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We studied the Adler-Bardeen-Bell-Jackiw anomaly in the context of a finite chiral quark model known

as the spectral quark model. Within this model, we obtain the general nonlocal form of the axial vertex

compatible with a nonvanishing axial coupling, in the chiral limit. The triangle anomaly is computed and

we show that the obtained dependence of the axial vertex with the spectral mass is necessary to ensure

both finiteness and the correct violation of the chiral Ward-Takahashi identity.
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I. INTRODUCTION

The nonperturbative low-energy behavior of quantum
chromodynamics (QCD) is well described by a series of
effective models [1–3] in both zero and finite temperature
and densities [4–22]. It is assumed that these models could
result from the suppression of the high energy degrees of
freedom of QCD (such as gluons), and a scale that defines
the validity of the model has to be introduced. In some of
these models, the quarks remain as the only degrees of
freedom and, as these chiral quark models are usually
nonrenormalizable, in contrast with QCD itself and with
mesonic models, these scales (or cutoff) are kept finite
throughout the calculations. As a consequence, a series of
problems [23,24] emerge as a reflex of this process.
Nevertheless, the light hadrons phenomenology is success-
fully described by almost all these models, that, together
with the nonperturbative nature of QCD at this scale,
justifies their employment.

Some of the results that are jeopardized by the introduc-
tion of a cutoff scale are the anomaly dependent results. In
particular, the anomalous transition form factor
F���0�ðQ2Þ, for the process �� ! �0�, can only be cor-

rectly reproduced in the limit Q2 ¼ 0 when no regulator is
introduced [23]. In contrast, a finite regularization is nec-
essary to keep the models finite, and it is also necessary to
reproduce the expected QCD factorization at large mo-
menta, Q2F���0�ðQ2Þ ! 2f� [24], where f� is the pion

weak decay constant.
Perturbatively, the anomaly appears as an ambiguity,

represented by surface terms, due to the infinities of the
perturbative calculations. Regularization of the Feynman
integrals fixes, a priori, the result of the computation of
these surface terms, but the undetermined nature of the
ambiguity appears as different results for different regula-
rizations. If the indeterminacy of these terms is kept up to
the end of the calculation, as occurs in some recent regu-
larization schemes [25–27], it can be shown that the simul-
taneous transversality for massless fermions in the axial
and vector channels is broken [28]. On one hand, it is
possible to fix the ambiguity in order to ensure the conser-

vation of the electromagnetic Ward-Takahashi identity
(violating the chiral Ward-Takahashi identity), as required
in QCD in order to explain the anomalous decays. On the
other hand, it is also possible to fix the ambiguity in order
to satisfy the chiral Ward-Takahashi identity and to violate
the electromagnetic one, as in t’Hoofts proton decay cal-
culation [29].
This undetermined character of the anomaly [30] and the

implications of the presence of ambiguous terms in
Quantum Field Theory calculations are in the heart of
some recent controversies in the study of Lorentz and
CPT violations in QED [31–36]. The picture in chiral
quark models is somewhat different. Their divergent non-
renormalizable character implies in a dependence with an
specific regularization scheme, which, a priori, fixes the
ambiguous integrals. So, one cannot expect, in these mod-
els, the undetermined character of the anomaly to manifest
itself. The regularization schemes employed usually fix the
vector gauge symmetry, and the transversality of the vector
currents is guaranteed from the very beginning, reproduc-
ing for this reason the expected final result.
A recent chiral quark model, namely, the spectral quark

model (SQM) [37–41], has some interesting features that
can be explored to study the presence of the undetermined
character of the anomaly, as well as to correct some of the
fails on chiral quark models. For example, it was shown
[37] that the SQM solves the conflict between the anomaly
normalization condition, F���0�ð0Þ ¼ 1

4�f�
, and the facto-

rization at large momentaQ2F���0�ðQ2Þ ! 2f�. The spec-

tral quark model is based on the Lehmann representation
for the quark propagator [42], and in the solutions for the
chiral and electromagnetic Ward-Takahashi identities us-
ing the gauge technique [43,44], resulting in a finite quark
model. Being finite, one can speculate (i) if the model
correctly reproduces the anomalous results, (ii) if the free-
dom on the choice of the Ward-Takahashi identity to be
violated by the anomaly is still present, as discussed above,
and under which conditions one can obtain the expected
violation of the chiral Ward-Takahashi identity and con-
servation of the electromagnetic ones in QCD.
Question (i) is already positively answered in Ref. [37].

An important ingredient to this answer is the spectral*motaal@ufsj.edu.br
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version of the Goldberger-Treiman relation [45], a fact that
we will stress later. In this paper, we intend to explore the
answers to question (ii). As we shall see, the specific form
of the axial-vector coupling plays an important role in this
issue.

Nonlocal axial-vector vertex for constituent quarks al-
lows the presence of an axial-vector coupling constant gA,
and leading orderNc effects can result in gA � 1 [46], even
in the large Nc limit. In contrast with the pseudoscalar pion
quark coupling constant g�qq, which vanishes in the chiral

limit [45], one should not expect the axial coupling con-
stant to vanish at this limit—model estimatives to gA lie in
the range 0:4< gA < 0:9 [47], a result that is compatible
with the axial-vector coupling constant of the nucleon,
GA=GV ¼ 1:2670� 0:0035, deduced from neutral beta
decay measurements [48] and from the nonrelativistic
relation GA ¼ 5

3gA. In the context of the SQM, a depen-

dence of gA with positive powers of the spectral mass!, as
occurs for the pion quark coupling constant via the
Goldberger-Treiman relation, would be desirable, since
positive momenta of the spectral distribution �ð!Þ guar-
antees the finiteness of the amplitudes. We will show that a
spectral gAð!Þ with these characteristics is compatible
with a nonvanishing axial coupling in the chiral limit.

In this paper, we: (i) discuss the role of the spectral
version of the Goldberger-Treiman relation in the pseudo-
scalar two point function, showing its importance to the
finiteness of this amplitude and to the obtaining of the
Nambu-Goldstone mode; (ii) obtain a more general ex-
pression for the axial vector vertex in the context of the
spectral quark model, which includes the possibility of a
nonunitary axial coupling and (iii) by applying the gauge
technique, obtain the probability amplitude for the axial-
vector-vector process in the SQM, including nonunitary
axial coupling, and show that a dependence on the spectral
mass for the axial coupling can generate an ambiguity free
result, preserving the vector Ward identity and violating
the axial one, as expected for QCD.

This paper is organized as follows: in Sec. II we briefly
review the spectral quark model and some of its conse-
quences. In Sec. III, we analyze the role of the Goldberger
and Treiman relation in the finiteness of the pseudoscalar
two point function. In Sec. IV we present the construction
of a general form of the axial vertex in the SQM compat-
ible with a nonvanishing axial coupling in the chiral limit.
In Sec. V, we compute the axial-vector-vector amplitude by
employing the axial vertex obtained in Sec. IV. We discuss
the violation of the chiral Ward-Takahashi identity, and the
role of the axial vertex on this result. Finally, in Sec. VI we
present the conclusions.

II. THE MODEL

The spectral quark model is based on the introduction of
the generalized Lehmann representation for the quark
propagator

SðpÞ ¼
Z
C
d!

�ð!Þ
p6 �!

; (1)

where ! is the spectral mass of the quark and �ð!Þ is the
spectral distribution, that acts as a regulator. The! integral
is supposed to be valuated in a suitable complex contour C
(suppressed in our notation, from now on).
The spectral function �ð!Þ needs not to be completely

determined, although it is possible to find an explicit form
to it if the vector-meson dominance of the pion form factor
is assumed [37,49]. For the reproduction of most of the
light mesons phenomenology, it is sufficient to know some
of the moments of the quark spectral function, determined
via physical conditions such as normalization of the quark
propagator, which implies in

�0 ¼
Z

d!�ð!Þ ¼ 1; (2)

and finiteness of hadronic observables, implying in

�n ¼
Z

d!�ð!Þ!n ¼ 0; (3)

for n ¼ 1, 2, 3, or 4. Physical observables are proportional
to the negative moments

��n ¼
Z

d!�ð!Þ 1

!n (4)

or to the logarithmic moments

�0
n ¼

Z
d!�ð!Þ!n logð!2Þ: (5)

Finiteness is guaranteed by the vanishing of the positive
moments, Eq. (3). As a consequence, negative and log
moments can be fixed from the finite values of hadronic
observables such as the quark condensate for one flavor

h �qqi ¼ � Nc

4�2
�0
3; (6)

the vacuum energy density

B ¼ � 3Nc

16�2
�0
4; (7)

and so on. The quark propagator (1) can be parametrized as

SðpÞ ¼ ZðpÞ p6 þmðpÞ
p2 �m2ðpÞ ; (8)

with the mass function given by

mðpÞ ¼
R
d! !�ð!Þ

p2�!2R
d! �ð!Þ

p2�!2

(9)

and the wave function renormalization by

ZðpÞ ¼ ðp2 �m2ðpÞÞ
Z

d!
�ð!Þ

p2 �!2
: (10)
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In what follows, we will refer to the mass function at p2 ¼
0 as m ¼ mð0Þ. The results presented here will not depend
explicitly on m, but it will be necessary in order to make
contact with the standard representation of the partial
conservation of the axial current (PCAC).

The detailed determination of the spectral function mo-
ments, as well as the development of the SQM to the low-
energy hadron phenomenology is presented in [37], and is
not the aim of the present contribution.

To proceed with the computation of N-point functions in
the SQM, the vertex functions are defined as particular
solutions of the relevant Ward-Takahashi identities for
unamputed Green functions, obtained by applying the
gauge technique [44]. This allows the obtaining of linear
solutions, whereas the use of amputed Green functions
would imply in the appearance of nonlinear solutions to
the Ward-Takahashi identities. The vector Ward-Takahashi
identity (VWI), for the vector-quark-quark vertex �

�a
V ,

reads

ðp0 � pÞ���a
V ðp0; pÞ ¼ Sðp0Þ�

a

2
� �a

2
SðpÞ; (11)

where SðpÞ is given by Eq. (1) and �a are the Pauli matrices
(we are assuming a SUð2Þ flavor symmetry). A solution to
Eq. (11), up to transverse pieces, is

��a
V ðp0; pÞ ¼

Z
d!�ð!Þ i

p6 0 �!
�� �a

2

i

p6 �!
: (12)

The axial vector Ward identity (AWI) reads:

ðp0 � pÞ���a
5 ðp0; pÞ ¼ Sðp0Þ�

a

2
�5 þ �5

�a

2
SðpÞ; (13)

and one possible solution to Eq. (13) for the axial vector to
quarks coupling is

��a
5 ðp0; pÞ ¼

Z
d!�ð!Þ i

p6 0 �!

�
�� � 2!q�

q2

�

� �5�
a

2

i

p6 �!
; (14)

with q ¼ p0 � p. One can identify the pion pole in (14),
the dominant term as q2 ! 0. For massless quarks, it
cannot be done with a non spectral propagator, since in
this case we have �ð!Þ ¼ �ð!Þ, and the consequent van-
ishing of the pole term.

III. THE PSEUDOSCALAR TWO POINT
FUNCTION

The pion to quarks coupling can be obtained from the
axial vector vertex near the pion pole by using

��a
5 ðp0; pÞjq!0 ¼ �2f�

q�

q2
�a

�ðp0; pÞ; (15)

resulting in

�a
�ðp0; pÞ ¼

Z
d!�ð!Þ i

p6 0 �!
�5

!

f�

�a

2

i

p6 �!
: (16)

An important consequence of the appearance of the pion
pole in solution (14) is the obtaining of the spectral version
of the Goldberger-Treiman relation g�ð!Þ ¼ !

f�
. By clos-

ing the quark line in the pion vertex, Eq. (16), we can
obtain the pseudoscalar two-point function

�PSðqÞ ¼
Z

d!�ð!Þ
Z
p
Tr

�
i

p6 þ q6 �!
�5

!

f�

�a

2

� i

p6 �!
�5

�
; (17)

where
R
p stands for

R d4p
ð2�Þ4 . Because of the spectral con-

ditions, Eq. (3), the divergent terms arising from the com-
putation of Eq. (17) vanishes, and the final result is finite.
In the intermediary calculation, however, an auxiliary
regularization scheme is necessary in order to compute
the loop momentum integral before the evaluation of the
integral over the spectral mass !. The use of a gauge
invariant regularization scheme would enforce the a priori
preservation of the gauge Ward-Takahashi identities. It is
interesting, however, to explore how the correct violation
of the AWI in QCD can be obtained in a regularization
independent way. We thus choose to work with the sharp-
cutoff regularization scheme, a scheme that violates the
VWI, as is widely known.
In fact, employing the covariant sharp cutoff regulariza-

tion scheme to compute the p integral in (17), one obtains

�PSðqÞ ¼ �i

4�2

Z
d!�ð!Þ !

f�

�
2�2 � 2!2 ln

�
�2

!2

�

þ q2
�
1� ln

�
�2

!2

��
þ 2q2

�
�1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4!2

q2

s
tanh�1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4!2

q2

q ���
: (18)

From the first term on the right hand side of Eq. (18) one
can clearly see that the Goldberger-Treiman relation is
important in order to make the psedoscalar two-point
function finite. If the coupling between the pion and the
quarks was not dependent on !, this term would be diver-
gent in the limit � ! 1.
After applying the spectral conditions (3) on Eq. (18),

we get

�PSðqÞ ¼ �i

4�2

Z
d!�ð!Þ !

f�

�
ðq2 þ 2!2Þ lnð!2Þ

þ 2q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4!2

q2

s
tanh�1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4!2

q2

q ��
: (19)

From now on, all momentum integrals will be computed
employing the covariant sharp cutoff regularization
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scheme. The use of this regularization to compute the
pseudoscalar two point function introduces surface terms
that could, in principle, break the Nambu-Goldstone mode
[50]. It also generates dependence on the arbitrary choice
of the momentum routing in the loop. In a renormalizable
theory it will be no problem: regularization and symme-
tries fix these ambiguities [35,51,52]. This is not the case
for purely fermionic chiral quark models. It is interesting,
however, to observe how the spectral regularization cor-
rects this fail: the surface terms that emerges from this
computation are

2q�q�
Z

d!�ð!Þ !
f�

Z
p

�
g��

ðp2 �!2Þ2 � 4
p�p�

ðp2 �!2Þ3
�

¼ 2q�q�
Z

d!�ð!Þ !
f�

g��!2 i

2ð4�Þ2!2
¼ 0 (20)

The details on the computation of surface terms will be
presented on Sec. V, in the context of the chiral anomaly.
As we can see, the spectral condition (3) guarantees that
Eq. (20) vanishes, since it depends on �1 ¼R
d!!�ð!Þ ¼ 0. The role played by the Goldberger-

Treiman coupling!=f� becomes clear—if it was not pres-
ent, then the pseudoscalar two point function, Eq. (19),
would be divergent and dependent of the ambiguous result
of the momentum integral in the left side of Eq. (20). This
feature—the dependence of the coupling with the spectral
mass via the Goldberger-Treiman relation—suggests that a
similar dependence on the spectral mass for the axial-
vector coupling could be important in the study of the
chiral anomaly in the context of the spectral quark model.

IV. THE AXIAL-VECTOR COUPLING IN SQM

Equation (14) is one of the possible solutions to the
AWI, Eq. (13). Its functional form suggests that, for this
ansatz, the axial coupling gA is unitary. As mentioned
before, there are mechanisms that generate contributions
to 1� gA of order N0

c , such as the �� A1 mixing mecha-
nism [46], present in chiral models such as the �-model [1]
and the NJL model [2]. A general form to the axial vertex
that allows gA � 1, including pseudoscalar and pseudo-
vector pion couplings is [53]

�
�a
A ðp0; pÞ ¼

Z
d!�ð!Þ i

p6 0 �!
ðgAðq2; !Þ��

þ hAðq2; !Þq� þ fAðq2; !Þq�q6 Þ
� �5

�a

2

i

p6 �!
; (21)

where we introduced the spectral form factors gAðq2; !Þ,
hAðq2; !Þ and fAðq2; !Þ. One can recognize that
gAðq2; !Þ ¼ 1, hAðq2; !Þ ¼ �2!=q2 and fAðq2; !Þ ¼ 0
in the ansatz (14). The evaluation of (13) with (21) gives

hAðq2; !Þ ¼ �2!=q2 (22)

and

fAðq2; !Þ ¼ 1� gAðq2; !Þ
q2

: (23)

In what follows we will assume that the axial coupling
depends on the spectral mass, but not on the exchanged
momenta, i.e., gAðq2; !Þ ¼ gAð!Þ. One can recognize the
poles associated to the Goldstone pion in the second and
third terms on the right hand side of Eq. (21) whereas the
first term is associated to the axial-vector coupling. Let us
denote this term as �

�a
gA ðp0; pÞ, with

��a
gA ðp0; pÞ ¼

Z
d!�ð!ÞgAð!Þ i

p6 0 �!
���5 	a

2

i

p6 0 �!

(24)

For on-shell massless quarks, Dirac equation implies
p6 0 ¼ p6 ¼ 0. Thus, we get for the axial-vector coupling
with on-shell quarks

�
�a
gA ðp0; pÞjon shell ¼ �

�Z
d!�ð!Þ gAð!Þ

!2

�
���5 	a

2
(25)

Equation (25) gives us some insight about the functional
form of gAð!Þ: if it was proportional to any positive integer
power of the spectral mass! greater than 2 the axial-vector
coupling for on-shell quarks would be zero. Yet, assuming
gAð!Þ ¼ 
!n with n � 2 and 
 an arbitrary constant, we
obtain a nonvanishing axial coupling in this limit. From our
previous analysis of the pseudoscalar two-point function, a
coupling constant proportional to an integer positive power
of ! (i.e., n ¼ 1 or n ¼ 2) would be desirable in order to
render finite some amplitudes, and also to avoid regulari-
zation ambiguities. In the next section we will see that this
feature is also necessary in the computation of the chiral
anomaly in SQM, in order to make it free from
ambiguities.

V. THE CHIRAL ANOMALY

The mechanism of the anomalous symmetry breakdown
was codiscovered by Bell and Jackiw [54] and Adler [55].
This violation is related to a probability amplitude that
cannot satisfy, simultaneously, the gauge and chiral sym-
metries. Nevertheless, which symmetry is violated is a
model dependent result: in the anomalous pion decay, the
VWI are to be conserved and the AWI is violated, whereas
in the t’Hooft calculation of the proton decay [29], the
situation is opposite—the global gauge symmetry is vio-
lated and the chiral symmetry is preserved.
The probability amplitude for the axial-vector–vector

process is represented by the triangle diagram, depicted
on Fig. 1. In order to compute it in the SQM, one needs to
find a spectral representation to the vertex function with

one axial and one vector current, ��a;�b
AV , that fulfills the

SUð2Þ vector and axial vector Ward identities.
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For nonlocal axial vertex in the chiral limit, the axial
Ward identity reads:

� iq��
�a;�b
AV ðp0; q0; p; qÞ ¼ i�bac�

�c
A ðp0; pÞjgA¼1

þ��b
V ðp0; pþ qÞ�5 	a

2

þ �5 	a
2
��b

V ðp0 � q; pÞ;
(26)

The first term on the right hand side of Eq. (26) is the
axial vertex computed with gA ¼ 1. This term express the
fact that the contraction of the axial vertex with the ex-
changed momentum does not depends on gA, as can be
easily checked by evaluating q��

�a
A from Eq. (21) with the

use of Eqs. (22) and (23).
The vector Ward identity reads:

� iq0��
�a;�b
AV ðp0; q0; p; qÞ ¼ i�bac�

�c
A ðp0; pÞ

���b
A ðpþ q; pÞ 	a

2
� 	a

2
��b

A ðp0; p0 � qÞ:
(27)

A solution that fulfills Eq. (26) and (27) in the chiral
limit is given by:

�
�a;�b
AV ðp0; q0; p; qÞ ¼

Z
d!�ð!Þ

�
i

p6 0 �!
�� 	

b

2

i

p6 þ q6 �!

�
gA�

� � 2!
q�

q2
þ ð1� gAÞ q

�q6
q2

�
�5 	a

2

i

p6 �!

þ i

p6 0 �!

�
gA�

� � 2!
q�

q2
þ ð1� gAÞq

�q6
q2

�
�5 	a

2

i

p6 0 � q6 �!
�� 	

b

2

i

p6 �!

�
; (28)

with p0 þ q0 ¼ pþ q. In fact, replacing Eq. (28) in Eq. (26) one obtains:

�iq��
�a;�b
AV ðp0; q0; p; qÞ ¼ i�bac�

�c
A ðp0; pÞjgA¼1 þ��b

V ðp0; pþ qÞ�5 	a
2
þ �5 	a

2
��b

V ðp0 � q; pÞ

þ i2�bac
q�

q2

Z
d!�ð!Þ! i

p6 0 �!
�5 	

c

2

i

p6 �!
(29)

Equation (29) displays the expected partial conservation
of the axial current. This can be verified by evaluating the
last term in Eq. (29) with p6 0 ¼ p6 , resulting in�
2i�bac

q�

q2

Z
d!�ð!Þ! i

p6 0 �!
�5 	

c

2

i

p6 �!

�
p6 0¼p6

¼
�
2i�bac

q�

q2

Z
d!�ð!Þ!

� p6 0 ¼ p6 �!2 �!ðp6 0 � p6 Þ
ðp02 �!2Þðp2 �!2Þ �5 	

c

2

�
p6 0¼p6

¼ 2i�bac
q�

q2
�5 	

c

2

Z
d!�ð!Þ !

ðp2 �!2Þ
¼ 2i�bacmðpÞq

�

q2
�5 	

c

2

Z
d!�ð!Þ 1

ðp2 �!2Þ (30)

where we have made use of Eq. (9). So, the last term of
Eq. (29) shows the violation of the axial current conserva-
tion arising from the fermionic mass term, as usual. When
chiral symmetry is restored, Eq. (30) will vanish, and the
axial Ward identity, Eq. (26), will be fulfilled by the
solution (28).

In the SQM the probability amplitude for the axial-
vector-vector process is obtained by closing the quark
line in the unamputated two currents (axial and vector)
vertex, Eq. (28). With the appropriated insertion of the
charge matrices, and the momenta labels chosen as in
Fig. 1, this probability amplitude is given by:

TAVV
��� ðq1; q2Þ ¼ �

Z
d!�ð!Þ

Z
p
Tr½NCi	

3

�
gAð!Þ��

� 2!

q2
q� þ 1� gAð!Þ

q2
q�q6

�
�5

i

p6 þ q6 1 �!

� iQ̂��

i

p6 �!
iQ̂��

i

p6 � q6 2 �!

�
þ crossed terms; (31)

where Q̂ is the quark charge matrix, q ¼ q1 þ q2 and, for a
SUð2Þmodel, 	3 is the Pauli matrix�z. In order to compare
with the PCAC relation, let us rewrite the term proportional
to !

q2
q� as

FIG. 1. The axial-vector-vector 3-point function. Wavy lines
correspond to vector currents and wavy slashed line corresponds
to the axial vector current.
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T�� ¼ 1

m

Z
d!�ð!Þ!

Z
p
Tr

�
�5ðp6 þ q6 1 þ!Þ
ððpþ q1Þ2 �!2Þ

� ��ðp6 þ!Þ��ðp6 � q6 2 þ!Þ
ðp2 �!2Þððp� q2Þ2 �!2Þ

�
þ crossed terms

(32)

where we have introduced the mass function at zero exter-
nal momentum m in order to associate T�� with the stan-

dard representation of the neutral pion to two photons
decay amplitude. Equation (31), of course, does not depend
on m, and can be rewritten as

TAVV
��� ðq1; q2Þ ¼ �

�
T̂��� þ

q�

q2
2mT�� þ

q�

q2
T�
��

�
; (33)

with

T̂ ��� ¼
Z

d!�ð!ÞgAð!Þ
Z
p
Tr

�
���5ðp6 þ q6 1 þ!Þ
ððpþ q1Þ2 �!2Þ

� ��ðp6 þ!Þ��ðp6 � q6 2 þ!Þ
ðp2 �!2Þððp� q2Þ2 �!2Þ

�
þ crossed terms

(34)

and

T�
�� ¼

Z
d!�ð!Þð1� gAð!ÞÞ

Z
p
Tr

�
q6 �5ðp6 þ q6 1 þ!Þ
ððpþ q1Þ2 �!2Þ

� ��ðp6 þ!Þ��ðp6 � q6 2 þ!Þ
ðp2 �!2Þððp� q2Þ2 �!2Þ

�
þ crossed terms:

(35)

We also have

� ¼ Nc Trf	3Q̂ Q̂g ¼ 1: (36)

It is interesting to note that, after taking the Dirac traces,
Eq. (32) is logarithmically divergent, and thus does not
present surface terms in its computation. Equation (35) is
quadratically divergent, and in principle should present
surface terms. However, in the sharp cutoff regularization
scheme these surface terms result zero. After a little alge-
bra, we obtain

T�
�� ¼ 1

2�2
�����q

�
1q

�
2

Z
d!�ð!Þð1� gAð!ÞÞ; (37)

and

2mT�� ¼ 2

4�2
�����q

�
1 q

�
2

Z
d!�ð!Þ: (38)

Equation (34), however, presents non-null surface terms
in its calculation. These surface terms come from the
difference of logarithmically divergent integrals, the
same integrals in p appearing in Eq. (20),Z

p

�
g��

ðp2 �!2Þ2 � 4
p�p�

ðp2 �!2Þ3
�
: (39)

As already discussed, this term corresponds to a regulari-
zation ambiguity, since it can result zero in some regula-
rizations (e.g. gauge invariant Pauli-Villars) or finite in
other ones (¼ i

2ð4�2Þ in the sharp cutoff regularization

[56]). So, introducing two Feynman parameters on
Eq. (34) we obtain

T̂���¼
Z
d!�ð!ÞgAð!Þ

Z 1

0
dy

Z 1�y

0
dx

Z
p

�Trf���5ðp6 þq6 1þ!Þ��ðp6 þ!Þ��ðp6 �q6 2þ!Þg
ððpþq1x�q2yÞ2�M2ð!;x;yÞÞ3 ;

(40)

with M2ð!; x; yÞ ¼ q21xðx� 1Þ þ q22yðy� 1Þ �
2q1q2xyþ!2 (the sharp cutoff regularization scheme is,
as before, implicitly assumed). In several regularization
schemes, as in the sharp-cutoff, we are not allowed to shift
the p variable in Eq. (40), unless we introduce the corre-
sponding surface term. Following the procedure employed
in Ref. [25], we obtain

T̂��� ¼ S��� þ
Z

d!�ð!ÞgAð!Þ
Z 1

0
dy

Z 1�y

0
dx

Z
p

� 1

ðp2 �M2ð!; x; yÞÞ3 Trf���5ðp6 þ ð1� xÞq6 1

þ yq6 2 þ!Þ��ðp6 � xq6 1 þ yq6 2 þ!Þ��ðp6 � xq6 1

� ð1� yÞq6 2 þ!Þg; (41)

where S��� is the surface term given by

S��� ¼
Z

d!�ð!ÞgAð!Þ
Z 1

0
dy

Z 1�y

0
dx

Z
p
ðq�1 x� q�2 yÞ

� @

@p�

�
Trf���5p6 ��p6 ��p6 g
ðp2 �M2ð!; x; yÞÞ3

�
(42)

Of course, as usual, TAVV
��� is finite, so all integrals can be

computed and the connection limit � ! 1 can be taken.
After doing that, we have

T̂��� ¼ 1

4�2

�Z
d!

gAð!Þ�ð!Þ
6!2

q
�
1 q



2 f���
�ðq2� þ 2q1�Þ

þ ��
��ð2q2� þ q1�Þg þ 2

3
�����

Z
d!�ð!Þ

� gAð!Þðq�2 � q
�
1 Þ
�
þ S��� (43)

with

S��� ¼ 1

12�2
�����

Z
d!�ð!ÞgAð!Þðq�2 � q

�
1 Þ (44)

From Eqs. (33), (37), and (43), the evaluation of the
Ward-Takahashi identities in momentum space results in

q
�
1 T

AVV
��� ¼ 1

4�2

2

3
q
�
1 q

�
2 �����

Z
d!�ð!ÞgAð!Þ

þ q
�
1 S���; (45)

L. C. FERREIRA AND A. L. MOTA PHYSICAL REVIEW D 79, 085002 (2009)

085002-6



for the VWI, with a similar expression for q�2T
AVV
��� , and

ðq�1 þ q�2 ÞTAVV
��� ¼ 2

4�2
q�1 q

�
2�����

1

3

Z
d!�ð!ÞgAð!Þ

þ ðq�1 þ q
�
2 ÞS��� þ 2mT��

� 2

4�2
q�1 q

�
2�����; (46)

for the AWI.
Before performing the spectral mass integrals, the result

is potentially ambiguous due the presence of the surface
term S��� in Eqs. (43), (45), and (46). For a constant (!

independent) gA, the surface term, Eq. (44), depends on the
choice of the intermediary regularization employed in the
evaluation of Eq. (31), and it could generate different
results in the Ward identity to be violated by the anomaly,
as it is well known.

Nevertheless, from Eq. (44) we can see that the compu-
tation of the axial-vector-vector amplitude in the SQM
with the axial vertex given by Eq. (21) and with gA ¼

! (or gA ¼ 
!2) is free from surface terms—the spec-
tral condition, Eq. (3), ensures their vanishing, as well as
the vanishing of the other terms proportional to gAð!Þ in
Eqs. (45) and (46). In this case, the VWI is always pre-
served (i.e., is preserved in an ambiguity free way) and the
AWI is violated. Hence, we clearly see that the choice of
the specific dependence of the axial coupling with the
spectral mass can result in an ambiguity free result, with
the conservation of the VWI, and the violation of the chiral
one, as expected for QCD. In this case, the vanishing of the
spectral axial coupling in the zero spectral mass limit does
not imply in the vanishing of the axial coupling itself.
However, it is also possible to obtain the violation of the
VWI, with conservation of the axial current, when the
spectral axial coupling depends on the spectral mass with
a power lower than 1. In this case, the presence of ambig-
uous terms implies in the freedom on choosing whichWard
identity is to be violated.

VI. CONCLUSIONS

We have investigated the chiral anomaly in the context
of the spectral quark model. We have proposed a general-
ized form of the four points vertex function with one axial

and one vector current which includes the possibility of a
nonunitary, spectral mass dependent, axial coupling. This
vertex function displays the expected partial conservation
of the axial current, with the chiral Ward identity being
violated by a term proportional to the mass function which
vanishes at the chiral limit. The triangle anomaly was
computed, taking into account the surface term that ap-
pears in its calculation, and we have shown that a depen-
dence of the axial coupling on integer positive powers of
the spectral mass is necessary in order to render the triangle
amplitude free from ambiguities. In this case, the vector
Ward identity is preserved, with the chiral Ward identity
being violated as expected for QCD.We also remarked that
the dependence of the pion to quarks couplings on the
spectral mass, via the Goldberger-Treiman relation for
the pseudoscalar coupling, and via the ansatz employed
here for the axial coupling, are essential to the obtaining of
a result free from divergences and regularization
ambiguities.
In summary, we have shown that, in the context of the

spectral quark model, the chiral anomaly computation can
be carried out reproducing the expected result without any
ambiguity introduced by regularizations schemes, if the
axial vertex is treated as a nonlocal spectral mass depen-
dent vertex. This shows to be compatible with a nonunitary
axial-vector coupling, not vanishing at the chiral limit. Our
result suggests that the spectral quark model provides an
useful mechanism to justify why in QCD the anomaly
violates the chiral symmetry, instead of violating gauge
symmetry, as in the case of the non conservation of the
baryonic number. However, we also discussed that the
more general form for the axial vertex leaves room to the
violation of the vector Ward Identity, complying the axial
one. It could be interesting to analyze these features of the
spectral quark model in the QCD chiral phase transition
[57,58] or in the construction of spectral approaches to
some recent applications of the chiral anomaly [59–62].
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