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Fermionic condensate and the vacuum expectation values of the energy-momentum tensor are

investigated for a massive spinor field in higher-dimensional spacetimes with an arbitrary number of

toroidally compactified spatial dimensions. By using the Abel-Plana summation formula and the zeta

function technique we present the vacuum expectation values in two different forms. Applications of the

general formulas to cylindrical and toroidal carbon nanotubes are given. We show that the topological

Casimir energy is positive for metallic cylindrical nanotubes and is negative for semiconducting ones. The

toroidal compactification of a cylindrical nanotube along its axis increases the Casimir energy for

metallic-type (periodic) boundary conditions along its axis and decreases the Casimir energy for the

semiconducting-type compactifications.
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I. INTRODUCTION

Many of high energy theories of fundamental physics,
including supergravity and superstring theories, are formu-
lated in spacetimes having compact spatial dimensions.
From an inflationary point of view, universes with compact
dimensions, under certain conditions, should be considered
a rule rather than an exception [1]. The models of a
compact universe with nontrivial topology may play an
important role by providing proper initial conditions for
inflation. There are many reasons to expect that in string
theory the most natural topology for the universe is that of
a flat compact three-manifold [2]. The quantum creation of
the universe having toroidal spatial topology is discussed
in [3] and in Ref. [4] within the framework of various
supergravity theories. An interesting application of the
quantum field theoretical models with nontrivial topology
of spatial dimensions recently appeared in nanophysics [5].
In a sheet of hexagons from the graphite structure, known
as graphene, the long-wavelength description of the elec-
tronic states can be formulated in terms of the Dirac-like
theory of massless spinors in three-dimensional spacetime
with the Fermi velocity playing the role of speed of light
(see, e.g., Ref. [6]). Single-walled carbon nanotubes are
generated by rolling up a graphene sheet to form a cylinder
and the background spacetime for the corresponding
Dirac-like theory has topology R2 � S1. Compactifying
the direction along the cylinder axis we obtain another
class of graphene-made structures called toroidal carbon
nanotubes with the background topology R1 � ðS1Þ2.

The compactification of spatial dimensions leads to a
number of interesting quantum field theoretical effects
which include instabilities in interacting field theories
[7], topological mass generation [8], and symmetry break-

ing [9]. In the case of nontrivial topology, the boundary
conditions imposed on fields give rise to the modification
of the spectrum for vacuum fluctuations and, as a result, to
the Casimir-type contributions in the vacuum expectation
values of physical observables (for the topological Casimir
effect and its role in cosmology, see [10–14] and references
therein). The Casimir effect is common to all systems
characterized by fluctuating quantities and has important
implications on all scales, from cosmological to subnu-
clear. In the Kaluza-Klein-type models this effect has been
used as a stabilization mechanism for moduli fields which
parametrize the size and the shape of the extra dimensions.
The Casimir energy can also serve as a model for dark
energy needed for the explanation of the present acceler-
ated expansion of the universe (see [15] and references
therein). In addition to its fundamental interest, the Casimir
effect also plays an important role in the fabrication and
operation of nano- and micro-scale mechanical systems
(see, for instance, [16]) and has become an increasingly
popular topic in quantum field theory.
The effects of the toroidal compactification of spatial

dimensions on the properties of quantum vacuum for vari-
ous spin fields have been discussed by several authors (see,
for instance, [4,10–14,17,18] and references therein). In
the present paper, we investigate one-loop quantum effects
arising from vacuum fluctuations of a massive fermionic
field on background of higher-dimensional spacetimes
with an arbitrary number of toroidally compactified spatial
dimensions. We will assume generalized periodicity con-
ditions along compactified dimensions with arbitrary
phases. Important quantities that characterize the quantum
fluctuations are the fermionic condensate and the expecta-
tion value of the energy-momentum tensor. In the next
section, by using the Abel-Plana summation formula, we
derive a recurrence formula relating the fermionic conden-
sates in topologies Rp � ðS1Þq and Rpþ1 � ðS1Þq�1. An
alternative expression for the topological part in the fermi-
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onic condensate is obtained by using the zeta function
technique. In Sec. III, we consider the corresponding for-
mulas for the vacuum expectation values of the energy-
momentum tensor. In Sec. IV, we give applications of
general formulas to the Casimir effect for electrons in a
carbon nanotube within the framework of a three-
dimensional Dirac-like model. The main results of the
paper are summarized in Sec. V. In the appendix, we
show the equivalence of two representations for the vac-
uum expectation values obtained by the Abel-Plana sum-
mation formula and by the zeta function method.

II. FERMIONIC CONDENSATE

We consider a quantum fermionic field on background
of (Dþ 1)-dimensional flat spacetime with spatial topol-
ogy Rp � ðS1Þq, pþ q ¼ D. The corresponding line ele-
ment has the form

ds2 ¼ dt2 �XD
l¼1

ðdzlÞ2; (1)

where �1< zl <1, l ¼ 1; . . . ; p, and 0 � zl � Ll for
l ¼ pþ 1; . . . ; D. The dynamics of the field is governed
by the Dirac equation

i��@�c �mc ¼ 0: (2)

In the (Dþ 1)-dimensional spacetime the Dirac matrices

are N � N matrices with N ¼ 2½ðDþ1Þ=2�, where the square
brackets mean the integer part of the enclosed expression.
We will assume that these matrices are given in the chiral
representation:

�0 ¼ 1 0
0 �1

� �
; �� ¼ 0 ��

��þ
� 0

� �
;

� ¼ 1; 2; . . . ; D;

(3)

with the relation ���
þ
� þ ���

þ
� ¼ 2���. For example, in

D ¼ 4 the first four matrices ��, � ¼ 0, 1, 2, 3, can be
taken the same as the corresponding matrices in four-
dimensional spacetime and �4 ¼ �0�1�2�3. In this case,
�1, �2, �3 are the standard Pauli matrices and

�4 ¼ 0 �i
�i 0

� �
: (4)

Note that, unlike to the Pauli matrices, �4 is anti-
Hermitian.

In this paper, we are interested in the effects of nontrivial
topology on the vacuum expectation values (VEVs) of the
energy-momentum tensor and the fermionic condensate,
assuming that along the compactified dimensions the field
obeys the boundary conditions (no summation over l ¼
pþ 1; . . . ; D)

c ðt; zp; zq þ LlelÞ ¼ e2�i�lc ðt; zp; zqÞ; (5)

with constant phases �l. In (5), zp ¼ ðz1; . . . ; zpÞ and zq ¼

ðzpþ1; . . . ; zDÞ denote the coordinates along uncompacti-
fied and compactified dimensions, respectively; el is the
unit vector along the direction of the coordinate zl. First we
consider the fermionic condensate.
For the topology under consideration, we will denote the

fermionic condensate h0j �c c j0i (with j0i being the ampli-
tude for the vacuum state) by h �c c ip;q. We expand the field

operator in terms of the complete set of positive and

negative frequency eigenfunctions fc ðþÞ
� ; c ð�Þ

� g:
ĉ ¼ X

�

½â�c ðþÞ
� þ b̂þ� c

ð�Þ
� �; (6)

where â� is the annihilation operator for particles, and b̂þ�
is the creation operator for antiparticles. By using the
commutation relations for these operators, the condensate
is presented in the form of the mode sum

h �c c ip;q ¼X
�

�c ð�Þ
� ðxÞc ð�Þ

� ðxÞ: (7)

In order to evaluate the condensate with this formula, we
need the explicit form of the eigenfunctions satisfying the
boundary conditions (5).
In accordance with the problem symmetry the depen-

dence of these functions on the spacetime coordinates can

be taken in the plane-wave form eik�r�i!t, ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
,

with the wave vector k. From the Dirac equation we find

c ðþÞ
� ¼ eik�r�i!t

ð2pþ1�pVq!Þ1=2
wðþÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!þm

p
ðn � �ÞwðþÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�m

p
 !

; (8)

c ð�Þ
� ¼ e�ik�rþi!t

ð2pþ1�pVq!Þ1=2
ðn � �Þwð�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!�m

p
wð�Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!þm

p
 !

; (9)

where � ¼ ðk; �Þ, n ¼ k=k, and � ¼ ð�1; �2; . . . ; �DÞ;
Vq ¼ Lpþ1 � � �LD is the volume of the compactified sub-

space. In these expressions wðþÞ
� , � ¼ 1; . . . ; N=2, are one-

column matrices having N=2 rows with the elements

wð�Þ
l ¼ �l� and wð�Þ

� ¼ iwðþÞ
� . The eigenfunctions (8) and

(9) are normalized in accordance with the condition

Z
dDxc ð�Þþ

� c ð�Þ
�0 ¼ ���0 : (10)

In the discussion below wewill decompose the wave vector
into components along the uncompactified and compacti-

fied dimensions: k ¼ ðkp;kqÞ, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ k2

q

q
. The eigen-

values for the components along the compactified
dimensions are determined from the boundary con-
ditions (5):

kq ¼ ð2�ðnpþ1 þ �pþ1Þ=Lpþ1; . . . ; 2�ðnD þ �DÞ=LDÞ;
npþ1; . . . ; nD ¼ 0;�1;�2; . . . : (11)

For the components along the uncompactified dimensions
one has �1< kl <1, l ¼ 1; . . . ; p.
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Substituting the eigenfunctions (9) into formula (7), for
the fermionic condensate we find the expression

h �c c ip;q ¼ � mN

2pþ1�pVq

Z
dkp

X
nq2Zq

1

!
; (12)

with nq ¼ ðnpþ1; . . . ; nDÞ and

!2 ¼ k2
p þ

XD
l¼pþ1

½2�ðnl þ �lÞ=Ll�2 þm2: (13)

We implicitly assume the presence of a cutoff function in
(12) which makes the integrosum finite.

For the further evaluation of formula (12) we apply to
the sum over npþ1 the Abel-Plana summation formula in

the form [19]

Xþ1

npþ1¼�1
fðjnpþ1 þ �pþ1jÞ

¼ 2
Z 1

0
dxfðxÞ þ i

Z 1

0
dx

X
	¼�1

fðixÞ � fð�ixÞ
e2�ðxþi	�pþ1Þ � 1

: (14)

As a result, the fermionic condensate is presented in the
decomposed form

h �c c ip;q ¼ h �c c ipþ1;q�1 þ �pþ1h �c c ip;q; (15)

where h �c c ipþ1;q�1 corresponds to the first term on the

right-hand side of (14) and is the fermionic condensate for
the topology Rpþ1 � ðS1Þq�1. The second term on the
right-hand side of formula (15) is induced by the compact-
ness of the zpþ1 direction and is given by the formula

�pþ1h �c c ip;q ¼ � 2�1�pmNLpþ1

�ðpþ1Þ=2�ððpþ 1Þ=2ÞVq

� X
nq�12Zq�1

X
	¼�1

Z 1

!nq�1

du

� ðu2 �!2
nq�1

Þðp�1Þ=2

eLpþ1uþ2�i	�pþ1 � 1
; (16)

where nq�1 ¼ ðnpþ2; . . . ; nDÞ and

!2
nq�1

¼ XD
l¼pþ2

½2�ðnl þ �lÞ=Ll�2 þm2: (17)

Note that the expression on the right-hand side of (16) is
finite and the introduction of the cutoff function is neces-
sary in the first term on the right-hand side of (15) only.

Expanding the function 1=ðey � 1Þ in the integrand of
formula (16), we find an alternative form:

�pþ1h �c c ip;q ¼ � 2NmLpþ1

ð2�Þp=2þ1Vq

X1
n¼1

cosð2�n�pþ1Þ

� X
nq�12Zq�1

!p
nq�1

fp=2ðnLpþ1!nq�1
Þ; (18)

with the notation f�ðxÞ ¼ K�ðxÞ=x�. From here it follows
that in the case of the periodic boundary condition along
the direction zpþ1 (�pþ1 ¼ 0) the contribution to the fer-

mionic condensate due to the compactness of the corre-
sponding direction is always negative independently of the
boundary conditions along the other directions. In the limit
when the length of one of the compactified dimensions, say
zl, l � pþ 2, is large, the main contribution into the sum
over nl in (18) comes from large values of nl, and in the
leading order we can replace the summation by the inte-
gration in accordance with

1

Ll

Xþ1

nl¼�1
fð2�jnl þ �lj=LlÞ ! 1

�

Z 1

0
dyfðyÞ:

The integral over y is evaluated by using the formula

1

�

Z 1

0
dyðy2 þ b2Þp=2fp=2ðc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ b2

q
Þ

¼ bpþ1ffiffiffiffiffiffiffi
2�

p fðpþ1Þ=2ðcbÞ; (19)

and from (18) the corresponding formula is obtained for
the topology Rpþ1 � ðS1Þq�1. In the limit Ll � Lpþ1, l ¼
pþ 2; . . . ; D, the main contribution into the topological
part (18) comes from the term with nq�1 ¼ 0, and in the

leading order we have

�pþ1h �c c ip;q 	 � 2Nmpþ1Lpþ1

ð2�Þp=2þ1Vq

� X1
n¼1

cosð2�n�pþ1Þfp=2ðnLpþ1mÞ:

(20)

As we could expect, for large masses, mLpþ1 
 1, the

fermionic condensate given by formula (18) is exponen-
tially suppressed.
After the recurring application of formula (18), the

topological part of the fermionic condensate for spatial
topology Rp � ðS1Þq is presented in the form

h �c c ip;q ¼
XD�1

j¼p

�jþ1h �c c ij;D�j: (21)

For a massless field the fermionic condensate vanishes.
An alternative form for the topological part in the fer-

mionic condensate is obtained by making use of the zeta
function technique [11,20]. We introduce the zeta function
density


ðsÞ ¼ 1

Vq

Z dkp

ð2�Þp
X

nq2Zq

1

!2s
; (22)

with! defined by relation (13). In the case �l ¼ 0,m ¼ 0,
the point nq ¼ 0 is to be excluded from the sum. After the

integration over kp, this function is presented in the form
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ðsÞ ¼ �ðs� p=2Þ
ð4�Þp=2�ðsÞVq

X
nq2Zq

�
� XD
l¼pþ1

½2�ðnl þ �lÞ=Ll�2 þm2

�
p=2�s

: (23)

An exponentially convergent expression for the analytic
continuation of the function (23) is given by the general-
ized Chowla-Selberg formula [21]. The application of this
formula to Eq. (23) gives


ðsÞ ¼ 
MðsÞ þ 
p;qðsÞ; (24)

where


MðsÞ ¼
Z dkD

ð2�ÞD
1

ðk2D þm2Þs ¼
mD�2s

ð4�ÞD=2

�ðs�D=2Þ
�ðsÞ ;

(25)

is the corresponding zeta function in the usual Minkowski
spacetime and the part


p;qðsÞ ¼ 21�smD�2s

ð2�ÞD=2�ðsÞ
X0

mq2Zq

cosð2�mq ��qÞ

� fD=2�sðmgðLq;mqÞÞ; (26)

with Lq ¼ ðLpþ1; . . . ; LDÞ and �q ¼ ð�pþ1; . . . ; �DÞ, is
induced by the nontrivial topology. The prime on the
summation sign in (26) means that the termmq ¼ 0 should

be excluded from the sum and we have used the notation

gðLq;mqÞ ¼
� XD
i¼pþ1

L2
i m

2
i

�
1=2

: (27)

The topological part in (24) is an analytic function at the
physical point s ¼ 1=2 and for the fermionic condensate
one directly finds

h �c c ip;q ¼ �mN

2

p;qð1=2Þ

¼ � NmD

ð2�ÞðDþ1Þ=2
X0

mq2Zq

cosð2�mq � �qÞ

� fðD�1Þ=2ðmgðLq;mqÞÞ: (28)

In the case p ¼ D� 1, q ¼ 1 this formula coincides with
(18). In the appendix we prove the equivalence of two
representations (21) and (28) for the topological part in
the fermionic condensate for general case. Note that in (28)
we can write the function cosð2�mq � �qÞ in the form of

the product
Q

D
i¼pþ1 cosð2�mi�iÞ.

III. ENERGY-MOMENTUM TENSOR

In order to find the VEV for the operator of the energy-
momentum tensor, we substitute the expansion (6) and the

analog expansion for the operator �̂c into the corresponding

expression for spinor fields,

T��f �̂c ; ĉ g ¼ i

2
½ �̂c�ð�@�Þ ĉ � ð@ð� �̂c Þ��Þ ĉ �: (29)

Similar to the case of the fermionic condensate, by making
use of the commutation relations for the annihilation and
creation operators, one finds the following mode-sum for-
mula:

h0jT��j0i ¼ hT��ip;q ¼
X
�

T��f �c ð�Þ
� ðxÞ; c ð�Þ

� ðxÞg: (30)

Substituting the eigenfunctions (9) into this mode-sum
formula, for the energy density and vacuum stresses one
finds (no summation over l ¼ 1; . . . ; D)

hT0
0ip;q ¼ � N

2ð2�ÞpVq

Z
dkp

X
nq2Zq

!; (31)

hTl
lip;q ¼

N

2ð2�ÞpVq

Z
dkp

X
nq2Zq

k2l
!
: (32)

As in the case of the fermionic condensate, we will assume
that some cutoff function is present, without writing it
explicitly.
After the application of summation formula (14) to the

series over npþ1, we receive the following recurrence

relation:

hT�
�ip;q ¼ hT�

�ipþ1;q�1 þ�pþ1hT�
�ip;q; (33)

where hT�
�ipþ1;q�1 is the VEV of the energy-momentum

tensor for the topology Rpþ1 � ðS1Þq�1. The part
�pþ1hT�

�ip;q is induced by the compactness of the zpþ1

direction and is given by the expression (no summation
over l)

�pþ1hTl
lip;q ¼

ð4�Þ�ðpþ1Þ=2NLpþ1

�ððpþ 1Þ=2ÞVq

X
nq�12Zq�1

X
	¼�1

Z 1

!nq�1

du

� fðlÞðuÞðu2 �!2
nq�1

Þðp�1Þ=2

eLpþ1uþ2�i	�pþ1 � 1
; (34)

with the notations

fðlÞðuÞ ¼ 4ðu2 �!2
nq�1

Þ
pþ 1

; l ¼ 0; 1; . . . ; p;

fðpþ1ÞðuÞ ¼ �2u2; fðlÞðuÞ ¼ k2l ;

l ¼ pþ 2; . . .D:

(35)

Expanding the integrand, this expression can also be pre-
sented in the form (no summation over l)

�pþ1hTl
lip;q ¼

2NLpþ1

ð2�Þp=2þ1Vq

X
nq�12Zq�1

X1
n¼1

cosð2�n�pþ1Þ

�!pþ2
nq�1

FðlÞðnLpþ1!nq�1
Þ; (36)
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with the notations

Fð0ÞðzÞ ¼ FðlÞðzÞ ¼ fp=2þ1ðzÞ; l ¼ 1; . . . ; p;

Fðpþ1ÞðzÞ ¼ �fp=2ðzÞ � ðpþ 1Þfp=2þ1ðzÞ;
FðlÞðzÞ ¼ ðkl=!nq�1

Þ2fp=2ðzÞ; l ¼ pþ 2; . . . ; D:

(37)

It is easy to check that for a massless field the topological
part (36) is traceless. As we see the vacuum stresses along
the uncompactified dimensions are equal to the energy
density. Of course, this property is a direct consequence
of the boost invariance along the corresponding directions.
In particular, from (36) it follows that in the case of
periodic boundary conditions along the coordinate zpþ1

(�pþ1 ¼ 0), the compactification along this coordinate

increases the vacuum energy density independently of the
boundary conditions along the other directions. The limit-
ing cases of general formulas for the VEV of the energy-
momentum tensor are investigated in a way similar to that
described before for the condensate.

From (33), for the VEVof the energy-momentum tensor
in the topology Rp � ðS1Þq one finds

hT�
�ip;q ¼

XD�1

j¼p

�jþ1hT�
�ij;D�j: (38)

Now, by using the standard relations for the Mac-Donald
function, it can be seen that the vacuum energy density and
stresses along the compactified dimensions are related by
the formula (no summation over l)

@Ll
ðVqhT0

0ip;qÞ ¼
Vq

Ll

hTl
lip;q; l ¼ pþ 1; . . . ; D: (39)

For the simplest Kaluza-Klein-type model with spatial
topology R3 � S1, from (36) for the energy density one
finds (Lpþ1 ¼ L, �pþ1 ¼ �)

hT0
0i3;1 ¼

1

�2L5

X1
n¼1

cosð2�n�Þ
n5enmL

½ðnmLÞ2 þ 3nmLþ 3�:

(40)

This quantity is positive for an untwisted field (� ¼ 0) and
is negative for a twisted field (� ¼ 1=2). In the general
case, the Casimir energy density is not a monotonic func-
tion of the size of the compactified dimension. This is seen
from the left panel of Fig. 1 where we have plotted the
quantity (40) as a function of the parameter mL for differ-
ent values of the phase � (numbers near the curves). The
values of the phase are chosen in a way to show the
transition from the positive energies to negative ones. In
the right panel of Fig. 1 we have presented the Casimir
energy density (40) for a massless field as a function of the
parameter �.
An alternative expression for the VEV of the energy

density is obtained by using the integral representation of
the corresponding zeta function given by (26):

hT0
0ip;q ¼ �N

2

p;qð�1=2Þ

¼ NmDþ1

ð2�ÞðDþ1Þ=2
X0

mq2Zq

cosð2�mq ��qÞ

� fðDþ1Þ=2ðmgðLq;mqÞÞ: (41)
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FIG. 1 (color online). The Casimir energy density in the Kaluza-Klein-type model with spatial topology R3 � S1 as a function of the
parameter mL for different values of � (left panel). The right panel presents the corresponding quantity for a massless field as a
function of �.
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The equivalence of the representations (38) and (41) for the
energy density is seen in a way similar to that used in the
appendix for the fermionic condensate. The corresponding
formulas for the vacuum stresses along compactified di-
mensions are obtained from relations (39) (no summation
over l):

hTl
l ip;q ¼ hT0

0ip;q �
NmDþ3L2

l

ð2�ÞðDþ1Þ=2
X0

mq2Zq

m2
l cosð2�mq � �qÞ

� fðDþ3Þ=2ðmgðLq;mqÞÞ; (42)

with l ¼ pþ 1; . . . ; D. A number of special cases of for-
mula (41) for the Casimir energy can be found in literature
(see [4,10–14,17]). For a massless fermionic field from
(41) we find (no summation over l)

hT0
0ip;q ¼ N

�ððDþ 1Þ=2Þ
2�ðDþ1Þ=2

X0

mq2Zq

cosð2�mq � �qÞ
gDþ1ðLq;mqÞ

; (43)

hTl
l ip;q ¼ hT0

0ip;q � NðDþ 1Þ

� �ððDþ 1Þ=2Þ
2�ðDþ1Þ=2

X0

mq2Zq

L2
l m

2
l

cosð2�mq � �qÞ
gDþ3ðLq;mqÞ

;

(44)

where l ¼ pþ 1; . . . ; D. Note that for a massless field the
representation (36) has stronger convergence than the one
given by (43) and (44): the summand in (36) decays
exponentially instead of the power-law decay in (43) and
(44).

IV. APPLICATIONS TO NANOTUBES

In this section, we specify the general results given
above for the electrons on a carbon sheet rolled into a
cylinder or torus making use of the description of the
electronic states in terms of Dirac fermion fields. In this
case, D ¼ 2 and we consider the geometries of cylindrical
and toroidal nanotubes separately. Note that the Dirac-like
model for electrons in a carbon nanotube is valid provided
that the cylinder circumference is much larger than the
interatomic spacing. For typical nanotubes the correspond-
ing ratio can be between 10 and 20 and this approximation
is adequate [5,6].

A. Cylindrical nanotubes

A single wall cylindrical nanotube is a graphene sheet
rolled into a cylindrical shape. For this case we have spatial
topology R1 � S1 with the compactified dimension of the
length L. Note that the carbon nanotube is characterized by
its chiral vector Ch ¼ nwa1 þmwa2, with nw, mw being

integers, and L ¼ jChj ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2w þm2

w þ nwmw

p
. In the ex-

pression for the chiral vector, a1 and a2 are the basis

vectors of the hexagonal lattice of graphene and a ¼
ja1j ¼ ja2j ¼ 2:46 �A is the lattice constant. A zigzag

nanotube corresponds to the special case Ch ¼ ðnw; 0Þ,
and an armchair nanotube corresponds to the case Ch ¼
ðnw; nwÞ. All other cases correspond to chiral nanotubes.
The electron properties of carbon nanotubes can be either
metallic or semiconductor-like depending on the manner
the cylinder is obtained from the graphene sheet. In the
case nw �mw ¼ 3qw, qw 2 Z, the nanotube will be me-
tallic and in the case nw �mw � 3qw the nanotube will be
a semiconductor with an energy gap inversely proportional
to the diameter. In particular, the armchair nanotube is
metallic and the ðnw; 0Þ zigzag nanotube is metallic if
and only if nw is an integer multiple of 3.
In order to see the boundary conditions along the com-

pactified dimension, we note that for the ðnw;mwÞ nanotube
the phase factor in the wave function is in the form

ei½m1þðnw�mwÞ=3�’, m1 2 Z, where ’ is the angular variable
along the compact dimension. From here it follows that for
metallic nanotubes we have periodic boundary conditions
(�l ¼ 0) and for semiconductor nanotubes, depending on
the chiral vector, we have two classes of inequivalent
boundary conditions corresponding to �l ¼ �=3 (nw �
mw ¼ 3qw þ 2) and �l ¼ 2�=3 (nw �mw ¼ 3qw þ 1).
In the expression for the Casimir densities the phases �l

appear in the form cosð2�n�lÞ and, hence, the Casimir
energy density and stresses are the same for these two
cases.
Using the tight-binding approximation it can be seen

that the electronic band structure close to the Dirac points
shows a conical dispersion EðkÞ ¼ vFjkj, where k is the
momentum measured relatively to the Dirac points and vF

represents the Fermi velocity which plays the role of speed
of light. The corresponding low-energy excitations can be
described by a pair of two-component Weyl spinors, which
are composed of the Bloch states residing on the two
different sublattices of the honeycomb lattice of the gra-
phene sheet. The corresponding Fermi velocity is given by
vF ¼ 3ta=2 (vF 	 108 cm=s in graphene), where t is the
nearest neighbor hopping energy. Below, in specifying the
formulas from previous section for the case D ¼ 2, we
consider a massive spinor field to keep the discussion
general. The formulas for a massless case, appropriate
for carbon nanotubes, will be given separately.
In the case D ¼ 2, the general formula for the fermionic

condensate from Sec. II takes the form (N ¼ 2, p ¼ 1, q ¼
1, Vq ¼ L, Lpþ1 � L, �pþ1 � �)

h �c c i1;1 ¼ � m

�L
S�ðmLÞ; (45)

where we have defined

S�ðxÞ ¼
Xþ1

n¼1

cosð2�n�Þ e
�xn

n

¼ � 1

2
ln½1� 2e�x cosð2��Þ þ e�2x�: (46)
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In a similar way, for the VEVof the energy-momentum
tensor from (36) we find (no summation over l)

hTl
li1;1 ¼

1

�L3

X1
n¼1

cosð2�n�ÞGðlÞðnmLÞ e
�nmL

n3
; (47)

with the notations

Gð0ÞðzÞ ¼ Gð1ÞðzÞ ¼ 1þ z;

Gð2ÞðzÞ ¼ �ð2þ 2zþ z2Þ:
(48)

In particular, for the energy density we have

hT0
0i1;1 ¼

1

�L3
Sð0Þ� ðmLÞ; (49)

where the notation

Sð0Þ� ðxÞ ¼ X1
n¼1

cosð2�n�Þe�nx 1þ nx

n3
(50)

is introduced. In Fig. 2, we have plotted the function Sð0Þ� ðxÞ
for different values of � (numbers near the curves). In
particular, the Casimir energy density is positive for arm-
chair nanotubes (periodic boundary conditions).

In the case m ¼ 0, we have

hT0
0i1;1 ¼ hT1

1i1;1 ¼ � 1

2
hT2

2i1;1 ¼
Sð0Þ� ð0Þ
�L3

: (51)

In particular, Sð0Þ0 ð0Þ ¼ 1:202, Sð0Þ1=2ð0Þ ¼ �0:902, and

Sð0Þ1=3ð0Þ ¼ �0:534. Note that the corresponding fermionic

condensate vanishes. In carbon nanotubes we have two
sublattices and each of them gives the contribution to the
Casimir densities given by (51). So, for the Casimir energy
density on a carbon nanotube with radius L one has

hT0
0iðcnÞ1;1 ¼ 2@vF

�L3
Sð0Þ� ð0Þ; (52)

where the standard units are restored. Hence, we see that
the topological Casimir energy is positive for metallic
nanotubes and is negative for semiconducting ones.

B. Toroidal nanotubes

For the geometry of a toroidal nanotube we have the
spatial topology ðS1Þ2 with p ¼ 0 and q ¼ 2. In this case,
from the general formulas for the fermionic condensate we
find

h �c c i0;2 ¼ �m

�

X
j¼1;2

S�j
ðmLjÞ
Lj

� 2m

�

X1
m1¼1

X1
m2¼1

cosð2�m1�1Þ cosð2�m2�2Þ

� e�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1L
2
1þm2

2L
2
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1L
2
1 þm2

2L
2
2

q ; (53)

where the function S�ðxÞ is defined by (46).
The corresponding formulas for the energy density and

the vacuum stresses have the form (no summation over l)

hT0
0i0;2 ¼

X
j¼1;2

Sð0Þ�j
ðmLjÞ
�L3

j

þ 2

�

� X1
m1¼1

Xþ1

m2¼1

cosð2�m1�1Þ cosð2�m2�2Þ
expðmgðL2;m2ÞÞ

� 1þmgðL2;m2Þ
g3ðL2;m2Þ

; (54)

hTl
li0;2 ¼ hT0

0i0;2 �
m5

�

X
j¼1;2

Xþ1

mj¼1

cosð2�mj�jÞL2
l m

2
l

� 3þ 3xþ x2

x5ex

��������x¼mLjmj

� 2m5

�

Xþ1

m1¼1

Xþ1

m2¼1

cosð2�m1�1Þ cosð2�m2�2Þ

� L2
l m

2
l

3þ 3xþ x2

x5ex

��������x¼mgðL2;m2Þ
; (55)

with l ¼ 1, 2 and gðL2;m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1L
2
1 þm2

2L
2
2

q
.

Alternative expressions for the topological parts are ob-
tained from formulas (36) and (38). For a massless field we
find

0

1/3

1/2

0 1 2 3 4 5

0.5

0.0

0.5

1.0

x

S
0

x

FIG. 2 (color online). The function Sð0Þ� ðxÞ from (50) for differ-
ent values of the parameter � (numbers near the curves).

FERMIONIC CASIMIR DENSITIES IN TOROIDALLY . . . PHYSICAL REVIEW D 79, 085019 (2009)

085019-7



hT0
0i0;2 ¼

X
j¼1;2

Sð0Þ�j
ð0Þ

�L3
j

þ 2

�

� X1
m1¼1

Xþ1

m2¼1

cosð2�m1�1Þ cosð2�m2�2Þ
ðm2

1L
2
1 þm2

2L
2
2Þ3=2

; (56)

hTl
li0;2 ¼ hT0

0i0;2 �
3

�

X
j¼1;2

Xþ1

mj¼1

cosð2�mj�jÞL
2
l m

2
l

L5
jm

5
j

� 6

�

� Xþ1

m1¼1

Xþ1

m2¼1

L2
l m

2
l

cosð2�m1�1Þ cosð2�m2�2Þ
ðm2

1L
2
1 þm2

2L
2
2Þ5=2

:

(57)

In particular, it is of interest to see the difference of the
Casimir densities between the toroidal (with radii L1 and
L2) and cylindrical (with radius L2) geometries of the
carbon nanotube. For the condensate this difference is
directly given by formula (18) and one has

h �c c i0;2 ¼ h �c c i1;1� 2m

�L2

X1
n¼1

cosð2�n�1Þ

� Xþ1

n2¼�1
K0ðnðL1=L2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2ðn2þ�2Þ2þm2L2

2

q
Þ:

(58)

The first term on the right-hand side of this formula is the
condensate for the topology R1 � S1 with the length of the
compactified dimension L2. A similar formula for the VEV
of the energy-momentum tensor follows from (36) (no
summation over l):

hTl
li0;2 ¼ hTl

li1;1 þ
2

�L3
2

X1
n¼1

cosð2�n�1Þ

� Xþ1

n2¼�1
½4�2ðn2 þ �2Þ2 þm2L2

2�

� FðlÞðnðL1=L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2ðn2 þ �2Þ2 þm2L2

2

q
Þ; (59)

where the functions FðlÞðzÞ are given by expressions (37)
with p ¼ 0. The second terms on the right-hand sides of
formulas (58) and (59) are induced by the compactification
of the cylinder (with radius L2) along its axis. In Fig. 3, we
have plotted these terms for the energy density, �1hT0

0i0;2
(left panel), and for the stress along the axis of the cylinder,
�1hT1

1i0;2 (right panel), for a massless fermionic field as

functions of the ratio L1=L2. The numbers near the curves
correspond to the values of ð�1; �2Þ. As we have men-
tioned before the values of the phase �l ¼ 0, 1=3 are
realized in carbon nanotubes. The vacuum stress
�1hT2

2i0;2 is related to the quantities plotted in Fig. 3 by

the zero trace condition for the energy-momentum tensor
of a massless field.
The corresponding formulas for the Casimir densities in

toroidal nanotubes, which we denote by hTl
liðtnÞ0;2 , are ob-

tained from (56), (57), and (59) in the massless limit with
an additional factor of 2 which takes into account the

presence of two sublattices: hTl
liðtnÞ0;2 ¼ 2hTl

li0;2jm¼0. In stan-

dard units, the factor @vF appears as well. Note that if the
chiral vector Ch is directed along the axis z2 then one has
L2 ¼ jChj. The translational vector defining the unit cell,
T, is perpendicular to Ch and its components are related to
the components of the chiral vector by the formula

(0,0) (0,1/3)

(1/3,0) (1/3,1/3)

0.4 0.6 0.8 1.0 1.2 1.4
0.2

0.1

0.0

0.1

0.2

L1 L2

L
23

1
T

00
0,

2

(1/3,0) (1/3,1/3)

(0,0) (0,1/3)

0.4 0.6 0.8 1.0 1.2 1.4
1.0

0.5

0.0

0.5

1.0

L1 L2

L
23

1
T

11
0,

2

FIG. 3 (color online). The difference between the vacuum energy densities (left panel) and stresses (right panel) between the
cylindrical (with radius L2) and toroidal (with radii L1 and L2) geometries for a massless fermionic field. The numbers near the curves
are the corresponding values for ð�1; �2Þ.
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T ¼ nw þ 2mw

dr
a1 � 2nw þmw

dr
a2; (60)

where dr ¼ gcdðnw;mwÞ if (mw � nw) is not a multiple of
3� gcdðnw;mwÞ and dr ¼ 3� gcdðnw;mwÞ if (mw � nw)
is a multiple of 3� gcdðnw;mwÞ. Here gcd means the
greatest common divisor. Now for the length of the second
toroidal dimension we have L1 ¼ NwjTj, where Nw is the
number of unit cells along the corresponding direction. By

taking into account that jTj ¼ ffiffiffi
3

p
L1=dr, for the ratio of the

lengths of the torus in (59) one finds L1=L2 ¼
ffiffiffi
3

p
Nw=dr.

From the graphs in Fig. 3 it follows that the toroidal
compactification of a cylindrical nanotube along its axis
increases the Casimir energy for periodic boundary con-
ditions (�1 ¼ 0) and decreases the Casimir energy for the
semiconducting-type compactifications. In particular, the
Casimir energy of the armchair cylindrical nanotube in-
creases by the compactification if Nw is an integer multiple
of 3 and decreases otherwise.

V. CONCLUSION

In the present paper we have investigated the topological
Casimir effect for a massive spinor field on background of
spacetime with an arbitrary number of toroidally compac-
tified spatial dimensions. The boundary conditions along
compactified dimensions are taken in general form with
arbitrary phases. For the evaluation of the Casimir densities
we have used the direct mode-summation method. By
applying the Abel-Plana formula to the corresponding
mode sums, we have derived recurrence formulas which
relate the VEVs for the topologies Rp � ðS1Þq and Rpþ1 �
ðS1Þq�1. The part induced by the compactness of the
(pþ 1)-th direction is given by expression (18) for the
fermionic condensate and by expression (36) for the VEV
of the energy-momentum tensor. The total topological
VEVs are obtained after the summation over all compacti-
fied dimensions, formulas (21) and (38). Alternative ex-
pressions are obtained by using the generalized Chowla-
Selberg formula for the analytic continuation of the corre-
sponding zeta function. These expressions are given by
formula (28) for the condensate and by formulas (41) and
(42) for the energy density and vacuum stresses along
compactified dimensions. Note that the stresses along the
uncompactified dimensions coincide with the energy den-
sity. This property is a direct consequence of the boost
invariance along the corresponding directions. For a mass-
less fermionic field the condensate vanishes and the ex-
pressions for the VEVs of the energy density and vacuum
stresses take the form (43) and (44). Note that, unlike in the
case of a massive field, the convergence of the multiseries
in the latter case is power law. In the representation based
on the application of the Abel-Plana summation formula
we have exponentially convergent multiseries in both cases
of massive and massless fields. On the example of the
simplest Kaluza-Klein-type model with spatial topology

R3 � S1 we have demonstrated that, unlike to the special
cases of twisted and untwisted fields, in general, the
Casimir energy density is not a monotonic function of
the size of the internal space.
In Sec. IV, we specify the general formulas for the model

with D ¼ 2. This model may be used for the evaluation of
the Casimir densities within the framework of the Dirac-
like theory for the description of the electronic states in
carbon nanotubes, where the role of speed of light is played
by the Fermi velocity. Though the corresponding spinor
field is massless, to keep the discussion general, we present
the formulas for the cylindrical and toroidal geometries in
the massive case and specify the results for the nanotubes
separately. For carbon nanotubes the fermionic condensate
vanishes and the VEV of the energy-momentum tensor is
given by formula (52) for cylindrical nanotubes and by (56)
and (57) (with an additional factor of 2 which takes into
account the presence of two sublattices) for toroidal nano-
tubes. In the case of toroidal nanotubes, an alternative
representation with the stronger convergence of the series
is given by formula (59) with m ¼ 0. The topological
Casimir energy is positive for metallic cylindrical nano-
tubes and is negative for semiconducting ones. We have
shown that the toroidal compactification of a cylindrical
nanotube along its axis increases the Casimir energy for
periodic boundary conditions and decreases the Casimir
energy for the semiconducting-type compactifications. In
particular, the Casimir energy of the armchair cylindrical
nanotube increases by the compactification if the number
of unit cells along the axis of cylinder is an integer multiple
of 3 and decreases otherwise.
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APPENDIX: EQUIVALENCE OF TWO
APPROACHES

In this section, we show that the formulas (21) and (28)
for the topological part in the fermionic condensate are
equivalent. First of all we note that from formula (28) one
has

h �c c ip;q ¼ h �c c ipþ1;q�1 � 2NmD

ð2�ÞðDþ1Þ=2

� X1
mpþ1¼1

cosð2�mpþ1�pþ1Þ

� X
mq�12Zq�1

cosð2�mq�1 ��q�1Þ

� fðD�1Þ=2ðmgðLq;mqÞÞ: (A1)
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Hence, we should prove the relationX
mq�12Zq�1

cosð2�mq�1 � �q�1ÞfðD�1Þ=2ðmgðLq;mqÞÞ

¼ ð2�Þðq�1Þ=2Lpþ1

Vqm
D�1

X
nq�12Zq�1

!p
nq�1

fp=2ðnLpþ1!nq�1
Þ:

(A2)

For this we will use the Poisson’s resummation formulaX
mq�12Zq�1

FðxÞ�ðx�mq�1Þ ¼
X

nq�12Zq�1

FðxÞe2i�nq�1�x;

(A3)

for the function

FðxÞ ¼ cosð2�x � �q�1Þ
� fðD�1Þ=2ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðLq�1;xÞ þ L2

pþ1m
2
pþ1

q
Þ: (A4)

After the integration over x we findX
mq�12Zq�1

cosð2�mq�1 ��q�1ÞfðD�1Þ=2ðmgðLq;mqÞÞ

¼ X
nq�12Zq�1

Z
dx cos½2�x � ð�q�1 þ nq�1Þ�

� fðD�1Þ=2ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðLq�1;xÞ þ L2

pþ1m
2
pþ1

q
Þ: (A5)

For the evaluation of the integral on the right-hand side we
first introduce a new integration variable in accordance
with yi ¼ xiLi and then introduce spherical coordinates.
The integration over the angular coordinates is expressed
in terms of the Bessel function. At the final step the integral
is evaluated by using the formula [22]

Z 1

0
dyy�þ1J�ðbyÞf�ðc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ a2

q
Þ

¼ b�

c2�
ðb2 þ c2Þ����1f����1ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
Þ: (A6)

This leads to the following result

Z
dx cosð2�x � ð�q�1 þ nq�1ÞÞ

� fðD�1Þ=2ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðLq�1;xÞ þ L2

pþ1m
2
pþ1

q
Þ

¼ ð2�Þðq�1Þ=2Lpþ1

mD�1Vq

!p
nq�1

fp=2ðmpþ1Lpþ1!nq�1
Þ; (A7)

where !nq�1
is defined by relation (13). Substituting this

relation into (A5) leads to the result (A2) which proves the
equivalence of two expressions for the topological part.
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