð1; 3Þ � Uð3Þ. Furthermore, the four authors published
another paper [26] where a systematic study of pure spinor
superstring on type IIA backgrounds has been completely
performed. This analysis has been based on the previous
studies by Berkovits and Howe [27], by Oda and Tonin
[28] and on the geometric (a.k.a. rheonomic) formulation
of supergravity [29]. There it has been shown how to derive
from the geometrical formulation of supergravity (in type
IIA case) the pure spinor sigma model and the relative pure
spinor constraints [30,31]. It has been proved that the
action is BRST invariant and, only in the case of type
IIA, has a peculiar structure since it can be written in terms
of four pieces which are the Green-Schwarz action, a
Q-exact piece, a �Q-exact piece and a Q �Q-exact piece.
This allows us to derive the complete expression of the
sigma model where all superfields are made explicit. One
of the advantages of the geometrical formulation of super-
gravity is that it provides a superspace framework where all

bosonic fields are extended to be superfields and the rheo-
nomic conditions ensure the integrability of the extension,
leading to the correct field content. The advantage stays in
the fact that one can very easily read off the sigma model
action in terms of the background solution. As an example,
here we derive of the pure spinor sigma model for the
AdS4 � P3 background.
In this case we have to take into account the RR field

strengths G½2� and G½4� which are, respectively, propor-
tional to the Kähler form on P3 and to the Levi-Civita
invariant tensor in AdS4. This background has 24 Killing
spinors parametrized by the combinations �x � �A where
�x are the Killing spinors of AdS4 and �

A are the 6 Killing
spinors of P3. Therefore, it is convenient to use a super-
space with 24 fermionic coordinates. Now, the problem is
whether this superspace is sufficient to provide a complete
description of the supergravity states and, whether the
vertex operators constructed in terms of this superspace
describe on-shell AdS4 � P3-supergravity fluctuations. It
is established that all supergravity models with more than
16 supercharges are described by an on-shell superspace,
since an auxiliary-field formulation does not exist, and
therefore we expect that the 24-extended superspace is
sufficient for the present formulation. There is also another
aspect to be noticed: the formulation of GS superstrings on
the same coset has been studied extensively in [10] and it
has been argued that 24 fermions are indeed sufficient to
formulate the model. Indeed, �-symmetry removes exactly
8 fermions leading to a supersymmetric model. In our case,
�-symmetry is replaced by BRST symmetry plus pure
spinor constraints, so that we have to check whether the
pure spinors satisfying the new constraints [30] cancel the
central charge. In fact, we will see that by reducing the
spinor space from 32 dimensions to the 24 dimensions
adapted to the present background, there exists a solution
of the pure spinor constraints with only 14 degrees of
freedom, matching the bosonic and fermionic degrees of
freedom.
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In addition, by means of the formalism constructed in
[26], we provide and explicit expression for the sigma
model where all couplings are exhibited. We devote a
particular attention on the quartic part of the action for
the ghosts.

The paper is organized as follows. In Sec. II we review
the description of Type IIA supergravity in terms of its Free
Differential Algebra (FDA) in the string frame and the
corresponding rheonomic parametrization. In Sec. III we
describe the compactification of type IIA onAdS4 � P3. In
Sec. IV we introduce the pure spinors of OSpð6j4Þ. Finally
in Sec. V we give the complete pure spinor superstring
action on AdS4 � P3. The reader is referred to the appen-
dices for a definition of the D ¼ 4 and D ¼ 6 spinor
conventions and for some useful formulas.

II. SUMMARY OF TYPE IIA SUPERGRAVITYAND
OF ITS FDA

In order to pursue our program we have to consider the
structure of the Free Differential Algebra of type IIA
supergravity, the rheonomic parametrization of its curva-
tures and the corresponding field equations that are the
integrability conditions of such rheonomic parametriza-
tions. All these necessary ingredients were recently deter-
mined in [26]. In this section, we summarize those results
collecting all the items for our subsequent discussion.

A. Definition of the curvatures

The p-forms entering the FDA of the type IIA theory are
listed below:

Form degree p f(ermion)/b(oson) Name String Sector Curvature

!ab 1 b spin connection NS-NS Rab

Va 1 b Vielbein NS-NS Ta

c L=R 1 f gravitino NS-R �L=R

C½1� 1 b RR 1-form R-R G½2�
’ 0 b dilaton NS-NS f½1�
�L=R 0 f dilatino NS-RS r�L=R

B½2� 2 b Kalb-Ramond field NS-NS H½3�
C½3� 3 b RR 3-form R-R G½4�

The explicit definition of the FDA curvatures, constructed
with the above fields is displayed below:

Rab � d!ab �!ac ^!cb (2.1)

Ta � DVa � i
1

2
ð �c L ^ �ac L þ �c R ^ �ac RÞ (2.2)

�L;R � Dc L;R � dc L;R � 1

4
!ab ^ �abc L;R (2.3)

G ½2� � dC½1� þ exp½�’� �c R ^ c L (2.4)

f ½1� � d’ (2.5)

r�L=R � d�L;R � 1

4
!ab ^ �ab�L;R (2.6)

H ½3� ¼ dB½2� þ ið �c L ^ �ac L � �c R ^ �ac RÞ ^ Va

(2.7)

G½4� ¼ dC½3� þ B½2� ^ dC½1� � 1

2
exp½�’�ð �c L ^ �abc R

þ �c R ^ �abc LÞ ^ Va ^ Vb: (2.8)

The 0-form dilaton ’ appearing in Eq. (2.4) introduces a
dynamic coupling constant. Furthermore, as mentioned in

the table, Va, and !ab respectively denote the vielbein and
the spin connection, which together with the gravitino
c L=R complete the multiplet of 1-forms gauging the type
IIA super Poincaré algebra in D ¼ 10. The two fermionic
1-forms c L=R are Majorana-Weyl spinors of opposite chi-
rality:

�11c L=R ¼ �c L=R: (2.9)

The flat metric �ab ¼ diagðþ;�; . . . ;�Þ is the mostly
minus one and �11 is Hermitian and squares to the identity
�2
11 ¼ 1.

B. Rheonomic parametrizations of the curvatures
in the string frame

As explained in [26] the form of the rheonomic parame-
trization required in order to construct the pure spinor
action of superstrings is that corresponding to the string
frame and not that corresponding to the Einstein frame.
This parametrization was derived in [26] and it is formu-
lated in terms of a certain set of tensors, which involve both
the supercovariant field strengths Gab, Gabcd of the

Ramond-Ramond p-forms and also bilinear currents in
the dilatino field �L=R. The needed tensors are those listed

below:
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Mab ¼
�
1

8
exp½’�Gab þ 9

64
��R�ab�L

�

Mabcd ¼ � 1

16
exp½’�Gabcd � 3

256
��L�abcd�R

N 0 ¼ 3

4
��L�R

N ab ¼ 1

4
exp½’�Gab þ 9

32
��R�ab�L ¼ 2Mab

N abcd ¼ 1

24
exp½’�Gabcd þ 1

128
��R�abcd�L

¼ � 2

3
Mabcd:

(2.10)

The above tensors are conveniently assembled into the
following spinor matrices

M� ¼ ið�Mab�
ab þMabcd�

abcdÞ (2.11)

N ðevenÞ
� ¼ �N 01þN ab�

ab �N abcd�
abcd (2.12)

N ðoddÞ
� ¼ � i

3
fa�

a � 1

64
��R=L�abc�R=L�

abc

� i

12
H abc�

abc (2.13)

L ðoddÞ
a� ¼ M��a; LðevenÞ

a� ¼ � 3

8
H abc�

bc: (2.14)

In terms of these objects the rheonomic parametrizations
of the curvatures, solving the Bianchi identities can be
written as follows:

1. Bosonic curvatures

Ta ¼ 0 (2.15)

Rab ¼ Rab
mnV

m ^ Vn þ �c R�
ab

mjL ^ Vm þ �c L�
ab

mjR ^ Vm

þ i
3

4
ð �c L ^ �cc L � �c R ^ �cc RÞH abc

þ 2i �c L ^ �½aMþ�b�c R (2.16)

H ½3� ¼ H abcV
a ^ Vb ^ Vc (2.17)

G½2� ¼ GabV
a ^ Vb þ i

3

2
exp½�’�

� ð ��L�ac L þ ��R�ac RÞ ^ Va (2.18)

f ½1� ¼ faV
a þ 3

2
ð ��Rc L � ��Lc RÞ (2.19)

G ½4� ¼ GabcdV
a ^ Vb ^ Vc ^ Vd � i

1

2
exp½�’�

� ð ��L�abcc L � ��R�abcc RÞ ^ Va ^ Vb ^ Vc:

(2.20)

2. Fermionic curvatures

�L=R ¼ �L=R
ab Va ^ Vb þLðevenÞ

a� c L=R ^ Va

þLðoddÞ
a� c R=L ^ Va þ �ð0;2Þ

L=R (2.21)

r�L=R ¼ Da�L=RV
a þN ðevenÞ

� c L=R þN ðoddÞ
� c R=L:

(2.22)

Note that the components of the generalized curvatures
along the bosonic vielbeins do not coincide with their
spacetime components, but rather with their supercovariant
extension. Indeed expanding, for example, the four-form
along the spacetime differentials one finds that

~G���� � GabcdV
a
� ^ V

b
� ^ V

c
� ^ V

d
�

¼ @½�C
½4�
���� þ B½2�

½��@�C
½1�
�� �

1

2
e�’ð �c L½����c R��

þ �c R=����c L��Þ þ i
1

2
exp½�’�

� ð ��L�½���c L�� � ��R�½���c R��Þ;

where ~G is the supercovariant field strength.
In the parametrization (2.16) of the Riemann tensor we

have used the following definition:

�abjcL=R ¼ �ið�a�bcR=L þ �b�caR=L � �c�abR=LÞ:
(2.23)

Finally by �ð0;2Þ
L=R we have denoted the fermion-fermion part

of the gravitino curvature whose explicit expression can be
written in two different forms, equivalent by Fierz re-
arrangement:

�ð0;2Þ
L=R ¼ � 21

32
�a�R=L

�c L=R ^ �ac L=R

� 1

2560
�a1a2a3a4a5�R=Lð �c L=R�

a1a2a3a4a5c L=RÞ
(2.24)

or

�ð0;2Þ
L=R ¼ � 3

8
ic L=R ^ ��R=Lc L=R � 3

16
i�abc L=R

^ ��R=L�
abc L=R: (2.25)
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C. Field equations of type IIA supergravity in the string
frame

The rheonomic parametrizations of the supercurvatures
displayed above imply, via Bianchi identities, a certain
number of constraints on the inner components of the
same curvatures which can be recognized as the field
equations of type IIA supergravity in the string frame.
These are the equations that have to be solved in construct-
ing any specific supergravity background and read as
follows.

We have an Einstein equation of the following form:

R ab ¼ T̂abðfÞ þ T̂abðG2Þ þ T̂abðH Þ þ T̂abðG4Þ
(2.26)

where the stress-energy tensor on the right hand side are
defined as

T̂abðfÞ ¼ �DaDb’þ 8

9
Da’Db’

� �ab

�
1

6
’þ 5

9
Dm’Dm’

�
(2.27)

T̂ abðG2Þ ¼ exp½2’�GaxGby�
ab (2.28)

T̂ abðH Þ ¼ � exp

�
1

3
’

��
9

8
H axyH bwt�

xw�yt

� 1

8
�abH xyzH

xyz
�

(2.29)

T̂abðG4Þ ¼ exp½2’�
�
6Gax1x2x3Gby1y2y3�

x1y1�x2y2�x3y3

� 1

2
�abGx1...x4G

x1...x4

�
: (2.30)

Next we have the equations for the dilaton and the Ramond
1-form:

0 ¼ h’� 2faf
a þ 3

2
exp½2’�Gx1x2Gx1x2

þ 3

2
exp½2’�Gx1x2x3x4Gx1x2x3x4

þ 3

4
exp

�
4

3
’

�
H x1x2x3H x1x2x3 (2.31)

0 ¼ DmGma � 5

3
fmGma þ 3Gax1x2x3H x1x2x3 (2.32)

and the equations for the NS 2-form and for the RR 3-form:

0 ¼ DmH mab � 2

3
fmH mab � exp

�
4

3
’

�

�
�
4Gx1x2abGx1x2 �

1

24
�abx1...x8Gx1x2x3x4Gx5x6x7x8

�
(2.33)

0 ¼ DmG
ma1a2a3 þ 1

3
fmG

ma1a2a3 þ exp

�
2

3
’

�

�
�
3

2
Gm½a1Ha2a3�n�mn

þ 1

48
�a1a2a3x1...x7Gx1x2x3x4Hx5x6x7

�
: (2.34)

Any solution of these bosonic set of equations can be
uniquely extended to a full superspace solution involving
32 theta variables by means of the rheonomic conditions.
The implementation of such a fermionic integration is the
supergauge completion.

III. COMPACTIFICATIONS OF TYPE IIA ON
AdS4 � P3

In this section we construct a compactification of type
IIA supergravity on the following direct product manifold:

M 10 ¼ AdS4 � P3: (3.1)

The local symmetries of the effective theory on this back-
ground is encoded in the supergroup OSpð6j4Þ. The super-
gauge completion of the AdS4 � P3 space consists in
expressing the ten-dimensional superfields, satisfying the
rheonomic parametrizations in terms of the coordinates of
the mini-superspace associated with this background,
namely, of the 10 space-time coordinates x� and the 24
fermionic ones 	, parametrizing the preserved supersym-
metries only. This procedure relies on the representation of
the mini-superspace in terms of the following supercoset
manifold

M 10j24 ¼ OSpð6j4Þ
SOð1; 3Þ � Uð3Þ : (3.2)

The bosonic subgroup of OSpð6j4Þ is Spð4;RÞ � SOð6Þ.
The Maurer-Cartan 1-forms of spð4;RÞ are denoted by�xy

(x, y ¼ 1; . . . ; 4), the soð6Þ 1-forms are denoted by AAB

(A, B ¼ 1; . . . ; 6) while the (real) fermionic 1-forms are
denoted by�x

A and transform in the fundamental represen-
tation of Spð4;RÞ and in the fundamental representation of
SO(6). These forms satisfy the OSpð6j4Þ Maurer-Cartan
equations:

d�xy þ �xz ^ �ty�zt ¼ �4ie�x
A ^�y

A;

dAAB � eAAC ^ACB ¼ 4i�x
A ^�y

B�xy

d�x
A þ�xy ^ �yz�

z
A � eAAB ^�x

B ¼ 0;

(3.3)

where

�xy ¼ ��yx ¼
0 0 0 1
0 0 �1 0
0 1 0 0
�1 0 0 0

0
BBB@

1
CCCA: (3.4)

The Maurer-Cartan equations are solved in terms of the
supercoset representative of (3.2). We rely for this analysis
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on the general discussion in [12]. It is convenient to express
this solution in terms of the 1-forms describing the on the

bosonic submanifolds AdS4 � Spð4;RÞ
SOð1;3Þ , P

3 � SOð6Þ
Uð3Þ of (3.2)

and 1-forms on the fermionic subspace of (3.2). Let us
denote by Bab, Ba, and by B
�, B
 the connections and
vielbein on the two bosonic subspaces, respectively. The
supergauge completion is finally accomplished by express-
ing the p-forms satisfying the rheonomic parametrization
of the FDA in the mini-superspace. This amounts to ex-
pressing them in terms of the 1-forms on (3.2). The final
expression of the D ¼ 10 fields will involve not only the
bosonic 1-forms Bab, Ba, B
�, B
, but also the Killing
spinors on the background. The latter play indeed a spacial
role in this analysis since they can be identified with the
fundamental harmonics of the cosets SOð2; 3Þ=SOð1; 3Þ
and SOð6Þ=Uð3Þ, respectively, [32]. Before writing the
explicit solution we need to discuss the Killing spinors
on the AdS4 � P3 background.

A. Killing spinors of the AdS4 manifold

As anticipated, on of the main items for the construction
of the supergauge completion is given by the Killing
spinors of anti-de Sitter space. They can be constructed
in terms of the coset representative LB, namely, in terms of
the fundamental harmonic of the coset SOð2; 3Þ=SOð1; 3Þ.

The defining equation is given by:

rSpð4Þ�x �
�
d� 1

4
Bab�ab � 2e�a�5B

a

�
�x ¼ 0 (3.5)

and states that the Killing spinor is a covariantly constant
section of the spð4;RÞ bundle defined over AdS4. This
bundle is flat since the vanishing of the spð4;RÞ curvature
is nothing else but the Maurer-Cartan equation of spð4;RÞ
and hence corresponds to the structural equations of the
AdS4 manifold. We are therefore guaranteed that there
exists a basis of four linearly independent sections of
such a bundle, namely, four linearly independent solutions
of Eq. (3.5) which we can normalize as follows:

�� x�5�y ¼ �xy: (3.6)

The 1-forms onAdS4 are defined in terms of LB as follows:

� 1

4
Bab�ab � 2e�a�5B

a ¼ �B ¼ L�1
B dLB: (3.7)

It follows that the inverse matrix L�1
B satisfies the equation:

ðdþ �BÞL�1
B ¼ 0: (3.8)

Regarding the first index y of the matrix ðL�1
B Þyx as the

spinor index acted on by the connection �B and the second
index x as the labeling enumerating the Killing spinors,
Eq. (3.8) is identical with Eq. (3.5) and hence we have

explicitly constructed its four independent solutions. In
order to achieve the desired normalization (3.6) it suffices
to multiply by a phase factor exp½�i 14
�, namely, it suffi-

ces to set:

�y
ðxÞ ¼ exp

�
�i

1

4



�
ðL�1

B Þyx: (3.9)

In this way the four Killing spinors fulfill the Majorana
condition, having chosen a representation of the D ¼ 4
Clifford algebra in which C ¼ i�0 (see Appendix B for
conventions on spinors). Furthermore since L�1

B is sym-
plectic it satisfies the defining relation

L�1
B C�5LB ¼ C�5 (3.10)

which implies (3.6).

B. Explicit construction of P3 geometry

The complex three-fold P3 is Kähler. Indeed the exis-
tence of the Kähler 2-form is one of the essential items in
constructing the solution ansatz.
Let us begin by discussing all the relevant geometric

structures of P3. We need now to construct the explicit
form of the internal manifold geometry, in particular, the
spin connection, the vielbein and the Kähler 2-form. This is
fairly easy, since P3 is a coset manifold:

P 3 ¼ SUð4Þ
SUð3Þ � Uð1Þ (3.11)

so that everything is defined in terms of structure constants
of the suð4Þ Lie algebra. The quickest way to introduce
these structure constants and their chosen normalization is
by writing the Maurer-Cartan equations. We do this intro-
ducing already the splitting:

suð4Þ ¼ H �K (3.12)

between the subalgebra H � suð3Þ � uð1Þ and the com-
plementary orthogonal subspace K which is tangent to the
coset manifold. Hence we nameHiði ¼ 1; . . . ; 9Þ a basis of
1-form generators of H and K
ð
 ¼ 1; . . . ; 6Þ a basis of 1-
form generators of K. With these notation the Maurer-
Cartan equations defining the structure constants of
suð4Þ have the following form:

dK
 þB
� ^ K���� ¼ 0

dB
� þB
� ^B����� �X
�
��K

� ^ K� ¼ 0;
(3.13)

where:
(1) the antisymmetric 1-form valued matrix B
� is

parametrized by the 9 generators of the uð3Þ sub-
algebra of soð6Þ in the following way:
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B 
� ¼

0 H9 �H8 H1 þH2 H6 �H5

�H9 0 H7 H6 H1 þH3 H4

H8 �H7 0 �H5 H4 H2 þH3

�H1 �H2 �H6 H5 0 H9 �H8

�H6 �H1 �H3 �H4 �H9 0 H7

H5 �H4 �H2 �H3 H8 �H7 0

0
BBBBBBBB@

1
CCCCCCCCA

(3.14)

(2) the symbol X
�
�� denotes the following constant,

4-index tensor:

X 
�
�� � ð�
�

�� þK
�K�� þK

�K�

�Þ
(3.15)

(3) the symbolK
� denotes the entries of the following
antisymmetric matrix:

K ¼

0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

(3.16)

The Maurer Cartan Eqs. (3.13) can be reinterpreted as the
structural equations of the P3 6-dimensional manifold. It
suffices to identify the antisymmetric 1-form valued matrix
B
� with the spin connection and identify the vielbeinB


with the coset generators K
, modulo a scale factor �

B 
 ¼ 1

�
K
 (3.17)

With these identifications the first of Eqs. (3.13) becomes
the vanishing torsion equation, while the second singles out
the Riemann tensor as proportional to the tensorX
�

�� of

Eq. (3.15). Indeed we can write:

R 
� ¼ dB
� þB
� ^B����� ¼ R
�
��B

� ^B�;

(3.18)

where:

R 
�
�� ¼ �2X
�

�� (3.19)

Using the above Riemann tensor we immediately re-
trieve the explicit form of the Ricci tensor:

Ric 
� ¼ 4�2�
�: (3.20)

For later convenience in discussing the compactification
ansatz it is convenient to rename the scale factor as fol-
lows:

� ¼ 2e: (3.21)

In this way we obtain:

Ric 
� ¼ 16e2�
�; (3.22)

which will be recognized as one of the field equations of
type IIA supergravity.
Let us now come to the interpretation of the matrix K.

This matrix is immediately identified as encoding the
intrinsic components of the Kähler 2-form. Indeed K is
the unique antisymmetric matrix which, within the funda-
mental 6-dimensional representation of the soð6Þ 	 suð4Þ
Lie algebra, commutes with the entire subalgebra uð3Þ 

suð4Þ. Hence K generates the U(1) subgroup of U(3) and
this guarantees that the Kähler 2-form will be closed and
coclosed as it should be. Indeed it is sufficient to set:

K̂ ¼ K
�B
 ^B� (3.23)

namely:

K̂ ¼ �2ðB1 ^B4 þB2 ^B5 þB3 ^B6Þ (3.24)

and we obtain that the 2-form K̂ is closed and coclosed:

dK̂ ¼ 0; d?K̂ ¼ 0: (3.25)

Let us also note that the antisymmetric matrix K satisfies
the following identities:

K 2 ¼ �16�6 8K
� ¼ �
�����K��K��: (3.26)

Using the soð6Þ Clifford Algebra defined in Appendix A 1
we define the following spinorial operators:

W ¼ K
��

�; P ¼ W �7 (3.27)

and we can verify that the matrix P satisfies the following
algebraic equations:

P 2 þ 4P � 12� 1 ¼ 0 (3.28)

whose roots are 2 and �6. Indeed in the chosen �-matrix
basis the matrix P is diagonal with the following explicit
form:
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P ¼

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 �6 0
0 0 0 0 0 0 0 �6

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (3.29)

Let us also introduce the following matrix valued 1-form:

Q �
�
3

2
1þ 1

4
P
�
�
B
; (3.30)

whose explicit form in the chosen basis is the following
one:

Q ¼

0 2B3 �2B2 0 �2B6 2B5 �2B4 2B1

�2B3 0 2B1 2B6 0 �2B4 �2B5 2B2

2B2 �2B1 0 �2B5 2B4 0 �2B6 2B3

0 �2B6 2B5 0 �2B3 2B2 2B1 2B4

2B6 0 �2B4 2B3 0 �2B1 2B2 2B5

�2B5 2B4 0 �2B2 2B1 0 2B3 2B6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(3.31)

and let us consider the following Killing spinor equation:

D�þ eQ� ¼ 0 (3.32)

where, by definition:

D ¼ d� 1

4
B
��
� (3.33)

denotes the soð6Þ covariant differential of spinors defined
over the P3 manifold. The connection Q is closed with
respect to the spin connection

� ¼ � 1

4
B
��
� (3.34)

since we have:

DQ � dQþ e2� ^QþQ ^� ¼ 0 (3.35)

as it can be explicitly checked. The above result follows
because the matrixK
� commutes with all the generators
of uð3Þ. In view of Eq. (3.35) the integrability of the Killing
(3.32) becomes the following one:

Hol� ¼ 0; (3.36)

where we have defined the holonomy 2-form:

Hol � ðD2 þ e2Q ^QÞ ¼
�
� 1

4
R
��
� þ e2Q ^Q

�
(3.37)

and R
� denotes the curvature 2-form (3.18). Explicit
evaluation of the holonomy 2-form yields the following
result.

Hol ¼ e2

0 0 0 0 0 0 8½B2 ^B6 �B3 ^B5� 8B5 ^B6 � 8B2 ^B3

0 0 0 0 0 0 8B3 ^B4 � 8B1 ^B6 8½B1 ^B3 �B4 ^B6�
0 0 0 0 0 0 8½B1 ^B5 �B2 ^B4� 8B4 ^B5 � 8B1 ^B2

0 0 0 0 0 0 8½B2 ^B3 �B5 ^B6� 8½B2 ^B6 �B3 ^B5�
0 0 0 0 0 0 8B4 ^B6 � 8B1 ^B3 8B3 ^B4 � 8B1 ^B6

0 0 0 0 0 0 8½B1 ^B2 �B4 ^B5� 8½B1 ^B5 �B2 ^B4�
0 0 0 0 0 0 0 �8K̂
0 0 0 0 0 0 8K̂ 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (3.38)

It is evident by inspection that the holonomy 2-form van-
ishes on the subspace of spinors that belong to the eigen-
space of eigenvalue 2 of the operatorP . In the chosen basis
this eigenspace is spanned by all those spinors whose last
two components are zero and on such spinors the operator
Hol vanishes.

Let us now connect these geometric structures to the
compactification ansatz.

C. The compactification ansatz

As usual we denote with Latin indices those in the
direction of 4-space and with Greek indices those in the
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direction of the internal 6-space. Let us also adopt the
notation: Ba for theAdS4 vielbein just asB
 is the vielbein
of the Kähler three-fold described in the previous section.1

With these notations the Kaluza-Klein ansatz is the follow-
ing one:

Gab ¼
�
2e exp½�’0�K
�

0 otherwise

Ga1a2a3a4 ¼
��e exp½�’0��a1a2a3a4
0 otherwise

H a1a2a3 ¼ 0

’ ¼ ’0 ¼ constant

Va ¼ Ba

V
 ¼ B


!ab ¼ Bab

!
� ¼ B
�;

(3.39)

where Ba, Bab respectively denote the vielbein and the spin
connection of AdS4, satisfying the following structural
equations:

0 ¼ dBa � Bab ^ Bc�bc

dBab � Bac ^ Bdb�cd ¼ �16e2Ba ^ Bb

+
Ricab ¼ �24e2�ab

(3.40)

while B
 and B
� are the analogous data for the internal
P3 manifold:

0 ¼ dB
 �B
� ^B����

dB
� �B
� ^B����� ¼ �R
�
��B

� ^B�

+
Ric
� ¼ 16e2�
�

(3.41)

whose geometry we described in the previous section.
With these normalizations we can check that the dilaton

Eq. (2.31) and the Einstein Eq. (2.26), are satisfied upon
insertion of the above Kaluza-Klein ansatz. All the other
equations are satisfied thanks to the fact that the Kähler

form K̂ is closed and coclosed: Eq. (3.25)

D. Killing spinors on P3

The next task we are faced with is to determine the
equation for the Killing spinors on the chosen background,
which by construction is a solution of supergravity
equations.

Following a standard procedure we recall that the vac-
uum has been defined by choosing certain values for the
bosonic fields and setting all the fermionic ones equal to
zero:

c L=Rj� ¼ 0 �L=R ¼ 0 �L=Rjab ¼ 0: (3.42)

The equation for the Killing spinors will be obtained by
imposing that the parameter of supersymmetry preserves
the vanishing values of the fermionic fields once the spe-
cific values of the bosonic ones is substituted into the
expression for the supersymmetry (SUSY) rules, namely,
into the rheonomic parametrizations.
To implement these conditions we begin by choosing a

well adapted basis for the d ¼ 11 gamma matrices. This is
done by setting:

�a ¼
8><
>:
�a ¼ �a � 1
�
 ¼ �5 � �


�11 ¼ i�5 � �7
: (3.43)

Next we consider the tensors and the matrices introduced
in Eqs. (2.10), (2.11), (2.12), and (2.13). In the chosen
background we find:

M
� ¼ 1

4
eK
�; Mabcd ¼ 1

16
e�abcd

N 0 ¼ 0; N 
� ¼ 1

2
eK
�;

N abcd ¼ � 1

24
e�abcd;

(3.44)

all the other components of the above matrices being zero.
Hence in terms of the operators introduced in the previous
section we find:

M� ¼ ie

�
� 1

4
1 �W � 3

2
i�5 � 1

�

N ðevenÞ
� ¼ e

�
1

2
1 �W � i�5 � 1

�
N ðoddÞ

� ¼ 0:

(3.45)

It is now convenient to rewrite the Killing spinor condition
in a non chiral basis introducing a supersymmetry parame-
ter of the following form:

� ¼ �L þ �R: (3.46)

In this basis the matrices M and N ðevenÞ read

M ¼ Mþ
1

2
ð11þ �11Þ þM�

1

2
ð11� �11Þ

¼ � i

8
e’Gab�

ab�11 � i

16
e’Gabcd�

abcd

¼ e

4
�5 � ðW �7 þ 611Þ; (3.47)

1This formulation is analogue to the one used in the case of
M-theory compactifications [33,34].
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N ðevenÞ ¼ N ðevenÞ
þ

1

2
ð11þ �11Þ þN ðevenÞ�

1

2
ð11� �11Þ

¼ 1

4
e’Gab�

ab þ 1

24
e’Gabcd�

abcd

¼ e

2
11 � ðW þ 2�7Þ: (3.48)

Upon use of this parameter the Killing spinor equation
coming from the gravitino rheonomic parametrization
(2.21) takes the following form:

D � ¼ �M�aV
a�; (3.49)

while the Killing spinor equation coming from the dilatino
rheonomic parametrization is as follows:

0 ¼ N ðevenÞ�: (3.50)

Let us now insert these results into the Killing spinor
equations and let us take a tensor product representation
for the Killing spinor:

� ¼ " � �; (3.51)

where " is a 4-component d ¼ 4 spinor and � is an 8-
component d ¼ 6 spinor.

With these inputs Eq. (3.49) becomes:

0 ¼ D½4�" � �� e�a�5B
a" �

�
3

2
þ 1

4
P
�
�

þ " �
�
D½6� þ e

�
3

2
þ 1

4
P
�
�
B


�
� (3.52)

while Eq. (3.50) takes the form:

0 ¼ " �
�
1

2
W þ �7

�
�: (3.53)

Let us now recall that Eq. (3.32) is integrable on the
eigenspace of eigenvalue 2 of the P -operator. Then
Eq. (3.52) is satisfied if:

ðD½4� � 2e�a�5B
aÞ" ¼ 0 P� ¼ 2�

ðD½6� þ eQÞ� ¼ 0:
(3.54)

The first of the above equation is the correct equation for
Killing spinors in AdS4. It emerges if the eigenvalue of P
is 2. The second and the third are the already studied
integrable equation for six Killing spinors out of eight. It
should now be that the dilatino Eq. (3.53) is satisfied on the
eigenspace of eigenvalue 2, which is indeed the case:

P � ¼ 2� )
�
1

2
W þ �7

�
� ¼ 0: (3.55)

E. Gauge completion in mini superspace

As a necessary ingredient of our construction let �A

(A ¼ 1; . . . ; 6) denote a complete and orthonormal basis
of solutions the internal Killing spinor equation, namely:

P�A ¼ 2�A ðD½6� þ eQÞ�A ¼ 0

�T
A�B ¼ �AB; A; B ¼ A ¼ 1; . . . ; 6:

(3.56)

On the other hand let �x denote a basis of solutions of the
Killing spinor equation on AdS4-space, namely (3.5), nor-
malized as in Eq. (3.6). Furthermore let us recall the matrix
K defining the intrinsic components of the Kähler 2-form.
In terms of these objects we can satisfy the rheonomic

parametrizations of the 2-forms spanning the d ¼ 10
superPoincaré subalgebra of the FDA with the following
position2:

� ¼ �x � �A�
xjA (3.57)

Va ¼ Ba � 1

8e
��x�

a�y�
xy (3.58)

V
 ¼ B
 � 1

8
�T
A�


�BAAB (3.59)

!ab ¼ Bab þ 1

2
��x�

ab�5�y�
xy (3.60)

!
� ¼ B
� þ e

4
�T
A�


��BAAB � e

4
K
�KABAAB:

(3.61)

The proof that the above ansatz satisfies the rheonomic
parametrizations is by direct evaluation upon use of the
following crucial spinor identities.
Let us define

U ¼
�
3

2
1þ 1

4
P
�
: (3.62)

We can verify that:

ð�A�

U�
�B � �A�


��BÞAAB ¼ K
�KABAAB:

(3.63)

Furthermore, naming:

�B
 ¼ � 1

8
�T
A�


�BAAB (3.64)

�!
� ¼ e

4
�T
A�


��BAAB � e

4
K
�KABAAB (3.65)

we obtain:

� �!
� ^�B� ¼ e

8
�T
A�


�BAAC ^ACB: (3.66)

2With respect to the results obtained in [35] for the mini-
superspace extension of M-theory configuration everything is
identical in Eqs. (3.57), (3.58), (3.59), and (3.60) except the
obvious reduction of the index range of (
;�; . . . ) from 7 to 6-
values. The only difference is in Eq. (3.61) where the last
contribution proportional to the Kähler form is an essential
novelty of this new type of compactification.
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These identities together with the d ¼ 4 spinor identities
(A11) and (A12) suffice to verify that the above ansatz
satisfies the required equations.

F. Gauge completion of the B½2� form
The next task in order to write the explicit form of the

pure spinor sigma-model is the derivation of the explicit

expression for the B½2� form. When this is done we will be
able to write the complete Green Schwarz action in explicit
form.

There is an ansatz for B½2� which is the following one:

B ½2� ¼ 
 ��x�y ��A�7�B�
x
A ^�y

B: (3.67)

By explicit evaluation we verify that with


 ¼ 1

4e
: (3.68)

The rheonomic parametrization of the H-field strength is
satisfied, namely:

dB½2� ¼ �i �c ^ �a�11c ^ Va: (3.69)

G. Rewriting the mini-superspace gauge completion
as MC forms on the complete supercoset

Next, following the procedure introduced in [32], we
rewrite the mini-superspace extension of the bosonic solu-
tion solely in terms of Maurer Cartan forms on the super-
coset (3.2). Let the graded matrix L 2 Ospð6j4Þ be the

coset representative of the coset M10j24, such that the
Maurer Cartan form � can be identified as:

� ¼ L�1dL: (3.70)

Let us now factorize L as in [32]:

L ¼ LFLB; (3.71)

where LF is a coset representative for the coset:

Ospð6j4Þ
SOð6Þ � Spð4;RÞ 3 LF; (3.72)

just in Eq. (3.72) but LB rather than being the Ospð6j4Þ
embedding of a coset representative of just AdS4, is the
embedding of a coset representative of AdS4 � P3,
namely:

L B ¼ LAdS4 0
0 LP3

� �
;

Spð4;RÞ
SOð1; 3Þ 3 LAdS4 ;

SOð6Þ
Uð3Þ 3 LP3 :

(3.73)

In this way we find:

� ¼ L�1
B �FLB þ L�1

B dLB: (3.74)

Let us now write the explicit form of �F, as in [32]:

�F ¼ �F �A

4ie ���5 �e ~AAB

� �
; (3.75)

where �A is a Majorana-spinor valued fermionic 1-form
and where �F is an spð4;RÞ Lie algebra valued 1-form

presented as a 4� 4 matrix. Both �A as �F and ~AAB

depend only on the fermionic 	 coordinates and
differentials.
On the other hand we have:

L�1
B dLB ¼ �AdS4 0

0 AP3

� �
; (3.76)

where the �AdS4 is also an spð4;RÞ Lie algebra valued 1-

form presented as a 4� 4 matrix, but it depends only on
the bosonic coordinates x� of the anti-de Sitter space
AdS4. In the same way AP3 is an suð4Þ Lie algebra
element presented as an soð6Þ antisymmetric matrix in
six-dimensions. It depends only on the bosonic coordinates
y
 of the internal P3 manifold. According to Eq. (3.7), we
can write:

�AdS4 ¼ � 1

4
Bab�ab � 2e�a�5B

a; (3.77)

where fBab; Bag are, respectively, the spin-connection and
the vielbein of AdS4.
Similarly, using the inversion formula (B3) presented in

appendix we can write:

A P3 ¼
�
�2B
 ��
 þ 1

4e
B
� ��
� � 1

4e
B
�K
�K

�
;

(3.78)

where fB
�;B
g are the connection and vielbein of the
internal coset manifold P3.
Relying once again on the inversion formulas discussed

in the appendix we conclude that we can rewrite
Eqs. (3.57), (3.58), (3.59), (3.60), and (3.61) as follows:

�xjA ¼ �xjA (3.79)

Va ¼ Ea (3.80)

V
 ¼ E
 (3.81)

!ab ¼ Eab (3.82)

!
� ¼ E
�; (3.83)

where the objects introduced above are the MC forms on
the supercoset (3.2) according to:
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� ¼ L�1dL ¼ � 1
4E

ab�ab � 2e�a�5E
a �

4ie ���5 2eE
 ��
 � 1
4B


� ��
� þ 1
4E


�K
�K

 !
: (3.84)

Consequently the gauge completion of the B½2� form be-
comes:

B ½2� ¼ 1

4e
��ð1 � ��7Þ ^�: (3.85)

IV. PURE SPINORS FOR Ospð6j4Þ
In the present section, we show that the number of

independent pure spinor components obtained by solving
the pure spinor constraint in the present background
matches correctly the number of anticommuting 	’s. This
implies that, at least formally (since it must be proved in
detail) the number of bosonic and fermionic fields match
leading to a conformal invariant theory. However, as is
known, this is not sufficient for having a conformal invari-
ant theory since all loop contributions to the Weyl anomaly
should cancel. This can be guaranteed only by symmetry
reasons and for the vanishing of one-loop contribution.

Nevertheless, we study the pure spinor equations
adapted to the present background and we will see that
the number of the independent components of the pure
spinors is equal to 14 (since we have an interacting theory
with RR fields we cannot distinguish between left- and
right-movers). We recall the form of the pure spinor con-
straints for type IIA theory

���a� ¼ 0; ���a�
11�Va ¼ 0; (4.1)

���½ab��VaVb ¼ 0; ���11� ¼ 0; (4.2)

where we have combined the 16-component spinors �1 and
�2 into a 32-component Dirac spinor �. These equations
are valid for any background and we have shown in [30] the
number of independent components for the pure spinors
matches the number of pure spinor in the Berkovits’
‘‘background-independent’’ constraints. However, in the
present setting we can adapt the constraints to the specific
background and, in particular, we choose to embed the
vielbein Va using his equation of motion in the momentum
	

a
�e� and thus simplifying the constraints as follows

���a� ¼ 0; a ¼ 1; . . . ; 4;

���
� ¼ 0; 
 ¼ 1; . . . ; 6;
(4.3)

�����11� ¼ 0; ���þ�� ¼ 0; ���11� ¼ 0: (4.4)

For �� we use the combination �1 � �3.
Now, we can insert the decomposition of � on the basis

of Killing spinors

� ¼ �x � �A

xjA; (4.5)

where, as usual,�x are theAdS4-Killing spinors and�A are

the CP3 Killing spinors. The free parameters 
xjA are the
components the pure spinors. Notice that the index x runs
over the four independent AdS-Killing spinor basis and the
index A runs over the six values of vector representation of
SO(6). Therefore, we have in total 24 independent degrees
of freedom to solve (4.3). The number of equations is
independent of the background, but the number of inde-
pendent degrees of freedom is reduced from 32 to 24 and
therefore, we need to explore the existence of the solution.
Using the decomposition of the Gamma matrices pro-

vided in (3.43) and the normalizations of the Killing spin-
ors �xC�5�y ¼ �xy and �A�B ¼ �AB, Eqs. (4.3) read

ð�xC�a�yÞ�AB

xjA
yjB ¼ 0;

ð�xC�5�yÞ�A�

�B


xjA
yjB ¼ 0;
(4.6)

ð�xC�5�yÞ�A�
7�B


xjA
yjB ¼ 0; (4.7)

ð�xC�5���yÞ�A�
7�B


xjA
yjB ¼ 0;

ð�xC�þ��yÞ�AB

xjA
yjB ¼ 0:

(4.8)

where C is charge conjugation matrix.
To solve these equations is convenient to adopt a new

basis. Since we already know the solution in the basis when
the spinor 
 is decomposed as follows

�1 ¼ �þ � �þ1 þ�� � ��1 ;

�2 ¼ �þ � ��2 þ�� � �þ2
(4.9)

where:

�þ ¼ 1

0

 !
; �� ¼ 0

1

 !

�þA ¼ 0

!þ
A

 !
; ��A ¼ !�

A

0

 !
;

(4.10)

where!�
A are 8-dimensional vectors. In writing Eqs. (4.10)

we have observed that the unique component of �� can
always be reabsorbed in the normalization of !�

A and
hence set to one. Thus, we have to express the entries of

the rectangular matrix 
xjA in terms of !�
A (A ¼ 1, 2) and

this can be done by combining �1 and �2 in a single 32-
dimensional pure spinor and projecting it on the basis
formed by �x � �A (where we left A running over 8 values)
and we get the relation


xjA ¼
!�

2;1 . . . !�
2;8

�i!þ
1;1 . . . �i!þ

1;8

�i!�
1;1 . . . �i!�

1;8

!þ
2;1 . . . !þ

2;8

0
BBB@

1
CCCA: (4.11)
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In order to reduce the number of components to the neces-
sary 24 ones, we will set the last components!�

A;7 and!
�
A;8

to zero. In order to check if this is possible it is convenient
first to exploit all gauge symmetries.

We recall that �A are solutions of the constraints if the
components !�

A are decomposed in the following way

!þ
1 ¼ ð$
; 0Þ !�

2 ¼ ð

; 0Þ
!�

1 ¼ ða
����$�; � �$Þ !þ
2 ¼ ða
����
�; � � 
Þ

(4.12)

in terms of 7-component fields $
, 

, �
, �
 satisfying
the constraints

$ �$ ¼ 0 (4.13)


 � 
 ¼ 0 (4.14)

a
���

�$� ¼ 0 (4.15)

a
���

�$� ¼ 0: (4.16)

Here a
�� is the totally-antisymmetric invariant tensor for
G2 group. Notice that constraints (4.13), (4.14), (4.15), and
(4.16) are invariant under the gauge symmetry

�
 ! �
 þ x1

 þ x2$
;

�
 ! �
 þ x3

 þ x4$
:
(4.17)

On the other side, the decomposition (4.12) is not invariant
under the symmetries parametrized by x1 and x4. So, there
are only two gauge symmetries generated by x2 and x3
which can be used to set some components of �
 and �
 to
zero.

In order to reduce the number of independent degrees of
freedom from 32 to 24, we set $7 and 
7 to zero, this
condition, together with (4.13) and (4.14), implies that !þ

1

and !�
2 have, respectively, 5 and 5 independent degrees of

freedom. In addition, we impose the equations

� �$ ¼ 0; a7����$� ¼ 0; (4.18)

� � 
 ¼ 0; a7����
� ¼ 0: (4.19)

such that the 7th and the 8th components of 
xjA are zero.
Together with constraints (4.15) and (4.16), they can be
solved in terms of 3 components of �
 and 3 components
�
. This reduces the number of unfixed components from
14 to 8. Using the gauge symmetries (4.17), we can lower
them to 6 unfixed components. Finally, observe that there
are two additional gauge symmetries generated by the
constraints 
7 ¼ 0 and $7 ¼ 0 which reduce the number
of unfixed parameters for �
 and �
 to 4. The total count-
ing of the pure spinor conditions, in the space of 24

components of the matrix 
xjA, is exactly 14 (5 for $, 5
for 
, 2 for � and 2 for �), which is the correct number of
degrees of freedom in order to cancel the total central

charge. Indeed, we have 10 from the boson xa, 24 for 	’s
and the bosons 
 which are 14 cancel the total charge.
In addition, we can compute the number of the conjugate

fields for the 	 and for w and using the constraints and the
gauge symmetry it is easy to perform the same computa-
tions as in [30] to see that the number matches again.

V. ACTION

Following the notations of [26] the complete action of
Pure Spinor superstrings on Type IIA backgrounds is the
sum of two parts, the Green-Schwarz action plus the
gauge-fixing action containing the pure spinor sector:

A IIA
PS ¼

Z
LGS þ

Z
LIIA

gf : (5.1)

The GS action is written as follows

L GS ¼
�
	

a
þVb�ab ^ eþ �	

a�Vb�ab ^ e�

þ 1

2
	

a
i	

b
j�

ij�abe
þ ^ e�

�
þ 1

2
B½2�; (5.2)

where 	
a
� are auxiliary fields whose field equations iden-

tify them with the pullback of the target-space vielbein Va

on the world sheet, respectively, along the zweibein eþ and
e�. �ij and �ab are the Minkowskian flat metrics, respec-

tively, on the world sheet and on the 10d target space. The
variation in the zweibein yields the Virasoro constraints.
The background geometry of the world sheet encoded in
the reference frame e� is treated classically [36,37].
The gauge-fixing terms of the string-action is written in

[26] as:

L IIA
gf ¼ �dþc R ^ eþ þ �d�c L ^ e� þ i

2
�dþM�d�

þ �wþD�R ^ eþ þ �w�D�L ^ e�

� i

2
�wþðSRM�Þd� þ i

2
�dþðSLM�Þw�

� i

2
�wþðSRSLM�Þw� þ i

2
�wþM�fSL;SRgw�:

(5.3)

The operators SL=R represent the components of the BRST

operator S which are parametrized by the left/right com-
ponents of the pure spinor �. The subscript� on the spinor
matrices refer to their action on fermions with left/right
chirality, respectively. The last term is generated by the
nonvanishing the SLSR-piece of the action in [26]. With
reference to [26], we note that on the considered back-

ground the operator ŜL=R coincide with SL=R since H abc

field strength vanishes in this case.
The bosonic background corresponding to the AdS4 �

P3 solution of Type IIA theory is characterized by the
values of the background fields displayed in Eq. (3.39).

The spinor matrices M and N ðevenÞ, encoding the RR
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field-strengths, are given in Eqs. (3.47) and (3.48) respec-
tively. The matrixM in the present background is constant
and, therefore we can eliminate the auxiliary fields d� and
write the complete quadratic part of the action in terms of
the MC forms. We start from the first two lines of (5.3)

LIIA
gf;2 ¼ �dþc R ^ eþ þ �d�c L ^ e�

þ i

2
�dþM�d�eþ ^ e�: (5.4)

We use the decomposition of the gravitinos

� ¼ cþeþ þ c�e� ¼ �x � �Að�xAþ eþ þ�xA� e�Þ;
where the 1-form is pullback onto the world sheet, then
(5.4) yields

LIIA
gf;2 ¼

�
�dTþ

Cð1� �11Þ
2

c� þ dT�
Cð1þ �11Þ

2
cþ

þ i

2
dTþCM�d�

�
eþ ^ e�: (5.5)

By eliminating the d’s, we have

L IIA
gf;2 ¼ �2ic Tþ

Cð1� �11Þ
2

M�1�
ð1� �11Þ

2
c�: (5.6)

and after some simple algebra, one gets

L IIA
gf;2 ¼ � 1

2e
�TþðC4 � ��7 þ iC4�

5 � 116Þ��: (5.7)

Finally summing the B½2� part and the contribution of the
ghost fields we have the quadratic part of the fermionic
action

LIIA
gf;2 �

1

e
�Tþ

�
1

4
C4 � ��7 � i

2
C4�

5 � 116

�
��eþ ^ e�

þ
�
1

2
wT�ðC4 � 116 � �5 � ��7Þrþ�

� 1

2
wTþðC4 � 116 þ �5 � ��7Þr��

�
eþ ^ e�: (5.8)

Notice that the matrices ðC4 � 116 � �5 � ��7Þ are projec-
tors and by using the result of the appendix B, ��7AB ¼
��A�

7�B ¼ KAB, we see that the projectors couple the 4-d
chirality to the eigenspaces of KAB.

The third line of Eq. (5.3) vanishes on our background
by showing that

S L=RM ¼ SRSLM ¼ 0:

Using the formulas in [26] one can easily verify that
SM ¼ 0 since the BRST transformation of the RR field
strengths Gab;Gabcd vanishes as a consequence of the fact

that, on our background, � ¼ Da� ¼ �ab ¼ 0. The van-

ishing of SRSLM ¼ 0, on the other hand, follows from the
properties S� ¼ SDa� ¼ S�ab ¼ 0, which must hold for

consistency and which can be recast, on our background, in
the following way:

S � ¼ N � ¼ 0; SDa� ¼ �NM�a� ¼ 0;

S�ab ¼
�
M�½aM�b� � 1

4
Rab;cd�

cd

�
� ¼ 0:

The above equations are satisfied in virtue of the ansatz
(4.5) and the Killing spinor Eqs. (3.49) and (3.50).
The last line can be computed and we get

L IIA
gf;4 ¼

1

4
�wþM��abw� ��L�

½aMþ�b��R: (5.9)

By simple algebra, (5.9) can be decomposed in terms of
the eigenspaces ofKAB and of given chiralities so as to get
the expected form of the action

L IIA
gf;4 ¼ Rab;cdNab;þNcd;� þ RI

K
J
LNI;þKNJ;�L; (5.10)

where Rab;cd is the AdS4 Riemann tensor and RI
K
J
L is the

Riemann tensor for P3. The bilinears Nab; NI;þK are the

Lorentz generators of SO(1,3) and of U(3) of the subgroup
of the coset Ospð6j4Þ=SOð1; 3Þ � Uð3Þ. They can be writ-
ten compactly in 4 � 6 notation as follows

Nab;þ � �wþ�ab�R

¼ � i

8
ð �wI;þð1þ �5Þ�ab�

I þ �wI�ð1� �5Þ�ab�IÞ
Nab;� � �w��ab�L

¼ � i

8
ð �wI�ð1þ �5Þ�ab�I þ �wI;�ð1� �5Þ�ab�

IÞ:
(5.11)

Notice that the specific form of the action is dictated by
the invariance under the gauge symmetry of the subgroup
SOð1; 3Þ � Uð3Þ and by the pure spinor conditions. By
using the decomposition as in [12] it is easy to perform
the Fierz identities. Even if the result is written in a differ-
ent notation, the equivalence with [13] can be easily
checked.

VI. CONCLUSION

We have shown how to derive the pure spinor sigma
model for the background AdS4 � P3. Using the formula-
tion provided in [26], we have specified all tensors appear-
ing in the general action and we have compared with the
formulation derived in [12]. The action is the classical
starting point form where to compute higher order correc-
tions in 
0. Of course, one can repeat the work done in the
case ofAdS5 � S5 and check the conformal invariance. We
leave this work to a future work.
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APPENDIX A:D ¼ 6 AND D ¼ 4 GAMMA MATRIX
BASES

In the discussion of the AdS4 � P3 compactification we
need to consider the decomposition of the D ¼ 10 gamma
matrix algebra into the tensor product of the soð6Þ Clifford
algebra times that of soð1; 3Þ. In this section we discuss
and explicit basis for the soð6Þ gamma matrix algebra
using that of soð7Þ. Conventionally we identify the 7-
matrix �7 with the chirality matrix in d ¼ 6.

1. D ¼ 6 Clifford algebra

In this paper, the indices 
;�; . . . run on six values and
denote the vector indices of soð6Þ. In order to discuss the
gamma matrix basis we introduce soð7Þ indices

�
 ¼ 
; 7 (A1)

which run on seven values and we define the Clifford
algebra with negative metric:

f� �
; � ��g ¼ ��
� (A2)

This algebra is satisfied by the following, real, antisym-
metric matrices:

�1 ¼

0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 �1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 �1 0 0
0 0 0 0 1 0 0 0
0 0 0 �1 0 0 0 0
�1 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; �2 ¼

0 0 �1 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 �1 0 0 0 0
0 0 0 0 �1 0 0 0
0 �1 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

�3 ¼

0 1 0 0 0 0 0 0
�1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 �1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 �1 0 0
0 0 �1 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; �4 ¼

0 0 0 0 0 0 �1 0
0 0 0 0 0 �1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 �1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 �1 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

�5 ¼

0 0 0 0 0 1 0 0
0 0 0 0 0 0 �1 0
0 0 0 �1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
�1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 �1 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; �6 ¼

0 0 0 0 �1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 �1 0
0 �1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 �1 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

�7 ¼

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
�1 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0
0 0 �1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 �1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

(A3)

2. D ¼ 4 �-matrix basis and spinor identities

In this section we construct a basis of soð1; 3Þ gamma matrices such that it explicitly realizes the isomorphism
soð2; 3Þ 	 spð4;RÞ with the conventions used in the main text. Naming �i the standard Pauli matrices:
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�1 ¼ 0 1
1 0

� �
; �2 ¼ 0 �i

i 0

� �
;

�3 ¼ 1 0
0 �1

� � (A4)

we realize the soð1; 3Þ Clifford algebra:

f�a; �bg ¼ 2�ab; �ab ¼ diagðþ;�;�;�Þ (A5)

by setting:

�0 ¼ �2 � 1; �1 ¼ i�3 � �1 �2 ¼ i�1 � 1;

�3 ¼ i�3 � �3 �5 ¼ �3 � �2; C ¼ i�2 � 1;

(A.6)

where �5 is the chirality matrix and C is the charge con-
jugation matrix. From the general theory (see for instance
Eqs. (2.2) and (2.3) of [12]) we see that the antisymmetric
matrix entering the definition of the orthosymplectic alge-

bra, namely C�5 is the following one:

C ¼ i

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

0
BBBBB@

1
CCCCCA;

C�5 ¼ � ¼ i

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA

(A7)

namely it is proportional, through an overall i-factor, to a
real completely off-diagonal matrix. On the other hand all
the generators of the soð2; 3Þ Lie algebra, i.e. �ab and �a�5

are real, symplectic 4� 4 matrices. Indeed we have

�01 ¼

0 0 0 �1

0 0 �1 0

0 �1 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA; �02 ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BBBBB@

1
CCCCCA

�12 ¼

0 0 �1 0

0 0 0 1

�1 0 0 0

0 1 0 0

0
BBBBB@

1
CCCCCA �13 ¼

0 0 0 �1

0 0 �1 0

0 1 0 0

1 0 0 0

0
BBBBB@

1
CCCCCA

�23 ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

0
BBBBB@

1
CCCCCA; �34 ¼

0 0 1 0

0 0 0 �1

�1 0 0 0

0 1 0 0

0
BBBBB@

1
CCCCCA

�0�5 ¼

0 0 0 1

0 0 �1 0

0 1 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA; �1�5 ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBBBB@

1
CCCCCA

�2�5 ¼

0 0 0 �1

0 0 1 0

0 1 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA; �3�5 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0
BBBBB@

1
CCCCCA

(A8)

On the other hand we find that C�0 ¼ i1. Hence the
Majorana condition becomes:

i c ¼ c ? (A9)

so that a Majorana spinor is just a real spinor multiplied by
an overall phase exp½�i 
4�.

These conventions being xed let �x (x ¼ 1; . . . ; 4) be a
set of (commuting) Majorana spinors normalized in the

following way:

�x ¼ C ��T
x ; Majorana condition

��x�5�y ¼ iðC�5Þxy; symplectic normal basis.
(A10)

Then by explicit evaluation we can verify the following
Fierz identity:
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1

2
�ab�z ��x�5�ab�y � �a�5�z ��x�a�y

¼ �2i½ðC�5Þzx�y þ ðC�5Þzy�x�: (A11)

Another identity which we can prove by direct evaluation
is the following one:

��x�5�ab�y ��z�
b�t � ��z�5�ab�t ��x�

b�y

¼ ið ��x�a�tðC�5Þyz þ ��y�a�tðC�5Þxz þ ��x�a�zðC�5Þyt
þ ��y�a�zðC�5ÞxtÞ: (A12)

Finally let us mention some relevant formulas for the
derivation of the compactification. With the above conven-
tions we find:

�0�1�2�3 ¼ i�5 (A13)

and if we x the convention:

�0123 ¼ þ1 (A14)

we obtain:

1

24
�abcd�a�b�c�d ¼ �i�5: (A15)

APPENDIX B: AN soð6Þ INVERSION FORMULA

In order to discuss the conversion of supergravity forms
into MC forms of the supercoset a key role is played by an
inversion formula which we utilize in the main text and we
discuss in this appendix. Let us define the following set of
6� 6 matrices:

�� 

AB � �T

A�

�B ��
�AB ¼ �T

A�

��B

KAB ¼ KAB ¼ 1

2
K
� ��


�
AB :

(B1)

where �A are the 6 killing internal killing spinors and �
denote the 1-index and 2-index soð6Þ gamma-matrices. By
construction the barred ��:s are antisymmetric 6� 6 matri-
ces, hence soð6Þ generators in the fundamental represen-
tation just as the Kähler form K. Counting these matrices
we find that they are 6þ 15þ 1, namely, 22, which is too
much as a set of independent generators of soð6Þ. This
means that there must be linear dependences. By calculat-
ing traces of these matrices we find that the 6 matrices ��


are linear independent and orthogonal to the 15, ��
�, and
to the uniqueKwhile among these latter 16 matrices only 9
are linear independent.
This observation is important for the following reason.

When we write the following formulas:

�B
 ¼ � 1

8
��
ABA

AB

�B
� ¼ e

4
��
�ABA

AB � e

4
K
�KABAAB

(B2)

we are actually decomposing the soð6Þ connection AAB

along an over-complete basis of 15þ 6 ¼ 21 generators of
soð6Þ, which is obviously a well defined operation.
It is interesting to establish the inverse formula, namely,

to express the original connection AAB in terms of the
over-complete set of objects �B
 and �B
�. The inverse
formula can be established by means of direct calculation
in the explicit �-matrix basis we have chosen and we find
what follows:

A AB ¼
�
�2�B
 ��
 þ 1

4e
�B
� ��
�

� 1

4e
�B
�K
�K

�
AB
: (B3)
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[32] P. Fré and P. A. Grassi, Nucl. Phys. B763, 1 (2007).

[33] P. G.O. Freund and M.A. Rubin, Phys. Lett. B 97, 233
(1980).

[34] F. Englert, Phys. Lett. B 119, 339 (1982).
[35] P. Fre and P.A. Grassi, J. High Energy Phys. 01, (2008)

036.
[36] N. Berkovits, J. High Energy Phys. 01 (2008) 065.
[37] J. Hoogeveen and K. Skenderis, J. High Energy Phys. 11

(2007) 081.
[38] J. Bagger and N. Lambert, Phys. Rev. D 77, 065008

(2008).
[39] N. Berkovits, J. High Energy Phys. 04 (2000) 018.
[40] B. E.W. Nilsson and C.N. Pope, Classical Quantum

Gravity 1, 499 (1984).
[41] M. Matone, L. Mazzucato, I. Oda, D. Sorokin, and M.

Tonin, Nucl. Phys. B639, 182 (2002).

SUPERSTRINGS ON AdS4 � CP3 . . . PHYSICAL REVIEW D 79, 086001 (2009)

086001-17


