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We consider the entanglement dynamics between two Unruh-DeWitt detectors at rest separated at a

distance d. This simple model when analyzed properly in quantum field theory shows many interesting

facets and helps to dispel some misunderstandings of entanglement dynamics. We find that there is spatial

dependence of quantum entanglement in the stable regime due to the phase difference of vacuum

fluctuations the two detectors experience, together with the interference of the mutual influences from

the backreaction of one detector on the other. When two initially entangled detectors are still outside each

other’s light cone, the entanglement oscillates in time with an amplitude dependent on spatial separation d.

When the two detectors begin to have causal contact, an interference pattern of the relative degree of

entanglement (compared to those at spatial infinity) develops a parametric dependence on d. The detectors

separated at those d with a stronger relative degree of entanglement enjoy longer disentanglement times.

In the cases with weak coupling and large separation, the detectors always disentangle at late times. For

sufficiently small d, the two detectors can have residual entanglement even if they initially were in a

separable state, while for d a little larger, there could be transient entanglement created by mutual

influences. However, we see no evidence of entanglement creation outside the light cone for initially

separable states.
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I. INTRODUCTION

Recently, we have studied the disentanglement process
between two spatially separated Unruh-DeWitt detectors
(pointlike objects with internal degrees of freedom) or
atoms, described by harmonic oscillators, moving in a
common quantum field: One at rest (Alice), the other
uniformly accelerating (Rob) [1]. These two detectors are
set to be entangled initially, while the initial state of the
field is the Minkowski vacuum. In all cases studied in [1],
we obtain finite-time disentanglement (called ‘‘sudden
death’’ of quantum entanglement [2]), which are coordi-
nate dependent while the entanglement between the two
detectors at two spacetime points is independent of the
choice of time slice connecting these two events. Around
the moment of complete disentanglement there may be
some short-time revival of entanglement within a few
periods of oscillations intrinsic to the detectors. In the
strong-coupling regime, the strong impact of vacuum fluc-
tuations experienced locally by each detector destroys their
entanglement right after the coupling is switched on.

In the above situation we find in [1] the event horizon for
the uniformly accelerated detector (Rob) cuts off the
higher-order corrections of mutual influences, and the
asymmetric motions of Alice and Rob obscure the depen-
dence of the entanglement on the spatial separation be-
tween them. To understand better how entanglement

dynamics depends on the spatial separation between two
quantum objects, in this paper we consider the entangle-
ment between two detectors at rest separated at a distance
d, possibly the simplest setup one could imagine. This will
serve as a concrete model for us to investigate and expli-
cate many subtle points and some essential misconceptions
related to quantum entanglement elicited by the classic
paper of Einstein-Podolsky-Rosen (EPR) [3].

A. Entanglement at spacelike separation: quantum
nonlocality?

One such misconception (or misnomer, for those who
understand the physics but connive to the use of the termi-
nology) is ‘‘quantum nonlocality’’ used broadly and often
too loosely in certain communities [4]. Some authors think
that quantum entanglement entails some kind of ‘‘spooky
action at a distance’’ between two spacelike separated
quantum entities (qubits, for example), and may even
extrapolate this to mean ‘‘quantum nonlocality.’’ The
phrase ‘‘spooky action at a distance’’ when traced to the
source [5] refers to the dependence of ‘‘what really exists at
one event’’ on what kind of measurement is carried out at
the other, namely, the consequence of measuring one part
of an entangled pair. Without bringing in quantum mea-
surement, one cannot explore fully the existence or con-
sequences of ‘‘spooky action at a distance’’ but one could
still talk about quantum entanglement between two space-
like separated qubits or detectors. This is the main theme of
our present investigation. We show in a simple and generic
model with calculations based on quantum field theory
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(QFT) that nontrivial dynamics of entanglement outside
the light cone does exist.

Another misconception is that entanglement set up be-
tween two localized quantum entities is independent of
their spatial separation. This is false for open systems
interacting with an environment [6]. This has already
been shown in two earlier investigations of the authors
[1,8] and will be again in this paper.

A remark on nonlocality, or lack thereof, in QFT is in
place here. QFT is often regarded as ‘‘local’’ in the sense
that interactions of the fields take place at the same space-
time point [9], e.g., for a bosonic field �ðxÞ, a local theory
has no coupling of �ðxÞ and �ðyÞ at different spacetime
points x and y. It follows that the vacuum expectation value
of the commutator h½�ðxÞ; �ðyÞ�i vanishes for all y outside
the light cone of x, which is what causality entails.
Nevertheless, the Hadamard function hf�ðxÞ; �ðyÞgi is non-
vanishing in general, no matter x� y is spacelike or time-
like. In physical terms the Hadamard function can be
related to quantum noise in a stochastic treatment of
QFT [10]. In this restricted sense one could say that QFT
has certain nonlocal features. Of course it is well known
that in QFT processes occurring at spacelike separated
events such as virtual particle exchange are allowed.

B. Issues addressed here

With a careful and thorough analysis of this problem we
are able to address the following issues:

(1) Spatial separation between two detectors.—Ficek
and Tanas [11] as well as Anastopoulos, Shresta,
and Hu (ASH) [8] studied the problem of two spa-
tially separated qubits interacting with a common
electromagnetic field. The former authors while in-
voking the Born and Markov approximations find
the appearance of dark periods and revivals. ASH
treat the non-Markovian behavior without these ap-
proximations and find a different behavior at short
distances. In particular, for weak coupling, they
obtain analytic expressions for the dynamics of en-
tanglement at a range of spatial separation between
the two qubits, which cannot be obtained when the
Born-Markov approximation is imposed. A model
with two detectors at rest in a quantum field at finite
temperature in (1þ 1)-dimensional spacetime has
been considered by Shiokawa in [12], where some
dependence of the early-time entanglement dynam-
ics on spatial separation can also be observed.
In [1] we did not see any simple proportionality
between the initial separation of Alice and Rob’s
detectors and the degree of entanglement: The larger
the separation, the weaker the entanglement at some
moments, but stronger at others. We wonder if this
unclear pattern arises because the spatial separation
of the two detectors in [1] changes in time and also
in coordinate. In our present problem the spatial

separation between the two detectors is well defined
and remains constant in Minkowski time, so the
dependence of entanglement on the spatial separa-
tion should be much clearer and distinctly
identifiable.

(2) Stronger mutual influences.—Among the cases we
considered in [1], the largest correction from the
mutual influences is still under 2% of the total while
we have only the first and the second order correc-
tions from the mutual influences. There the diffi-
culty for making progress is due to the complicated
multidimensional integrations in computing the
back-and-forth propagations of the backreactions
sourced from the two detectors moving in different
ways. Here, for the case with both detectors at rest,
the integration is simpler and in some regimes we
can include stronger and more higher-order correc-
tions of the mutual influences on the evolution of
quantum entanglement.

(3) Creation of entanglement and residual entangle-
ment.—In addition to finite-time disentanglement
and the revival of quantum entanglement for two
detectors initially entangled, which have been ob-
served in [1] for a particular initial state, we expect
to see other kinds of entanglement dynamics with
various initial states and how it varies with spatial
separations. Amongst the most interesting behavior
we found the creation of entanglement from an
initially separated state [13] and the persistence of
residual entanglement at late times for two close-by
detectors [14].

C. Summary of our findings

When the mutual influences are sufficiently strong
(under strong coupling or small separation), the fluctua-
tions of the detectors with low natural frequency will
accumulate, then get unstable and blow up. As the separa-
tion approaches a merge distance (quantified later), only
for detectors with high enough natural frequencies will the
fluctuations not diverge eventually but acting more and
more like those in the two harmonic oscillator (2HO)
quantum Brownian motion (QBM) models [14,15] (where
the two HOs occupy the same spatial location) with renor-
malized frequencies.
If the duration of interaction is so short that each detec-

tor is still outside the light cone of the other detector,
namely, before the first mutual influence reaches one an-
other, the entanglement oscillates in time with an ampli-
tude dependent on spatial separation: At some moments
the larger the separation the weaker the entanglement, but
at other moments, the stronger the entanglement. While
such a behavior is affected by correlations of vacuum
fluctuations locally experienced by the two detectors with-
out causal contact, there is no evidence for entanglement
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generation outside the light cone suggested by Franson in
Ref. [16].

For an initially entangled pair of detectors, when one
gets inside the light cone of the other, certain interference
patterns develop: At distances where the interference is
constructive the disentanglement times are longer than
those at other distances. This behavior is more distinct
when the mutual influences are negligible. For the detec-
tors separable initially, entanglement can be generated by
mutual influences if they are put close enough to each
other.

At late times, under proper conditions, the detectors will
be entangled if the separation is sufficiently small, and
separable if the separation is greater than a specific finite
distance. The late-time behavior of the detectors is gov-
erned by vacuum fluctuations of the field and independent
of the initial state of the detectors.

Since the vacuum can be seen as the simplest medium
that the two detectors immersed in, we expect that the
intuitions acquired here will be useful in understanding
quantum entanglement in atomic and condensed matter
systems (upon replacing the field in vacuum by those in
the medium). To this extent our results indicate that the
dependence of quantum entanglement on spatial separation
of qubits could enter in quantum gate operations (see [8]
for comments on possible experimental tests of this effect
in cavity ions), circuit layout, as well as having an effect on
cluster states instrumental to measurement-based quantum
computing.

D. Outline of this paper

This paper is organized as follows. In Sec. II we describe
our model and the setup. In Sec. III the evolution of the
operators is calculated, then the instability for detectors
with low natural frequency is described in Sec. IV. We
derive the zeroth-order results in Sec. V, and the late-time
results in Sec. VI. Examples with different spatial separa-
tions of detectors in the weak-coupling limit are given in
Sec. VII. We conclude with some discussions in Sec. VIII.
A late-time analysis on the mode functions is performed in
Appendix A, while an early-time analysis of the entangle-
ment dynamics in the weak-coupling limit is given in
Appendix B.

III. THE MODEL

Let us consider the Unruh-DeWitt detector theory in
(3þ 1)-dimensional Minkowski space described by the
action [1,17]

S ¼ �
Z

d4x
1

2
@��@��

þ X
j¼A;B

�Z
d�j

1

2
½ð@�jQjÞ2 ��2

0Q
2
j �

þ �0

Z
d4x�ðxÞ

Z
d�jQjð�jÞ�4ðx� � z�j ð�jÞÞ

�
; (1)

where the scalar field � is assumed to be massless, and �0

is the coupling constant. QA and QB are the internal
degrees of freedom of the two detectors, assumed to be
two identical harmonic oscillators with mass m0 ¼ 1, bare
natural frequency�0, and the same local time resolution so
their cutoffs in two-point functions [17] are the same. The
left detector is at rest along the world line z�A ðtÞ ¼ðt;�d=2; 0; 0Þ and the right detector is sitting along
z
�
B ðtÞ ¼ ðt; d=2; 0; 0Þ. The proper times for QA and QB

are both the Minkowski time, namely, �A ¼ �B ¼ t.
We assume at t ¼ 0 the initial state of the combined

system is a direct product of the Minkowski vacuum j0Mi
for the field � and a quantum state jQA;QBi for the
detectors QA and QB, taken to be a squeezed Gaussian
state with minimal uncertainty, represented by the Wigner
function of the form

�ðQA; PA;QB; PBÞ ¼ 1

�2
@
2
exp� 1

2

�
�2

@
2
ðQA þQBÞ2

þ 1

	2
ðQA �QBÞ2 þ 	2

@
2
ðPA � PBÞ2

þ 1

�2
ðPA þ PBÞ2

�
: (2)

How the two detectors are initially entangled is determined
by properly choosing the parameters 	 and � in QA and
QB. When�2 ¼ @

2=	2, theWigner function (2) becomes a
product of theWigner functions forQA, PA and forQB, PB,
thus separable. If one further chooses 	2 ¼ @=�, then the
Wigner function will be initially in the ground state of the
two free detectors.
After t ¼ 0 the coupling with the field is turned on and

the detectors begin to interact with each other through the
field while the reduced density matrix for the two detectors
becomes a mixed state. The linearity of (2) guarantees that
the quantum state of the detectors is always Gaussian. Thus
the dynamics of quantum entanglement can be studied by
examining the behavior of the quantity � [1] and the
logarithmic negativity EN [18]:

� � det

�
VPT þ i@

2
M

�
; (3)

EN � maxf0;�log22c�g: (4)

Here M is the symplectic matrix 1 � ð�iÞ
y, V
PT is the

partial transpose (ðQA; PA;QB; PBÞ ! ðQA; PA;QB;�PBÞ)
of the covariance matrix

V ¼ vAA vAB
vBA vBB

� �
(5)

in which the elements of the 2� 2 matrices vij are sym-

metrized two-point correlators vij
mn ¼ hRm

i ;R
n
j i �

hðRm
i R

n
j þRn

jR
m
i Þi=2 with Rm

i ¼ ðQiðtÞ; PiðtÞÞ, m; n ¼
1; 2 and i; j ¼ A; B. ðcþ; c�Þ is the symplectic spectrum of
VPT þ ði@=2ÞM, given by
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c� �
�
Z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4 detV

p

2

�
1=2

(6)

with

Z ¼ detvAA þ detvBB � 2 detvAB: (7)

For the detectors in Gaussian state, EN > 0, �< 0, and
c� < @=2, if and only if the quantum state of the detectors
is entangled [19]. EN is an entanglement monotone [20]
whose value can indicate the degree of entanglement:
below we say the two detectors have a stronger entangle-
ment if the associated EN is greater. In the cases consid-
ered in Ref. [1] and this paper, the behavior of � is similar
to �EN when it is nonzero. Indeed, the quantity � can
also be written as

� ¼
�
c2þ � @

2

4

��
c2� � @

2

4

�
¼ detV � @

2

4
Zþ @

4

16
: (8)

We found it is more convenient to use � in calculating the
disentanglement time. We also define the uncertainty func-
tion

� � det

�
V þ i

@

2
M

�
; (9)

so that � � 0 is the uncertainty relation [19].
To obtain these quantities, we have to know the corre-

lators hRm
i ;R

n
j i, so we are calculating the evolution of

operators Rm
i in the following.

III. EVOLUTION OF OPERATORS

Since the combined system (1) is linear, in the
Heisenberg picture [17,21], the operators evolve as

Q̂iðtÞ ¼
ffiffiffiffiffiffiffiffiffi
@

2�r

s X
j

½qðjÞi ðtÞâj þ qðjÞ�i ðtÞâyj �

þ
Z d3k

ð2�Þ3
ffiffiffiffiffiffiffi
@

2!

s
½qðþÞ

i ðt;kÞb̂k þ qð�Þ
i ðt;kÞb̂yk�;

(10)

�̂ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
@

2�r

s X
j

½fðjÞðxÞâj þ fðjÞ�ðxÞâyj �

þ
Z d3k

ð2�Þ3
ffiffiffiffiffiffiffi
@

2!

s
½fðþÞðx;kÞb̂k þ fð�Þðx;kÞb̂yk�;

(11)

with i; j ¼ A; B. qðjÞi , qð�Þ
i , fðjÞ, and fð�Þ are the (c-number)

mode functions, âj and âyj are the lowering and raising

operators for the free detector j, while b̂k and b̂yk are the

annihilation and creation operators for the free field. The

conjugate momenta are P̂jðtÞ ¼ @tQ̂jðtÞ and �̂ðxÞ ¼
@t�̂ðxÞ. The evolution equations for the mode functions

have been given in Eqs. (9)–(12) in Ref. [1] with zAðtÞ and
zBð�Þ there replaced by z�A ðtÞ ¼ ðt;�d=2; 0; 0Þ and z�B ðtÞ ¼
ðt; d=2; 0; 0Þ here. Since we have assumed that the two
detectors have the same frequency cutoffs in their local
frames, one can do the same renormalization on frequency
and obtain their effective equations of motion under the
influence of the quantum field [17]:

ð@2t þ 2�@t þ�2
rÞqðjÞi ðtÞ ¼ 2�

d
�ðt� dÞ �qðjÞi ðt� dÞ; (12)

ð@2t þ 2�@t þ�2
rÞqðþÞ

i ðt;kÞ ¼ 2�

d
�ðt� dÞ �qðþÞ

i ðt� d;kÞ
þ �0f

ðþÞ
0 ðziðtÞ;kÞ; (13)

where �qB � qA, �qA � qB, �r is the renormalized fre-
quency obtained by absorbing the singular behavior of

the retarded solutions for fðjÞ and fð�Þ around their sources
(for details, see Sec. II A in Ref. [17]). Also � � �2

0=8�,

and fðþÞ
0 ðx;kÞ � e�i!tþik	x, with ! ¼ jkj. Here one can

see that qB and qA are affecting, and being affected by, each
other causally with a retardation time d.

The solutions for qðjÞi and qðþÞ
i satisfying the initial

conditions fðþÞð0;x;kÞ ¼ eik	x, @tf
ðþÞð0;x;kÞ ¼

�i!eik	x, qðjÞj ð0Þ ¼ 1, @tq
ðjÞ
j ð0Þ ¼ �i�r, and f

ðjÞ
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@tf
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i ð0; xÞ ¼ qðþÞð0; kÞ ¼ @tq

ðþÞð0; kÞ ¼ �qðjÞj ð0Þ ¼
@t �q

ðjÞ
j ð0Þ ¼ 0 (no summation over j) are

qðþÞ
j ðk; tÞ ¼

ffiffiffiffiffiffiffiffiffiffi
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p
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�
2�
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�
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and

qðjÞj ¼ X1
n¼0

q2n; �qðjÞj ¼ X1
n¼0

q2nþ1 (15)

(no summation over j), where � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

r � �2
p

, M1 �
ð�!� i�þ�Þ�1, M2 � ð�!� i���Þ�1, W0ðtÞ �
ei�t,

WnðtÞ �
Z t

0
dtn�1 sin�ðt� tn�1Þ

�
Z tn�1

0
dtn�2 sin�ðtn�1 � tn�2Þ 	 	 	

�
Z t1

0
dt0 sin�ðt1 � t0ÞW0ðt0Þ; (16)

for n � 1, and
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qnðtÞ ¼ �ðt� ndÞ
�
2�

�d

�
n
e��ðt�ndÞ

� ½s1Wnðt� ndÞ þ s2W
�
nðt� ndÞ�; (17)

with s1 � ½1���1ð�r þ i�Þ�=2, and s2 � ½1þ
��1ð�r þ i�Þ�=2.

Using the mode functions, Eqs. (14) and (15), one can
calculate the correlators of the detectors for the covariance
matrix V [1], each splitting into two parts (h	 	 	ia and
h	 	 	iv) due to the factorized initial state. Because of sym-
metry, one has hQ2

Ai ¼ hQ2
Bi, hP2

Ai ¼ hP2
Bi, and hQA; PBi ¼

hQB; PAi. So only six two-point functions need to be
calculated for V.

Since qn 
 ½�ðt� ndÞ=�d�ne��ðt�ndÞ=n! for large t, qn
will reach its maximum amplitude ( � ðn=e�dÞn=n!)
around t� nd � n=�, which makes the numerical error
of the long-time behavior of V difficult to control.
Fortunately for the late-time behavior for all d and the
long-time behavior for very small or very large d, we still
have good approximations, as we shall see below.
However, before we proceed, the issue of instability should
be addressed first.

IV. INSTABILITY OF LOW-FREQUENCY
HARMONIC OSCILLATORS

Combining the equations of motion for qðAÞA and qðAÞB , one

has

ð@2t þ 2�@t þ�2
rÞqðAÞ� ðtÞ ¼ � 2�

d
qðAÞ� ðt� dÞ; (18)

where qðAÞ� ðtÞ � qðAÞA ðtÞ � qðAÞB ðtÞ. For t > d and when d is

small, one may expand qðAÞ� ðt� dÞ around t so that

ð@2t þ 2�@t þ�2
rÞqðAÞ� ðtÞ

¼ � 2�
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; (19)

or

�
@2t þ 4�@t þ

�
�2

r � 2�

d

��
qðAÞþ ðtÞ ¼ Oð�dÞ; (20)

�
@2t þ

�
�2

r þ 2�

d

��
qðAÞ� ðtÞ ¼ Oð�dÞ: (21)

If we start with a small renormalized frequency �r and a
small spatial separation d < 2�=�2

r with �d kept small so

the Oð�dÞ terms can be neglected, then qðAÞþ will be ex-
ponentially growing since its effective frequency becomes

imaginary (�2
r � ð2�=dÞ< 0), while qðAÞ� oscillates with-

out damping. A similar argument shows that qðBÞ� will have
the same instability when two harmonic oscillators with
small �2

r are situated close enough to each other.
One may wonder whether the Oð�dÞ terms can alter the

above observations. In Appendix Awe perform a late-time
analysis, which shows the same instability. The conclusion
is, if �2

r < 2�=d, all the mode functions will grow expo-
nentially in time so the correlators hQi;Qji or the quantum
fluctuations of the detectors diverge at late times.
Accordingly, we define

dins � 2�=�2
r (22)

as the ‘‘radius of instability.’’ For two detectors with sepa-
ration d > dins, the system is stable. For the cases with d ¼
dins, a constant solution for q

ðjÞ
þ at late times is acquired by

(20), while for d < dins, the system is unstable.
Below we restrict our discussion to the stable regime,

�2
r > 2�=d.

V. ZEROTH-ORDER RESULTS

Neglecting the mutual influences, the v-part of the
zeroth-order cross correlators read

hQAðtÞ; QBðtÞið0Þv ¼ @

��2d
Re

i

�þ i�
f½�þ e�2�tð�þ 2�ei�t sin�tÞ�Sd

� e��t½ð�cos�tþ � sin�tÞðSd�t þ SdþtÞ þ ð�þ i�Þ sin�tðCd�t � CdþtÞ�g; (23)

hPAðtÞ; PBðtÞið0Þv ¼ @

��2d
Reið�þ i�Þf½�þ e�2�tð�� 2�ei�t sin�tÞ�Sd

� e��t½ð�cos�t� � sin�tÞðSd�t þ SdþtÞ þ ð�� i�Þ sin�tðCd�t � CdþtÞ�g; (24)

hPAðtÞ; QBðtÞið0Þv ¼ hQAðtÞ; PBðtÞið0Þv ¼ @�

��2d
e��t sin�tRef�2eð��þi�ÞtSd þ Sd�t þ Sdþt þ iðCd�t � CdþtÞg; (25)

where

S x � 1
2ðCi½ð�þ i�Þx� þ Ci½�ð�þ i�Þx�Þ sin½ð�þ i�Þx� � Si½ð�þ i�Þx� cos½ð�þ i�Þx�; (26)
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C x � 1
2ðCi½ð�þ i�Þx� þ Ci½�ð�þ i�Þx�Þ cos½ð�þ i�Þx� þ Si½ð�þ i�Þx� sin½ð�þ i�Þx�; (27)

with sine-integral SiðxÞ ¼ siðxÞ þ �=2 and cosine-integral
CiðxÞ [22]. The a-part of the zeroth-order correlators as
well as the two-point functions (for a single inertial detec-
tor), hQ2

j ið0Þv , hQj; Pjið0Þv , and hP2
j ið0Þv are all independent of

the spatial separation d [for explicit expressions see
Eq. (25) in Ref. [1] and Appendix A in Ref. [21] ]. So
the d dependence of the zeroth-order degrees of entangle-
ment Eð0Þ

N and �ð0Þ are all coming from (23)–(25), which
are due to the phase difference of vacuum fluctuations that
the detectors experience locally.

Note that when

d ! dmin � 1

�
e1��e��1 ; (28)

where �e is the Euler constant and �1 � � ln��t� �e

corresponds to the time-resolution �t of our detector the-

ory [21], one has hRAðtÞ;RBðtÞið0Þv ! hRAðtÞ2ið0Þv ¼
hRBðtÞ2ið0Þv , R ¼ P, Q. That is, the two detectors should
be seen as located at the same spatial point when d � dmin

in our model, which is actually a coarse-grained effective
theory. Let us call dmin the ‘‘merge distance.’’

A. Early-time entanglement dynamics inside
the lightcone (d < t)

In the weak-coupling limit (��1 � �), when the sepa-
ration d is not too small, the effect from the mutual
influences comes weakly and slowly, so the zeroth-order
correlators dominate the early-time behavior of the detec-
tors. The asymptotic expansions of sine-integral and
cosine-integral functions read [22]

Ci ½ð�þ i�Þx� � i�

2

�
x

jxj � 1

�
þ sinð�þ i�Þx

ð�þ i�Þx ; (29)

Si ½ð�þ i�Þx� � �

2

x

jxj �
cosð�þ i�Þx
ð�þ i�Þx ; (30)

for �, � > 0, and jð�þ i�Þxj 
 1. So in the weak-
coupling limit, from t� d ¼ 0 up to t� d
Oð1=�Þ,
one has

hQAðtÞ;QBðtÞið0Þv � �ðt�dÞ sin�d

�d

@

2�
e��d½1� e�2�ðt�dÞ�;

(31)

hPAðtÞ;PBðtÞið0Þv ��2hQAðtÞ;QBðtÞið0Þv and hPAðtÞ; QBðtÞið0Þv ,

hQAðtÞ; PBðtÞið0Þv 
Oð�=�Þ. The �ðt� dÞ implies the on-
set of a clear interference pattern (
 sin�d=�d) inside
the light cone, as shown in Fig. 1. This is mainly due to the
sign flipping of the sine-integral function Sid�t in (23)–(25)
around d ¼ t when d� t changes sign. The �ðt� dÞ acts
like each detector starts to ‘‘know’’ the existence of the
other detector when they enter the light cone of each other,

though the mutual influences are not considered here. In
the next subsection we will see that there exists some
interference pattern of Oð�Þ in � even for d > t, where
no classical signal can reach one detector from the other.

B. Outside the light cone (d > t)

Before the first mutual influences from one detector
reaches the other, the zeroth-order results are exact. From
(29) and (30), when d > t and j�þ i�jðd� tÞ 
 1, one
has

hQAðtÞ;QBðtÞið0Þv � 2�

��4
rd

2

�
1þ e�2�t

�
cos�tþ �

�
sin�t

�
2

� 2d2e��t

d2 � t2

�
cos�tþ �

�
sin�t

��
; (32)

hPAðtÞ; PBðtÞið0Þv � 2�

�d2
e�2�t sin

2�t

�2
; (33)

hPAðtÞ; QBðtÞið0Þv ¼ hQAðtÞ; PBðtÞið0Þv

� 2�e��t

��2
rd

2

sin�t

�

�
�
�e��t

�
cos�tþ �

�
sin�t

�

þ d2

d2 � t2

�
; (34)

which makes the values of EN and � depend on d and t;
that is, the dependence of the degree of entanglement on
the spatial separation d between the two detectors varies in
time t, even before they have causal contact with each
other.
In the weak-coupling limit, with the initial state (2) and

� 
 ��j > �, j ¼ 0, 1, one has

EN rel � �log22c�ðt; dÞ � ½�log22c�ðt;1Þ�

� �@

� ln2

X
jXj

X2
n¼0

a�n

b�
cosn�tþOð�2�0; �

2�1Þ

(35)

when d > t and j�þ i�jðd� tÞ 
 1, where

a�0 ¼ d�2f@2�2 þ	2ð�	2�2�2 þ�4 þ 4�2
@�� @

2�2Þ
þ jXjð	2�2 ��2Þþ 2�2e�2�t½@2 þ	2ð�2 � 2@�Þ
� jXj�ge�2�t; (36)

a�1 ¼ �4ðd2 � t2Þ�1�2f2	2
@�þ ½@2 þ 	2ð�2 � 2@�Þ

� jXj�e�2�tge��t; (37)
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a�2 ¼ d�2f4@�	2�2 þ ½�2
@
2 þ 	2ð	2�2�2 þ �4

� 4�2
@�þ @

2�2Þ � jXjð	2�2 þ �2Þ�e�2�tg;
(38)

b� ¼ �3f2@2�	2�2 þ @½	2ð	2�2�2 þ �4 � 4�2
@�Þ

þ ð	2�2 þ �2Þð@2 � jXjÞ�e�2�t

þ ð@� 	2�Þð@�� �2Þð	2�2 þ @
2 � jXjÞe�4�tg;

(39)

withX � @
2 � 	2�2. So forX � 0 the relative degree of

entanglement at separation d to those for the detectors at
the same moment but separated at infinite distance oscil-
lates in frequency� and/or 2�, depending on the values of
a�n . This explains the ðcos�tÞ=ðd2 � t2Þ pattern outside
the light cone in the upper-right plot of Fig. 1 and the
small oscillations before t � 7:5 in the lower-right plot
of the same figure, where ð	;�Þ ¼ ð1:1; 4:5Þ so
ða�0 ; a�1 ; a�2 Þ=b� � ð1:94=d2;�2:89=ðd2 � t2Þ; 0:95=d2Þ at

early times. Another example is, when ð	;�Þ ¼ ð1:5; 0:2Þ,
one has ða�0 ; a�1 ; a�2 Þ=b� � ð�4:68=d2;�0:06=ðd2 �
t2Þ; 4:74=d2Þ at early times, so the d�2 cos2�t pattern
dominates at large d in the bottom-right plot of Fig. 7.
For these cases, the larger the separation, the weaker the
entanglement (in terms of the logarithmic negativity) at

some moments, but the stronger the entanglement at other
moments.
The sudden switching on of interaction at t ¼ 0 in our

model will create additional oscillation patterns outside the
light cone. However, as shown in (35), those oscillations
are suppressed in the weak-coupling limit by Oð��0Þ of
the above results. Here �0 � � ln��t0 � �e with �t0
corresponds to the time scale of switching on the coupling
between the detectors and the quantum field (see Sec. III B
in Ref. [21] for details).
When �2 ¼ @

2=	2 or X ¼ 0, the detectors are initially
separable and

�� @
2

16	4�2�4
f��ð@�	2�Þ2e�2�tð1� e�2�tÞ

þ 2��1½2@	2�ð1� e�2�tÞ
þh2e�2�tð1� cos2�tÞþ	4�2e�2�tð1þ cos2�tÞ�g2
þOð�2Þ; (40)

outside the light cone, which is always positive so the
detectors are always separable. When we increase the
coupling strength �, we find that the values of� are pushed
further away from those negative values of entangled
states. In Appendix B we also see that quantum entangle-
ment is only created deep in the light cone. Therefore in

5
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t
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t

2.3055
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EN d 10

5 10 15
t

0.00001

0.00002

0.00003

ENrel d 7.5

FIG. 1. The zeroth-order results, no mutual influence is included here. � ¼ 10�5, � ¼ 2:3, �0 ¼ �1 ¼ 20, and ð	;�Þ ¼ ð1:1; 4:5Þ.
The two plots on the left are for the zeroth-order Eð0Þ

N which is seen to decrease and disentangle in time. (The behavior of �ð0Þ is similar

to �Eð0Þ
N but the amplitude of oscillation in time is smaller.) The two plots on the right are for the relative values of Eð0Þ

N at spatial

separation d to the value at infinite spatial separation, as given in (35). In the upper-right plot, the brighter color corresponds to the
higher value of EN rel.
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our model we see no evidence of entanglement generation
outside the light cone.

For jXj � 0 but sufficiently small, the detectors are
initially entangled, but after a very short-time scale

Oðe��e�ð�0=2ÞÞ the value of � jumps to ð@2��1	=��Þ2 �
ð@X=4	�Þ2, which could be positive so that the detectors
become separable. In these cases quantum entanglement
could revive later as � is oscillating with an amplitude
proportional to ��1, while these revivals of entanglement
do not last more than a few periods of the intrinsic oscil-
lation in the detectors.

C. Breakdown of the zeroth-order results

At late times t 
 ��1, all h	 	 	ia vanish, so h	 	 	iv domi-
nate and the nonvanishing two-point correlation functions
read

hQA;QBið0Þjt
��1 � @

��d
Re

iSd

�þ i�
; (41)

hPA; PBið0Þjt
��1 � @

��d
Reði�� �ÞSd; (42)

hQ2
Aið0Þjt
��1 ¼ hQ2

Bið0Þjt
��1 � i@

2��
ln
�� i�

�þ i�
; (43)

hP2
Aið0Þjt
��1 ¼ hP2

Bið0Þjt
��1

� @

�

�
i

2�
ð�2 � �2Þ ln�� i�

�þ i�

þ �

�
2�1 � ln

�
1þ �2

�2

���
; (44)

from (23)–(25) and from Ref. [21].
When d ! 1, the cross correlators vanish and the un-

certainty relation reads

�ð0Þjt
��1 � det

�
Vð0Þjt
��1 þ i

2
@M

�

�
�
hQ2

Aið0ÞhP2
Aið0Þjt
��1 � @

2

4

�
2 � 0; (45)

for sufficiently large �1 [21], so the uncertainty relation
holds perfectly. However, observing that jSdj � �e��d for

d large enough but still finite, the late-time �ð0Þ can reach
the lowest values:�

hQ2
AðtÞið0ÞhP2

AðtÞið0Þjt
��1 � @
2

4

�
2 þ @

4e�4�d

16�4
rd

4

� @
2e�2�d

4d2

�
@
2

2�2
r

þ ðhQ2
AðtÞið0Þjt
��1Þ2

þ��4
r ðhP2

AðtÞið0Þjt
��1Þ2
�
: (46)

This zeroth-order result suggests that the uncertainty rela-
tion can fail if d is not large enough to make the value of

the second line of (46) overwhelmed by the first line. When
this happens the zeroth-order results break down (see
Fig. 2). Therefore to describe the long-time entanglement
dynamics at short distances d the higher-order corrections
from the mutual influences must be included for
consistency.
When � � ��1 � �, one has a simple estimate that

the late-time �ð0Þ becomes negative if d is smaller than
about d0 � �=2�1�, which is much greater than dins
found in Sec. IV.

VI. ENTANGLEMENTAT LATE TIMES

Since all qðjÞi vanish at late times in the stable regime

(see Appendix A), the late-time correlators consist of qð�Þ
j

only, for example,

hQ2
Bijt!1 ¼

Z @d3k

ð2�Þ32!qðþÞ
B ðt;kÞqð�Þ

B ðt;kÞjt!1; (47)

where qðþÞ
B ðt;kÞjt!1 is given by (A12) and qð�Þ

B ðt;kÞjt!1 is
its complex conjugate. After some algebra, we find that the
value of the nonvanishing correlators at late times can be
written as

hQ2
Aijt!1 ¼ hQ2

Bijt!1 ¼ 2ReðF 0þ þF 0�Þ; (48)

hQA;QBijt!1 ¼ 2ReðF 0þ �F 0�Þ; (49)

hP2
Aijt!1 ¼ hP2

Bijt!1 ¼ 2ReðF 2þ þF 2�Þ; (50)

hPA; PBijt!1 ¼ 2ReðF 2þ �F 2�Þ; (51)

where

605 610 615 620 625 630

2 ⋅10 -8

4 ⋅10 -8

6 ⋅10 -8

8 ⋅10 -8

1 ⋅10 -7

FIG. 2. The oscillating curve represents the value of �ð0Þ
[defined in (45)] as a function of d. The bottom curve represents
its lower bound [Eq. (46)]. It becomes negative when d < 616,
which signifies the violation of uncertainty relation. To rectify
this, one needs to add on the mutual influences, as shown in
Fig. 3. Here � ¼ 10�4, � ¼ 2:3, �0 ¼ �1 ¼ 25.

SHIH-YUIN LIN AND B. L. HU PHYSICAL REVIEW D 79, 085020 (2009)

085020-8



F c�ð�;�; dÞ � @i

4�

Z !max

0
d!

� !c

!2 þ 2i�!��2
r � 2�

d ei!d
; (52)

and!max is the high frequency cutoff corresponding to�1.
In the stable regime one can write F c� in a series form:

F c�ð�;�; dÞ ¼ @i

4�

Z !max

0
d!

!c

!2 þ 2i�!��2 � �2

� X1
n¼0

� � 2�
d ei!d

!2 þ 2i�!��2 � �2

�
n

¼ @i

4�

Z !max

0
d!

X1
n¼0

1

n!

�
� �

�d
ei!d@�

�
n

� !c

!2 þ 2i�!��2 � �2
; (53)

so we have

F 0�ð�;�; dÞ ¼ @

4�

�
i

2�
ln
�� i�

�þ i�
þ X1

n¼1

1

n!

�
� �

�d
@�

�
n

�Re
i

�
eð�þi�Þnd	½0; ð�þ i�Þnd�

�
; (54)

F 2�ð�;�; dÞ ¼ @

4�

�
i

2�
ð�2 � �2Þ ln�� i�

�þ i�

þ �

�
2�1 � ln

�
1þ �2

�2

��

þ X1
n¼1

1

n!

�
� �

�d
@�

�
n

� Re
i

�
eð�þi�Þndð�þ i�Þ2

� 	½0; ð�þ i�Þnd�
�
; (55)

for large frequency cutoff !max, or the corresponding �1.
Substituting the late-time correlators (48)–(51) into the

covariance matrix V, we get

�jt!1 ¼
�
16ReF 0þReF 2� � @

2

4

�

�
�
16ReF 0�ReF 2þ � @

2

4

�
; (56)

�jt!1 ¼
�
16ReF 0þReF 2þ � @

2

4

�

�
�
16ReF 0�ReF 2� � @

2

4

�
: (57)

Numerically we found that 16ReF 0þReF 2� � ð@2=4Þ
and �jt!1 are positive definite in the cases considered
in this paper. We then identify the late-time

symplectic spectrum ðcþ; c�Þjt!1 ¼ ð4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReF 0þReF 2�

p
;

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReF 0�ReF 2þ

p Þ. So if 16ReF 0þReF 2� � ð@2=4Þ is
negative, then �< 0, EN > 0, and the detectors are
entangled.
In the weak-coupling limit, keeping the correlators to

Oð�=dÞ, we have

16ReF 0þReF 2� � @
2

4

� @
2��1

��
� @

2

�3
Re

��
i��

�d
þ 2�2�1

�2d
ðiþ�dÞ

�

� ei�d	½0; i�d�
�
; (58)

which is positive as d ! 1, but negative when d ! 0þ. So
(58) must cross zero at a finite ‘‘entanglement distance’’
dent > 0, where � ¼ 0. For d < dent, the detectors will
have residual entanglement, while for d > dent, the detec-
tors are separable at late times.
For small �, dent is almost independent of �. We find that

when ��1 � � and �1 
 1,

dent � �=2�

�1 � ln �
2�1

(59)

will be a good estimate if dent � 1. Here dent is still much
larger than the ‘‘merge distance’’ dmin in (28). For example,
as shown in Fig. 3, when � ¼ 0:0001, � ¼ 2:3, �1 ¼ 25,
one has dent � 0:025, which is quite a bit greater than the
‘‘radius of instability’’ 2�=�2

r � 3:8� 10�5, and much
greater than the merge distance dmin � 9� 10�12.
A corollary follows. If the initial state of the two detec-

tors with d < dent is separable, then the residual entangle-
ment implies that there is an entanglement creation during
the evolution. In contrast, if the initial state of the two
detectors with d > dent is entangled, then the late-time

0.01 0.02 0.03 0.04
d

-1·10-6

-8·10-7

-6·10-7

-4·10-7

-2·10-7

0

FIG. 3. Plots for � (solid curve) and � (dashed curve) at late
times as a function of d, with parameters the same as those in
Fig. 2. Two detectors are separable when � � 0 (shaded zone).
One can see that � becomes negative when d < 0:025. With the
mutual influences included, the uncertainty relation [see Eq. (9)
and below] now holds for all d.
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separability implies that they disentangled in a finite time.
Examples will be given in the next section.

Note that the ill behavior of �ð0Þ has been cured by
mutual influences. The uncertainty function (57) is positive
for all d at late times.

Note also that, while the corrections from the mutual
influences to hQ2

Aijt!1 and hP2
Aijt!1 are Oð�=dÞ, the mu-

tual influences have been included in the leading order
approximation for the cross correlators. Indeed, in (53),
even as low as n ¼ 1, we have had

hQA;QBijt!1 � hQA;QBið0Þjt!1 � 2@�

�

4�

d

Z 1

0
d!

�!½ð�2
r �!2Þ cos!d� 2�! sin!d�
½ð!2 ��2

rÞ2 þ 4�2!2�2 :

(60)

However, this is slightly different from the approximation
with the first-order mutual influences included. Writing the
n ¼ 0 and n ¼ 1 terms in Eq. (14) as

qðþÞ
j � qðþÞ

j;n¼0 þ qðþÞ
j;n¼1; (61)

then the approximated cross correlator with the first-order
mutual influences included is the ! integration of

Re½ðqðþÞ
A;n¼0 þ qðþÞ

A;n¼1ÞðqðþÞ
B;n¼0 þ qðþÞ

B;n¼1Þ�, but in (60) only

Re½qðþÞ
A;n¼0q

ðþÞ
B;n¼0 þ qðþÞ

A;n¼0q
ðþÞ
B;n¼1 þ qðþÞ

A;n¼1q
ðþÞ
B;n¼0� contrib-

ute, though there are Oð�0Þ terms in qðþÞ
A;n¼1q

ðþÞ
B;n¼1. The

latter is small for �d 
 1, and will be canceled by the
mutual influences of higher orders.

VII. ENTANGLEMENT DYNAMICS IN
WEAK-COUPLING LIMIT

A. Disentanglement at very large distance

Suppose the two detectors are separated far enough
ðd 
 �Þ so that the cross correlations and the mutual
influences can be safely ignored. Then in the weak-
coupling limit (� 
 ��1) the zeroth-order results for
the v-part of the self correlators dominate, so that [1]

hQ2
Aiv ¼ hQ2

Biv �
@

2�
ð1� e�2�tÞ; (62)

hP2
Aiv ¼ hP2

Biv �
@

2
�ð1� e�2�tÞ þ 2

�
@��1; (63)

and hQA;PAiv ¼ hQB; PBiv 
Oð�Þ, while the v-part of the
cross correlators are vanishingly small. This is exactly the
case we have considered in Sec. IVA2 of Ref. [1], where
we found

� � @
2e�4�t

16	2�2�2
½Z8ðe�4�t � 2e�2�tÞ þ Z4�

þ @
3��1

4�	2�2�2
Z2e

�2�t þ @
4

�2�2
�2�2

1; (64)

with Z8 � 0, Z8 � Z4 � 0, and Z2 � 0 [Z8, Z4, and Z2 are
parameters depending on 	 and �, defined in Eqs. (37),
(38) and (41) of Ref. [1], respectively.] Accordingly the
detectors always disentangle in a finite time. There are two
kinds of behaviors that � could have. For Z4 > 0, the
disentanglement time is a function of Z4, Z8, and �,

tð0ÞdE> � � 1

2�
ln

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z4

Z8

s �
; (65)

while for Z4 < 0, the disentanglement time is much longer,

tð0ÞdE< � 1

2�
ln

jZ4j�=ð2@��1Þ
Z2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
2 � 4	2�2Z4

q ; (66)

and depends on �1.

B. Disentanglement at large distance

When d is large (so 1=�d is small) but not too large to
make all the mutual influences negligible, while the zeroth-
order results for the v-part of the self-correlators (62) and
(63) are still good, the first-order correction [n ¼ 1 terms
in (14)] to the cross correlators hQA;QBi can be of the same

order of hQA;QBið0Þ (a similar observation on the late-time
correlators has been mentioned in the end of Sec. VI).

Including the first-order correction, for d > Oð1= ffiffiffiffiffiffiffiffi
��

p Þ,
we have a simple expression,

hQA;QBiv ¼ hQA;QBið0Þv þ �ðt� dÞ @

2�

sin�d

�d

� e��d½�1þ e�2�ðt�dÞð1þ 2ðt� dÞ�Þ
þOð�=�Þ�

� �ðt� dÞ @
�

sin�d

�d
e��d�ðt� dÞe�2�ðt�dÞ;

(67)

and hPA; PBiv � �2hQA;QBiv with other two-point func-

tions h	 	 	iv being Oð�Þ for all t. Here hQA;QBið0Þv in the
weak-coupling limit has been shown in (31). The above
approximation is good over the time interval from t ¼ 0

up to e�2�ðt�dÞ >Oð�=�Þ, namely, before t� d

Oð���1 lnð�=�ÞÞ.
Still, in this first-order approximation, hQA;QBiv and

hPA; PBiv are the only correlators depending on the sepa-
ration d. Inserting those approximated expressions for the
correlators into the definition of � or EN , we find that the
interference pattern in d for the relative values of � or EN
at early times (Fig. 1) can last through the disentanglement
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process to make the disentanglement time tdE longer or
shorter than those at d ! 1, though the contrast decays
noticeably compared with those at early times. Two ex-

amples are shown in Fig. 4. For Z4 > 0, the disentangle-
ment time is about

tdE> � tð0ÞdE> � Z6ðtð0ÞdE> � dÞe�d sin�d

Z8dð1� e�2�tð0Þ
dE>Þ þ Z6½1� 2�ðtð0ÞdE> � dÞ�e�d sin�d

; (68)

where Z6 � ð@2 � 	2�2Þð	2�2 � �2Þ [Fig. 4 (left)]. In
this case the disentanglement time can be short compared
to the time scale Oðn=�Þ, n 2 N when the higher-order
corrections qn from mutual influences reach their maxi-
mum values (see Sec. III). So in the weak-coupling limit
the above estimate could be good from large d all the way
down to �d
Oð1Þ but still much greater than �dent. If
this is true, the difference of disentanglement times for
different spatial separations can be significant at small d.
For example, for ð	;�Þ ¼ ð1:5; 0:2Þ with other parameters
the same as those in Fig. 4, the disentanglement time at
d � 4:4934=� (where sin�d=�d is the global minimum)
is over 1.6 times longer than those for d � 7:7253=�
(where the first peak of sin�d=�d is located).

For Z4 < 0, the correction of sin�d is below the preci-

sion of tð0ÞdE< estimated in (66). Here we just show the

numerical result up to the first-order mutual influences in
Fig. 4 (right), which shows that the interference pattern in d
is suppressed but still nonvanishing for large disentangle-
ment times.

C. Entanglement generation at very short distance

When �d
Oð
Þ, �=�
Oð
2Þ, and 
 � 1, one can
perform a dimensional reduction on the third derivatives in
(19), namely,

q
::: ðjÞ
� � ��2

r � 2�
d

1� �d
_qðjÞ� ; (69)

to obtain, up to Oð
5Þ,
€q ðjÞ
� þ 2�� _qðjÞ� þ�2� _qðjÞ� � 0; (70)

€qðþÞ
� þ 2�� _qðþÞ

� þ�2� _qðþÞ
� � ��ðe�ik1d=2 � eik1d=2Þe�i!t;

(71)

where j ¼ A, B, qðþÞ
� � qðþÞ

A � qðþÞ
B , and

�� � �d2

6

ð�2
r þ 2�

d Þ
ð1þ �dÞ2 ; (72)

�þ � 2�

1� �d
� �d2

6

ð�2
r � 2�

d Þ
ð1� �dÞ2 ; (73)

�2� � �2
r � 2�

d

1� �d
; �� � �0

1� �d
: (74)

Here ��=�þ is of Oð
2Þ. Note that qj� and the decay

modes in qðþÞ� have subradiant behavior, while qjþ and

the decay modes in qðþÞ
þ are superradiant. For small d,

the time scale ��1� 
 ��1 > ��1þ � 1=2�, and ��1� goes
to infinity as d ! 0.

600 602 604 606 608 610
d

12500

12520

12540

12560

t

600 602 604 606 608 610
d

479000

479100

479200

479300

t

FIG. 4. The plot of � as a function of d and t, up to the first-order correction. � is negative in the dark region and positive in the
bright region. For a fixed d, the disentanglement time tdE is at the border of the lowest dark region or the earliest time that the detectors
become separable. The interference pattern in Fig. 1 for � at early times signifies that the disentanglement time tdE is longer or shorter
than those at d ! 1 [Eqs. (65) and (66)]. The gridded profile in the left plot shows that after tdE there could be some short-time
revivals of entanglement. Here the parameters are the same as those in Fig. 1 except ð	;�Þ ¼ ð1:5; 0:2Þ in the left plot and (1.1, 4.5) in
the right (cf. Fig. 3 in Ref. [1]).
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The solutions for (70) and (71) with suitable initial
conditions are

qðjÞj � �qðjÞj ¼ 1
2e

���t½s�1 ei��t þ s�2 e
�i��t�; (75)

qðþÞ
A � qðþÞ

B ¼ ��
��

ðe�ik1d=2 � eik1d=2Þ½ðM�
1 �M�

2 Þe�i!t

þ e���tðM�
2 e

i��t �M�
1 e

�i��tÞ�; (76)

where s�1 � ½1���1� ð�r þ i��Þ�=2, s�2 � ½1þ
��1� ð�r þ i��Þ�=2, M�

1 � ð�!� i�� þ��Þ�1, and
M�

2 � ð�!� i�� ���Þ�1. Actually these solutions
are the zeroth-order results with � and � replaced by ��
and ��. So we can easily reach the simple expressions

hQ2
Aiv �

�2þ
16��þ

½hQ2
Aið0Þv þ hQA;QBið0Þv ��!�þ

�!�þ

þ �2�
16���

½hQ2
Aið0Þv � hQA;QBið0Þv ��!��

�!�� ; (77)

hQA;QBiv � �2þ
16��þ

½hQA;QBið0Þv þ hQ2
Aið0Þv ��!�þ

�!�þ

þ �2�
16���

½hQA;QBið0Þv � hQ2
Aið0Þv ��!��

�!�� ;

(78)

and so on. Here h	 	 	ið0Þv are those expressions given in
(23)–(25) above and in Eqs. (A9) and (A10) of Ref. [21]

(hQA; PAiv ¼ @thQ2
Aiv=2). The prefactors �2�=16��� are

put there because in our definitions for the zeroth-order
results the overall factor �2

0 has been expressed in terms of

8��, but now �� � ��=8�.
In Fig. 5 we demonstrate an example in which the two

detectors are separable in the beginning but get entangled
at late times. There are three stages in their history of
evolution:
(1) At a very early time (t � 0:15) quantum entangle-

ment has been generated. This entanglement gen-
eration is dominated by the mutual influences
sourced by the initial information in the detectors
and mediated by the field. (For more early-time
analysis, see Appendix B.)

(2) Then around the time scale t
 1=�þ, the contribu-
tion from vacuum fluctuations of the field (h	 	 	iv)
takes over so that � becomes quasisteady and ap-
pears to settle down at a value depending on part of
the initial data of the detectors. More explicitly, at

this stage q
ð�Þ
þ , � ¼ A; B;þ;� have been in their

late-time values but qð�Þ� are still about their initial
values, so

�jt
1=�þ � @
4

64

�
sin�d

�d
e�2�d þ 1� 2

@
	2�

�

�
�
sin�d

�d
e�2�d þ 1� 2@

	2�
þ 8�1�

��

�
(79)

0.2 0.4 0.6 0.8 1.0
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FIG. 5. (Upper left) The solid curve and the long-dashed curve represent the values of � and �, respectively, while the dotted line is
for the value of � with all h	 	 	iv set to zero. The detectors are separable initially (the parameters here are the same as those in Figs. 2
and 3 except d ¼ 0:01 and ð	;�Þ ¼ ð1; 1Þ). Quantum entanglement has been generated after t � 0:15, and � oscillates in frequency
�þ at early times. Around the time scale t
 1=�þ ( � 5000 here) (upper right), � has an oscillation with long period �=ð�� ��þÞ
( � 361:4). � appears to be settling down at a value (about�0:046 here) depending in this case only on the value 	 in the initial data.
However, in a much longer time scale t
 1=�� ( � 1:13� 108) (lower left), one sees that the value of j�j is actually decaying
exponentially to the late-time value ( � �6:8� 10�7) consistent with the results in Fig. 3 with d ¼ 0:01 and independent of the initial
data of the detectors.
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in the weak-coupling and short distance approxima-
tion � � d�2 � �. Here � depends on 	 only.
The parameter � in initial state (2) is always asso-

ciated with qðjÞþ in h	 	 	ia so it becomes negligible at
this stage [cf. Eq. (25) in [1]]. Note that�jt
1=�þ can

be positive for small d only when 	 is at the neigh-

borhood of
ffiffiffiffiffiffiffiffiffiffi
@=�

p
.

(3) The remaining initial data persist until a much lon-
ger time scale t
 1=�� when � approaches a value
consistent with the late-time results given in Sec. VI,
which are contributed purely by the vacuum fluctu-
ations of the field and independent of any initial data
in the detectors. In this example the detectors have
residual entanglement, though small compared to
those in stage 2.

The above behaviors in stages 2 and 3 cannot be ob-
tained by including only the first-order correction from the
mutual influences. Thus in this example we conclude that
the mutual influences of the detectors at very short distance
generate a transient entanglement between them in mid-
session, while vacuum fluctuations of the field with the
mutual influences included give the residual entanglement
of the detectors at late times.

For the detectors initially entangled, only the early-time
behavior looks different from the above descriptions. Their
entanglement dynamics are similar to the above in the
second and the third stages.

VIII. DISCUSSION

A. Physics represented by length scales

The physical behavior of the system we studied may be
characterized by the following length scales:

Merge distance dmin in Eq. (28).—Two detectors sepa-
rated at a distance less than dmin would be viewed as those
located at the same spatial point;

Radius of instability dins in Eq. (22).—For any two
detectors at a distance less than dins, their mode functions
will grow exponentially in time so the quantum fluctua-
tions of the detector diverge at late times;

Entanglement distance dent in Eq. (59).—Two detectors
at a distance less than dent will be entangled at late times,
otherwise separable;

And d0 defined in Sec. VC.—For d < d0 the zeroth-
order results breakdown. A stable theory should have dent
and dmin greater than dins.

B. Direct interaction and effective interaction

In a closed bipartite system a direct interaction between
the two parties, no matter how weak it is, will generate
entanglement at late times. However, as we showed above,
an effective interaction between the two detectors medi-
ated by quantum fields will not generate residual entangle-
ment (though creating transient entanglement is possible)
if the two detectors are separated far enough, where the

strength of the effective interactions is weak but not
vanishing.

C. Comparison with 2HO QBM results

When d ! dmin with large enough �, our model will
reduce to a 2HO QBM model with real renormalized
natural frequencies for the two harmonic oscillators. Paz
and Roncaglia [14] have studied the entanglement dynam-
ics of this 2HO QBM model and found that, at zero
temperature, for both oscillators with the same natural
frequency, there exists residual entanglement at late times
in some cases and infinite sequences of sudden death and
revival in other cases. In the latter case the averaged
asymptotic value of negativity is still positive and so the
detectors are ‘‘entangled on average.’’
While our results show that the late-time behavior of the

detectors is independent of the initial state of the detectors,
the asymptotic value of the negativity at late times in [14]
does depend on the initial data in the detectors (their initial
squeezing factor). This is because in [14] the two oscilla-
tors are located exactly at the same point, namely, d ¼ 0,

so �� ¼ 0 and the initial data carried by qðjÞ� persists
forever. Since in our cases d is not zero, the ‘‘late’’ time
in [14] actually corresponds to the time interval with
ð1=�þÞ � t � ð1=��Þ in our cases, which is not quite
late for our detectors.

D. Where is the spatial dependence of entanglement
coming from?

Two factors are responsible for the spatial dependence of
entanglement. The first one is the phase difference of
vacuum fluctuations that the two detectors experience.
This is mainly responsible for the entanglement outside
the light cone in all coupling strengths and those inside the
light cone with sufficiently large separation in the weak-
coupling limit, such as the cases in Sec. V. The second
factor is the interference of retarded mutual influences,
which are generated by backreaction from the detectors
to the field. It is important in the cases with small separa-
tion between the detectors, such as those in Sec. VII C.

E. Non-Markovian behavior and strong coupling

In our prior work [1,21], the non-Markovian behavior
arises mainly from the vacuum fluctuations experienced by
the detectors, and the essential temporal nonlocality in the
autocorrelation of the field at zero temperature manifests
fully in the strong-coupling regime. Nevertheless, in
Sec. VII C one can see that, even in the weak-coupling
limit, once the spatial separation is small enough and the
evolution time is long enough, the mutual influences will
create some non-Markovian behavior very different from
those results obtained from perturbation theory with
higher-order mutual influences on the mode functions
neglected.
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APPENDIX A: LATE-TIME ANALYSIS ON MODE
FUNCTIONS

Let

qðAÞþ ðtÞ ¼ X
j

cje
iKjt: (A1)

Equation (18) givesX
j

cj½�K2
j þ 2i�Kj þ�2

r�eiKjt ¼ 2�

d

X
j0
cj0e

iKj0 ðt�dÞ:

(A2)

At late times, one is allowed to perform the Fourier trans-
formation on both sides with t integrations over ð�1;1Þ
to obtain

� K2
j þ 2i�Kj þ�2

r ¼ 2�

d
e�iKjd: (A3)

There are infinitely many solutions forKj in the complexK

plane, so one needs infinitely many initial conditions to fix
the factors cj. Our qþ chosen as a free oscillator at the

initial moment and unaffected by its own history until t ¼
d in principle can be specified by a set of cj’s. Suppose this

is true. WritingKj � xj þ iyj, the real and imaginary parts

of (A3) then read

ðy� �Þ2 � x2 þ�2 ¼ 2�

d
eyd cosxd; (A4)

xðy� �Þ ¼ �

d
eyd sinxd: (A5)

The solutions for them are shown in Fig. 6. The left-hand
side of (A4) is a saddle surface over the xy space, while the
right-hand side of (A4) is exponentially growing in theþy
direction and oscillating in the x direction. For (A5), the
situation is similar. From Fig. 6, one can see that there is no
complex solution for K with nonvanishing real part and
negative imaginary part (x � 0 and y � 0). The solutions
for K with its imaginary part negative must be purely
imaginary. Indeed, from (A5) and Fig. 6 (upper right),
one sees that when x � 0, if y � 0, then ðy� �Þ � ��,
but �0:2172� & �eydðsinxdÞ=ðxdÞ< �, so there is no
solution of (A5) with y � 0 and x � 0.

When �2
r > 2�=d, one finds that all solutions for K in

(A3) are located in the upper half of the complex K plane,
i.e., all yj > 0, which means that all modes in (A1) decay at

late times.

When �2
r ¼ 2�=d, there exists a solution K ¼ 0, with

other solutions on the upper half K plane. This implies that

qðAÞþ becomes a constant at late times.
When �2

r < 2�=d, there must exist one and only one
solution for K with negative y, which corresponds to the
unstable growing mode. This is consistent with our obser-
vation in Sec. IV.

Therefore, we conclude that qðAÞþ is stable and decays at
late times only for �2

r > 2�=d.

As for qðAÞ� , from (21) it seems that qðAÞ� would oscillate at
late times. However, similar analysis gives the conclusion

that qðAÞ� decays at late times for all cases. Thus, by sym-

metry, all qðiÞj decay at late times in the stable regime�2
r >

2�=d.

Now we turn to qðþÞ
A;B. Equation (13) implies that

ð@2t þ 2�@t þ�2
rÞ2qðþÞ

B ðt;kÞ
¼

�
2�

d

�
2
qðþÞ
B ðt� 2d;kÞþ�0e

�i!t

�
�
ð�!2 � 2�!þ�2

rÞeik1d=2 þ 2�

d
ei!d�ik1d=2

�
; (A6)

at late times. Again, let

qðþÞ
B ðt;kÞ ¼ X

j

cjke
iKj

k
t; (A7)

then one hasX
j

cjk½�ðKj
kÞ2þ 2i�Kj

kþ�2
r�2eiK

j
k
t

¼X
j

cjk

�
2�

d

�
2
eiK

j
k
ðt�2dÞ þ�0e

�i!t

�
�
ð�!2� 2i�!þ�2

rÞeik1d=2þ 2�

d
ei!d�ik1d=2

�
: (A8)

After a Fourier transformation, for Kj
k � �!, the above

equation becomes

½�ðKj
kÞ2 þ 2i�Kj

k þ�2
r�2 ¼

�
2�

d

�
2
e�2iKj

k
d; (A9)

which is the square of Eq. (A3) for qðAÞþ , or the square of the

counterpart for qðAÞ� . So these Kj
k modes decay at late times

for �2
r > 2�=d as qðAÞþ and qðAÞ� do. On the other hand, if,

say, K0
k ¼ �!, one has

½�!2 þ 2i�!þ�2
r�2c0k

¼
�
2�

d

�
2
c0ke

�2i!d þ �0

�
ð�!2 � 2i�!þ�2

rÞeik1d=2

þ 2�

d
ei!d�ik1d=2

�
: (A10)

This equation will not hold unless

c0k ¼ �0½ð�!2 � 2i�!þ�2
rÞeik1d=2 þ 2�

d ei!d�ik1d=2�
½�!2 þ 2i�!þ�2

r�2 � ð2�d Þ2e�2i!d
:

(A11)
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Therefore, for �2
r > 2�=d, the only mode which survives

at late times will be e�i!t, and

qðþÞ
B ðt;kÞjt
1=� ¼ c0ke

�i!t: (A12)

This is nothing but the sum of the e�i!ðt�ndÞ part in Eq. (14)
with t ! 1 so summing from n ¼ 0 to 1. Thus, (A12)
with (A11) has included the mutual influences to all orders.

The above analysis also indicates that the e��ðt�ndÞ part in
(14) really decays at late times for �2

r > 2�=d.

APPENDIX B: EARLY-TIME BEHAVIORS IN
WEAK-COUPLING LIMIT

In the weak-coupling limit, the cross correlators
hRA;R0

Bi withR;R0 ¼ Q;P are small until one detector
enters the other’s light cone. From this observation one
might conclude that the cross correlations between the two
detectors are mainly generated by the mutual influences
sourced by the quantum state of the detectors and mediated
by the field. This is not always true.

As shown in Sec. VA, the interference pattern inside the
light cone has been there in the zeroth-order results, where
the mutual interferences on the mode functions are not
included. A comparison of the first-order results in the
upper plots in Fig. 7 and those of the zeroth-order in
Fig. 1 shows that the corrections to entanglement dynamics
from mutual influences at early times are pretty small in
that case. Actually the early-time dynamics of entangle-
ment in both examples in Fig. 7 are dominated by the
zeroth-order results, thus by the phase difference of vac-

uum fluctuations in hRA;R0
Bið0Þv rather than mutual influ-

ences. One can see this explicitly by inserting the mode
functions in the weak-coupling limit with the first-order
correction from the mutual influences into Eq. (25) in
Ref. [1], and write

�ðtÞ � �0 þ 
ð0Þ
1 tþ 
ð0Þ

2 t2 þ �ðt� dÞ½
ð1Þ
1 ðt� dÞ

þ 
ð1Þ
2 ðt� dÞ2� þOð�3Þ (B1)

at early times when Oðe��e�ð�0=2Þ=�Þ< t � Oð1=��iÞ,
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FIG. 6. (Upper left) The solutions to (A3) for the complex frequency Kj ¼ xj þ iyj of qðAÞþ [defined in (A1)] are located at the
intersections of the dashed and solid curves, which represent the solutions to Eqs. (A4) and (A5), respectively. Here � ¼ 0:25, � ¼
0:900 020 2, d ¼ 1. (Upper right) The same case, but here ‘‘þ’’ denotes complex solutions and ‘‘�’’ denotes purely imaginary
solutions for K. There are two purely imaginary solutions for K in this case. (Lower left) There are three purely imaginary solutions for
K when � ¼ 0:25, � ¼ 0:8, d ¼ 1. (Lower right) Solutions for K when � ¼ 0:25, � ¼ 0:3, d ¼ 1. There is only one purely
imaginary solution, which is located in the lower half of the complex K plane.
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i ¼ 0, 1. Here �0, 
1, and 
2 depend on 	, � and of
Oð�0Þ, Oð�Þ, and Oð�2Þ, respectively. Then it is easy to
verify that mutual influences are negligible in the domi-

nating 
ð1Þ
1 term after �ðt� dÞ for the initial states with the

value of �2 not in the vicinity of @2=	2 or 	2�2.
In contrast, if the initial state (2) is nearly separable

(�2 � @
2=	2), mutual influences will be important in the

detectors’ early-time behavior. In this case, dropping all
terms with small oscillations in time, the factors in (B1) are
approximately

�0 � @
2

4�2	4�4
½@2��1 þ 	4�2�ð2�0 þ�1Þ�2;


ð0Þ
2 � �2

@
2ð@� 	2�Þ4
4�2	4

;


ð1Þ
2 � ��2

@
2ð@2 � 	4�2Þ2
4�4	4d2

;


ð0Þ
1 � �@2

2��3

�
2�2��0 þ

�
@
2

	4
þ�2

�
��1

�
ð@� 	2�Þ2;

(B2)

with 
ð1Þ
1 negligible. So � evolves as the following. In a

very short-time scale Oðe��e�ð�0=2Þ=�Þ after the interac-

tion is switched on, � jumps from its initial value ( � 0) to
a value of the same order of �0, which is positive and
determined by the numbers �0 and �1 corresponding to
the cutoffs of this model (the difference from the exact
value is due to the oscillating terms dropped). For 	2 �
@=� soQA andQB are each in a squeezed state initially, the

detectors keep separable at t � d since 
ð0Þ
1 and 
ð0Þ

2 are

positive definite. But 
ð1Þ
2 is negative and proportional to

1=d2, thus after entering the light cone of the other detec-
tor, if the separation d is sufficiently small, or

d < d1 � 1

�

��������@þ 	2�

@� 	2�

��������; (B3)


ð1Þ
2 can overwhelm 
ð0Þ

2 and alter the evolution of � from

concave up to concave down in time. If this happens, the
quantity � could become negative after a finite ‘‘entangle-
ment time’’

tent � 1
2j
ð0Þ

2 þ 
ð1Þ
2 j�1½
ð0Þ

1 � 2
ð1Þ
2 d

þ
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2 d2Þ
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FIG. 7. The early-time evolution of EN with the first-order mutual influence included for different initial states of the detectors with
1=8< d< 15. (Upper row) All parameters are the same as those in Fig. 1 where ð	;�Þ ¼ ð1:1; 4:5Þ and the initial state of the detectors
is entangled. Compared with Fig. 1, one can see that the distortion of the interference pattern due to the mutual influences is tiny.
(Lower row) ð	;�Þ ¼ ð1:5; 0:2Þ, the detectors also initially entangled. The distortion by the mutual influences is also tiny. As indicated
by Eq. (35), the complicated structure of EN rel outside the light cone is reducing to simple oscillations as time goes larger.
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This explains the entanglement generation at small d in
Fig. 8. [Note that the above prediction could fail if tent >
Oð1=��iÞ, i ¼ 0, 1, and even for tent <Oð1=��iÞ the
above estimate on tent could have an error as large as
Oð2�=�Þ due to the dropped oscillating terms.] The

first-order corrections to h	 	 	ia contribute the 
ð1Þ
2 cos2�d

part of 
ð1Þ
2 ¼ 
ð1Þ

2 ðcos2�dþ sin2�dÞ, so for those cases

with separations small enough such that sin2�d �

cos2�d the early-time entanglement creations are mainly
due to mutual influences of the detectors, which is causal.
d1 in (B3) can serve as an estimate for the maximum

distance that transient entanglement can be generated from
a initially separable state in the weak-coupling limit, while
for the detectors with the spatial separation between d1 and
dent the transient entanglement generated at early times
will disappear at late times.
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