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The main objective of this article is to recast the hypermultiplets sector of five-dimensional ungauged

N ¼ 2 supergravity into a manifestly symplectic-covariant form. We propose that this facilitates the

construction and analysis of hypermultiplet fields coupled to p-brane sources and discuss examples.
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I. INTRODUCTION

The study of N ¼ 2 supergravity (SUGRA) theories
has gained interest in recent years for a variety of reasons.
For example, N ¼ 2 branes are particularly relevant to
the conjectured equivalence between string theory on anti-
de Sitter (AdS) space and certain superconformal gauge
theories living on the boundary of the space (the AdS/
conformal field theory (CFT) duality) [1]. Also interesting
is that many results were found to involve the so-called
attractor mechanism (e.g. [2–4]); the study of which de-
veloped very rapidly with many intriguing outcomes (e.g.
[5–7]). The subject is also important in the context of string
theory compactifications, as it is known that the behavior
of the lower dimensional fields is contingent upon the
topology of the underlying submanifold. In addition,
many D ¼ 4, 5 results were shown to be related to higher
dimensional ones via wrapping over specific cycles of
manifolds with special holonomy. For example, M branes
wrapping Kähler calibrated cycles of a Calabi-Yau (CY)
threefold [8] dimensionally reduce to black holes and
strings coupled to the vector multiplets of five-dimensional
N ¼ 2 supergravity [9], while M branes wrapping special
Lagrangian calibrated cycles reduce to configurations car-
rying charge under the hypermultiplet scalars [10–14].
Studying how higher dimensional results are related to
lower dimensional ones may eventually provide clues to
the explicit structure of the compact space and the choice
of compactification mechanism, thereby contributing to
more understanding of the string theory landscape. It be-
comes then an important issue indeed, as far as the string
theoretic view of the universe is concerned, to study such
compactifications by classifying lower dimensional solu-
tions and analyzing how they relate to higher dimensional
ones.

In reviewing the literature, one notices that most studies
in N ¼ 2 SUGRA in any number of dimensions specifi-
cally address the vector multiplets sector; setting the hyper-
multiplets to zero. This is largely due to the fact that the
standard representation of the hypermultiplet scalars as
coordinates on a quaternionic manifold is somewhat hard

to deal with. It has been shown, however, that certain
duality maps relate the target space of a given higher
dimensional fields’ sector to that of a lower dimensional
one [15]. Particularly relevant to this work is the so-called
c-map which relates the quaternionic structure of the D ¼
5 hypermultiplets to the more well-understood special
geometric structure of the D ¼ 4 vector multiplets. This
means that one can recast the D ¼ 5 hypermultiplet fields
into a form that makes full use of the methods of special
geometry. This was done in [16] and applied in the same
reference as well as in [12] and others. Using this method,
finding solutions representing the five -dimensional hyper-
multiplet fields often means coming up with ansätze that
have special geometric form. This can be, and has been,
done by building on the considerable D ¼ 4 vector mul-
tiplets literature, and in most cases the solutions are re-
markably similar. For example, D ¼ 5 hypermultiplet
couplings to 2-branes and instantons [12,16] lead to the
same type of attractor equations found for the vector
multiplets coupled to D ¼ 4 black holes (e.g. [17–20]).
Despite the power of the c-map method, it is still a

highly tedious process to find solutions representing the
full set of hypermultiplet fields. This is particularly serious
in view of the fact that the most general solutions neces-
sarily depend on the structure of the underlying Calabi-Yau
manifold. Since no explicit (nontrivial) compact CY three-
folds are known, the best one can do is to derive constraints
on the fields; for example, the aforementioned attractor
equations. And even then, deriving these equations is a
long and difficult process. One may then desire to find an
approach to constructing D ¼ 5 hypermultiplet solutions
that is more systematic and hopefully easily generalizable
to other types of fields in other dimensions. One way of
doing this, which we propose in this article, is by exploiting
the symplectic nature of the theory. It has long been known
that quaternionic and special Kähler geometries contain
symplectic isometries and that the hypermultiplets action
(with or without gravity) is in fact symplectically invariant.
Furthermore, direct examination of known constructions
reveals that they are written in terms of symplectic invar-
iants and that this seems to be a recurrent theme. So the
question becomes, can one construct solutions based solely
on symplectic invariance? If so, what is the simplest form*moataz.emam@cortland.edu
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of the theory’s field/supersymmetry equations that reduces
the amount of work needed to verify these ansätze? In this
paper, this is exactly what we attempt to explore.

The paper is structured in the following way: Section II
reviews the definition of the space of complex structure
moduli of Calabi-Yau manifolds. In Sec. III we discuss
special Kähler geometry with particular emphasis on its
symplectic structure. In so doing, we set the notation
needed for dealing with symplectic invariants, collect all
the necessary equations from the literature, as well as
derive new quantities. Section IV reviews the dimensional
reduction of D ¼ 11 SUGRA over a Calabi-Yau threefold
with nontrivial complex structure moduli. Finally, in
Sec. V we put everything together and reformulate the
theory into a symplectically covariant form and write
down the field and SUSY equations in the simplest way
possible. It is our hope that the equations of this section can
be used in future research to straightforwardly write down
and study solution ansätze. We conclude by showing how
this approach is applied to two known D ¼ 5 results.

II. THE SPACE OF COMPLEX STRUCTURE
MODULI OF CALABI-YAU MANIFOLDS

A Calabi-Yau manifold M is defined as a Kähler mani-
fold endowed with Ricci flat metrics. The fields of string/
SUGRA theories dimensionally reduced over CY three-
folds generally correspond to the parameters that describe
possible deformations of M. This parameters’ space fac-
torizes, at least locally, into a product manifold MC �
MK, with MC being the manifold of complex structure
moduli and MK being a complexification of the parame-
ters of the Kähler class. These so-called moduli spaces turn
out to belong to the category of special Kähler manifolds
(defined in the next section).

Calabi-Yau threefolds admit a single (3, 0) cohomology
form; i.e. they have Hodge number h3;0 ¼ 1, which we will
call � (the holomorphic volume form) and an arbitrary
number of (1, 1) and (2, 1) forms determined by the
corresponding h’s (whose values depend on the particular
choice of CY manifold). The Hodge number h2;1 deter-

mines the dimensions of MC, while h1;1 determines the

dimensions of MK. The pair ðM; KÞ, where K is the
Kähler form of M, can be deformed by either deforming
the complex structure of M or by deforming the Kähler
form K (or both). In particular,MC corresponds to special
Lagrangian cycles of the CY space M that are completely
specified by knowledge of the unique (3, 0) form� and the
arbitrary number of (2, 1) forms.

The following basic properties of � can be found:Z
M

� ^ �� ¼ �ie�K;

Z
M

� ^ ri� ¼
Z
M

�� ^ r�i
�� ¼ 0;

Z
M

ri� ^ r �j
�� ¼ iGi �je

�K; ði ¼ 1; . . . ; h2;1Þ; (1)

where K is the Kähler potential of MC, Gi �j is a complex

metric on MC, and r is defined by

ri ¼ @i þ 1
2ð@iKÞ; r�i ¼ @�i � 1

2ð@�iKÞ; (2)

based on the Uð1Þ Kähler connection
P ¼ � i

2
½ð@iKÞdzi � ð@�iKÞdz�i�: (3)

The space MC can be described in terms of the periods
of �. Let ðAI; BJÞ, where I, J, K ¼ 0; . . . ; h2;1, be a ca-

nonical H3 homology basis such that

AI \ BJ ¼ �I
J; BI \ AJ ¼ ��J

I ;

AI \ AJ ¼ BI \ BJ ¼ 0;
(4)

and let ð�I; �
JÞ be the dual cohomology basis forms such

that Z
M

�I ^ �J ¼
Z
AJ
�I ¼ �J

I ;Z
M

�I ^ �J ¼
Z
BJ

�I ¼ ��I
J;

Z
M

�I ^ �J ¼
Z
M

�I ^ �J ¼ 0:

(5)

The periods of � are then defined by

ZI ¼
Z
AI
�; FI ¼

Z
BI

�; (6)

such that

� ¼ ZI�I � FI�
I; (7)

and the Kähler potential of MC becomes

K ¼ � ln½ið �ZIFI � ZI �FIÞ�: (8)

The so-called periods matrix is defined by

N IJ ¼ �FIJ þ 2i
NIKZ

KNJLZ
L

ZPNPQZ
Q

¼ �IJ � i�IJ; (9)

where FIJ ¼ @IFJ (the derivative is with respect to ZI),
NIJ ¼ ImðFIJÞ, and �IJ�JK ¼ �I

K.
Finally, we note that one can choose a set of independent

‘‘special coordinates’’ z as follows:

zI ¼ ZI

Z0
; (10)

which are identified with the moduli of the complex struc-
ture zi.

III. SPECIAL GEOMETRYAND SYMPLECTIC
COVARIANCE

The spaceMC is described by special Kähler geometry,
which we define in this section. The language we will use
relies heavily on the symplectic structure of special mani-
folds. Some of the notation and equations used here are
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original to this work. Our objective is to develop a working
formulation of symplectic vector spaces that should facili-
tate the analysis of solutions in the hypermultiplets sector
of D ¼ 5 N ¼ 2 SUGRA, as well as any other theory
with symplectic structure.

The symplectic group Spð2m; FÞ � GLð2m; FÞ is the
isometry group of a nondegenerate alternating bilinear
form on a vector space of rank 2m over F, where this last
is usually either R or C, although other generalizations are
possible. For our purposes, we take F ¼ R andm ¼ h2;1 þ
1. In other words, Spð2h2;1 þ 2;RÞ is the group of the real

bilinear matrices

� ¼
11�I

J
12�IJ

21�IJ
22�J

I

" #
2 Spð2h2;1 þ 2;RÞ (11)

that leave the totally antisymmetric symplectic matrix:

S ¼ 0 1
�1 0

� �
¼ 0 �J

I

��I
J 0

� �
(12)

invariant; i.e.

� TS� ¼ S; �TST� ¼ ST; (13)

implying j�j ¼ 1. The inverse of � is found to be

��1 ¼ S�1�TS ¼
22�I

J �12�IJ

�21�IJ
11�J

I

� �
; (14)

such that, using (13),��1� ¼ S�1�TS� ¼ S�1S ¼ 1 as
needed. Also note that S�1 ¼ ST ¼ �S. We adopt the
language that there exists a vector space Sp such that the
symplectic matrix S acts as a metric on that space.
Symplectic vectors in Sp can be written in a ‘‘ket’’ nota-
tion as follows:

jAi ¼ aI

~aI

� �
; jBi ¼ bI

~bI

� �
: (15)

On the other hand, ‘‘bra’’ vectors defining a space dual to
Sp can be found by contraction with the metric in the usual
way, yielding

hAj ¼ ðSAÞT ¼ ATST ¼ ðaJ ~aJ Þ 0 ��I
J

�J
I 0

" #

¼ ð ~aI �aI Þ
; (16)

such that the inner product on Sp is the ‘‘bra(c)ket’’:

hAjBi ¼ ATSTB ¼ ð ~aI �aI Þ bI

~bI

 !

¼ ~aIb
I � aI ~bI ¼ �hBjAi: (17)

In this language, the matrix � can simply be thought of
as a rotation operator in Sp. So a rotated vector is

jA0i ¼ �j�Ai ¼ ��A: (18)

This is easily shown to preserve the inner product (17):

hA0jB0i ¼ ð�Þ2AT�TST�B ¼ ATSTB ¼ hAjBi; (19)

where (13) was used. In fact, one can define (13) based on
the requirement that the inner product is preserved. To
facilitate future calculations, we define the symplectic
invariant

hAj�jBi � hAj�Bi ¼ ATST�B ¼ hA��1jBi
¼ �hB�jAi: (20)

The matrix � we will be using in the remainder of the
paper has the property

22�I
J ¼ �11�I

J ! ��1 ¼ ��; (21)

which, via (20), leads to

hAj�jBi ¼ hAj�Bi ¼ �hA�jBi: (22)

The choice (21) is not the only natural one. A conse-
quence of it is that � is not symmetric, but S� is. On the
other hand an equivalent choice would be a symmetric �,
in which case it would be S� that satisfies (21). Within the
context of special geometry, we have opted for a nonsym-
metric � since it makes some later equations simpler.
Now consider the algebraic product of the two symplec-

tic scalars

hAjBihCjDi ¼ ðATSTBÞðCTSTDÞ: (23)

The ordinary outer product of matrices is defined by

B �CT ¼ bI

~bI

� �� ð cJ ~cJ Þ ¼ bIcJ bI~cJ
~bIc

J ~bI~cJ

� �
; (24)

which allows us to rewrite (23)

hAjBihCjDi ¼ ATSTðB �CTSTÞD ¼ hAjB �CTSTjDi:
(25)

Comparing the terms of (25), we conclude that one way
a symplectic outer product can be defined is

jBihCj ¼ B �CTST ¼ bI~cJ �bIcJ

~bI~cJ �~bIc
J

� �
: (26)

Note that the order of vectors in (26) is important, since
generally

jBihCj ¼ ½SjCihBjS�T: (27)

However, if the outer product jBihCj satisfies the prop-
erty (21), i.e.

½jBihCj��1 ¼ �jBihCj; (28)

then it is invariant under the interchange B $ C:

jBihCj ¼ jCihBj: (29)

The definition of a special Kähler manifold goes like
this: Let L denote a complex Uð1Þ line bundle whose first
Chern class equals the Kähler form K of a Hodge-Kähler
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manifoldM. Now consider an additional holomorphic flat
vector bundle of rank ð2h2;1 þ 2Þ with structural group

Spð2h2;1 þ 2;RÞ on M : SV ! M. Construct a tensor

bundle SV �L. This then is a special Kähler manifold if
for some holomorphic section j�i of such a bundle the
Kähler 2-form is given by

K ¼ � i

2�
@ �@ lnðih�j ��iÞ; (30)

or in terms of the Kähler potential

K ¼ � lnðih�j ��iÞ ! h ��j�i ¼ ie�K: (31)

Now, this exactly describes the space of complex struc-
ture moduli MC if one chooses

j�i ¼ ZI

FI

� �
; (32)

which, via (31), leads directly to Eq. (8) defining the
Kähler potential ofMC. We then identifyMC as a special
Kähler manifold with metric Gi �j.

It can be easily demonstrated that the matrix

� ¼ �IK�KJ ��IJ

ð�IJ þ �KL�IK�JLÞ ��JK�KI

� �
(33)

satisfies the symplectic condition (13), where � and � are
defined by (9). Its inverse is then

��1 ¼ �� ¼ ��JK�KI �IJ

�ð�IJ þ �KL�IK�JLÞ �IK�KJ

� �
:

(34)

The symplectic structure manifest here is a consequence
of the topology of the Calabi-Yau manifoldM, the origins
of which can be traced to the completeness relations (5),
clearlyZ

M

�I ^ �J �I ^ �J

�I ^ �J �I ^ �J

� �
¼ 0 �J

I

��I
J 0

� �
¼ S: (35)

In fact, if one defines the symplectic vector

j�i ¼ �I

�I

� �
; (36)

then it is easy to check thatZ
M

��̂�T ¼ ST !
Z
M

j�i ^ h�j ¼ �1: (37)

Next, we construct a basis in Sp. Properly normalized,
the periods vector (32) provides such a basis

jVi ¼ eK=2j�i ¼ LI

MI

� �
; (38)

such that, using (31)

h �VjVi ¼ ðLI �MI � �LIMIÞ ¼ i: (39)

Since jVi is a scalar in the ði; j; kÞ indices, it couples only
to the Uð1Þ bundle via the Kähler covariant derivative

jriVi ¼
��������
�
@i þ 1

2
ð@iKÞ

�
V

�
;

jr�iVi ¼
��������
�
@�i �

1

2
ð@�iKÞ

�
V

�
;

jri
�Vi ¼

��������
�
@i � 1

2
ð@iKÞ

�
�V

�
;

jr�i
�Vi ¼

��������
�
@�i þ

1

2
ð@�iKÞ

�
�V

�
:

(40)

Using this, one can construct the orthogonal Sp vectors

jUii ¼ jriVi ¼ riL
I

riMI

� �
¼ fIi

hijI

� �
; (41)

jU�ii ¼ jr�i
�Vi ¼ r�i

�LI

r�i
�MI

� �
¼ fI�i

h�ijI

 !
; (42)

with

jriUji ¼
��������
�
@i þ 1

2
ð@iKÞ

�
Uj

�
;

jr�iUji ¼
��������
�
@�i �

1

2
ð@�iKÞ

�
Uj

�
;

jriU �ji ¼
��������
�
@i � 1

2
ð@iKÞ

�
U �j

�
;

jr�iU �ji ¼
��������
�
@�i þ

1

2
ð@�iKÞ

�
U �j

�
:

(43)

Note that jUii also couples to the metricGi �j via the Levi-

Civita connection. So its full covariant derivative is defined
by

jDiUji ¼ jriUji � �k
ijjUki; jD�iUji ¼ jr�iUji;

jDiU �ji ¼ jriU �ji; jD�iU �ji ¼ jr�iU �ji � �
�k
�i �j
jU �ki:

(44)

It can be demonstrated that these quantities satisfy the
properties

jri
�Vi ¼ jr�iVi ¼ 0; (45)

hUijUji ¼ hU�ijU �ji ¼ 0; (46)

h �VjUii ¼ hVjU�ii ¼ hVjUii ¼ h �VjU�ii ¼ 0; (47)

jr �jUii ¼ Gi �jjVi; jriU �ji ¼ Gi �jj �Vi; (48)

Gi �j ¼ ð@i@ �jKÞ ¼ �ihUijU �ji: (49)

Special Kähler manifolds admit a completely symmetric
and covariantly holomorphic tensor Cijk and its antiholo-

morphic conjugate C�i �j �k such that the following restriction
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on the curvature is true:

R�ij �kl ¼ Gj �kGl�i þGl �kGj�i � CrljC �s �i �kG
r�s; (50)

generally referred to in the literature as the special Kähler
geometry constraint. It can be shown that

jDiUji ¼ Gk�lCijkjU�li; (51)

which leads to

Cijk ¼ �ihDiUjjUki: (52)

The following identities may now be derived:

N IJL
J ¼ MI;

�N IJf
J
i ¼ hijI;

�N IJ
�LJ ¼ �MI; N IJf

J
�i
¼ h�ijI;

(53)

�IJL
I �LJ ¼ 1

2; Gi �j ¼ 2�IJf
I
i f

J
�j
; (54)

as well as the very useful (and quite essential for our
purposes)

�IJ ¼ 2ðLI �LJ þGi �jfIi f
J
�j
Þ;

ð�IJ þ �KL�IK�JLÞ ¼ 2ðMI
�MJ þGi �jhijIh �jjJÞ;

�IK�KJ ¼ 2ð �LIMJ þGi �jfi
Ih �jjJÞ þ i�I

J

¼ 2ðLI �MJ þGi �jhijJf �j
IÞ � i�I

J

¼ ðLI �MJ þ �LIMJÞ
þGi �jðfiIh �jjJ þ hijJf �j

IÞ: (55)

Equations (55) lead to a second form for the symplectic
matrix (33)

� ¼ ðLI �MJ þ �LIMJÞ þGi �jðfiIh �jjJ þ hijJf �j
IÞ �2ðLI �LJ þGi �jfIi f

J
�j
Þ

2ðMI
�MJ þGi �jhijIh �jjJÞ �ðLJ �MI þ �LJMIÞ �Gi �jðfiJh �jjI þ hijIf �j

JÞ

2
4

3
5 (56)

with inverse

��1 ¼ �� ¼ �ðLJ �MI þ �LJMIÞ �Gi �jðfiJh �jjI þ hijIf �j
JÞ 2ðLI �LJ þGi �jfIi f

J
�j
Þ

�2ðMI
�MJ þGi �jhijIh �jjJÞ ðLI �MJ þ �LIMJÞ þGi �jðfiIh �jjJ þ hijJf �j

IÞ

2
4

3
5: (57)

By inspection, one can write down the following impor-
tant result:

� ¼ jVih �Vj þ j �VihVj þGi �jjUiihU �jj þGi �jjU �jihUij;
��1 ¼ �jVih �Vj � j �VihVj �Gi �jjUiihU �jj �Gi �jjU �jihUij:

(58)

In other words, the rotation matrix in Sp is expressible
as the outer product of the basis vectors; a result which, in
retrospect, seems obvious. Note that since � satisfies the
property (21), it is invariant under the interchange V $ �V
and/or Ui $ U �j. This makes manifest the fact that � is a

real matrix;� ¼ ��. Now, applying��1� ¼ 1, we end up
with the condition

j �VihVj þGi �jjUiihU �jj ¼ jVih �Vj þGi �jjU �jihUij � i; (59)

which can be checked explicitly using (55). This can be
used to write � in an even simpler form

� ¼ 2jVih �Vj þ 2Gi �jjU �jihUij � i;

��1 ¼ �2jVih �Vj � 2Gi �jjU �jihUij þ i:
(60)

For future convenience we also compute

D i� ¼ ri� ¼ @i�

¼ 2jUiih �Vj þ 2j �VihUij þ 2Gj�rGk �pCijkjU�rihU �pj:
(61)

It is clearly easier, and possibly more intuitive, to work
with an expression such as (60) over something like (56),
or even (33). It is indeed this very fact that has motivated
this work in its entirety. Finally, we note that our discussion
here is based on a definition of special manifolds that is not
the only one in existence. See, for instance, [21] for details.
Explicit examples of special manifolds in various dimen-
sions are given in, for example, [22]. More detail on this
obviously vast topic may be found in [23–31].

IV. D ¼ 5 N ¼ 2 SUPERGRAVITY WITH
HYPERMULTIPLETS

The dimensional reduction of D ¼ 11 supergravity over
a Calabi-Yau manifoldM yields ungaugedD ¼ 5N ¼ 2
SUGRA. We look at the case where only the complex
structure of M is deformed. We will follow, and slightly
extend, the notation of [16].
The unique supersymmetric gravity theory in 11 dimen-

sions has the following bosonic action:
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S11 ¼
Z
11

�
R ? 1� 1

2
F ^ ?F � 1

6
A ^F ^F

�
; (62)

where R is the D ¼ 11 Ricci scalar, A is the 3-form
gauge potential, F ¼ dA, and ? is the Hodge star opera-
tor. The dimensional reduction is traditionally done using
the metric

ds2 ¼ eð2=3Þ�g�	dx
�dx	 þ e�ð�=3Þds2CY;

�; 	 ¼ 0; . . . ; 4;
(63)

where g�	 is the target five-dimensional metric, ds2CY is a

metric on the six-dimensional compact subspace M, the
dilaton � is a function in x� only, and the warp factors are
chosen to give the conventional numerical coefficients in
five dimensions.

The flux compactification of the gauge field is done by
expanding A into two forms, one is the five-dimensional
gauge field A while the other contains the components of
A on M written in terms of the cohomology forms
ð�I; �

IÞ as follows:

A ¼ Aþ ffiffiffi
2

p ð
I�I þ ~
I�
IÞ;

F ¼ dA ¼ Fþ ffiffiffi
2

p ½ð@�
IÞ�I þ ð@� ~
IÞ�I� ^ dx�:

(64)

Because of the 11-dimensional Chern-Simons term, the

coefficients 
I and ~
I appear as pseudoscalar axion fields
in the lower dimensional theory. We also note that A in five
dimensions is dual to a scalar field which we will call a

(known as the universal axion). The set ða;�; 
0; ~
0Þ is
known as the universal hypermultiplet.1 The rest of the

hypermultiplets are ðzi; z�i; 
i; ~
iÞ, where we recognize the
z’s as the CY’s complex structure moduli. Note that the
total number of scalar fields in the hypermultiplets sector is
4ðh2;1 þ 1Þ (each hypermultiplet has four real scalar fields)

which comprises a quaternionic manifold as noted earlier.
Also included in the hypermultiplets are the fermionic
partners of the hypermultiplet scalars known as the hyper-
ini (singular: hyperino).

The bosonic action of the ungauged five-dimensional
N ¼ 2 supergravity theory with vanishing vector multip-
lets is

S5 ¼
Z
5

�
R ? 1� 1

2
d� ^ ?d��Gi �jdz

i ^ ?dz
�j

� F ^ ð
Id~
I � ~
Id

IÞ � 1

2
e�2�F ^ ?F

� e�½ð�IJ þ �KL�IK�JLÞd
I ^ ?d
J

þ �IJd~
I ^ ?d~
J þ 2�IK�JKd

J ^ ?d~
I�

	
: (65)

Variation of the action gives the following field equa-

tions for �, ðzi; z�iÞ, A, and ð
I; ~
IÞ:
ð��Þ ? 1� e�X þ e�2�F ^ ?F ¼ 0; (66)

ð�ziÞ ? 1þ �i
jkdz

j ^ ?dzk � 1
2e

�Gi �jð@ �jXÞ ? 1 ¼ 0;

ð�z�iÞ ? 1þ �
�i
�j �k
dz

�j ^ ?dz
�k � 1

2e
�G

�ijð@jXÞ ? 1 ¼ 0;

(67)

dy½e�2�Fþ ?ð
Id~
I � ~
Id

IÞ� ¼ 0; (68)

dy½e��IK�JKd

Jþe��IJd~
Jþ
I ?F�¼0;

dy½e�ð�IJþ�KL�IK�JLÞd
Jþe��JK�IKd~
J� ~
I ?F�¼0;

(69)

where dy is the adjoint exterior derivative and � is the
Laplace de-Rahm operator. For compactness we have de-
fined

X ¼ ð�IJ þ �KL�IK�JLÞd
I ^ ?d
J

þ �IJd~
I ^ ?d~
J þ 2�IK�JKd

J ^ ?d~
I; (70)

as well as used the Bianchi identity dF ¼ 0 to get the given
form of (69). From a five-dimensional perspective, the

moduli ðzi; z�iÞ behave as scalar fields. We recall, however,
that the behavior of the other fields is dependent on the
moduli, i.e. they are functions in them. Hence it is possible
to treat (67) as constraints that can be used to reduce the
degrees of freedom of the other field equations. Certain
assumptions, however, are needed to perform this, so we
will not do so here since our objective is to discuss the field
equations in their most general form. This is more properly
done in the context of specific solution ansätze.
Equations (68) and (69) are clearly the statements that

the forms

J 2 ¼ e�2�Fþ ?ð
Id~
I � ~
Id

IÞ;

J I
5 ¼ e��IK�JKd


J þ e��IJd~
J þ 
I ? F;

~J 5jI ¼ e�ð�IJ þ �KL�IK�JLÞd
J
þ e��JK�IKd~
J � ~
I ? F (71)

are conserved. These are, in fact, Noether currents corre-
sponding to certain isometries of the quaternionic manifold
defined by the hypermultiplets as discussed in various

1So-called because it appears in all Calabi-Yau compactifica-
tions, irrespective of the detailed structure of the CY manifold.
We recall that the dilaton � is proportional to the natural
logarithm of the volume of M.
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sources [15,32]. From a five-dimensional perspective, they
can be thought of as the result of the invariance of the

action under particular infinitesimal shifts of A and ð
; ~
Þ
[16,33]. The charge densities corresponding to them can
then be found in the usual way by

Q 2 ¼
Z

J 2; QI
5 ¼

Z
J I

5;
~Q5jI ¼

Z
~J 5jI:

(72)

The geometric way of understanding these charges is
noting that they descend from the 11-dimensional electric
and magnetic M-brane charges, hence the (2, 5) labels.2

M2 branes wrapping special Lagrangian cycles of M
generate Q2 while the wrapping of M5 branes excite

ðQI
5;

~Q5jIÞ.
Finally, for completeness sake we also give da, where a

is the universal axion dual to A. Since (68) is equivalent to
d2a ¼ 0, we conclude that

da ¼ e�2� ? F� ð
Id~
I � ~
Id

IÞ; (73)

where a is governed by the field equation

dy½e2�daþ e2�ð
Id~
I � ~
Id

IÞ� ¼ 0; (74)

as a consequence of dF ¼ 0. Both terms involving F in
(65) could then be replaced by the single expression3

Sa ¼ 1

2

Z
e2�½daþ ð
Id~
I � ~
Id


IÞ�
^ ?½daþ ð
Id~
I � ~
Id


IÞ�: (75)

The full supersymmetric action is invariant under the
following SUSY variations. For the gravitini:

��c
A ¼ ~r�A þ ½G�AB�B;

½G� ¼
1
4ðv� �v� YÞ � �u

u �1
4ðv� �v� YÞ

" #
;

(76)

where the indices A and B run over ð1; 2Þ, ~r is given by

~r ¼ dx�
�
@� þ 1

4!�
�̂ 	̂��̂ 	̂

�
; (77)

where the !’s are the usual spin connections, hatted in-
dices denote dimensions in a flat tangent space, and the �’s
are the SUSY parameters. The other quantities in (76) are

u¼ e�=2ðMId

I þLId~
IÞ; �u¼ e�=2ð �MId


I þ �LId~
IÞ;
v¼ 1

2
d�þ i

2
e�� ?F; �v¼ 1

2
d�� i

2
e�� ?F; (78)

and

Y ¼ �ZINIJdZ
J � ZINIJd �ZJ

�ZINIJZ
J

(79)

which is proportional to the Uð1Þ Kähler connection de-
fined by (3).
Finally, the hyperini equations are

���
I
1 ¼ e1I��

��1 � �e2I��
��2;

���
I
2 ¼ e2I��

��1 þ �e1I��
��2;

(80)

written in terms of the quantities

e1I ¼ e1I�dx
� ¼ u

Eî

 !
;

e2I ¼ e2I�dx
� ¼ v

eî

 !
;

Eî ¼ e�=2eîjðhjId
I þ fIjd
~
IÞ;

�Eî ¼ e�=2eî
�jðh �jId


I þ fI�jd
~
IÞ (81)

and the beins of the special Kähler metric

eî ¼ eîjdz
j; �eî ¼ eî �jdz

�j; Gi �j ¼ ek̂ie
l̂
�j
�k̂ l̂: (82)

V. THE THEORY IN SYMPLECTIC FORM

In this section we arrive at our main objective: recasting
the action (65) and its associated field and SUSYequations
into a manifestly symplectic form based on the language
defined in Sec. III. The reader should be convinced by now
that this is a straightforward matter and can be achieved by
direct examination of the equations involved. We give as
much detail as possible for the sake of future reference.
Finally, we show how a calculation based on the symplec-
tic formulation may be carried out by direct application to
the results of [12,16].

A. Reformulation

The action (65) is invariant under rotations in Sp, so by
inspection it is clear that R, d�, dz, and F are themselves
symplectic invariants, whose explicit form will depend on

the specific ansätze used. The axion fields ð
; ~
Þ, however,
can be thought of as components of an Sp ‘‘axions vector.’’
If we define

j�i ¼ 
I

�~
I

� �
; jd�i ¼ d
I

�d~
I

� �
; (83)

then clearly

h�jd�i ¼ 
Id~
I � ~
Id

I; (84)

as well as

2This is the reverse situation to that of [16], where the (dual)
Euclidean theory was studied.

3Alternatively, one may dualize the action by introducing a as
a Lagrange multiplier and modifying the action accordingly [16].
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h@��j�j@��i ¼ �ð�IJ þ �KL�IK�JLÞð@�
IÞð@�
JÞ
� �IJð@� ~
IÞð@� ~
JÞ
� 2�IK�JKð@�
JÞð@� ~
IÞ; (85)

such that (70) becomes

X ¼ ð�IJ þ �KL�IK�JLÞd
I ^ ?d
J

þ �IJd~
I ^ ?d~
J þ 2�IK�JKd

J ^ ?d~
I

¼ �h@��j�j@��i ? 1: (86)

Also note that we chose the minus sign in the definition
(83) such that the resulting equations agree with the form
of the theory used in previous work, particularly
[12,13,16]. Replacing the minus sign with a positive sign
would result in the appearance of minus signs in various
locations in the action, field, and SUSY equations.

As a consequence of this language, the field expansion
(64) could be rewritten

A ¼ Aþ ffiffiffi
2

p h�j�i;
F ¼ dA ¼ Fþ ffiffiffi

2
p h� ĵd�i: (87)

The bosonic action in manifest symplectic covariance is
hence

S5 ¼
Z
5

�
R ? 1� 1

2
d� ^ ?d��Gi �jdz

i ^ ?dz
�j

� F ^ h�jd�i � 1

2
e�2�F ^ ?F

þ e�h@��j�j@��i ? 1

�
: (88)

The equations of motion are now

ð��Þ ? 1þ e�h@��j�j@��i ? 1þ e�2�F ^ ?F ¼ 0;

(89)

ð�ziÞ?1þ�i
jkdz

j^?dzkþ1
2e

�Gi �j@ �jh@��j�j@��i?1¼0;

ð�z�iÞ?1þ�
�i
�j �k
dz

�j^?dz
�kþ1

2e
�G

�ij@jh@��j�j@��i?1¼0;

(90)

dy½e�2�Fþ ?h�jd�i� ¼ 0; (91)

dy½e�j�d�i þ ?Fj�i� ¼ 0: (92)

Note that, as is usual for Chern-Simons actions, the
explicit appearance of the gauge potential j�i in (91) and
(92) does not have an effect on the physics since

dy ? h�jd�i ! dh�jd�i ¼


d� ĵd�

�
;

dy ? Fj�i ! d½Fj�i� ¼ F ^ jd�i;
(93)

where the Bianchi identities on A and j�i were used. Now,

if j�i is taken to be independent of the moduli, then we can
write

@jh@��j�j@��i ¼ h@��j@j�j@��i: (94)

Furthermore, since the exponents of both the MC

Kähler potential K and the dilaton � are proportional to
the volume of the CY submanifold, then they can be taken
to be proportional to each other, i.e. following [18]:

� ¼ cK; (95)

where c is some arbitrary constant. The Noether currents
and charges become

J 2 ¼ e�2�Fþ ?h�jd�i;
jJ 5i ¼ e�j�d�i þ ?Fj�i;
Q2 ¼

Z
J 2; jQ5i ¼

Z
jJ 5i:

(96)

The equations of the universal axion (73)–(75) are now

da ¼ e�2� ? F� h�jd�i; (97)

dy½e2�daþ e2�h�jd�i� ¼ 0; (98)

and

Sa ¼ 1

2

Z
e2�½daþ h�jd�i� ^ ?½daþ h�jd�i�: (99)

Next, we look at the SUSY variations. The gravitini
equations can be explicitly written as follows:

��c
1 ¼ ~r�1 þ 1

4ðie�� ? F� YÞ�1 � e�=2h �Vjd�i�2;
(100)

��c
2 ¼ ~r�2 � 1

4ðie�� ? F� YÞ�2 þ e�=2hVjd�i�1;
(101)

while the hyperini variations are

���
0
1 ¼ e�=2hVj@��i���1

�
�
1

2
ð@��Þ � i

2
e��ð?FÞ�

�
���2;

���
0
2 ¼ e�=2h �Vj@��i���2

þ
�
1

2
ð@��Þ þ i

2
e��ð?FÞ�

�
���1; (102)

���
î
1 ¼ e�=2eîjhUjj@��i���1 � eî �jð@�z �jÞ���2;

���
î
2 ¼ e�=2eî

�jhU �jj@��i���2 þ eîjð@�zjÞ���1:
(103)

MOATAZ H. EMAM PHYSICAL REVIEW D 79, 085017 (2009)

085017-8



For easy reference, we also compute

dGi �j ¼ Gk �j�
k
ridz

r þGi �k�
�k
�r �j
dz�r;

dGi �j ¼ �Gp �j�i
rpdz

r �Gi �p�
�j
�r �pdz

�r;

jdVi ¼ dzijUii � iP jVi;
jd �Vi ¼ dz

�ijU�ii þ iP j �Vi;
jdUii ¼ Gi �jdz

�jjVi þ �r
ikdz

kjUri
þGj�lCijkdz

kjU�li � iP jUii;
jdU�ii ¼ Gj�idz

jj �Vi þ ��r
�i �k
dz

�kjU�ri þGl �jC�i �j �kdz
�kjUli

þ iP jU�ii;
d� ¼ ð@i�Þdzi þ ð@�i�Þdz�i; (104)

where P is the Uð1Þ connection defined by (3) and
ð@i�; @�i�Þ are given by (61).

B. Examples

The analysis of solution ansätze representing hypermul-
tiplet fields should now reduce to the problem of construct-
ing and manipulating symplectic quantities. Using the
language developed in this paper, we now demonstrate
how this can be done by applying the symplectic method
to two known results.

In [12,13] we studied the dimensional reduction of M5
branes wrapping special Lagrangian cycles of a Calabi-Yau
threefold and showed explicitly that it led to Bogomol’nyi-
Prasad-Sommerfield (BPS) 2-branes coupled to the five-
dimensionalN ¼ 2 hypermultiplets with constant univer-
sal axion (F ¼ da ¼ 0). The case with nontrivial complex
structure moduli led to constraint equations on the solution
that turned out to be of the attractor type. We will not
reproduce the entire calculation here, but rather only show
enough to demonstrate how the symplectic method greatly
reduces the effort involved.

The D ¼ 5 spacetime metric due to the presence of the
2-brane was found to be of the form

ds2 ¼ ð�dt2 þ dx21 þ dx22Þ þ e�2�ðdx23 þ dx24Þ; (105)

where ðx1; x2Þ define the spatial directions tangent to the
brane and ðx3; x4Þ define those transverse to it. The con-
straint equations on the dilaton and moduli are

dðe�ð�=2ÞÞ ¼ hdH jVi ¼ hdH j �Vi;
dzi ¼ �e�=2Gi �jhdH jU �ji;
dz

�i ¼ �e�=2G
�ijhdH jUji; (106)

where

jH i ¼ HI

~HI

� �
(107)

is taken to be dependent only on the ðx3; x4Þ coordinates,
such that the moduli dependence is carried exclusively by

jVi and jUi. The field equations are straightforwardly
satisfied if jH i is taken to be radial and harmonic in the
transverse plane, i.e.

j�H i ¼ 0; (108)

which is generally solved by

jH i ¼ ji þ lnrj$i; (109)

where r is the radial coordinate in the ðx3; x4Þ plane, ji is
an arbitrary constant, and

j$i ¼ qI

~qI

� �
; (110)

defines constant ‘‘electric’’ and ‘‘magnetic’’ charges ex-
cited by the wrapping of the M5 brane over each homology
cycle on the submanifold M. It follows then that

jdH i ¼ dr

r
j$i and j ? dH i ¼ d’j$i; (111)

where ’ is the angular coordinate in the ðx3; x4Þ plane. We
take the axions vector to be of the simple form

jd�i ¼ �j ? dH i ¼ �d’j$i: (112)

The dilaton equation (89) is now

ð��Þ ? 1þ e�


d�j�^ j ? d�

�
¼ 0: (113)

The first term of (113) gives

ð��Þ ? 1 ¼ �2e�h?dH jVi ^ h �VjdH i
� 2e�Gi �jh?dH jU �ji ^ hUijdH i: (114)

Now, with the knowledge that

?dH ĵdH

�
/ h$j$i ¼ 0; (115)

as well as

d�j�^ j ? d�

�
¼ 2h?dH jVi ^ h �VjdH i

þ 2Gi �jh?dH jU �ji ^ hUijdH i;
(116)

it is clear that the second term of (113) exactly cancels the
first.
The moduli equations involve a slightly longer calcula-

tion. The first term of (90) gives

ð�ziÞ ? 1 ¼ e�Gi �jGl �mGk �nC �j �m �nh?dH jUli ^ hdH jUki
þ e�Gi �jh?dH j �Vi ^ hdH jU �ji
þ e�Gi �jhdH jVi ^ h?dH jU �ji
� e�Gp �jGr �k�i

rphdH jU �ki ^ h?dH jU �ji:
(117)
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The second term is

�i
rpdz

r ^ ?dzp ¼ e�Gp �jGr �k�i
rphdH jU �ki ^ h?dH jU �ji;

(118)

which cancels the last term of (117). Using (61), the last
term of the moduli equation becomes

1

2
e�Gi �j



d�j@ �j�

^
j ? d�

�

¼ �e�Gi �jGl �mGk �nC �j �m �nh?dH jUli ^ hdH jUki
� e�Gi �jh?dH j �Vi ^ hdH jU �ji
� e�Gi �jhdH jVi ^ h?dH jU �ji; (119)

exactly canceling the remaining terms of (117).
The second example we wish to consider is that of [16].

The result discussed therein was that of instanton couplings
to the hypermultiplets. Instantons are of course Euclidean
solutions of the theory and may be thought of as being
magnetically dual to the 2-branes discussed above (inD ¼
5). In order to consider this result, we analytically continue
the action of the theory from a Minkowski background to a
Euclidean metric. This is achieved by an ordinary Wick
rotation which has the effect of changing j�i ! ij�i in the
field and SUSY equations. Furthermore, the vector jH i
satisfying the harmonic condition in Euclidean D ¼ 5
space now becomes

jH i ¼ ji þ 1

3r3
j$i; (120)

instead of (109), with (110) still valid. Note that the coor-
dinate r is now radial in all the five flat dimensions. Hence

jdH i ¼ �dr

r4
j$i: (121)

Rewriting the constraint equations on the dilaton and
moduli in our language we get

dðe�=2Þ ¼ �hdH jVi ¼ �hdH j �Vi;
dzi ¼ e�ð�=2ÞGi �jhdH jU �ji;
dz

�i ¼ e�ð�=2ÞG�ijhdH jUji
(122)

while the axions can be written in the form

jd�i ¼ �ie��j�dH i: (123)

Now the dilaton and moduli equations can be shown to
be satisfied in a very similar manner as that of the first
example and the j�i field equation reduces to the harmonic
condition on jH i:
dy½e�j�d�i� ¼ �idyj��dH i ¼ ij�H i ¼ 0; (124)

where the fact that ��1 ¼ �� was used. The hyperini
variations (102) and (103) vanish for �1 ¼ ��2 as follows:

���
0
1 ¼ �ie�ð�=2ÞhVj�jdH i þ e�ð�=2ÞhVjdH i
¼ �i2e�ð�=2ÞhVjVih �VjdH i

� i2e�ð�=2ÞGi �jhVjU �jihUijdH i
� e�ð�=2ÞhVjdH i þ e�ð�=2ÞhVjdH i ¼ 0; (125)

where (47) was used. Also

���
î
1 ¼ �ie�ð�=2ÞeîjhUjj�jdH i

� e�ð�=2Þeî�kG
�kjhUjjdH i

¼ �i2e�ð�=2ÞeîjhUjjVih �VjdH i
� i2e�ð�=2ÞeîjGm �nhUjjU �nihUmjdH i
� e�ð�=2ÞeîjhUjjdH i � e�ð�=2ÞeîjhUjjdH i

¼ 2e�ð�=2ÞeîjhUjjdH i � 2e�ð�=2ÞeîjhUjjdH i ¼ 0;

(126)

where (49) was used. Similarly ���
0
2 ¼ 0 and ���

î
2 ¼ 0

are satisfied.
This is as far as we will go in demonstrating the use of

the symplectic method in analyzing the hypermultiplets.
We note that the calculations shown here are considerably
shorter than their counterparts performed without using the
symplectic language. In fact, the original details would
indeed be too long to reasonably reproduce in print.

VI. CONCLUSION

In this work, we took a close look at the geometries
responsible for the behavior of the hypermultiplet fields of
five-dimensional N ¼ 2 supergravity with particular em-
phasis on the symplectic structure arising from the under-
lying topology of the Calabi-Yau subspace. We proposed
the use of the mathematics of symplectic vector spaces to
recast the theory in explicit symplectic covariance. We
argued that this greatly simplifies the effort involved in
analyzing the hypermultiplet fields, with or without gravi-
tational coupling, and demonstrated this by partially apply-
ing it to two known results.
The five-dimensional hypermultiplets sector is hardly

the only one exhibiting symplectic symmetry. In fact, the
structures reviewed here are almost always discussed in the
literature in the context of the four-dimensional vector
multiplets where very similar analytical difficulties arise.
In fact, it is because the special Kähler geometry of the
D ¼ 4 vector multiplets is so well researched that it be-
came possible to apply similar techniques to the (c-
mapped) D ¼ 5 hypermultiplets. It is then natural to at-
tempt to extend the symplectic formulation to the D ¼ 4
theory as well as to any other theory, supersymmetric or
not, exhibiting hidden or explicit Sp covariance. One
hopes that this will help simplify tedious calculations as
well as contribute to further understanding the behavior of
such theories.
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Finally, an immediate application of the symplectic for-
mulation to analyzing solution ansätze for various possible
situations seems to be the next natural thing to do. For
example, an analysis of branes coupled to the full set of
hypermultiplet fields can now be greatly simplified, even if

one is interested in a general understanding, rather than a
detailed solution. Further classification of such solutions
becomes a more manageable task. In the future, we plan to
explore at least some of the above possibilities.
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