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Two-time (2T) gravity in dþ 2 dimensions predicts 1T general relativity in d dimensions, augmented

with a local scale symmetry known as the Weyl symmetry in 1T field theory. The emerging general

relativity comes with a number of constraints, particularly on scalar fields and their interactions in 1T field

theory. These constraints, detailed in this paper, are footprints of 2T gravity and could be a basis for testing

2T physics. Some of the conceptually interesting consequences of the ‘‘accidental’’ Weyl symmetry

include that the gravitational constant emerges from vacuum values of the dilaton and other Higgs-type

scalars and that it changes after every cosmic phase transition (inflation, grand unification, electroweak

phase transition, etc.). We show that this consequential Weyl symmetry in d dimensions originates from

coordinate reparametrization, not from scale transformations, in the dþ 2 spacetime of 2T gravity. To

recognize this structure we develop in detail the geometrical structures, curvatures, symmetries, etc. of the

dþ 2 spacetime which is restricted by a homothety condition derived from the action of 2T gravity.

Observers that live in d dimensions perceive general relativity and all degrees of freedom as shadows of

their counterparts in dþ 2 dimensions. Kaluza-Klein type modes are removed by gauge symmetries and

constraints that follow from the 2T-gravity action. However some analogs to Kaluza-Klein modes, which

we call ‘‘prolongations’’ of the shadows into the higher dimensions, remain but they are completely

determined, up to gauge freedom, by the shadows in d dimensions.
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I. INTRODUCTION

Two-time (2T) gravity [1] in dþ 2 dimensions has
successfully reproduced the usual one time general rela-
tivity (GR) as a shadow in ðd� 1Þ þ 1 dimensions. Taken
together with similar recent results for the standard model
[2] andN ¼ 1, 2, 4 supersymmetric 2T field theory [3,4],
these 2T theories correctly describe 3þ 1 dimensional
nature directly in 4þ 2 dimensions. The phenomenologi-
cally successful theories now have counterparts in 4þ 2
dimensions, thus providing a new perspective on the sig-
nificance of space and time and lending a new outlook on
unification of 1T-physics theories.

Briefly, the relation between the 4þ 2 and 3þ 1 theory
is as follows. After gauge fixing and solving some kine-
matic equations of motion, the 4þ 2 field theory yields
various ‘‘shadows’’ in 3þ 1 dimensions. The ‘‘conformal
shadow’’ of the 4þ 2 theories coincides with the standard
familiar theories, except for some additional new con-
straints. These new constraints on 1T field theory—in
particular on scalar fields and their interactions—are con-
sistent with everything we know so far. Potentially there
are measurable phenomenological consequences of these
new restrictions within the conformal shadow that could
distinguish 2T physics from other approaches, as explained
at the end of Sec. II.

In addition, a main novelty in 2T physics is that this
formalism produces many 1T-physics shadows from the
same parent theory. The conformal shadow mentioned in
the previous paragraph is only one of many. The other

shadows provide 1T field theories that are dual to the
familiar ones and these may be turned into computational
tools for extracting nonperturbative physics. The shadows
give different perspectives of the 4þ 2 theory as viewed by
observers that are stuck in 3þ 1 dimensions. The different
embedding of 3þ 1 dimensions into 4þ 2 dimensions
contains moduli that appear in 3þ 1 dimensions as pa-
rameters of the 1T shadow theory, such as mass, curvature,
or interaction with backgrounds, which offer different
glimpses of the higher dimensions. Dualities transform
shadows with different 3þ 1 geometries or different val-
ues of the parameters. The shadows and dualities are most
easily understood in the worldline formulation of 2T phys-
ics.1 While the investigation of dualities in the 1T field
theory formalism are ongoing [6], some of the simpler
cases have been reported in [5] for scalar fields and in [7]
for Dirac and Yang-Mills fields.
Through the dualities, and through hidden symmetries

related to the higher spacetime, the parent theory in dþ 2
dimensions provides a new kind of unification of various
1T-physics field theories.
In this paper we will concentrate exclusively on the

conformal shadow of 2T gravity in dþ 2 dimensions in
order to clarify further its geometrical and symmetry prop-
erties. Specifically, we will investigate not only the shadow
in ðd� 1Þ þ 1 dimensions but also its prolongation into
dþ 2 dimensions. By this we mean that there are Riemann

1For examples of ðd� 1Þ þ 1 shadows that emerge from flat
dþ 2 spacetime, see Tables I, II, and III in [5].
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curvature components RM
NPQ and other geometrical fields

that are nonvanishing not only in the shadow in ðd� 1Þ þ
1 dimensions but also in dþ 2 dimensions. We will show
that all such nonvanishing components of the prolongation
of the shadow are actually fully determined, up to gauge
freedom, by the fields within the shadow in ðd� 1Þ þ 1
dimensions.

Concentrating only on the shadow with an effective
action principle in ðd� 1Þ þ 1 is self-consistent as shown
in [1]. However, the extension of the shadow into the
higher spacetime is likely to be important for discussing
the dualities among shadows as well as for grasping the
higher dþ 2 dimensional properties of the underlying
theory.

Another important property of the conformal shadow for
gravity in ðd� 1Þ þ 1 is that general relativity comes with
a local rescaling Weyl symmetry [8–11], along with a
dilaton that compensates for the local rescaling of the
metric. This is one of the important restrictions imposed
on 1T physics by 2T physics, as reported in [1]. The
physical effect of this is that the gravitational constant is
not a parameter but emerges in 1T physics from the vac-
uum value of the dilaton.2

A further property associated with the Weyl symmetry is
that every scalar field in 1T physics beyond the dilaton
(such as inflaton, Higgs, etc.) must be a conformal scalar
that has a special fixed dimensionless coupling to the
curvature scalar R. The physical effect of this is that the
gravitational constant changes as a function of cosmic time
after every phase transition in the universe (inflation, grand
unification, etc.). In this paper we will clarify the origin of
this important accidental local scale symmetry in the con-
formal shadow. It will be shown that it emerges as a
remnant from symmetry under coordinate transformation
(not scale transformations) of the higher dimensional 2T
gravity.

In Sec. II we will briefly review the basic setup of 2T
gravity, display its reduction to ordinary 1T general rela-
tivity augmented with the local Weyl symmetry, and ex-
plain the physically significant constraints that this
structure puts on 1T field theory coupled to gravity. The
rest of the paper develops the technical aspects of the
geometry and symmetries to explain in detail how the
reduced 1T theory of Sec. II is recovered from 2T gravity.
In Sec. III we discuss the kinematics of 2T curved space-
time in dþ 2 dimensions. This involves solving the kine-
matical equations of motion that follow from the 2T-
gravity action and working out the general consequences
that the geometry of the 2T spacetime is restricted by a

homothety condition on the metric. In Sec. IV the dynami-
cal and kinematical equations are discussed. Their relation
to an Spð2; RÞ gauge symmetry of an underlying worldline
particle theory is explained in Sec. V. Then in Sec. VI we
show how spacetime in ðd� 1Þ þ 1 dimensions is em-
bedded in spacetime in (dþ 2) dimensions by making
gauge choices and solving the kinematic equations. This
leads to an explanation of the origin of the local scaling
symmetry in general relativity in ðd� 1Þ þ 1 dimensions
known as the Weyl symmetry. It will be shown that it
originates from general coordinate transformations, not
from local rescalings, in dþ 2 dimensions. In Sec. VII
we calculate the components of the Riemann tensors and of
the SOðd; 2Þ ‘‘Lorentz’’ curvature in tangent space that
describe the geometry of the prolongation of the conformal
shadow into the higher dimensions. In Sec. VIII we discuss
in more detail the emerging 1T dynamical equations of
motion of both the shadow fields in d dimensions and their
prolongations to higher dimensions and show that, up to
gauge freedom, the prolongations are completely deter-
mined by the shadow fields in d dimensions. This leads
to one of our main conclusions, that the shadow fields
themselves are determined self-consistently by the action
only within the shadow in d dimensions, independently of
the prolongations, which was one of the goals in our
investigation.

II. CONSTRAINTS IN 1T FIELD THEORY
INDUCED BY 2T GRAVITY

In this section we briefly review 2T gravity to explain
the constraints that it induces in 1T field theory, particu-
larly involving scalar fields. We will see that the gravita-
tional constant emerges from the vacuum values of the
scalars and that it appears in several places in the action
of 1T field theory. The structure of scalars that emerges in
1T field theory, shown in Eq. (2.15) and related discussion,
is consistent with current observations but this structure
could be one of the future tests for the predictions of 2T
physics.
2T gravity, without any matter, includes three fields

which we call the gravity triplet: the metric GMN , the
dilaton �, and another scalar field W, all in dþ 2 dimen-
sions XM. The action for pure 2T gravity is [1]

S0 ¼ �
Z

ddþ2X
ffiffiffiffi
G

p �
�ðWÞ

�
�2RðGÞ þ 1

2a
@� � @�

� Vð�Þ
�
þ �0ðWÞ½�2ð4�r2WÞ þ @W � @�2�

�
:

(2.1)

Here RðGÞ is the Riemann curvature scalar, a is the special
constant

a � d� 2

8ðd� 1Þ ; (2.2)

2The massless Goldstone boson that emerges from the sponta-
neous breaking of scale symmetry [8–19], i.e. the fluctuation of
the dilaton around its vacuum value, is eliminated by a Weyl
gauge choice in our theory, so it does not generate any long range
forces that could compete with the long range effects of gravity
[20].
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while the potential V can only have the form Vð�Þ ¼
��2d=ðd�2Þ with a dimensionless coupling �. The overall
constant � can be absorbed away by rescaling the fields,
but is used for convenience to normalize the 1T shadow
action that emerges in two lower dimensions. The action
with this structure of kinetic terms, value of a, and form of
V is unique under certain local gauge symmetries dis-
cussed in [1].

The unusual features of this action as a field theory
include the delta function �ðWÞ and its derivative �0ðWÞ.
All fields are varied freely to derive equations of motion or
to verify symmetries. The variations contain terms propor-
tional to �ðWÞ, �0ðWÞ, and �00ðWÞ where more derivatives
on �ðWÞ or �0ðWÞ emerge from integration by parts and the
chain rule @M�ðWÞ ¼ �0ðWÞ@MW, etc. The coefficients of
�ðWÞ, �0ðWÞ, and �00ðWÞ for each general variation �GMN ,
��, and �W give three equations of motion for each field.
We will discuss some of the equations of motion later.
There are remarkable consistencies between these equa-
tions all due to the noteworthy symmetries of this action.
This symmetry in field theory captures the essentials of an
underlying Spð2; RÞ symmetry (see Sec. V) that makes
position and momentum XMð�Þ, PMð�Þ indistinguishable
at every instant � at the level of a worldline formulation of
a particle in the presence of gravity [1].

Part of the gauge symmetry can be used to fix WðXÞ to
any function of XM that can vanish in some region of
spacetime XM. To understand the role of W the reader is
reminded that, in 2T field theory in flat space, W is
replaced by a fixed function Wflat ¼ XMXN�MN where
�MN is the SOðd; 2Þ invariant flat metric. When 2T field
theory in flat dþ 2 dimensions is reduced to shadows in
ðd� 1Þ þ 1 dimensions, then, in the conformal shadow,
the SOðd; 2Þ symmetry of W becomes the conformal sym-
metry of 1T field theory in Minkowski space.3

The symmetries of the action (2.1) do not allow a
gravitational constant in dþ 2 dimensions; however
Newton’s constant emerges in the shadow in d dimensions
from the vacuum value of the dilaton h�i when the equa-
tions of motion are used to reduce this theory to the
conformal shadow. The conformal shadow action derived
from (2.1) in [1] (see Sec. VIII for justification) has the
familiar form of a conformal scalar

S0shadow ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
1

2a
g��@��@��þ R�2 � Vð�Þ

�
;

(2.3)

where g��ðxÞ is the metric in d dimensions, RðgÞ is its

Riemann curvature scalar, and a has the special value in
Eq. (2.2). The relation of g��ðxÞ to GMNðXÞ and of �ðxÞ to
�ðXÞ will be displayed below. Suffice it for now to say that

(g��, �) are the shadows of the higher dimensional fields

as seen by observers living in d dimensions. There are no
Kaluza-Klein (KK) type physical degrees of freedom, as
those are removed by the gauge symmetries of 2T physics.
But there are some analogs to KK modes, which we call
‘‘prolongations’’ of the shadow into the higher dimensions,
determined by the shadow fields (g��, �) as will be dis-

cussed later in this paper.
In the conformal shadow in Eq. (2.3) there is an acci-

dental Weyl symmetry that plays multiple important roles.
Because of the special value of a, Eq. (2.3) is the
well-known action of a conformal scalar that has a Weyl
symmetry S0shadowðg0; �0Þ ¼ S0shadowðg;�Þ under local re-

scalings [9] g0��ðxÞ ¼ e2�ðxÞg��ðxÞ, �0ðxÞ ¼
e�½ðd�2Þ=2��ðxÞ�ðxÞ with an arbitrary �ðxÞ. The original
action in dþ 2 dimensions (2.1) does not have a Weyl
symmetry, so the symmetry in the conformal shadow ap-
pears to be ‘‘accidental.’’ Later in this paper it will be
explained how this symmetry originates in the coordinate
transformations (not in scale transformations) in higher
dimensions. Using this local symmetry, �ðxÞ can be gauge
fixed to a constant �0, so that the action (2.3) becomes
precisely pure general relativity in d dimensions

S0;fixedshadow ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
RðgÞ
2	2

d

� �d

2	2
d

�
;

with
1

2	2
d

� �2
0; �d � �ð�0Þ4=ðd�2Þ: (2.4)

Note that according to the sign of the kinetic term in
Eq. (2.3), the field �ðxÞ has negative norm, but this sign is
required in order to obtain a positive gravitational constant
while being consistent with the Weyl symmetry. Of course,
by having the Weyl symmetry, the negative norm ghost,
which is also a Goldstone boson of scale transformations,
is removed from the physical spectrum. This nice feature is
a consequence of the symmetries of the higher dimensional
2T-gravity theory.
When matter is included the Weyl gauge can be chosen

in various other ways (see below), and then one finds more
physical effects of the dilaton beyond its footprints in the
form of the gravitational constant in d dimensions ð2	2

dÞ�1

and an undetermined cosmological constant �d (� has any
sign or magnitude).
We now outline the coupling of the gravity triplet (W,�,

GMN) to matter fields of the type Klein-Gordon SiðXÞ,
Dirac �ðXÞ, and Yang-Mills AMðXÞ [1]. In flat 2T field
theory these fields must have the following engineering
dimensions [2]:

dimðXMÞ ¼ 1; dimðSiÞ ¼ � d� 2

2
;

dimð�Þ ¼ �d

2
; dimðAMÞ ¼ �1:

(2.5)

The general 2T field theory of these fields in flat space in

3In other 1T shadows1 this SOðd; 2Þ of the flat 2T theory is still
a symmetry that is usually hidden and often not noticed in 1T
physics before discovering it through a shadow of 2T physics.
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dþ 2 dimensions was given in [2]. The matter part of the
theory in curved space follows from the flat theory in [2] by
making the substitutions indicated in Table I [1]. The
dilaton � couples to Yang-Mills fields with factor

�½2ðd�4Þ=ðd�2Þ� and Yukawa terms with factor

��ðd�4Þ=ðd�2Þ as in Table I. This coupling of � is dictated
by the symmetries of the theory consistently with the
dimensions in Eq. (2.5). When dþ 2 ¼ 6, these factors
become 1, so this coupling of the dilaton disappears for this
special case. An important property of Vð�; SiÞ related
again to the dimensions (2.5) and symmetries is that it
must have the homogeneity property4

Vðt�; tSiÞ ¼ t2d=ðd�2ÞVð�; SiÞ: (2.6)

A general function with this property may be written in the

form Vð�; SiÞ ¼ �2d=ðd�2ÞfðSi=�Þ, where fð
iÞ is an ar-
bitrary function of the scale invariant variables
i ¼ Si=�.

We emphasize an important property of the scalars Si
(including the Higgs field in the standard model). The
symmetries require that, except for an overall normaliza-
tion for each scalar, the quadratic part of the Lagrangian
for any scalar SiðXÞmust have exactly the same structure as
the one for the dilaton field � in the pure gravity action
Eq. (2.1). This structure is included for scalars �, Si in
Table I, where the sign and structure of the curvature term
relative to the kinetic term is fixed by the constant a.
Furthermore, the symmetry requires also a �0ðWÞ term
for the quadratic term in the scalars �, Si as shown in
the table.5

The overall sign and magnitude of the normalization for
the kinetic term (�1

2 ) of a real scalar �1
2 GMN@MSi@NSi is

fixed by the requirements of unitarity (no negative norms)
and conventional definition of norm. For the dilaton the
norm differs by an overall �1

a ; the magnitude can be

changed by rescaling the field � so it is not significant,
but the sign is significant (negative norm) and is needed to
produce a positive Newton constant from the vacuum
values of the scalars in the shadow 1T theory as explained
above. This negative norm ghost is harmless since it is
removable in the shadow by using the leftover Weyl sym-
metry arising from coordinate transformations.
The form of the shadow action with only scalar matter

fields was derived in [1] (see Sec. VIII for justification). It
has the form of conformal scalars coupled to gravity

Sshadowðg;�; siÞ ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
1

2a
g��@��@��

� 1

2
g��@�si@�si þ ð�2 � as2i ÞR

� Vð�; siÞ
�
; (2.7)

where a sum over i is implied. The equations of motion that
follow from this action include

R��ðgÞ � 1
2g��RðgÞ ¼ T��ð�; siÞ; (2.8)

with the energy momentum tensor T�� given by

T�� ¼ 1

ð�2 � as2i Þ
��

� 1

2a
@��@��þ 1

2
@�si@�si

�

� ðg��r2 �r�@�Þð�2 � as2i Þ
þ 1

2
g��

�
1

2a
@� � @�� 1

2
@si � @si � Vð�; siÞ

��
:

(2.9)

The relation of the shadow (g��, �, and si) to (GMN , �,

and Si) and their prolongations will be given below. If there
are N real scalars si in addition to the dilaton �, then the
kinetic and curvature terms have an automatic global sym-

TABLE I. Matter Si, �, AM in interaction with the gravity triplet (W, �, GMN).

Quantity Flat Curved

Metric �MN GMNðXÞ
Volume element ðddþ2XÞ�ðX2Þ ðddþ2XÞ ffiffiffiffi

G
p

�ðWðXÞÞ
Explicit X XM VMðXÞ ¼ 1

2G
MN@NW

Gamma matrix, vielbein �M Ea
MðXÞ�a

Spin connection �M@M� EMc�cð@M þ 1
4�ab!

ab
M ðXÞÞ�

Yang-Mills Specialize �MN �2ðd�4Þ=ðd�2Þ Trð� 1
4FMNFKLÞGMKGNL

Yukawa Specialize XM�M ��ðd�4Þ=ðd�2ÞVMðgi ��L�M�
RSi þ H:c:Þ

fReal scalar fields Si;
� extra �1

a for dilatong
fComplex ’ ¼ S1þiS2ffiffi

2
p g fGMNð 12a @M�@N�� 1

2

P
i@MSi@NSiÞ þ ð�2 � a

P
iS

2
i ÞRðGÞ

� Vð�; SiÞg
�0ðWÞ term, scalars only Wflat ¼ X2 fð�2 � a

P
iS

2
i Þð4�r2WÞ þ @W � @ð�2 � a

P
iS

2
i Þg�0ðWÞ

4Then Vð�; SiÞ has dimension �d under the scaling of scalars
ð�; SiÞ ! e�½ðd�2Þ=2��ð�; SiÞ, that is V ! e�d�V.

5In flat space the �0ðX2Þ term can be rewritten as a �ðX2Þ term
that modifies the naive kinetic term. As indicated in the table, for
2T field theory in flat spacetime the function W is replaced by
Wflat ¼ X2. Then it can be verified that for each scalar �, Si the
kinetic terms ( 1

2a @� � @�� 1
2@Si � @Si) that are multiplied with

�ðX2Þ combine with the �0ðX2Þ terms in Table I to become
simply �ðX2Þð 12a�@2�� 1

2Si@
2SiÞ after dropping a total deriva-

tive, thus avoiding any �0ðX2Þ terms, as in the general 2T-field
theory in flat space [2].
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metry SOðN; 1Þ, with a SOðN; 1Þ diagonal metric
ð�1=a; 1; 1; . . . ; 1Þ as seen in the expression ð�2 � as2i ÞR
and the kinetic term. This symmetry could be explicitly
broken by the potential Vð�; siÞ which is arbitrary except
for the homogeneity condition in Eq. (2.6).6 The vacuum is
determined by the properties of Vð�; siÞ and therefore the
gravitational constant and the cosmological constants are
now functions of the vacuum values of all the scalars

1

2	2
d

¼ h�2 � as2i i;
�d

2	2
d

¼ Vðh�i; hsiiÞ; (2.10)

generalizing Eq. (2.4). These gravitational and cosmologi-
cal ‘‘constants’’ (	d, �d) induced by the various funda-
mental scalars (�, Si) are not really constants since they
must change after every cosmic phase transition of the
Universe as a whole (inflation, grand unification, electro-
weak phase transition, etc.) as the various vacuum expec-
tations values h�i, hsii turn on at critical values of cosmic
temperature or cosmic time. The cosmological implica-
tions of this are under study [21].

An important fact again is the presence of the accidental
Weyl symmetry in the action (2.7), Sshadowðg0; �0; s0iÞ ¼
Sshadowðg;�; siÞ, under local rescalings with an arbitrary
local gauge parameter �ðxÞ

g0�� ¼ e2�g��; �0 ¼ e�½ðd�2Þ=2���;

s0i ¼ e�½ðd�2Þ=2���:
(2.11)

This symmetry persists in the shadow action with addi-
tional matter fields when the fermions and gauge fields are
included in the 2T action according to Table I. The Weyl
symmetry can be used to remove the dilatonic Goldstone
boson (now a mixture of many fields�, si). The remaining
physical scalar fields, after the phase transitions that pro-
duce the gravitational constant ð2	2

dÞ�1, can be neatly

described by fixing the Weyl gauge so that the dilaton �
gets determined by the other scalars as follows:

�ðxÞ ¼ �
�
as2i ðxÞ þ

1

2	2
d

�
1=2

: (2.12)

This gauge choice reduces the curvature term in Eq. (2.7)
to simply RðgÞ=ð2	2

dÞ, thus conveniently describing gravity
after the phase transition in the Einstein frame. However,
while this gauge choice is convenient to describe gravity in
the traditional setting, the gravitational constant enters in a
few other places in the action as described below. In
particular, the kinetic term of the scalars in the shadow
action (2.7) turns into a nonlinear sigma model for the
group SOðN; 1Þ [see Eq. (2.15)]. The scale of the nonline-

arity in the sigma model is determined by the gravitational
constant ð2	2

dÞ�1 as in Eq. (2.12).

Taking advantage of the homogeneity of the potential,

and using t ¼ ð�2 � as2i Þ�1=2 in Eq. (2.6), V can be written
in the form

Vð�; siÞ ¼ ð�2 � as2i Þd=ðd�2Þ

� V

�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � as2i

q ;
siffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � as2i

q
�

� vð
iÞ: (2.13)

In the Weyl gauge (2.12), after replacing the overall coef-

ficient by the constant ð�2 � as2i Þd=ðd�2Þ ¼ ð2	2
dÞ�d=ðd�2Þ,

and absorbing it into the definition of vð
iÞ, we see that the
leftover vð
iÞ is an arbitrary function of the N variables

i ¼ si=� that are invariants under the local scale trans-
formations of Eq. (2.11). Of course at this fixed gauge there
are now some scales in the theory, namely, the gravitational
scale 	d and the other scales hsi=�i ¼ h
ii generated by
phase transitions that follow from the properties of vð
iÞ.
The kinetic term of the scalars in the nonlinear sigma

model can also be written in terms of the 
i or the si. For
example, if we parametrize the N fields as si ¼ sni where
niðxÞ is a unit vector

P
inini ¼ 1 and sðxÞ is the magnitude

of the SOðNÞ vector siðxÞ, then we can write
P

is
2
i ¼ s2 so

that � in Eq. (2.12) becomes a function of a single field
sðxÞ

� ¼ �ð2	2
dÞ�ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a	2

ds
2

q
: (2.14)

Replacing these forms in the action (2.7) we obtain an
ordinary looking general relativity (after the phase transi-
tions) coupled to an arbitrary6 potential vðs; niÞ with a
nonordinary kinetic energy term for scalars where the
gravity scale 	d appears nontrivially

Sfixedshadowðg;s;niÞ ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
1

2	2
d

RðgÞ�vðs;niÞ

� 1

2
g��

�
@�s@�s

1þ 2a	2
ds

2
þ s2

X
i

@�ni@�ni

��
:

(2.15)

The last term
P

i@ni � @ni, with ~n � ~n ¼ 1, is a nonlinear
SOðNÞ sigma model, while taken together as a whole the
scalar kinetic terms form a nonlinear SOðN; 1Þ sigma
model coupled to gravity. The scale of nonlinearity of the
SOðN; 1Þ sigma model is also determined uniquely by the
gravity scale 	d and the constant a given in Eq. (2.2). That
the gravitational constant ð2	2

dÞ�1 should appear in this

way in 1T field theory, in addition to the traditional term
RðgÞ=2	2

d, is a prediction of the symmetries of 2T gravity.

Additional places in 1T field theory action where
ð2	2

dÞ�1 appears as a consequence of 2T gravity include

the dilaton factor �2ðd�4Þ=ðd�2Þ for Yang-Mills kinetic

6Of course, in a complete model of fundamental interactions,
various Yang-Mills gauge symmetries also put constraints on the
structure of the potential Vð�; SiÞ in addition to the homogeneity
condition (2.6).
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terms, and the dilaton factor ��ðd�4Þ=ðd�2Þ for Yukawa
terms, which come from the similar terms in 2T field
theory as shown in Table I. In these expressions � ¼
�ð2	2

dÞ�ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a	2

ds
2

q
as above. Evidently when d ¼

4 these factors disappear, but they could play a physical
role in a theory with d less than or larger than 4, thus
providing additional signals of 2T physics.

The 
i or si can also be parametrized in other conve-
nient ways to take advantage of both the SOðN; 1Þ symme-
try of the kinetic term and of possible other symmetries6 of
the potential term Vð�; SiÞ. Presumably the symmetries of
the potential, indeed of the full theory, include at the very
least the SUð3Þ � SUð2Þ � Uð1Þ symmetry of the standard
model, which is possibly embedded in a larger grand
unified symmetry group. In this context N is the total
number of all the real scalars in the theory besides the
dilaton. In the physical applications of these concepts in a
complete theory, one would be advised to take advantage
of the flavor/color or grand unified symmetry structures in
choosing the most convenient parametrization of the
SOðN; 1Þ sigma model.

We see that, in addition to the possibility of a changing
gravitational constant after each phase transition, some
general constraints have emerged from 2T gravity on the
structure of scalars in 1T field theory. The constraints
described in the above paragraphs permeate to the shadow
1T field theory in d dimensions and show up in the cou-
plings among scalars in the kinetic terms, potential energy
vðs; niÞ, and gauge bosons and fermions through the factors

�2ðd�4Þ=ðd�2Þ and ��ðd�4Þ=ðd�2Þ, respectively, thus leaving
footprints that observers in the conformal shadow in d
dimensions can use to infer properties of the underlying
2T theory. These properties of scalars, including the in-
flaton and the Higgs, are currently under investigation in
cosmological and LHC contexts [21].

Additional and deeper observable properties of the 2T
theory can be obtained by studying the other shadows
related to the conformal shadow by duality transformations
as in the examples in [5,7] and their generalizations that are
still under investigation [6].

III. KINEMATICS OF 2T CURVED SPACE IN dþ 2
DIMENSIONS

A. Kinematic equations

The equations of motion that follow from the 2T-gravity
action in Eq. (2.1) and Table I can be divided into two
categories: dynamical equations and kinematical equa-
tions. The dynamical equations are those proportional to
the delta function �ðWÞ—these provide the dynamics in-
cluding the field interactions in dþ 2 dimensions. The
kinematical equations are those proportional to the deriva-
tives of the delta function �0ðWÞ and �00ðWÞ. We recall that
such derivatives emerge from integration by parts in com-
puting the variation of the action.

A remarkable property of the kinematical equations that
will be emphasized below is that they are universal and
have a geometrical character. They can be shown to be
independent of interactions and they are the same for each
field independent of which other fields are included in the
action. Although these properties may not be immediately
apparent when the kinematic equations are derived from
the action, it follows after some rewriting of the equations
as seen below. There is an important underlying symmetry
for this result, namely, Spð2; RÞ which will be discussed in
Sec. V. The kinematical equations provide the instructions
for how to relate the fields in (dþ 2) dimensions to the
shadows in d dimensions, so their solutions reduce the
original 2T theory to various shadows in d dimensions,
such as the conformal shadow in Eq. (2.4).
Both the kinematic and dynamical equations for 2T

gravity were derived from the action in [1]. In this section
we deal mainly with the kinematics. For the pure gravity
triplet (GMN , �, W) the kinematic equations have the
following form:

GMN@MW@NW ¼ 4W; (3.1)

GMN@MW@N� ¼ 4a�ð6�r2WÞ; (3.2)

rM@NW ¼ GMN½�6þr2W þ 8að6�r2WÞ�; (3.3)

wherer is the covariant derivative in the curved spacewith
metricGMN . After contracting the third equation withG

MN

and taking account ofr2W ¼ GMNrM@NW, one can solve
for r2W and find

r2W ¼ 6ðdþ 2Þð8a� 1Þ
ðdþ 2Þð8a� 1Þ þ 1

¼ 2ðdþ 2Þ; (3.4)

where the special value of a in Eq. (2.2) is used. Note
that the result is independent of the metric, and, in particu-
lar, it is true in flat space for Wflat ¼ X2 as listed in
Table I, namely, ðr2WÞflat ¼ �MN@M@NðX2Þ ¼ 2@MX

M ¼
2ðdþ 2Þ.
With this result, the kinematic equations for the gravity

triplet (3.1)–(3.3) simplify to

W ¼ V � V; V � @� ¼ �d� 2

2
�;

GMN ¼ rMVN;

(3.5)

where the dot products are constructed with GMN and the
vector VM or VM is defined as the derivative of WðXÞ

VM � 1
2@MW; VM ¼ 1

2G
MN@NW: (3.6)

For this form of VM the expression for GMN ¼
1
2rM@NW ¼ 1

2@M@NW � 1
2 �

K
MN@KW is symmetricGMN ¼

rMVN ¼ rNVM since the Christoffel symbol [22]

�K
MN ¼ 1

2G
KQð@MGNQ þ @NGMQ � @QGMNÞ (3.7)

is symmetric. In particular, in flat space all the kinematic
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equations above are satisfied by

Wflat ¼ X2; Vflat
M ¼ XM;

Gflat
MN ¼ �MN; ð�K

MNÞflat ¼ 0
(3.8)

as listed in Table I.
The form of the metric in (3.5) that emerged from the 2T

gravity action satisfies a special geometric property. By
using the definition of the Lie derivative LV for the vector
V, which on a tensor is given by LVGMN � rMVN þ
rNVM, we can recognize that the form GMN given in
(3.5) and (3.6) is equivalent to writing the following ho-
mothety equations for the metric and its inverse:

L VGMN ¼ 2GMN; LVG
MN ¼ �2GMN: (3.9)

The Lie derivative amounts to a general coordinate trans-
formation of the metric using the vector VMðXÞ as the
parameter of transformation, therefore we can say that
under such a transformation the metric yields a factor of 2

2GMN ¼ LVGMN ¼ rMVN þrNVM

¼ VK@KG
MN þ @MV

KGKN þ @NV
KGMK: (3.10)

The equivalence of the homothety conditions above to the
kinematic equations of motion (3.5) that emerged from the
action is shown by inserting the Christoffel symbol (3.7)
into rMVN ¼ @MVN � �K

MNVK.
After coupling the gravity triplet to any matter as in

Table I, the kinematic equations initially derived from the
action appear to have couplings between the gravity triplet
ðGMN;�; WÞ and matter fields [1]. However, after using
the kinematic equations for matter as well, one finds that
they simplify to the form above (3.5) and (3.6) regardless of
the type of matter they couple to [1]. Furthermore, the
kinematic equations for matter fields (Si, �, AM) also
simplify to the following form [1]:

V �DSi ¼ �d� 2

2
Si; V �D� ¼ �d

2
�;

VMFMN ¼ 0;

(3.11)

where FMN ¼ @MAN � @NAM � ig½AM; AN� is the Yang-
Mills field strength, and DM is the Yang-Mills covariant
derivative. These equations can also be rewritten as the
response to the Lie derivative LV applied on the corre-
sponding fields of various spins.

It is now evident that all kinematic equations (3.5) and
(3.11) derived from the action (2.1) have a geometrical
meaning and they are the same for each field irrespective of
the interactions and irrespective of which other fields are
included in the action. This is why we call these ‘‘kine-
matic’’ equations. The deeper significance of this structure
is an underlying Spð2; RÞ symmetry explained in Sec. V.

B. Kinematics of the metric, vielbein and Dirac gamma
matrices

The kinematic equations described above required the
peculiar homothety condition (3.9) that the metric must
satisfy LVGMN ¼ 2GMN , which in turn requires that the
metric must also be constructed from the potential WðXÞ
GMN ¼ rMVN; with VN ¼ 1

2@NW and W ¼ V � V:
(3.12)

This is a nonlinear equation since �P
MN is constructed from

the metric as in (3.7). These equations are solved by
choosing gauges and convenient coordinates. Then the
solution is expressed in terms of the shadow field g��ðxÞ
in two lower dimensions, and its prolongations, all of
which remain arbitrary as far as the homothety condition
(3.12) is concerned, as will be discussed below. In this
section we develop properties of the curved space de-
scribed by a metric that satisfies (3.12) without choosing
any gauges.
Before imposing the homothety condition (3.12), we

recall the well-known usual formulation of curved space,
with any signature in any number of dimensions. We define
a base space and a tangent space. The vielbein that con-
nects the two spaces EM

aðXÞ is labeled by an index M in
base space and an index a in tangent space. The metric in
flat tangent space is the SOðd; 2Þ invariant flat metric �ab

while the curved space metric GMNðXÞ is constructed from
the vielbein as a SOðd; 2Þ invariant

GMNðXÞ ¼ EM
aðXÞEN

bðXÞ�ab: (3.13)

We introduce the usual affine connection �P
MNðXÞ of

Eq. (3.7) which is symmetric in base space �P
MN ¼ �P

NM,
and the SOðd; 2Þ Yang-Mills field known as the ‘‘spin
connection’’ !M

abðXÞ which is antisymmetric in tangent
space!M

ab ¼ �!M
ba. We will use the following notation

for various covariant derivatives:

rM ¼ @M � �M; DM ¼ @M þ!M;

D̂M ¼ @M � �M þ!M:
(3.14)

The first one rM is covariant when applied on a field with
only base space indices, the second one DM is covariant
when applied on a field with only tangent space indices,

and the third one D̂M is covariant when applied on a field
with both base and tangent space indices. In many expres-

sions we will write D̂M and let it be understood that some-
times �M or !M would drop out automatically depending
on the field. However, when it becomes useful we will

specialize D̂M to rM or DM or even @M.
Using these definitions, the covariant derivative of EM

a

that is gauge invariant under general coordinate transfor-
mations as well as under the tangent space local SOðd; 2Þ
transformations is

D̂ MEN
a ¼ @MEN

a � �MN
PEP

a þ!M
abENb: (3.15)
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A symmetric connection �P
MN ¼ �P

NM demands vanishing
torsion TMN

a

TMN
a � D̂MEN

a � D̂NEM
a ¼ @½MEN�

a þ!ab
½MEN�b

¼ D½MEN�
a ¼ 0; (3.16)

where �P
MN dropped out due to antisymmetrization.

TMN
a ¼ 0 is an equation from which the spin connection

!M
ab is solved as a function of Ea

M as

!ab
M ¼ ENaEPbðCMNP � CNPM � CPMNÞ;

CMNP � �1
2EMcð@NEc

P � @PE
c
NÞ:

(3.17)

Furthermore, the two connections �P
MN and !M

ab are
related to each other by requiring that the covariant deriva-
tive of Ea

M in Eq. (3.15) vanishes

D̂ MEN
a ¼ 0 ! !M

ab ¼ 1
2E

N½aðrME
b�
N Þ: (3.18)

Equation (3.18) insures that the covariant derivative of the

metric vanishes D̂PGMN ¼ rPGMN ¼ 0, and since !M

drops out it can be written as

rPGMN ¼ @PGMN � �PM
QGQN � �PN

QGMQ ¼ 0:

(3.19)

Then one can show that the �P
MN which solves both equa-

tions (3.18) and (3.19) is nothing but the usual Christoffel
connection constructed from the metric GMN given in
Eq. (3.7).

The curvature tensor is constructed just as in Yang-Mills
theory from the spin connection!M

ab which is nothing but
the Yang-Mills gauge field for the SOðd; 2Þ local symmetry
in tangent space

RMN
ab ¼ @M!N

ab � @N!M
ab þ!M

ak!Nk
b

�!N
ak!Mk

b: (3.20)

This Yang-Mills field strength coincides with the standard
curvature tensor RP

QMN constructed from the affine connec-

tion

RP
QMN ¼ @M�

P
NQ � @N�

M
MQ þ �P

MS�
S
NQ � �P

NS�
S
MQ

(3.21)

after converting the base indices to tangent indices

RMN
ab ¼ �RP

QMNE
a
PE

Qb: (3.22)

As is well known, the curvature with all lower indices
GPKR

K
QMN ¼ RPQMN is antisymmetric in M $ N and

separately under P $ Q, but is symmetric under the inter-
change of the pairs MN $ PQ, and satisfies the cyclic
identity

RMNPQ ¼ �RNMPQ ¼ �RMNQP ¼ RPQMN;

RP
QMN þ RP

MNQ þ RP
NQM ¼ 0:

(3.23)

We now turn to the special kinematics of 2T physics.
The specialty in 2T physics is that the metric is constructed
from the covariant derivative of the vector VM as in
Eq. (3.12). Applying the standard formalism above, and
imposing the homothety condition (3.12), we obtain the
following seven lemmas that describe certain general prop-
erties of this special gravitational system that are useful in
our work:
(1) The vielbein Ea

M is constructed from a vector Va in
tangent space

EM
a ¼ DMV

a ¼ @MV
a þ!ab

M Vb; (3.24)

where W ¼ VaVa and

Va ¼ VME
Ma ¼ 1

2ð@MWÞEMa or

VM ¼ Ea
MVa ¼ 1

2ð@MWÞ: (3.25)

This is shown by reconstructing the metric and using
the following series of steps to prove that it agrees
with Eq. (3.12) as follows:

GMNðXÞ ¼ EM
aðXÞEN

bðXÞ�ab

¼ DMV
aEN

bðXÞ�ab ¼ D̂MðVbEN
bðXÞÞ

¼ D̂M½DNð12VaVb�abÞ� ¼ 1
2rM@NW

¼ rMVN: (3.26)

In going from the first to the second line we used

D̂MEN
b ¼ 0 of Eq. (3.18); the rest of the steps are

evident. Hence the structure of the vielbein in (3.24)
is equivalent to the homothety condition (3.12) on
GMN .

(2) The vanishing of torsion Ta
MN ¼ 0 requires the fol-

lowing kinematic conditions on the curvature:

RMN
abVb ¼ 0; VPRPQMN ¼ 0;

RMNPQV
P ¼ 0; VMRMN

ab ¼ 0:
(3.27)

The first form is shown by inserting EN
a ¼ D̂NV

a in

the vanishing torsion 0 ¼ TMN
a � D̂½MEN�

a ¼
½D̂M; D̂N�Va ¼ Rab

MNVb. The second form follows
from the first by replacing tangent indices by base
indices, or directly by writing the vanishing torsion
in the form TP

MN ¼ ½rM;rN�VP ¼ VQRP
QMN ¼ 0.

The third form follows from the second by using
the identity RPQMN ¼ RMNPQ. The last form follows

from converting the P,Q indices to ab indices in the
third form. It should be noted that the last form
VMRMN

ab ¼ 0 is the standard kinematic equation
required by Spð2; RÞ constraints on any Yang-Mills
field strength for any gauge group VMFMN

a as given
in Eq. (3.11).

(3) The SOðd; 2ÞDirac gamma matrices with base space
indices �M � Ea

M�a are covariantly constant
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D̂M�N ¼ @M�N � �P
MN�P

þ 1
4!

ab
M ð�ab�N � �N�abÞ ¼ 0: (3.28)

Here the covariant derivative D̂M includes !ab
M be-

cause ð�MÞA _B has spinor indices A _B in tangent
space. To show this result, consider first the tangent
space gamma matrices �a, which are pure constants
that satisfy @M�a ¼ 0. For these the covariant de-

rivative also gives D̂M�a ¼ 0 because it reduces to
the ordinary derivative

D̂ M�a ¼ DM�a ¼ @M�a ¼ 0; (3.29)

because the !ab
M contributions for all tangent space

indices a, A, and _B in ð�aÞA _B cancel each other.
Then the result in Eq. (3.28) is shown by rewriting

D̂M�N ¼ D̂MðEa
N�aÞ ¼ ðD̂ME

a
NÞ�a ¼ 0 which fol-

lows from (3.18).
(4) The covariant derivative of the gamma matrix V ¼

VN�N ¼ Va�a, which appears in the Yukawa cou-
plings in Table I, gives �M

D̂MV ¼ DMV ¼ �M: (3.30)

This is shown by writing DMV ¼ ðDMV
aÞ�a ¼

Ea
M�a ¼ �M.

(5) The ordinary derivative of V2 ¼ VaVa ¼ VMVM

gives 2VM

@MV
2 ¼ 2VM: (3.31)

This is shown by writing @MV
2 ¼ DMV

2 ¼
2ðDMV

aÞVa ¼ 2EM
aVa ¼ 2VM. Of course, this is

in agreement with the fact that W ¼ V2 and the
definition VM ¼ 1

2@MW.

(6) The various fields Va, VM, and V automatically
satisfy the following kinematic equations:

ðVMDM � 1ÞVa ¼ 0; ðVMrM � 1ÞVN ¼ 0;

ðVMDM � 1ÞV ¼ 0: (3.32)

These follow from DMVa ¼ EMa, rMVN ¼ GMN ,
and DMV ¼ �M derived above.

(7) The following kinematic property in dþ 2 dimen-
sions is automatically satisfied

DMð
ffiffiffiffi
G

p
�ðV2Þ�MVÞ ¼ d

ffiffiffiffi
G

p
�ðV2Þ: (3.33)

To show this, first recall that the divergence of any
vector rMv

M ¼ @Mv
M þ �MP

MvP can be rewritten

as rMv
M ¼ G�1=2@Mð

ffiffiffiffi
G

p
vMÞ. Applying this to the

vector vM � �ðV2Þ�MV, gives DMð
ffiffiffiffi
G

p
vMÞ ¼ffiffiffiffi

G
p

D̂Mv
M where D̂M appears. Then use the proper-

ties derived in the lemmas above as follows:

DM½
ffiffiffiffi
G

p
�ðV2Þ�MV�

¼ ffiffiffiffi
G

p
D̂M½�ðV2Þ�MV�

¼ ffiffiffiffi
G

p ðD̂M�ðV2ÞÞ�MV þ ffiffiffiffi
G

p
�ðV2ÞðD̂M�

MÞV
þ ffiffiffiffi

G
p

�ðV2Þ�MD̂MV

¼ ffiffiffiffi
G

p
�0ðV2Þð2VMÞ�MV þ ffiffiffiffi

G
p

�ðV2Þð0ÞV
þ ffiffiffiffi

G
p

�ðV2Þ�M�M

¼ ffiffiffiffi
G

p
�0ðV2Þ2V2 þ ffiffiffiffi

G
p

�ðV2Þðdþ 2Þ
¼ d

ffiffiffiffi
G

p
�ðV2Þ:

To get to the last step we have used the property of
the delta function V2�0ðV2Þ ¼ ��ðV2Þ.

IV. DYNAMICAL AND KINEMATIC EQUATIONS
OF MOTION

The dynamical equations of motion derived from the
action (2.1), and its generalization from Table I, are those
proportional to �ðWÞ for the general variation of every
field. The dynamical equations that follow from varying
the metric, dilaton, and scalars are [1]

��: ½r2�� 2aR�þ a@�Vð�; SiÞ�W¼0 ¼ 0; (4.1)

�Si: ½r2Si � 2aRSi � @SiVð�; SiÞ�W¼0 ¼ 0; (4.2)

�GMN: ½RMNðGÞ � 1
2GMNRðGÞ � TMN�W¼0 ¼ 0; (4.3)

where the stress tensor TMN is

TMN ¼ 1

�2 � aS2i

��1

2a
@M�@N�þ 1

2
@MSi@NSi

þGMN

�
1

4a
ð@�Þ2 � 1

4
ð@SiÞ2 � 1

2
Vð�; SiÞ

�

� ðGMNr2 �rM@NÞð�2 � aS2i Þ
�

(4.4)

and as usual RMNðGÞ � RP
MPN and RðGÞ � GMNRMN.

These equations are to be solved at W ¼ 0 because of
the delta function �ðWÞ that multiplies them, but we will
at first manipulate them for any W.
We now simplify these equations as follows. Contracting

Eq. (4.3) with GMN , we can solve for RðGÞ ¼ �2
d GMNTMN

and get

ð�2 � aS2i ÞRðGÞ ¼
�
� 1

2a
@� � @�þ 1

2
@Si � @Si

þ 2ðdþ 1Þ
d

r2ð�2 � aS2i Þ

þ dþ 2

d
Vð�; SiÞ

�
: (4.5)

Multiply Eqs. (4.1) and (4.2) by ð��=aÞ, Si respectively,
sum over i and add them, to get
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0 ¼ 2Rð�2 � aS2i Þ �
1

a
ð�r2�� aSir2SiÞ

� ð�@� þ Si@SiÞVð�; SÞ: (4.6)

In this equation we insert the expression in (4.5) and use the
homogeneity of the potential (2.6) to write ð�@� þ
Si@SiÞVð�; SÞ ¼ 2d

d�2Vð�; SÞ, and after some simplifica-

tions we obtain

r2ð�2 � aS2i Þ ¼ �Vð�; SiÞ: (4.7)

Inserting this back into (4.5) yields

RðGÞ ¼ � 1
2a @� � @�þ 1

2@Si � @Si � Vð�; SiÞ
�2 � aS2i

: (4.8)

Using both Eqs. (4.7) and (4.8), the energy momentum
tensor in Eq. (4.4) simplifies to

TMN ¼ 1

ð�2 � aS2i Þ
�
� 1

2a
@M�@N�þ 1

2
@MSi@NSi

� 1

2
GMNð�2 � aS2i ÞRþrM@Nð�2 � aS2i Þ

�
:

(4.9)

Inserting (4.8) and (4.9) into (4.3) yields

RMNðGÞ ¼ SMNð�; SiÞ; (4.10)

where SMNð�; SiÞ is given by

SMNð�; SiÞ � 1

ð�2 � aS2i Þ
�
� 1

2a
@M�@N�

þ 1

2
@MSi@NSi þrM@Nð�2 � aS2i Þ

�
:

(4.11)

Of course, TMN and SMN are related by TMN ¼
SMN � 1

2GMNG
PQSPQ. This is as much as we can simplify

the dynamical equations before choosing gauges and im-
posing W ¼ 0.

We also gather the kinematic equations satisfied by these
fields and W as discussed in the previous section, with
VM � 1

2 @MW.

W ¼ V � V; GMN ¼ rMVN;

VPRPQMN ¼ 0; VMRMN ¼ 0;
(4.12)

V � @� ¼ �d� 2

2
�; V � @Si ¼ �d� 2

2
Si;

VMSMN ¼ 0:

(4.13)

A remarkable property is that the variation of the action
with respect to W does not give a new equation besides
those kinematic or dynamical equations that are obtained
from the variation of the other fields. This was explained
[1] as being due to a local symmetry that allows WðXÞ to
be set to any desired function of XM. Although W is set to
zero eventually in the dynamical equations (4.1)–(4.3), its
first and second derivatives that are related to VM and GMN

do not vanish [see e.g. the flat case in Eq. (3.8)]. Exercising
the freedom in choosing someWðXÞ is one of the steps that
defines the shadow in lower dimensions. The selection that
leads to the conformal shadow will be described in the next
section.

V. THE UNDERLYING Spð2; RÞ
In the previous section we showed that the kinematic

equations have a geometrical significance. Now we em-
phasize that both the kinematic and dynamical equations
are intimately related to the fundamental Spð2; RÞ gauge
symmetry that is at the root of 2T physics. The significance
of the kinematic equations is that they impose part of the
gauge invariant physical state conditions under Spð2; RÞ
which is explained as follows. It was shown in [1] that the
three generators Qij of Spð2; RÞ in the presence of gravity

are given by the following three functions of phase space
(XM, PM):

Q11 ¼ WðXÞ; Q12 ¼ Q21 ¼ VMðXÞPM;

Q22 ¼ GMNðXÞPMPN:
(5.1)

These Qij form the Spð2; RÞ Lie algebra under Poisson

brackets provided the fields WðXÞ, VMðXÞ, and GMNðXÞ
satisfy the kinematic equations in Eqs. (3.5), (3.6), and
(3.9). The reader can check that in flat space Wflat ¼ X2,
VM
flat ¼ XM, and GMN

flat ¼ �MN satisfy the Spð2; RÞ closure
property under Poisson brackets. These Qij generate a

local gauge symmetry on the worldline for a particle inter-
acting with gravity, thus making its position and momen-
tum XMð�Þ, PMð�Þ indistinguishable at every worldline
instance [1]. In the quantum theory of such a particle, its
physical states must be Spð2; RÞ gauge invariant, and hence
these Qij must vanish on the first quantized wave func-

tions. In position space the first quantized wave functions
are the fields in 2T field theory. Therefore these fields must
satisfy Qij � 0 after a proper quantum ordering of X, P,

and replacing the momentum by a derivative PM ¼ �i@M.
The kinematic equations in (3.5), (3.6), and (3.9) imposed
by the action are the precise expressions of the vanishing of
the generator Q12 ¼ ð�iVM@M þ � � �Þ � 0 after appropri-
ate quantum ordering for matter or gravitational fields of
various spins. The vanishing of Q11 ¼ WðXÞ is imposed
through the delta function �ðWÞ and its derivatives, and
finally the vanishing of Q22 ¼ ð�GMN@M@N þ � � �Þ
amounts to the dynamical equations of motion.7 Thus we
see that all the equations of motion generated by the

7The dots � � � in the expressions of Qij are the corrections due
to interactions. This general property is explained in
Refs. [1,2,23]. These corrections, in the case of gravity, are
precisely supplied directly by the action in Eq. (2.1) and
Table I, so they are determined and written out fully in the
kinematic and dynamical equations discussed in this paper as
well as Ref. [1].
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2T field theory have the significance of imposing the
physical state condition under the Spð2; RÞ gauge symme-
try, or more precisely, its extension that includes particles
with spin as well as interactions, as explained in [2,23].

One additional point of clarification about the role of the
underlying Spð2; RÞ, as reflected in the kinematics, is in
order. The Becchi-Rouet-Stora-Tyutin (BRST) field theory
formulation in [23] is technically a fuller approach for
imposing Spð2; RÞ, but the extra baggage of the BRST
formalism, in the form of ghosts and redundant gauge
degrees of freedom, can be avoided by appreciating a
few simple aspects related to Spð2; RÞ as just outlined in
the previous paragraph. A related point is that the under-
lying Spð2; RÞ provides the key for the resolution of an
ambiguity about the kinematic equations as derived from
the action (2.1) and Table I. This ambiguity is avoided
through the BRST approach, but is more easily resolved
directly as follows. The variation of the action for each
field yields a linear superposition of the delta function and
its derivatives of the form A�ðWÞ þ B�0ðWÞ þ C�00ðWÞ ¼
0. These imply three equations that are satisfied at W ¼ 0,
but there is ambiguity in identifying the proper forms of A,
B, andC that should vanish atW ¼ 0. This is because these
distributions satisfy W�00ðWÞ ¼ �2�0ðWÞ and W�0ðWÞ ¼
��ðWÞ. Therefore, if we add to B a term that is propor-
tional to W, that term feeds into a term added to A.
Similarly any terms proportional to W and W2 in C feed
into B and A, respectively. In the BRST approach the
ambiguities of adding such terms to B or C are just gauge
degrees of freedom which in any case drop out automati-
cally in the physical sector. When the BRST approach is
short-circuited as explained in [2], this ambiguity is re-
solved by recognizing that the B ¼ C ¼ 0 kinematic equa-
tions amount to demanding the closure of the underlying
Spð2; RÞ Lie algebra, as made clear by the Qij in Eq. (5.1)

for the corresponding worldline particle model [1]. This
closure demands that the equations B ¼ C ¼ 0 must be
valid for allW, not onlyW ¼ 0, so that Spð2; RÞ is defined
and its Lie algebra is satisfied without restrictions on the
phase space degrees of freedom. This is necessary for it to
be a gauge symmetry of the particle model. The upshot is
that the particle model can be used as a guide to identify the
correct forms of B, C and then demand B ¼ C ¼ 0 not
only at W ¼ 0 but at all W, which means that if B, C are
expanded in powers of W, the coefficient of each power of
W should vanish. This is a shortcut to insure self-
consistency of all the equations of motion, including the
dynamical equations, derived from the action (i.e. consis-
tency of having first class constraints Q11, Q12, and Q22,
which then are set to zero). By satisfying Spð2; RÞ in this
way, the ambiguities in A, B, and C are resolved at anyW.
This insures the validity of the underlying Spð2; RÞ gauge
symmetry and turns the ambiguities into gauge freedom,
consistent with the BRST approach [2]. Thus, the physical
sector that is gauge invariant under Spð2; RÞ, namely, B ¼

C ¼ 0 at any W, and AjW¼0 ¼ 0, are the consistent field
equations of motion.
Accordingly, it should be emphasized that the kinematic

equations above (4.12) and (4.13), which are consistent
with the particle model [1], are to be solved at any W,
not only at W ¼ 0, while the dynamical equations (4.1)–
(4.11) need to be satisfied only at W ¼ 0. This is the
procedure followed in the following sections to obtain
the conformal shadow and its prolongation.
The same result is also obtained without using the

guidance of the particle model discussed in the two pre-
vious paragraphs, but only using the gauge symmetry in the
equations of motion A�ðWÞ þ B�0ðWÞ þ C�00ðWÞ ¼ 0
that follow from the 2T field theory action. To explain
this gauge symmetry we will make a coordinate trans-
formation, XM ! ðw; u; x�Þ, such that WðXÞ ¼ w is one
of the coordinates, as in the next section. Furthermore, to
simplify the discussion we will concentrate only on a
single scalar field, say the dilaton �ðw; u; x�Þ, and sup-
press the coordinates u, x� since they are irrelevant to the
discussion. A similar discussion will hold for each field in
the theory.
We want to show that the action has a gauge symmetry

under the gauge transformation ��� ¼ ��ðw; u; xÞ for
off-shell arbitrary � as well as off-shell other fields. The
variation of the action with respect to the field � takes the
form

��S ¼
Z

dwduddx���ðwÞ½A�ðwÞ�ðwÞ þ B�ðwÞ�0ðwÞ
þ C�ðwÞ�00ðwÞ�: (5.2)

Of course, A�, B�, and C� depend on w through � and
other fields as well. Because of the delta functions we need
to analyze the expansion of each term in powers of w and
then do the integral over w. Hence we have

�ðwÞ ¼ �0 þ w�1 þ 1
2w

2�2 þ � � � ; (5.3)

A�ðwÞ ¼ A0 þ wA1 þ 1
2w

2A2 þ � � � ; (5.4)

B�ðwÞ ¼ B0 þ wB1 þ 1
2w

2B2 þ � � � ; (5.5)

C�ðwÞ ¼ C0 þ wC1 þ 1
2w

2C2 þ � � � ; (5.6)

��ðwÞ ¼ �0 þ w�1 þ 1
2w

2�2 þ � � � : (5.7)

Then the integral gives

��S ¼
Z

duddx½�0ðA0 � B1 þ C2Þ þ�1ð�B0 þ 2C1Þ
þ�2C0�: (5.8)

It is possible to make ��S ¼ 0 with a choice of gauge
parameters �0, �1, and �2 that are related to each other,
when all the fields are off shell. There are three local
parameters but only one condition; hence two of the pa-
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rameters among �0, �1, and �2 can be chosen arbitrarily
such that the action is gauge invariant ��S ¼ 0 off shell.
This 2-parameter gauge symmetry is a remnant of the
Spð2; RÞ BRST gauge symmetry discussed in [23]. A simi-
lar local symmetry is valid separately for each field in any
2T-field theory. This was called the 2T-gauge symmetry in
[2].

Using this gauge symmetry we can choose arbitrarily the
prolongations �1ðu; xÞ and �2ðu; xÞ in the expansion of
Eq. (5.3). It is convenient to make the choice of �1, �2

such that B1 ¼ C2 and C1 ¼ 0. These gauge choices hold
when all the fields are off shell.

Now we investigate the on-shell equations of motion
which are obtained from the above procedure by taking
��0, ��1, and ��2 arbitrary and independent of each
other. So the equations of motion for the on-shell�0;1;2 are

A0 � B1 þ C2 ¼ 0; �B0 þ 2C1 ¼ 0; C0 ¼ 0:

(5.9)

In the gauge we have chosen they become A0 ¼ 0, B0 ¼ 0,
B1 ¼ C2, C0 ¼ 0, and C1 ¼ 0.

Now we investigate what C2 is in more detail. It was
shown in [1] that in the variation of the action with respect
to every field the term C�00ðWÞ is always of the form C�
ðGMN@MW@NW � 4WÞ up to a field dependent proportion-
ality factor. In the next section we show that in the coor-
dinate system WðXÞ ¼ w, this expression becomes zero
automatically by constraining only the Gww component of
the metric GMNðXÞ. Therefore, we automatically obtain
C2 ¼ 0.

With this result for C2 ¼ 0 taken into account, we now
see that, in our chosen gauge, the on-shell dynamics must
satisfy

A0 ¼ 0; B0 ¼ 0; B1 ¼ 0;

C0 ¼ 0; C1 ¼ 0; C2 ¼ 0:
(5.10)

The coefficients of the higher powers ofw in the expansion
of A�ðwÞ, B�ðwÞ, and C�ðwÞ, such as An�1, Bn�2, and
Cn�3 are arbitrary because they never enter in the equa-
tions. So they could be chosen arbitrarily without any
consequence for the dynamics of the fields �0, �1, and
�2 which do appear in the equations. In particular, impos-
ing Bn�2 ¼ 0 and Cn�3 ¼ 0 has no consequences for the
field components �0, �1, and �2 since they only restrict
�n�3. The latter are pure gauge freedom which never
appear in the equations or even in the off-shell action.
Similar statements apply to the other fields.

This is in agreement with the procedure we discussed
above, of solving the equations A�ðWÞ þ B�0ðWÞ þ
C�00ðWÞ ¼ 0 for all the fields by imposing AjW¼0 while
taking B ¼ C ¼ 0 at all W. As we have shown, this is the
consequence of a gauge choice, consistent with the gauge
symmetries of the action in Eq. (2.1), as well as with the
Spð2; RÞ gauge symmetry properties of the worldline for-
mulation of particle dynamics in the presence of gravity.

VI. GENERAL RELATIVITYAS A SHADOW WITH
WEYL SYMMETRY

In this section we determine the shadow fields and their
prolongations. For scalar fields �, SiðXÞ, these are defined
by expanding the field in powers of WðXÞ, as done below.
The zeroth order term is the shadow. The coefficients of all
higher powers are Kaluza-Klein–type degrees of freedom,
which we call prolongations of the shadow. For fields that
have spin indices, such as GMNðXÞ, RMNPQðXÞ, the zeroth
order term has components that point in two lower dimen-
sions, such as g��, R���
, as well as components that point

in the additional two dimensions. In traditional Kaluza-
Klein terminology the extra components are additional KK
degrees of freedom. In our case all such KK-type degrees
of freedom, as well as the coefficients of the higher powers
in W, are called prolongations.
We will take advantage of gauge symmetries to elimi-

nate some of the redundant gauge degrees of freedom to
clearly identify the physical degrees of freedom recognized
in 1T field theory in d dimensions. The result will be that
the fields in dþ 2 dimensions GMNðXÞ, �ðXÞ, and SiðXÞ
will be reduced to the fields in d dimensions g��ðxÞ, �ðxÞ,
and siðxÞ by a series of steps that involve gauge fixing as
well as solving the kinematic equations. The prolongations
of the shadows g��ðxÞ, �ðxÞ, and siðxÞ from the ‘‘wall’’ x�

into the higher dimensional space XM, namely, the full
GMNðXÞ, �ðXÞ, and SiðXÞ, will also be discussed. In this
section the shadows and their prolongations will be al-
lowed to be arbitrary fields in d dimensions, restricted
only by the kinematic conditions, but in the following
section, by using the dynamical equations of the full theory
it will be shown that all prolongations become functions of
only the shadow fields g��ðxÞ, �ðxÞ, and siðxÞ. One of the
goals in this section is to show that the accidental Weyl
symmetry of Eq. (2.11) acting on g��ðxÞ,�ðxÞ, and siðxÞ in
general relativity in the shadow action (2.7) emerges from
the local coordinate reparametrization symmetry in the
higher spacetime XM. It will be clarified how a general-
ization of the Weyl symmetry acts also on the
prolongations.
Among the local symmetries in 2T gravity there are

obviously general coordinate transformations and the local
symmetry that allows arbitrary transformation of W [1] as
emphasized above. Exercising the freedom of making
gauge choices for these local symmetries defines the prop-
erties of the emergent spacetimes for the shadows in the
lower dimensions.
To begin this process we parametrize the spacetime XM

in terms of dþ 2 coordinates (w, u, and x�) and define the
tangent basis in base space @M ¼ ð@w; @u; @�Þ relative to

these coordinates. In this basis we use the general coordi-
nate transformations to gauge fix dþ 2 components of the
metric, Gw� ¼ 0, Gwu ¼ �1, and Guu ¼ 0, leading to the
following gauge fixed form of GMNðXÞ:
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GMN ¼
MnN w u v
w
u
�

Gww �1 0
�1 0 Gu�

0 G�u G��

0
@

1
A : (6.1)

Next we select Wðw; u; x�Þ ¼ w to be simply one of the
coordinates, which immediately gives VM ¼ 1

2@MW ¼
ð12 ; 0; 0ÞM. Inserting this in the kinematic equation W ¼
GMNVMVN gives w ¼ 1

4G
ww which fixes another compo-

nent of the metric. The result of these steps is then

WðXÞ ¼ w; GwwðXÞ ¼ 4w;

VMðXÞ ¼ ð12; 0; 0ÞM; VMðXÞ ¼ ð2w;�1
2; 0ÞM:

(6.2)

This choice of W gives VM@M ¼ 2w@w � 1
2@u, and the

kinematic conditions for the scalars�, Si in (4.13) become
ð2w@w � 1

2 @u þ d�2
2 Þ�ðw; u; x�Þ ¼ 0, and similarly for Si.

Their general solution for any w is

�ðXÞ ¼ eðd�2Þu�ðx; we4uÞ;
SiðXÞ ¼ eðd�2Þusiðx; we4uÞ;

(6.3)

where, except for the overall factors of eðd�2Þu, the fields
�ðx; we4uÞ, siðx; we4uÞ are general functions of the varia-
bles x� and the combination we4u.

Now we impose the kinematic equation GMN ¼ rMVN

in the form of the homothety condition LVG
MN ¼

�2GMN as explained in (3.9)

VK@KG
MN � @KV

MGKN � @KV
NGMK ¼ �2GMN:

(6.4)

This is already satisfied for the fixed metric components
Gww ¼ 4w, Gwu ¼ �1, and Guu ¼ Gw� ¼ 0, while it
gives the following conditions on the remaining metric
components:

ð2w@w � 1
2@uÞG�u ¼ �2G�u;

ð2w@w � 1
2@uÞG�� ¼ �2G��:

(6.5)

Their general solutions are

G�uðXÞ ¼ e4u��ðx; we4uÞ;
G��ðXÞ ¼ e4u~g��ðx; we4uÞ; (6.6)

where �� and ~g�� are general functions of x� and we4u.
We see that the solutions to the kinematic conditions are

given in terms of functions of fewer than dþ 2 variables.
We find that there are remaining coordinate transformation
symmetries in dþ 1 variables that can remove the
��ðx; we4uÞ, thus reducing further the degrees of freedom.
To explain this we first examine the coordinate transfor-
mations that maintain the restricted form of GMN that
emerged above. The infinitesimal general coordinate trans-
formation of the scalars W, �, and Si and the metric GMN

are

�"X
M ¼ "MðXÞ; �"W ¼ "K@KW;

�"� ¼ "K@K�; �"Si ¼ "K@KSi;
(6.7)

�"G
MN ¼ "K@KG

MN � ð@K"MÞGKN � ð@K"NÞGKM:

(6.8)

The remaining symmetry should not change the form of
W ¼ w and the fixed metric components Gww, Gwu, Gw�,
and Guu given above. This requirement is satisfied by the
following form of infinitesimal coordinate transformations
"MðXÞ:

"wðXÞ ¼ 0; "uðXÞ ¼ �ðx; we4uÞ;
"�ðXÞ ¼ "�ðx; we4uÞ; (6.9)

which give �"W ¼ �"G
ww ¼ �"G

wu ¼ �"G
uu ¼

�"G
w� ¼ 0. In what follows we will show that

"�ðx; we4uÞ at w ¼ 0 will be related to coordinate trans-
formations in the d dimensional shadow, while �ðx; we4uÞ
at w ¼ 0, which comes from coordinate transformations of
u, will be related to local scale transformations in the d
dimensional shadow.
The coordinate transformations of (u, x�) with parame-

ters �ðx; we4uÞ, "�ðx; we4uÞ give nonzero �"G
�u, �"G

��,
�"�, and �"Si. We focus on �"� and �"G

�u which follow
from (6.7) and (6.8)

�"� ¼ �@u�þ "�@��; (6.10)

�"G
�u ¼ f�@uG

�u þ "�@�G
�u þ ð@w"�Þ � ð@�"�ÞG�u

� ð@��ÞG�� � ð@u�ÞG�ug: (6.11)

Evidently there is enough gauge freedom in �ðx; we4uÞ to
gauge fix � ¼ eðd�2Þu�ðx; we4uÞ completely to any de-
sired form as a function of (x, we4u). We will take advan-
tage of this freedom later.8

Similarly, there is enough gauge freedom in "�ðx; we4uÞ
to gauge fix G�u ¼ e4u��ðx; we4uÞ ¼ 0. Then the gauge
fixed form of GMN for any w becomes

8Convenient gauges will bementioned indiscussingEqs. (8.8)–
(8.10). We mention here other possibilities that may serve differ-
ent purposes. One possible partial gauge choice is to make �
independent ofw, as� ¼ eðd�2Þu�ðxÞ, while Si remains as given
in (6.3). With this there still remains the gauge freedom of
making �ðxÞ a constant. Another gauge of interest is to fix �
such that �2 � aS2i ¼ e2ðd�2Þu½�2ðxÞ � s2i ðxÞ� is independent of
w, where �ðxÞ, siðxÞ are the shadows defined by the expansions
in Eqs. (6.20) and (6.21), and again the x dependence can be
further gauge fixed to a constant. This is similar to Eq. (2.12), but
includes the u, w dependence, thus providing the prolongation of
the shadow for Eq. (2.12). The expansion in powers of w in the
second gauge gives the details of how the prolongations are
gauge fixed, namely, ��1 � asis1i ¼ 0 and ��2 � asis2i þ
�2

1 � as21i ¼ 0, etc. (rather than �1 ¼ �2 ¼ 0, etc., in the first
gauge) where �1, �2, s1i, and s2i are defined in Eqs. (6.20) and
(6.21).
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GMN ¼
MnN w u �
w
u
�

4w �1 0
�1 0 0
0 0 e4u~g��ðx; we4uÞ

0
@

1
A : (6.12)

The metric with lower indices is then

GMN ¼
MnN w u �
w
u
�

0 �1 0
�1 �4w 0
0 0 e�4u~g��ðx; we4uÞ

0
B@

1
CA :

(6.13)

We may now ask if there is any more remaining symmetry
that does not change the gauge fixed forms of GMN? For
keeping the form of GMN we need �"G

�u ¼ 0 for the
expressions in Eq. (6.11) after setting G�u ¼ 0. This is
satisfied by parameters that obey the condition @w"

� ¼
G��@��, with an arbitrary �ðx; we4uÞ. To analyze further
the meaning of the remaining symmetry we expand in
powers of w

�x� ¼ "�ðx; we4uÞ ¼ "
�
0 ðxÞ þ we4u"

�
1 ðxÞ þ � � � ;

(6.14)

�u ¼ �ðx; we4uÞ ¼ �0ðxÞ þ we4u�1ðxÞ þ � � � : (6.15)

The remaining symmetry has as independent parameters
only the lowest component "�0 ðxÞ, and all �ðx; we4uÞ
independent: "�0 ðxÞ; and �0ðxÞ;�1ðxÞ;�2ðxÞ; . . . ;
dependent: "�1 ðxÞ ¼ g��@��0;

"�2 ðxÞ ¼ g��@��1 � g��
1 @��0; etc:; (6.16)

where g��, g
��
1 are defined by the expansion of the metric

in powers of we4u given in Eq. (6.24). Among these, "�0 ðxÞ
corresponds to general coordinate transformations of x�

while �0ðxÞ is the gauge parameter of local scale trans-
formations on the remaining local fields, known as the
Weyl transformations in 1T field theory, as explained
below.

The remaining gauge parameters �n�1ðxÞ are general-
izations of the Weyl symmetry �0ðxÞ. They can be used to
make convenient gauge choices.8

The transformation of the scalars in (6.3) and metric
components in (6.13) under the remaining symmetry (6.14)
and (6.15) can be extracted from the general coordinate
transformation rules (6.7) and (6.8) in the form

��ðx; we4uÞ ¼ ½�ðx; we4uÞð4w@w þ d� 2Þ
þ "�ðx; we4uÞ@���ðx; we4uÞ; (6.17)

�siðx; we4uÞ ¼ ½�ðx; we4uÞð4w@w þ d� 2Þ
þ "�ðx; we4uÞ@��siðx; we4uÞ; (6.18)

�~g��ðx; we4uÞ ¼ �ðx; we4uÞð4w@w � 4Þ~g��ðx; we4uÞ
þL"~g��ðx; we4uÞ; (6.19)

whereL"~g
��ðx; we4uÞ is the Lie derivative using the vector

"�ðx; we4uÞ. After inserting in these expressions the field
configurations (6.3)–(6.13) and the form of the remaining
parameters (6.14) and (6.15), the result can be expanded in
powers of w to extract term by term the transformation
properties of the shadows in x� and their prolongations
into the u and w dimensions. To do this we expand every
field in powers of w to define the shadow fields in d
dimensions �ðxÞ, siðxÞ, and g��ðxÞ as the zeroth order

terms, while their prolongations �nðxÞ, sniðxÞ, and
gn��ðxÞ are defined as the coefficients of the higher powers
of we4u as follows:

�ðx; we4uÞ ¼ �ðxÞ þ we4u�1ðxÞ þ 1
2ðwe4uÞ2�2ðxÞ þ � � � ;

(6.20)

siðx; we4uÞ ¼ siðxÞ þ we4us1iðxÞ þ 1
2ðwe4uÞ2s2iðxÞ þ � � � :

(6.21)

Similarly we have for the metric

~g ��ðx; we4uÞ ¼ g��ðxÞ þ we4ug1��ðxÞ
þ 1

2ðwe4uÞ2g2��ðxÞ þ � � � : (6.22)

For the determinant we get

ffiffiffiffi
G

p ¼ e�2du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~gðx; we4uÞ

q

¼ e�2du ffiffiffiffiffiffiffi�g
p �

1þ we4u

2
g�1� þ

ðwe4uÞ2
4

ðg�2� þ ðg�1�Þ2Þ

þ � � �
�
: (6.23)

The inverse metric is also computed in terms of
g��; g1��; g2��; . . . as

~g��ðx; we4uÞ ¼ g��ðxÞ � we4ug��
1 ðxÞ

� 1
2ðwe4uÞ2ðg��

2 � 2g�1
g

�
1 ÞðxÞ þ � � � :

(6.24)

Here the upper indices on g
��
1 , g

��
2 , etc. are raised or

lowered by using the lowest component of the metric
g��; so g��

1 , g��
2 do not mean the inverses of g1��, g2��.

Inserting these expressions allows us to extract the follow-
ing transformation rules for the shadow fields �ðxÞ, siðxÞ,
and g��ðxÞ by setting w ¼ 0 in Eqs. (6.17)–(6.19):

��ðxÞ ¼ ðd� 2Þ�0ðxÞ�ðxÞ þ "
�
0 ðxÞ@��ðxÞ; (6.25)

�siðxÞ ¼ ðd� 2Þ�0ðxÞsiðxÞ þ "�0 ðxÞ@�siðxÞ; (6.26)

�g��ðxÞ ¼ �4�0ðxÞg��ðxÞ þL"0g��ðxÞ: (6.27)
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In these expressions it is clear that�0ðxÞ is the infinitesimal
parameter of the Weyl transformations, which is seen by
comparing to Eq. (2.11) and setting �0ðxÞ ¼ ��ðxÞ=2.
This shows that the local scale symmetry in 1T field theory
comes from the coordinate reparametrization symmetry
�u ¼ ½�ðx; we4uÞ�w¼0 of the 2T field theory. This was
one of the points we wanted to prove in this section.

The higher powers in w of Eqs. (6.17)–(6.19) give the
nontrivial transformation rules for the prolongations under
coordinate, Weyl, and generalized Weyl transformations
"
�
0 ðxÞ, �0ðxÞ, and �n�1ðxÞ, as follows:

��1ðxÞ ¼ fðdþ 2Þ�0�1ðxÞ þ ðd� 2Þ�1�þ "�0 @��1

þ "�1 ðxÞ@��g; (6.28)

��2ðxÞ ¼ fðdþ 6Þ�0�2 þ 2ðdþ 2Þ�1�1 þ ðd� 2Þ�2�

þ "
�
0 @��2 þ 2"

�
1 @��1 þ "

�
2 @��g; (6.29)

and similarly for �sni. Evidently the terms containing
�0ðxÞ and "�0 are the local scale transformations and local

coordinate transformations on these fields. Recall that "�n�1

are functions of the�n as given in (6.16). Similarly, for the
metric prolongations we get the following transformation
laws under the coordinate, Weyl, and generalized Weyl
transformations:

�g1��ðxÞ ¼ f0��0ðxÞg1��ðxÞ þ 4�1ðxÞg��

þL"0g1��ðxÞ þL"1g��ðxÞg; (6.30)

�g2��ðxÞ ¼ f4�0ðxÞg2��ðxÞ þ 8�1ðxÞg1�� þ 4�2g��

þL"0g2��ðxÞ þ 2L"1g1��ðxÞ þL"2g��ðxÞg:
(6.31)

VII. RIEMANN AND LORENTZ CURVATURES

A. Christoffel connection and curvature

We are now ready to use the gauge fixed metric in
Eqs. (6.12), (6.13), (6.22), and (6.24) to compute the cur-
vatures at any w. For the Christoffel connection �P

MN �
1
2G

PQð@MGNQ þ @NGMQ � @QGMNÞ we obtain

�w
MN ¼

MnN w u �
w
u
�

0 2 0
2 8w 0
0 0 �2e�4u~g��

0
B@

1
CA ; �u

MN ¼
MnN w u �
w
u
�

0 0 0
0 �2 0
0 0 e�4u

2 @w~g��

0
B@

1
CA ; (7.1)

��
MN ¼

MnN w u �

w
u
�

0 0 1
2
~g�
@w~g
�

0 0 �2��
� þ 2w~g�
@w~g
�

1
2
~g�
@w~g
� �2��

� þ 2w~g�
@w~g
� �
�
�
ð~gÞ

0
B@

1
CA : (7.2)

Expanding ��
�
ð~gÞ in the last line in powers of w gives

��
�
ð~gÞ ¼ ��

�
ðgÞ þ we4u��
1�
 þ � � � , where the zeroth or-

der term is the usual ��
�
ðgÞ in d dimensions and the first

order term is

�
�
1�
 ¼ f�1

2g
��
1 ð@�g
� þ @
g�� � @�g�
Þ

þ 1
2g

��ð@�g1
� þ @
g1�� � @�g1�
Þg: (7.3)

Even though w is set to zero eventually, one must first take
derivatives of �P

MN with respect to w in computing various
components of the curvature RMNPQðGÞ. Therefore w de-
pendent terms in �P

MN (i.e. prolongations of its shadow)
will contribute to the curvature in zeroth order in powers of
w because of derivatives with respect to w.

To calculate the Riemann tensor RQ
PMN � @M�

Q
NP �

@N�
Q
MP þ �Q

MS�
S
NP � �Q

NS�
S
MP, we recall that the zero tor-

sion condition imposes the following kinematical con-
straint (3.23) on the curvature:

VQR
Q
PMN ¼ VQRQPMN ¼ VQRMNPQ ¼ VQRM

NPQ ¼ 0:

(7.4)

With the gauge choice of Eq. (6.2) these conditions become

Rw
PMN ¼ 0; RuPMN ¼ 4wRwPMN;

RP
MNu ¼ 4wRP

MNw:
(7.5)

From the form of the gauge fixed metric in Eq. (6.12) we
also obtain

Ru
PMN ¼ �RwPMN: (7.6)

From these it is easy to see consequences such as

Ru
wMN ¼ Ru

uMN ¼ RuwMN ¼ RMNuw ¼ 0; (7.7)

Ru
MNw ¼ Ru

NMw; R�
MNu ¼ 4wR�

MNw; etc: (7.8)

Using the antisymmetry and cyclic properties in (3.23),
these kinematic relations explain many of the results in the
following lists for the Riemann tensor computed by using
the Christoffel connection in (7.1) and (7.2) at any w
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Rw
MPN ¼ 0; (7.9)

Ru
PMN ¼

�
Ru
wMN ¼ Ru

uMN ¼ 0; Ru
��� ¼ 1

2r½�g1��� þ � � � ;
Ru
��u ¼ Ru

��u ¼ 4wRu
��w; Ru

��w ¼ e4u

4 ðg
1�g1
� � 2g2��Þ þ � � � ; (7.10)

where the covariant derivative r� is with respect to the metric g��ðxÞ. The curvatures on the first column are either
identically zero or vanish when w ¼ 0, while those in the second column Ru

��w, R
u
��� do not vanish even at w ¼ 0. The

þ� � � means there are terms proportional to higher powers of w but are of no interest in our analysis. Similarly we obtain
R�
PMN with analogous properties for the first and second columns

R�
PMN:

8>>>>>>><
>>>>>>>:

R�
P�u ¼ 4wR�

P�w; R�
Pwu ¼ 0;

R�
w�u ¼ R�

u�w ¼ 4wR�
w�w; R�

w�w ¼ e8u

4 ðg��1 g1�� � 2g�2�Þ þ � � � ;
R�
u�u ¼ 16w2R�

w�w; R�
w�� ¼ e4u

2 r½�g�1�� þ � � � ;
R�
��u ¼ �R�

�u� ¼ 4wR�
��w; R�

��w ¼ �R�
�w� ¼ e4u

2 g�
r½
g1��� þ � � � ;
R�
u�� ¼ 4wR�

w��; R�
��� ¼ R�

���ðgÞ � g�1½�g��� � ��
½�g1��� þ � � � :

(7.11)

At w ¼ 0 the nonvanishing components of RQPMN with all lower indices are Rw�w�, R���w, and R���


w ! 0:

8><
>:
Rw�w�ðGÞ ¼ e4u

4 ðg1�
g


1� � 2g2��Þ þ � � � ;

R���wðGÞ ¼ 1
2 ðr�g1�� �r�g1��Þ þ � � � ;

R���
ðGÞ ¼ e�4u½R���
ðgÞ þ g1
½�g��� � g1�½�g��
� þ � � � :
(7.12)

In the last expression it should be noted that R�
���ðGÞ

differs from R�
���ðgÞ, the latter being the standard

Riemann tensor constructed from the metric g��. The
difference is accounted by the contributions of the prolon-
gations of the metric which contribute to R�

���ðGÞ even
when w ¼ 0.

We can now compute the Ricci tensor RMN � RP
MPN ¼

Rw
MwN þ Ru

MuN þ R�
M�N . The kinematic constraints

VMRMN ¼ 0, imply

RuN ¼ 4wRwN: (7.13)

Hence Ruw, Ru� are related to Rww, Rw�, respectively, by a
factor of 4w while Ruu ¼ ð4wÞ2Rww, hence we have

RMNðGÞ ¼
MnN w u �
w
u
�

Rww 4wRww Rw�

4wRww ð4wÞ2Rww 4wRw�

Rw� 4wRw� R��ðGÞ

0
B@

1
CA ;

(7.14)

where

RwwðGÞ ¼ e8u

4
Trðg1g1 � 2g2Þ þ � � � ;

Rw�ðGÞ ¼ e4u

2
ðr�g

�
1� �r� Trg1Þ þ � � � ;

R��ðGÞ ¼ R��ðgÞ � ðd� 2Þg1�� � ðTrg1Þg�� þ � � � :
(7.15)

The trace notation Tr means that indices are contracted by
using the lowest mode g��. The þ� � � indicates that there
are additional higher order terms in powers of w that are
not of interest in our analysis. For w ¼ 0 only Rww, Rw�,

and R�� have nonvanishing contributions while the other

components of RMN vanish. In the last expression we see
that R��ðGÞ differs from R��ðgÞ which is the standard

Ricci tensor constructed from the metric g��.

Finally the Ricci scalar, RðGÞ ¼ GMNRMN ¼ 4wRww �
2Rwu þ e4u~g��R��ðGÞ, is

RðGÞ ¼ e4u½RðgÞ � 2ðd� 1Þe4u Trg1� þ � � � : (7.16)

Again in the last expression RðGÞ differs from RðgÞ which
is the standard curvature scalar.
As seen explicitly in all the expressions above, the

prolongations of the shadow of the metric, namely, g1��,

g2�� contribute nontrivially to the prolongations of the

curvatures. Even when w ¼ 0, there are nonvanishing
curvature components, such as R�

w�w, R
�
w��, R

�
��w, and

R�
��� that point not only in the x� directions but also in

the w, u directions. The notation R�
���ðGÞ, R��ðGÞ, and

RðGÞ is used to distinguish them from R�
���ðgÞ, R��ðgÞ,

and RðgÞ where the latter depend only on the lowest mode
g��ðxÞ while the former depend on G�� including the

higher modes g1��, g2��. We will see however, that after

taking into account the dynamical equations of motion, all
extra curvature pieces get determined only in terms of the
shadow fields g��ðxÞ, �ðxÞ, and siðxÞ, while the dynamics

of these lowest modes interacting with R�
���ðgÞ, R��ðgÞ,

and RðgÞ will be given by standard general relativity (with
the Weyl symmetry) as determined self-consistently only
by the shadow action in Eq. (2.7).
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B. Gauge fixed vielbein, spin connection, and SOðd; 2Þ
curvature

For completeness we record here also the gauge fixed
forms of the vielbein, spin connection, and SOðd; 2Þ cur-
vature Ea

Mðw; u; xÞ, !ab
M ðw; u; xÞ, and Rab

MNðw; u; xÞ that are
compatible with the gauge fixed metric and its curvatures
above.

We take the following form of the gauge fixed vielbein
that satisfies GMN ¼ Ea

ME
b
N�ab up to a local SOðd; 2Þ

transformation in tangent space:

EM
a ¼

Mna �0 þ0 i
w
u
�

1 0 0
2w 1 0
0 0 e�2u~ei�ðx; we4uÞ

0
B@

1
CA : (7.17)

Its inverse that satisfies EM
a E

b
M ¼ �b

a or EM
a E

a
N ¼ �M

N is

EM
a ¼

anM w u �
�0
þ0
i

1 0 0
�2w 1 0
0 0 e2u~e

�
i ðx; we4uÞ

0
@

1
A ; (7.18)

where ~e�
i and ~ei

� are inverses of each other. These may be

expanded in powers of we4u

~e �
iðx; we4uÞ ¼ e�

i þ we4uei1� þ 1
2ðwe4uÞ2ei2� þ � � � ;

(7.19)

~ei
�ðx; we4uÞ ¼ ei

� � we4ue�1i þ
ðwe4uÞ2

2
ð2e�1�e�1i � e�2iÞ

þ � � � : (7.20)

Here ei
� is the inverse of e�

i as usual, but e
�
1i is not the

inverse of ei1�, rather it is ei1� with indices raised or

lowered by using the appropriate tangent space or base

space metrics, e�1i ¼ �ije
j
1�g

��, and similarly for e�2i. From

~g�� ¼ ~ei�~e
i
��ij we can obtain relations between the ex-

pansion of the vielbein and the expansion of the metric
given in (6.22)

g�� ¼ e�
ie�

j�ij; g1�� ¼ ðei1�e�j þ e�
iej1�Þ�ij;

g2�� ¼ ðei2�e�j þ e�
iej2� þ 2ei1�e

j
1�Þ�ij: (7.21)

Recall the gauge fixed versions of the vectors VM ¼
1
2@MW ¼ ð12 ; 0; 0ÞM and VM ¼ 1

2@NWGMN ¼
ð2w;� 1

2 ; 0ÞM in Eq. (6.2). Their tangent space counterparts

become Va ¼ VME
M
a ¼ 1

2E
w
a and Va ¼ VMEa

M ¼
2wEa

w � 1
2E

a
u. Explicitly these are

Va ¼ ð12;�w; 0Þa;
Va ¼ ðw;�1

2; 0Þa; in the basis a ¼ ð�0;þ0; iÞ; (7.22)

and have the dot product VaVa ¼ w.
The spin connection is constructed by using the standard

relation !ab
M ¼ ENaEPbðCMNP � CNPM � CPMNÞ given in

Eqs. (3.17), with CPMN � � 1
2EPað@MEa

N � @NE
a
MÞ. With

the above gauge fixed form of Ea
M we obtain

!ab
w ¼

anb �0 þ0 j

�0
þ0
i

0 0 0
0 0 0
0 0 1

2
~e
½i@w~e

j�



0
B@

1
CA ; !ab

u ¼
anb �0 þ0 j
�0
þ0
i

0 �2 0
2 0 0
0 0 2w~e
½i@w~e

j�



0
@

1
A ; (7.23)

and

!ab
� ¼

anb �0 þ0 j

�0
þ0
i

0 0 e�2uð�2ej� þ w~ej
@w~g�
Þ
0 0 e�2u

2
~ej
@w~g�


e�2uð2~ei� � w~ei
@w~g�
Þ � e�2u

2
~ei
@w~g�
 !ij

� ð~eÞ

0
B@

1
CA ; (7.24)

where !ij
� ð~eÞ is the standard spin connection in d dimen-

sions as constructed from ~ei�ðx; we4uÞ including the pro-
longations of the shadow ~ei�ðxÞ.

With these explicit forms, it can be verified that the spin
connection !ab

M , the vielbein Ea
M, and the vector V

a satisfy
the kinematic relation

Ea
M ¼ DMV

a ¼ @MV
a þ!ab

M Vb; (7.25)

that is required by 2T gravity as expected from Eq. (3.24).
The kinematic equations have completely fixed all compo-

nents of !ab
M ðXÞ in terms of ej�ðx; we4uÞ and explicit func-

tions of the extra coordinates w, u. When w ¼ 0 we
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recognize that the vielbein in d dimensions ej�ðxÞ is basi-
cally the shadow component !�0i

� of the spin connection
that remains unrestricted as a function of x� as far as the
kinematic equations are concerned.

The SOðd; 2Þ curvature is

Rab
MN ¼ @M!

ab
N � @N!

ab
M þ!ak

M!Nk
b �!N

ak!Mk
b

¼ �RP
QMNE

a
PE

Qb: (7.26)

With the help of the antisymmetry Rab
MN ¼ �Rab

NM, R
ab
MN ¼

�Rba
MN , and the kinematic relations in Eq. (3.27), Rab

uN ¼
4wRab

wN , R
a�0
MN ¼ 2wRaþ0

MN , all the nonzero components of
the curvature are determined as follows:

Rþ0i
w� ¼ e6u

2

�
1

2
g�
1 g1�
 � g�2�

�
ei� þ � � � ;

R�0i
w� ¼ 2wRþ0i

w�;

Rij
w� ¼ ~e�i~ej�R

�
�w�ðGÞ;

Rþ0i
u� ¼ 4wRþ0a

w� ;

R�0i
u� ¼ 2wRþ0i

u� ;

Rij
u� ¼ 4wRij

w�;

Rþ0i
�� ¼ e2u

2
ðr�g1�� �r�g1��Þei� þ � � � ;

R�0i
�� ¼ 2wRþ0i

�� ;

Rij
�� ¼ ~e
i~ei�R

�

��ðGÞ;

(7.27)

where R�
�w�ðGÞ and R�


��ðGÞ are given in Eq. (7.12). These
are the curvatures at any w which include all the prolon-
gations of the shadow into the higher dimensions. When

w ¼ 0, the nonzero terms are just Rþ0i
w�, R

þ0i
�� , R

ij
w�, and R

ij
��

while all others vanish.
It should be noted that even atw ¼ 0 there are nontrivial

components of curvature pointing in thew direction in base
space and in the þ0 direction in tangent space. This is part
of the information about the prolongation of the shadow. In
the next section it will be shown that, after taking the
dynamical equations into account, only the shadow fields
ei�ðxÞ, together with matter fields such as �ðxÞ, siðxÞ,
determine all curvature components including the prolon-
gations, while the shadow fields satisfy among themselves
the familiar general relativity equations (with a Weyl sym-
metry) which follows self-consistently from the 1T-physics
shadow action in Eq. (2.7).

VIII. DYNAMICS OF SHADOWS AND
PROLONGATIONS

Having chosen gauges and solved the kinematic equa-
tions in the previous sections, we are now ready to discuss
the matching of geometry to matter through the dynamical

equations derived in Sec. IV from the 2T-gravity action
(2.1) and Table I9

½RMNðGÞ � SMNð�; SiÞ�W¼0 ¼ 0;�
1ffiffiffiffi
G

p @Mð
ffiffiffiffi
G

p
GMN@N�Þ � 2a�RðGÞ þ a@�Vð�; SiÞ

�
W¼0

¼ 0;�
1ffiffiffiffi
G

p @Mð
ffiffiffiffi
G

p
GMN@NSiÞ � 2aSiRðGÞ � @SiVð�; SiÞ

�
W¼0

¼ 0; (8.1)

where SMN was obtained in Eq. (4.11)

SMNð�; SiÞ � 1

ð�2 � aS2i Þ
�
� 1

2a
@M�@N�

þ 1

2
@MSi@NSi þrM@Nð�2 � aS2i Þ

�
:

(8.2)

Note that these 2T-gravity equations are imposed only at
w ¼ 0, unlike the kinematic equations that were solved at
all w (see the explanation in Secs. IV and V). We want to
compare these equations in (dþ 2) dimensions to the
equations of motion of general relativity in d dimensions

R��ðgÞ ¼ 1

ð�2 � as2i Þ
�
� 1

2a
@��@��þ 1

2
@�si@�si

þr�@�ð�2 � as2i Þ þ
g��

d� 2
ðVð�; siÞ

þ r2ð�2 � as2i ÞÞ
�
;

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��Þ ¼ 2a�RðgÞ � a@�Vð�; siÞ;

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@�siÞ ¼ 2asiRðgÞ þ @siVð�; siÞ;

(8.3)

that follow directly from varying the conformal shadow
action (2.7) and using (2.8) and (2.9).
In comparing the original and the shadow equations, we

note that we lose two dimensions not only in the spacetime
XM ! x� but also in the components of the metric
GMNðXÞ ! g��ðxÞ, and similarly for curvature, gauge

fields, spinors, etc. Recall also that R��ðGÞ, RðGÞ are

different than the R��ðgÞ, RðgÞ that appear in (8.3), as

seen in Eqs. (4.8) and (7.12). The differences depend on
the prolongations of the metric and the scalars given in
Eqs. (6.20)–(6.24). Moreover, additional components
of the tensor RMNðGÞ are restricted by the original
Eqs. (8.1). So, going from (8.1) to (8.3) is not a naive
dimensional reduction. The questions we need to investi-
gate include the following.

9We have neglected gauge fields and spinor fields to keep our
analysis simple. The same general conclusions about the shad-
ows are obtained if all of the fields described in Table I, that
would be required for the standard model coupled to gravity, are
included in the present analysis.
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(i) We recall that the conformal shadow action (2.7) was
derived in [1] from the 2T-gravity action (2.1) by
inserting directly the solution of the kinematic equa-
tions and the gauge fixing discussed above. Can the
shadow equations (8.3) be derived from the original
equations of motion (8.1) rather than from varying
the shadow action? Sometimes these two procedures
do not agree, so it is important to verify that they give
the same result.

(ii) More importantly, are the prolongations additional
Kaluza-Klein type degrees of freedom? What is the
dynamics of the prolongations of the metric GMN ,
curvature RPQMNðGÞ, and scalars�, Si that survived
the gauge fixing and kinematic constraints of the
previous sections, and do their dynamics restrict the
dynamics of the shadow fields (�, si, and g��)

beyond the equations of motion in (8.3)? If addi-
tional restrictions on (�, si, and g��) arise it would

imply that the shadow action (2.7) misses informa-
tion that influences the shadow fields.

As explained below, the answers are that there are non-
trivial prolongations of the metric, curvature, and the sca-
lars, which are however determined only by the shadows
(�, si, and g��). Meanwhile, the shadows themselves are

determined self-consistently precisely as dictated by the
shadow action (2.7) which yielded the general relativity
equations (8.3).

To investigate these questions we insert the expansions
in powers of w for the fields (6.20)–(6.23) and for the
curvatures (4.8) and (7.15) into the original Eqs. (8.1).
The derivatives @w, @u in the scalar equations give no
new information at w ¼ 0 because such terms combine
to expressions that are proportional to the kinematic con-
ditions, which are already satisfied for the scalars. This is a
nontrivial result that is true in curved space only for the
special value of a ¼ ðd� 2Þ=8ðd� 1Þ. Hence, for the
scalar equations, even though the prolongations �1, �2,
s1i, and s2i, etc. are nonzero, we obtain directly the naive
reduction of the dþ 2 dimensional equations to d dimen-
sions, in agreement with the shadow equations (8.3). The
prolongations of the scalars�1,�2, s1i, and s2i, etc. are not
fixed by the scalar equations in (8.1).

Turning to the curvature equation, RMN ¼ SMN at w ¼
0, we begin by computing ½S��ð�; SiÞ�w¼0 from (8.2) as

follows:

½S��ð�; SiÞ�w¼0 ¼ 1

ð�2 � as2i Þ
�
� 1

2a
@��@��

þ 1

2
@�si@�si þr�@�ð�2 � as2i Þ

� fð�w
��@w þ �u

��@uÞð�2 � aS2i Þgw¼0

�
:

(8.4)

After inserting the explicit Christoffel symbols �w
��, �

u
�� in

Eqs. (7.1–(7.3) and setting w ¼ 0, we obtain

fð�w
��@w þ �u

��@uÞð�2 � aS2i Þgw¼0

¼ �4ð��1 � asis1iÞg�� þ ðd� 2Þð�2 � as2i Þg1��:

(8.5)

Now matching geometry with matter ½R��ðGÞ �
S��ð�; SiÞ�w¼0 ¼ 0, where the curvature

R��ðGÞ ¼ R��ðgÞ � ðd� 2Þg1�� � ðTrg1Þg�� þ � � �
(8.6)

was given in (7.15), we find

R��ðgÞ ¼ S��ð�; sÞ þ
�
4
��1 � asis1i
�2 � as2i

þ Trðg1Þ
�
g��:

(8.7)

This agrees with the shadow equations (8.3) only if the
term in brackets satisfies

4
��1 � asis1i
�2 � as2i

þ Trðg1Þ ¼ Vð�; siÞ þ r2ð�2 � as2i Þ
ðd� 2Þð�2 � as2i Þ

:

(8.8)

In fact, this relation is exactly correct and can be derived
directly from Eq. (4.7), which was obtained as a conse-
quence of the original equations of 2T gravity (4.1)–(4.3).
We have thus shown that all the shadow equations (8.3)

derived directly from the shadow action (2.7) are in exact
agreement with solving directly the original equations of
motion (8.1) in dþ 2 dimensions. This answers the con-
cerns raised above in (i).
There remains to examine the rest of the original equa-

tions of motion (8.1) RMN ¼ SMN at w ¼ 0, to determine
whether any additional constraints emerge on the shadow
fields or their prolongations. On the geometry side we see
from (7.14) that ½Ruw ¼ Ruu ¼ Ru��w¼0 ¼ 0, and also on

the matter side we find ½Suw ¼ Suu ¼ Su��w¼0 ¼ 0 for the

special value of a ¼ ðd� 1Þ=8ðd� 2Þ. Therefore the cor-
responding equations are identically satisfied without any
conditions on the shadows or the prolongations.
Proceeding further, from the remaining two cases
½RwwðGÞ � Swwð�; SiÞ�w¼0 ¼ 0 and ½Rw�ðGÞ �
Sw�ð�; SiÞ�w¼0 ¼ 0, we get nontrivial equations that re-

strict the prolongations

Trðg1g1 � 2g2Þ ¼ 8

�2 � as2i

�
� d

d� 2
ð�2

1 � as21iÞ

þ ð��2 � asis2iÞ
�
; (8.9)

r�g
�
1� � @�g

�
1� ¼ 2

�2 � as2i

�
� 1

2a
ð�1@��� as1i@�siÞ

þ 2@�ð��1 � asis1iÞ
� g�1�@�ð�2 � as2i Þ

�
: (8.10)
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From the first of these we may solve algebraically for
Trðg2Þ, and consider the second equation, along with
(8.8), as equations of motion that restrict g

�
1�.

To show that there are solutions to the three prolongation
equations (8.8)–(8.10), we provide an example with the
following special form, which of course is not the general
case:

g�1� ¼ A1ðxÞ��
�; g�2� ¼ A2ðxÞ��

�; �1 ¼ B1ðxÞ�;

s1i ¼ B1ðxÞsi; �2 ¼ B2ðxÞ�; s2i ¼ B2ðxÞsi:
(8.11)

Furthermore, we use the Weyl gauge ð�2 � as2i Þ ¼
ð2	2

dÞ�1 in Eq. (2.12) to simplify these equations. The three

Eqs. (8.8)–(8.10) are then solved by

A1ðxÞ ¼ 2	2
dVð�; siÞ
ðd� 2Þ þ c; (8.12)

B1ðxÞ ¼ �	2
dðd� 1Þ
2ðd� 2Þ Vð�; siÞ � 1

4
cd; (8.13)

8B2 þ 2dA2 ¼ d

�
A2
1 þ

8B2
1

d� 2

�
; (8.14)

where c is an arbitrary constant. Hence the prolongations
are determined by the shadow fields; however one combi-
nation of B2, A2 remains arbitrary.

Thus, we find that there are not sufficient equations to
determine all of the degrees of freedom g�1�, g

�
2�, �1, �2,

s1i, and s2i that participated in the dynamics atw ¼ 0. This
is a sign that there are gauge symmetries, so what cannot be
determined by the equations of motion must be a gauge
degree of freedom, at least on shell. We did identify an off-
shell gauge symmetry, namely, the �nðxÞ in Eqs. (6.28)–
(6.31) which is sufficient to explain why one function is
gauge freedom in the example above, but the evidence is
that there is more gauge freedom. In fact more gauge
symmetry should be expected as in flat 2T-field theory
[2], where in the expansion in powers of w of matter fields
each coefficient except the zeroth order (i.e. each prolon-
gation) is a gauge degree of freedom. In flat 2T field theory
the prolongations decoupled completely from the shadow
fields in flat space [2] consistent with being gauge freedom.
However, what we have learned in this paper is that there
are also some that, rather than being gauge freedom, are
actually determined by the shadow fields via the geometry
in curved space g�1�, g

�
2� as seen in Eqs. (8.8)–(8.10).

In any case, an outcome of our analysis is that there are
nontrivial prolongations which are determined by the
shadow fields �, si, and g�� up to gauge freedom.

However, the shadow fields themselves �, si, and g��

are determined self-consistently by the action (2.7) only
within the shadow, as in Eqs. (8.3), independently of the
prolongations.

IX. CONCLUSIONS

The decoupling of the dynamics of the shadow proven in
the previous section is significant because it shows that
general relativity in d dimensions, augmented with the
Weyl symmetry, as expressed by the action (2.7), is the
prediction of 2T gravity for observers asking questions
only in d dimensions. Establishing this effective action
principle, by analyzing the equations of motion in detail
as we did above, was one of the aims of our analysis.
This shows that the full physical (gauge invariant) in-

formation in (dþ 2) dimensions is captured by the con-
formal shadow, so this is a ‘‘holographic’’ shadow. Turning
this around, we can also claim that usual general relativity
in d dimensions, augmented with the Weyl symmetry, is
described directly in dþ 2 dimensions in the form of
2T gravity.
We have shown quite generally that the Weyl symmetry

in 1T field theory is directly related to higher spacetime
general coordinate transformations that include an extra
time dimension. Therefore local Weyl symmetry is a strong
footprint of 2T physics. Just like other gauge symmetries,
there are observable effects of the structure that this sym-
metry imposes on interactions.
As we have shown, as a consequence of 2T gravity, the

graviton and the scalars must satisfy certain structures in
1T field theory. Dirac and Yang-Mills fields can be in-
cluded in a straightforward way except for inserting the

dilaton factors of �2ðd�4Þ=ðd�2Þ in Yang-Mills kinetic terms

and ��ðd�4Þ=ðd�2Þ in Yukawa terms (as in Table I). With
these dilaton factors the crucial Weyl symmetry is intact in
every dimension d. These are some of the footprints of
2T gravity.
Some of the consequences of the emergent structures

imposed by 2T gravity were outlined in the Introduction
and Sec. II. Investigations of physical effects in the context
of cosmology and LHC physics are currently in progress
and will appear in future publications [21].
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