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We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops

in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the

same leading contribution as the one obtained by evaluating the loop integral at zero external energies and

momenta.
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I. INTRODUCTION

In thermal field theory, much attention has been devoted
to the study of the high temperature behavior of Green
functions [1–4], when all their external energies and mo-
menta are much smaller than the temperature T. These so-
called hard thermal loops [5,6] are an important ingredient
in a resummation procedure which is necessary to control
infrared divergences and give meaningful results in pertur-
bation theory [7]. These thermal amplitudes enjoy some
simple gauge invariant and symmetry properties, being in
general nonlocal functionals of the external fields. There
are two special cases, namely, the static and the long
wavelength limit, when these amplitudes become local
functions of the external fields, which are independent of
energies as well as of momenta. Nevertheless, these two
limits yield in general distinct results for hard thermal self-
energy functions [8–14]. Moreover, these limits also lead
to different hard thermal loop effective actions [15,16].

Such a behavior may be more readily understood in the
analytically continued imaginary-time formalism [17–19].
In this approach, the bosonic Green functions, for example,
are defined at integral values of kl0=2�iT, where kl0 is the
energy of the lth external particle. Hence, any factors like
expðkl0=TÞ can be set equal to unity. This suppresses any
factors which could be exponentially increasing after ana-
lytic continuation to general values of kl0. Then, the inte-
grands of the thermal amplitudes become rational
functions of kl0 and various limits can be taken.

Let us consider a typical term which appears in the
integrand of any one-loop thermal diagram, namely:

fðk0; ~k; ~QÞ ¼ Nðk0 þ PÞ � NðQÞ
k0 þ P�Q

; (1)

where N is the thermal distribution function for bosons or
fermions

NðzÞ ¼ 1

ez=T � 1
: (2)

Q ¼ j ~Qj is the magnitude of the internal momentum, P ¼

j ~Qþ ~kj and k0, ~k are some linear combinations of external
energies and momenta. As we have mentioned, before
analytic continuation all kl0 are integer multiples of
2�iT, so that one may use the relation:

Nðk0 þ PÞ ¼ NðPÞ; (3)

in which case (1) can be written in the form:

~fðk0; ~k; ~QÞ ¼ NðPÞ � NðQÞ
k0 þ P�Q

: (4)

However, after analytic continuation, there is yet another
important difference between (1) and (4): whereas f is an

analytic function at k� ¼ 0, ~f is no longer analytic at this

point. For instance, in the static limit k0 ¼ 0, (4) may be

approximated when ~k ! 0 by dNðQÞ=dQ. On the other
hand, (4) would vanish in the long wavelength limit, when
~k ! 0 first. Furthermore, it is easy to verify that if we put in
the thermal loop, from the start, all kl� ¼ 0, the corre-

sponding term in the integrand would be just:

fð0; 0; QÞ ¼ dNðQÞ
dQ

� N0ðQÞ; (5)

in accordance with the result obtained in the static limit.
This agreement occurs only in the static limit, because this
is the single case when analytic continuation does not
modify the original function. Thus, only the local form
obtained in the static limit for a general hard thermal loop
is equivalent, to leading order, to the result got by setting in
the loop integrand all external energies and momenta equal
to zero.
The above general result can be explicitly verified in

thermal perturbation theory. We examine the 2-point func-
tions in thermal Yang-Mills and gravity theories in Sec. II,
where we establish this result in a way which clearly
generalizes to higher-point functions. Then, in Sec. III,
we exemplify some relevant aspects of the above argument
in the context of gluon and graviton 3-point functions at
finite temperature. We conclude this paper with a brief
discussion in Sec. IV.
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II. THE 2-POINT FUNCTION

Although the high temperature limit of self-energy func-
tions is well known, we briefly discuss them here in order
to present the main points of the argument in a simple form
which can be easily generalized. Thus, let us consider the
diagram in Fig. 1 where, for our purpose, we need not
specify the nature of the particles in the loop. Furthermore,
since we treat in a unified way thermal loops in either
external Yang-Mills or graviton fields, we suppress for
simplicity the color and Lorentz indices. Then, the contri-
bution of this diagram may be written in the form:

� ¼ C2
ð2�Þ3

Z
d3QI; (6)

where C2 is a Casimir for the internal particles and

I ¼ T
X
Q0

1

~Q2 �Q2
0

1

~P2 � ðQ0 þ k0Þ2
tðQ0Þ

¼ 1

2�i

Z
C
dQ0NðQ0Þ 1

~Q2 �Q2
0

1

~P2 � ðQ0 þ k0Þ2
tðQ0Þ:

(7)

Here the sum is over even (odd) integer values of Q0=�iT
and C is a contour surrounding all poles of N in an anti-
clockwise sense. The numerator t is a tensor and we have
indicated, for simplicity, only its dependence on the inter-
nal energy Q0. In fact, in the Yang-Mills theory t is a
quadratic function of the energies and momenta, whereas
in gravity t becomes a function of fourth degree in the
energies and momenta. Evaluating (7) in terms of the poles

outside C, and writing Q ¼ j ~Qj, P ¼ j ~Pj, we get:

I ¼ � 1

4PQ

�
NðQÞtðQÞ

�
1

Q� Pþ k0
� 1

Qþ Pþ k0

�

þ ðQ;P ! �Q;�PÞ þ NðPÞtðP� k0Þ
�

�
1

P�Q� k0
� 1

PþQ� k0

�

þ ðQ;P ! �Q;�PÞ
�
; (8)

where we used the relation NðP� k0Þ ¼ NðPÞ etc., since
in the imaginary-time formalism k0=2�iT is an integer.

We now consider the leading high temperature contri-
bution in the static case (k0 ¼ 0), which comes from the

region j ~kj � P, Q� T. To this end, we can make appro-
priate expansions like:

tðPÞ ¼ tðQÞ þ ðP�QÞt0ðQÞ þ � � � (9)

and similar ones for NðPÞ. Then, it is easy to check that to

leading order, which is obtained in the limit j ~kj=Q ! 0, (8)
reduces to:

IS ¼ � 1

4Q2

��
N0ðQÞ � NðQÞ

Q

�
½tðQÞ þ tð�QÞ�

þ NðQÞ½t0ðQÞ � t0ð�QÞ�
�
; (10)

where we used the relation

NðQÞ þ Nð�QÞ 	 1 ¼ 0 (11)

and omitted a T-independent term. At this point we note
that in the integral (6), only those components of IS with an
even number of Qi, and hence an even number of Q0, do
actually contribute. Thus tðQ0Þ becomes effectively an
even function ofQ0 while t

0ðQ0Þ becomes an odd function,
so that one may further simplify (10) as:

IS ¼ � 1

2Q2

�
N0ðQÞtðQÞ þ NðQÞt0ðQÞ � NðQÞ

Q
tðQÞ

�
:

(12)

Now, let us compare this result with the one obtained by
setting, from the start, k� ¼ 0 in the diagram in Fig. 1. This

gives (compare with (7)):

I0 ¼ 1

2�i

Z
C
dQ0NðQ0Þ 1

ðQ2
0 �Q2Þ2 tðQ0Þ: (13)

We can evaluate the Q0 integral in (13) by residues, in
terms of the double poles outside C. Using Eq. (11) to-
gether with the properties mentioned afterwards, one can
express the contributions from the double poles at Q0 ¼
�Q in terms of those at Q0 ¼ Q. Then, omitting a
T-independent term, one readily gets the result:

I0 ¼ �2
d

dQ0

�
NðQ0ÞtðQ0Þ
ðQ0 þQÞ2

�
Q0¼Q

: (14)

This is actually equal to the result given in (12), as ex-
pected from the argument given in the previous section.
Finally, after performing the d3Q integration in (6), one

obtains the well known leading T2 contribution for the
static gluon 2-point function, while the static graviton 2-
point function gives a leading contribution of order T4.

III. THE 3-POINT FUNCTION

Consider the triangle diagram shown in Fig. 2. Its con-
tribution in the imaginary-time formalism may be written
in the form:

Q

P

kk

FIG. 1. A 2-point self-energy diagram. Wavy lines denote
external gluons or gravitons and solid lines indicate internal
thermal particles.
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� ¼ C3
ð2�Þ4i

Z
d3Q

Z
C
dQ0NðQ0Þ 1

~Q2 �Q2
0

� 1

~R2 � ðQ0 þ k10Þ2
1

~P2 � ðQ0 � k30Þ2
tðQ0Þ: (15)

Here the Casimir C3 gives the number of internal degrees of
freedom. The tensor t, whose color and Lorentz indices
have been suppressed for conciseness, is a function of the
energies and momenta of degree three or six in the Yang-
Mills or gravity theory, respectively. Evaluating the Q0

integral by residues and using NðPþ k30Þ ¼ NðPÞ etc.,
we obtain

� ¼ � 1

ð2�Þ3
Z

d3Q½I þ I0

� ðI1 þ I01 þ I2 þ I02 þ I3 þ I03Þ�; (16)

where

I ¼ 1

8PQR

�
tðQÞNðQÞ
D3D1

þ tðPþ k30ÞNðPÞ
D2D3

þ tðR� k10ÞNðRÞ
D1D2

�
; (17)

I1 ¼ 1

8PQR

�
tðQÞNðQÞ
D3E1

þ tðPþ k30ÞNðPÞ
D3F2

þ tð�R� k10ÞNð�RÞ
E1F2

�
: (18)

Here we have used the notation

D1 ¼ k10 þQ� R; E1 ¼ k10 þQþ R;

F2 ¼ k20 � R� P
(19)

and cyclic permutations (k1 ! k2 ! k3 and Q ! P ! R),
so that

D1 þD2 þD3 ¼ 0: (20)

I2 and I3 are obtained by cyclic permutations on (18) and:

I0ðP;Q; RÞ ¼ Ið�P;�Q;�RÞ;
I01ðP;Q; RÞ ¼ I1ð�P;�Q;�RÞ:

(21)

In the static limit ki0 ¼ 0, the leading contributions at high

T come from the region j ~kij � P, Q, R� T. One can thus
make appropriate expansions like

tðPÞ ¼ tðQÞ þ ðP�QÞt0ðQÞ þ 1

2
ðP�QÞ2t00ðQÞ þ � � �

(22)

Let us first consider the contributions to (16) associated
with the tðQÞ term in the above expansions. Then, using
similar expansions for NðPÞ, etc., as well as the relation
(20), one finds that the corresponding terms in (17), (18),
and (21), give:

Ia ¼ I0a ¼ � 1

16

N00ðQÞ
Q3

tðQÞ; (23)

I1a ¼ I01a ¼
1

16

NðQÞ �QN0ðQÞ
Q5

tðQÞ: (24)

Inserting (23) and (24), etc., into (16), we get the contri-
bution

�a ¼ C3
8

Z d3Q

ð2�Þ3
1

Q5
½Q2N00ðQÞ � 3QN0ðQÞ

þ 3NðQÞ�tðQÞ: (25)

We must now include the contributions to (16) associ-
ated with the terms t0ðQÞ and t00ðQÞ in expansions like (22).
The calculation is straightforward and the corresponding
expressions are:

�b ¼ C3
8

Z d3Q

ð2�Þ3
1

Q4
½2QN0ðQÞ � 3NðQÞ�t0ðQÞ; (26)

�c ¼ C3
8

Z d3Q

ð2�Þ3
1

Q3
NðQÞt00ðQÞ: (27)

Thus, in the static case, the three terms (25)–(27), contrib-
ute to (16) as

�S ¼ C3
8

Z d3Q

ð2�Þ3
1

Q5
fQ2½N00ðQÞtðQÞ þ 2N0ðQÞt0ðQÞ

þ NðQÞt00ðQÞ� � 3Q½N0ðQÞtðQÞ þ NðQÞt0ðQÞ�
þ 3NðQÞtðQÞg: (28)

Let us next compare this result with the one obtained
from the diagram in Fig. 2, when all external energies and
momenta are vanishing. We then get:

�0 ¼ C3
ð2�Þ4i

Z
d3Q

Z
C
dQ0NðQ0Þ 1

ðQ2 �Q2
0Þ3

tðQ0Þ:
(29)

Q

P

R

k1

k2 k3

FIG. 2. One-loop 3-point vertex diagram. Color and Lorentz
indices are suppressed.
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One can evaluate the Q0 integral by residues, in terms of
the triple poles outside the contour C. Then, using the
relation (11) and the properties mentioned afterward, we
can write �0 in the simple form:

�0 ¼ C3
Z d3Q

ð2�Þ3
d2

dQ2
0

�
NðQ0ÞtðQ0Þ
ðQ0 þQÞ3

�
Q0¼Q

: (30)

This result is in fact equivalent to the one in (28), as
expected from the general argument given in Sec. I.
Clearly, this feature will also hold for higher-point
functions.

IV. DISCUSSION

We have studied, in the analytically continued
imaginary-time formalism, the behavior of hard thermal
loops in static external Yang-Mills and gravitational fields.
Amplitudes calculated in this formalism naturally give rise
to retarded (advanced) hard thermal functions [20], whose
imaginary parts vanish in the static limit. We have shown
that for any hard thermal loop, the leading contributions in
the static limit are the same as those obtained by evaluating
the loop integral at zero external energy-momentum. This
is consistent with the behavior of thermal self-energy loops
noticed in [8–14]. This result may be useful to simplify the
calculation of static limits in thermal field theories, which
are relevant to study some physical properties of systems in
thermal equilibrium, like plasma frequencies and screen-
ing lengths.

Although the above relationship holds both in the Yang-
Mills as well as in the gravity theory, there is an important
difference between these cases. One can show [15] that in

the Yang-Mills theory, all higher order point functions
vanish to leading order in the static limit. This fact can
also be simply understood from our previous argument
since, after setting in the thermal loop all external energies
and momenta equal to zero, one can see by power counting
that higher-point functions can no longer yield quadratic
T2 contributions. This implies, in particular, that (30)
should vanish in Yang-Mills theory, a fact that also follows
from Bose symmetry. Indeed, there appears in this case an
antisymmetric color factor which requires another factor
with an antisymmetric dependence on external momenta
and energy. But such a factor will necessarily vanish in the
zero energy-momenta limit.
On the other hand, in gravity, such an antisymmetric

dependence cannot be present and then, since in (30) t is a
function of sixth degree in Q, it will yield a leading
contribution of order T4. The fact that there are, for all
n-point functions, static T4 terms in gravity is of course
connected with the quartic ultraviolet divergence of the
zero-temperature loops. These static thermal functions are
related by Ward identities [21], which are associated with
the invariance of this system under time-independent co-
ordinate transformations.
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