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We analyze the quantum description of a free scalar field on the circle in the presence of an explicitly

time-dependent potential, also interpretable as a time-dependent mass. Classically, the field satisfies a

linear wave equation of the form €�� �00 þ fðtÞ� ¼ 0. We prove that the representation of the canonical

commutation relations corresponding to the particular case of a massless free field (f ¼ 0) provides a

unitary implementation of the dynamics for sufficiently general mass terms, fðtÞ. Furthermore, this

representation is uniquely specified, among the class of representations determined by S1-invariant

complex structures, as the only one allowing a unitary dynamics. These conclusions can be extended

in fact to fields on the two-sphere possessing axial symmetry. This generalizes a uniqueness result

previously obtained in the context of the quantum field description of the Gowdy cosmologies, in the case

of linear polarization and for any of the possible topologies of the spatial sections.
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I. INTRODUCTION

In recent years, a Fock quantization allowing a unitary
dynamics of the linearly polarized Gowdy T3 cosmological
model [1] has been constructed [2–4]. Moreover, this
quantization has been shown to be unique under very
reasonable conditions, namely, S1-invariance and unitarity
of the dynamics for the metric field that describes the local
degrees of freedom of these spacetimes [5,6]. These results
are ground breaking, since uniqueness in the quantization
of cosmological models is rare, and previous attempts on
the quantization of this Gowdy model [7,8]—the simplest
nonhomogeneous cosmological model—had failed even in
achieving a unitary implementation of the dynamical evo-
lution [2,6,8,9].

Following the same methods and ideas, a Fock quanti-
zation with unitary dynamics was later achieved [10,11]
for the linearly polarized Gowdy models with the other two
allowed spatial topologies, i.e., the S1 � S2 and S3 models.
Uniqueness was proved again for these alternate topologies
[12] (see also the partial discussion in [11]).

For any of the three considered topologies, the local
degrees of freedom of the model are parametrized by a

single scalar field, effectively living on S1 in the T3 case,
and on S2 in the remaining cases. Moreover, in all cases the
dynamics is governed by linear wave equations similar to
those of the free fields, though with a time-dependent mass
term. Alternatively, the mass term can be regarded as a
time-dependent potential.
On the one hand, it is clear that the compactness of the

effective space plays a role in allowing the unitary imple-
mentation of the dynamics, and in the uniqueness of the
quantization [5,6] (see also [13] for a detailed account of
the role played in this respect by the long range behavior in
the noncompact case). On the other hand, it is not known
how the above results depend on the details of the models,
e.g., on the specific form of the mass term appearing in the
field equations. Since the results are valid for the very
different mass terms appearing in the Gowdy T3 model
and in the S1 � S2 and S3 cases, as well as for a constant
mass term, of course, one may suspect that the unitarity
and uniqueness results may not be too sensitive to the
particular time dependence of the mass. However, nothing
in the works mentioned above allows one to reach this
conclusion, since methods specially adapted to the specific
mass term of each of the models were used.
In the present work wewill show that, for fields on S1 (as

well as for axisymmetric fields on S2, see below), the
commented results about the unitary implementation of
the dynamics and the uniqueness of the representation
are generic, i.e., they are valid essentially as long as the
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dynamics is of the specified type, regardless of the particu-
lar form of the mass term—provided only that this term is
given by a sufficiently regular function.

From a more general perspective, it is important to
emphasize that the quantum representations in which the
dynamics is unitary coincide, in all cases of a generic time-
dependent mass, with the representation that is naturally
associated with the free massless field. So, the general
belief that in quantum field theory different dynamics
require different representations is not necessarily true in
the compact case, and therefore in some important cosmo-
logical models. Somehow, the field with a time-dependent
mass term possesses a dynamical behavior which—in the
compact case—is sufficiently close to the free massless
evolution, so that both dynamics are implemented as uni-
tary transformations in the same representation.

This paper is organized as follows. First, we summarize
some aspects of the two-Killing vectors reduction of gen-
eral relativity in Sec. II, as a motivation for the family of
scalar fields that we are going to consider. Then, we specify
this family in Sec. III and discuss its Fock quantization in
the representation that is naturally associated with the free
massless scalar field. In Sec. IV we show that this Fock
quantization provides a unitary implementation of our field
dynamics, even if the system contains a time-dependent
mass term. Section V proves that the considered Fock
quantization is in fact unique, inasmuch as it is the only
Fock representation that is invariant under the symmetry
group of the field equations and allows a unitary quantum
evolution. Finally, Sec. VI presents our conclusions.

II. MOTIVATION FROM THE TWO-KILLING
VECTORS REDUCTION OF GENERAL

RELATIVITY

To motivate the interest of the systems that we will study
in this work, we will start by presenting a brief summary on
the reduction of general relativity to spacetimes that pos-
sess two commuting spacelike Killing vectors. We con-
sider only the case in which the isometry group generated
by these Killing vectors is compact. Moreover, we restrict
our discussion to spacetimes for which each of these
Killing vectors is hypersurface orthogonal, a situation
which is often called the linearly polarized case.

In addition, we assume that the spacetime is globally
hyperbolic, so that it is possible to perform a 3þ 1 decom-
position in sections of constant time t. Since the isometry
group generated by the Killing vectors is Abelian (with
non-null orbits), one can introduce spatial coordinates
f�;�; �g such that @� and @� are the Killing vector fields,

and the spacetime metric is independent of � and � [14].
As a consequence of this independence, the integralR
d�d� ¼ V0 (which is finite because the isometry group

is compact) appears as a global factor in the gravitational
action of General Relativity. We absorb its numerical value

in Newton’s constantG by adopting units such that 8�G ¼
V0.
On the other hand, one can fix the gauge freedom

associated with the momentum constraints (also called
diffeomorphism constraints) of the two directions � and
� by demanding the vanishing of the components h�� and

h�� of the induced metric [15,16]. This gauge fixing [16],

together with the assumption of hypersurface orthogonal-
ity, implies that the metric can be written globally in a
diagonal form, except for the presence of a �-component of
the shift. The reduced metric can be parametrized in the
following way [2]:

ds2 ¼ e��c ½��2N2
� dt2 þ ðd�þ N�dtÞ2� þ e�c �2ðd�Þ2

þ ec ðd�Þ2: (1)

This reduced system still possesses two constraints: the
densitized Hamiltonian constraint, ~H, and the momentum
constraint of the �-direction, H�. They take the expres-
sions:

~H ¼ 1
2ðc 0�Þ2 þ 1

2p
2
c þ �ð2�00 � �0�0 � p�p�Þ: (2)

H� ¼ �2p0
� þ p��

0 þ p��
0 þ pc c

0: (3)

In these formulas, the p’s denote the momenta canonically
conjugate to the metric fields, and the prime stands for the
spatial derivative with respect to �. In principle, one may
introduce an additional gauge fixing to remove these con-
straints and further reduce the system. The particular de-
tails depend on those of the family of spacetimes that one
considers, such as the isometry group and the spatial
topology. Nonetheless, let us admit for the moment that
one can adopt (globally) a gauge in which N� � ¼ 1. The

generator of the time evolution is then the integrated
Hamiltonian constraint

R
d�ð ~H=�Þ.

It is not difficult to check that the resulting equation of
motion for the field c is

€c þ _�

�
_c � �0

�
c 0 � c 00 ¼ 0: (4)

The dot denotes the derivative with respect to t.
Introducing the rescaling c ¼ ð�= ffiffiffi

�
p Þyð�Þ, where yð�Þ is

a fixed function of the spatial coordinate � only, the above
field equation translates into the following equation for �:

€�� �00 � 2
y0

y
�0 þ fðt; �Þ� ¼ 0; (5)

where

fðt; �Þ ¼
�

_�

2�

�
2 � €�

2�
�
�
�0

2�

�
2 þ �00

2�
� y00

y
: (6)

Obviously, Eq. (5) becomes a two-dimensional wave
equation with a spatially constant potential f ¼ fðtÞ if �
is independent of � and the function y is chosen equal to the
unity. Explicitly,
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€�� �00 þ fðtÞ� ¼ 0; fðtÞ ¼
�
_�

2�

�
2 � €�

2�
: (7)

In addition, if � admits an expression of the form �ðt; �Þ ¼
wðtÞzð�Þ, one gets a spatially constant potential with the

choice yð�Þ ¼ ffiffiffiffiffiffiffiffiffi
zð�Þp

. The field equation is then

€�� 1

zð�Þ ½zð�Þ�
0�0 þ fðtÞ� ¼ 0;

fðtÞ ¼
�

_w

2w

�
2 � €w

2w
:

(8)

At least locally, this equation can be understood as the
wave equation of a �-independent field � propagating in a
3-dimensional spacetime with the static metric

gab ¼ �dtadtb þ d�ad�b þ z2ð�Þd�ad�b: (9)

The most interesting situation in which our previous
discussion finds a straightforward application is in the
case of the linearly polarized Gowdy cosmologies [1].
These cosmological solutions are (globally hyperbolic)
spacetimes whose spatial sections are compact and which
possess two Killing vector fields with the properties that
we have assumed. Actually, the spatial sections must be
homeomorphic to either the three-torus, T3, the three-
sphere, S3, or the three-handle, S2 � S1. For these space-
times, the gauge N� ¼ 1 is indeed allowed [2,10]. In the
case of the topology of the three-torus, this gauge is
introduced by fixing the freedom associated with the den-
sitized Hamiltonian constraint, what in turn is achieved by
choosing the metric function � (essentially) as the time
coordinate, namely, � ¼ Ct where C is a constant of mo-
tion [2,3]. The corresponding field � is defined on the
circle, while the potential of the corresponding wave equa-
tion is given by the function 1=ð2tÞ2. The gauge fixing
procedure can be paralleled in the case of the other two
topologies, choosing �ðt; �Þ ¼ C sint sin�, where C de-
notes again a constant of motion. In accordance to our

above discussion, the choice y ¼ ffiffiffiffiffiffiffiffiffi
sin�

p
leads then to a

time-dependent potential, which turns out to be given by
the function fðtÞ ¼ ð1þ csc2tÞ=4. The corresponding field
� is defined on the sphere S2, with the coordinate � being
the zenith angle. This field is axisymmetric, since its only
spatial dependence is on �. Finally, in these circumstances,
the term with spatial derivatives in the wave equation (8)
can be interpreted just as the Laplacian on the two-sphere
acting on the axisymmetric field �.

III. FOCK QUANTIZATION OF THE MODEL

A. The classical model

After the above motivation, we can now specify the
models on which we will concentrate our discussion. The
system which we want to study is a scalar field �ðt; �Þ
propagating in a (1þ 1)-spacetime with the topology of
I� S1 and provided with the static metric gab ¼

�dtadtb þ d�ad�b. The time domain I is an interval of
the real line and, in most of the practical situations, will be
taken to coincide either with Rþ or with R. In addition, the
field is subject to a time-dependent potential of the form
Vð�Þ ¼ fðtÞ�2=2, where fðtÞ is a sufficiently regular func-
tion on the interval I. As we have already pointed out, this
potential can be thought of as a time-dependent mass term.
Later in this work we will comment on the extension of our
analysis to the case of an axisymmetric field on S2, instead
of a field on the circle.
In the canonical approach, in principle, the system can

be described by the action

Sðti; tfÞ ¼
Z tf

ti

dt

��I
d�P _’

�
�H

�
;

H ¼ 1

2

I
d�½P2 þ ð’0Þ2 þ f’2�;

(10)

where H is the Hamiltonian and ’ and P are, respectively,
the configuration and momentum of the field �.
The canonical phase space is the space of Cauchy data

fð’;PÞg ¼ fð�jt0 ; _�jt0Þg at some fixed time t0. The corre-

sponding nonzero Poisson brackets are f’ð�Þ; Pð�0Þg ¼
�ð�� �0Þ, where �ð�Þ is the Dirac delta on S1. Varying
the action (10) with respect to ’ and P, we arrive to the
field equations

_’ ¼ P; _P ¼ ’00 � fðtÞ’; (11)

so that � satisfies the linear wave equation

€�� �00 þ fðtÞ� ¼ 0: (12)

Alternatively to the space of Cauchy data � ¼ fð’;PÞg, the
phase space can be described as the space S ¼ f�g of
solutions to Eq. (12). Both � and S are symplectic linear
spaces, with the respective symplectic structures (indepen-
dent of the choice of time section)

	½ð’1; P1Þ; ð’2; P2Þ� ¼
I

d�ð’2P1 � ’1P2Þ; (13)

and

�ð�1; �2Þ ¼
I

d�ð�2@t�1 � �1@t�2Þ: (14)

Since the Hamiltonian (10) does not depend on the
spatial variable �, the field equations are invariant under
S1-translations:

T
: � � �þ 
 8 
 2 S1: (15)

So, the translations T
 form a group of symmetries of the
dynamics.1

1Moreover, in situations such as the case of the linearly
polarized Gowdy T3 cosmologies, these symmetries are in fact
gauge transformations of the reduced system obtained after an
almost complete gauge fixing [5].
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Given the periodicity in the spatial coordinate �, one can
equivalently use the Fourier coefficients of ’ and P as
coordinates of our phase space. Let us be more explicit:
employing the Fourier series expansion of ’ and P

’ ¼ q0ffiffiffiffiffiffiffi
2�

p þ X
n>0

�
qn

cosðn�Þffiffiffiffi
�

p þ xn
sinðn�Þffiffiffiffi

�
p

�
; (16)

P ¼ p0ffiffiffiffiffiffiffi
2�

p þ X
n>0

�
pn

cosðn�Þffiffiffiffi
�

p þ yn
sinðn�Þffiffiffiffi

�
p

�
; (17)

we see that the space of Cauchy data fð’;PÞg is in a one-to-
one correspondence with the space of real Fourier coeffi-
cients fðqn; xn; pn; ynÞ; n 2 NþgSfðq0; p0Þg. Besides,
from the basic Poisson bracket between ’ and P, one
can check that fq0; p0g ¼ 1 and fqn; pn0 g ¼ fxn; yn0 g ¼
�nn0 , the rest of brackets being equal to zero. Thus, the
canonical phase space can be coordinatized either by
fð’;PÞg or by the set of canonical pairs
fðqn; pnÞ; ðxn; ynÞ;n 2 NþgSfðq0; p0Þg.

By substituting the expansions (16) and (17) in Eq. (11)
we obtain

_q n ¼ pn; _pn ¼ �ðn2 þ fÞqn; (18)

and therefore

€q n þ ðn2 þ fÞqn ¼ 0: (19)

These formulas are also valid for q0 and p0, just by letting
n vanish. In addition, by replacing qn with xn and pn with
yn (with n > 0), one obtains the equations of motion
corresponding to the pair ðxn; ynÞ.

Let us introduce now the complex phase space variables

an ¼ 1ffiffiffiffiffiffi
2n

p ðnqn þ ipnÞ; ~an ¼ 1ffiffiffiffiffiffi
2n

p ðnxn þ iynÞ;

n 2 Nþ: (20)

These are just the usual annihilationlike variables for a
system of harmonic oscillators with frequencies equal to n.
Of course, that system corresponds to the particular case
f ¼ 0 in Eq. (12), i.e., to the free massless field case. We
can use the above set of complex variables, together with
the associated creationlike variables obtained by complex
conjugation, in order to coordinatize the inhomogeneous
sector (n � 0) of the canonical phase space. Besides, from
now on, we ignore the zero mode (n ¼ 0) in our analysis,
since its dynamics is decoupled from that of the inhomoge-
neous sector, the mode can be quantized by standard
methods, and it plays no role in the subsequent discussion
of unitarity and uniqueness of the quantum representation.

For the nonzero modes, the dynamics is dictated by the
inhomogeneous part �H of the Hamiltonian (10), which in
terms of our new set of variables adopts the expression:

�H ¼ X
n>0

��
nþ f

2n

�
ða�nan þ ~a�n~anÞ

þ f

4n
ðanan þ ~an~an þ a�na�n þ ~a�n~a�nÞ

�
: (21)

The symbol � denotes complex conjugation.
The finite transformations generated by the Hamiltonian

�H are linear symplectic transformations which can be
decomposed in 2� 2 blocks, one for each fixed pairAn ¼
ðan; a�nÞ and ~An ¼ ð~an; ~a�nÞ. Furthermore, the blocks for
these two pairs (with the same mode number n) coincide.
Thus, the classical evolution of the annihilation and crea-
tionlike variables from time t0 to time t is totally deter-
mined by a sequence of 2� 2 matrices Unðt; t0Þ, with
n 2 Nþ, of the form:

anðtÞ
a�nðtÞ

� �
¼ Unðt; t0Þ anðt0Þ

a�nðt0Þ
� �

;

~anðtÞ
~a�nðtÞ

� �
¼ Unðt; t0Þ ~anðt0Þ

~a�nðt0Þ
� �

;

(22)

U nðt; t0Þ ¼ 
nðt; t0Þ �nðt; t0Þ
��

nðt; t0Þ 
�
nðt; t0Þ

� �
; (23)

where 
nðt; t0Þ and �nðt; t0Þ are Bogoliubov coefficients
which depend on the specific function fðtÞ of the system.
At this stage of the discussion, a couple of remarks about

the extension of our analysis are in order.
(1) In the field models of the considered type which

arise from symmetry reductions of General
Relativity to cosmological scenarios, the time inter-
val I is contained, typically, in the positive semiaxis
Rþ. The origin t ¼ 0 corresponds to a big bang
singularity. This singularity generically implies
that the function f is no longer well behaved at
that point. In cases like the Gowdy T3 cosmologies,
the time domain is unlimited in the evolution of the
system apart from this singularity, and thus I coin-
cides with Rþ. On the other hand, the function f
may have more than one singularity, and in this case
the time domain is further restricted to a bounded
interval, as it happens to be the case for the Gowdy
S1 � S2 and S3 cosmological models, discussed
below when one allows the compact spatial (topo-
logical) manifold to differ from the circle.
Obviously, one can consider more general settings
than these models inspired in cosmology. In particu-
lar, for smooth functions f one can extend its do-
main of definition I to the whole real line, and the
study applies then to scalar fields in R� S1.

(2) As we have anticipated, our discussion can be ex-
tended to axisymmetric fields on S2. With this aim,
let us start by considering the action of a free scalar
field on I� S2 in the presence of a time-dependent
potential. This action is of the form (10) with the
spatial integration performed over S2 instead of over
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the circle, and with the quadratic term in spatial
derivatives, ð’0Þ2, of the Hamiltonian replaced
with �ij@i’@j’, where the indices i and j denote

spatial indices on the sphere, and �ij is the round

metric on S2, namely, �ij ¼ d�id�j þ
sin�2d�id�j. The resulting field equation is similar

to Eq. (12), but with the second spatial derivative
replaced with ��, � being the Laplace-Beltrami
operator on the two-sphere. The expansion of the
Cauchy initial data is now performed in terms of
spherical harmonics, Ylmð�;�Þ, which are eigen-
functions of the operator � with eigenvalue equal
to lðlþ 1Þ. The requirement of axisymmetry re-
stricts the harmonics in this expansion to the set
fYl0; l 2 Ng, the only spherical harmonics which
are independent of �. The coefficients of � in this
expansion in harmonics satisfy an equation identical
to (19), except for the substitution of n by lþ 1

2 and

the redefinition of the function fðtÞ, whose role is
played now by �fðtÞ :¼ fðtÞ � 1=4. From this point
on, the discussion is completely parallel to that
presented for the field on the circle, with the only
caveat that the mode numbers n correspond now to
positive half-integers, lþ 1

2 , rather than to positive

integers, a fact which, nonetheless, does not affect
the computations nor the rationale of our analysis.

B. Complex structure

Let us start our discussion about the quantization process
by considering the choice of complex structure for the
system, which is the mathematical structure that encodes
all the ambiguity which is physically relevant in the Fock
quantization. Recall that a complex structure J is a sym-
plectic transformation in S (or in �), compatible with the
symplectic structure [in the sense that their combination
�ðJ�; �Þ provides a positive definite bilinear map], and such
that its square equals minus the identity, J2 ¼ �1.

The time evolution can be viewed as a map that relates

copies of � at different times, e.g., fðAnðt0Þ; ~Anðt0ÞÞ; n 2
Nþg at t0 with fðAnðtÞ; ~AnðtÞÞ;n 2 Nþg at t. For definite-
ness, we choose once and for all an initial reference time t0.

Associated with fðAnðt0Þ; ~Anðt0ÞÞ; n 2 Nþg [which we

will denote by fðAnðt0Þ; ~Anðt0ÞÞg in the following, to
simplify the notation], there is a natural field decomposi-
tion � ¼ �þ þ ��, where

�þðt; �Þ ¼ X
n>0

1ffiffiffiffiffiffiffiffiffi
2�n

p MnðtÞ½cosðn�Þanðt0Þ

þ sinðn�Þ~anðt0Þ�; (24)

�� is the complex conjugate of �þ, and MnðtÞ ¼

nðt; t0Þ þ ��

nðt; t0Þ. Expressing the cosine and sine func-
tions in terms of exponentials, we can rewrite �þ as

�þðt; �Þ ¼ X
n�0

1ffiffiffiffiffiffiffiffiffiffiffiffi
4�jnjp MjnjðtÞein�bn; (25)

where bn :¼ 1ffiffi
2

p ½anðt0Þ � i~anðt0Þ� and b�n :¼ 1ffiffi
2

p ½anðt0Þ þ
i~anðt0Þ�. The explicit decomposition of the solutions in
complex conjugate pairs defines the �-compatible com-
plex structure J0 on S:

J0ðMjnjðtÞein�Þ ¼ iMjnjðtÞein�;
J0ðM�

jnjðtÞe�in�Þ ¼ �iM�
jnjðtÞe�in�:

(26)

In the fðAnðt0Þ; ~Anðt0ÞÞg basis, the complex structure J0 is
given by a block diagonal matrix, with 4� 4 blocks
ðJ0Þn ¼ diagði;�i; i;�iÞ for each value of n.
Since the reference time t0 has been chosen arbitrarily in

I, we can reproduce our analysis for any other time value in
this interval, let us say t ¼ T. In that case, the field �ðt; �Þ
will be decomposed again in ‘‘positive’’ and ‘‘negative’’
frequency solutions analog to �þ and �� [see Eq. (25)], but
now in terms of the coefficients bnðTÞ and the modes
MT

jnjðtÞ which, in turn, are obtained by replacing t0 with

T in the expressions given above for bn, b�n, and MjnjðtÞ.
Thus, for each copy fðAnðTÞ; ~AnðTÞÞg of � [which, alter-
natively, can be coordinatized by fBnðTÞg :¼
fðbnðTÞ; b��nðTÞ; b�nðTÞ; b�nðTÞÞg], we obtain a natural field
decomposition, and hence a natural complex structure JT
(note that we have called Jt0 ¼ J0 to simplify the notation).

In this way, we arrive at a uniparametric family of solution
spaces of positive [negative] frequency, SþT :¼ f�þ ¼
ð�� iJT�Þ=2g [S�T ¼ ðSþT Þ�], which is induced by the
evolution.
Note also that, in the alternative fBng description of �,

the time evolution is dictated precisely by the sequence of
2� 2 matrices Unðt; t0Þ, though now acting on the pairs
ðbn; b��nÞ and ðb�n; b

�
nÞ. In the fBng basis, the complex

structure J0 is also given by a block diagonal matrix,
with the 4� 4 blocks ðJ0Þn ¼ diagði;�i; i;�iÞ.
Finally, it is worth recalling that, in the free massless

field case, one has 
nðt; t0Þ ¼ e�inðt�t0Þ and �nðt; t0Þ ¼ 0
(with n > 0), so that the positive mode solutions
MjnjðtÞein� associated with the complex structure J0 in

the free case are simply the usual subfamily of plane waves

e�ijnjðt�t0Þþin�.

C. Quantum representation

Starting with ðS; J0Þ one can construct in a standard way
the Hilbert space of the quantum theory. The first step is to
complete the space of positive frequency solutions speci-

fied by J0 with respect to the norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�þ; �þip

, where
h�þ

1 ; �
þ
2 i :¼ �i�½ð�þ

1 Þ�; �þ
2 �. The result is the so-called

one-particle Hilbert space, H . Next, the Hilbert space is
obtained by considering the symmetrized tensor product of
n copies of H , one for each n 2 N, and collecting the
resulting spaces via the direct sum operation. In short, the
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Hilbert space is the Fock space associated with H :

F ðH Þ ¼ �1
n¼0ð�n

ðsÞH Þ:
In this prescription, the field operator �̂ is written in terms
of the annihilation and creation operators corresponding to
the positive and negative parts defined by the complex
structure J0, namely,

�̂ðt;�Þ ¼ X
n�0

1ffiffiffiffiffiffiffiffiffiffiffiffi
4�jnjp MjnjðtÞein�b̂n þ H:c:; (27)

where ‘‘H.c.’’ stands for ‘‘Hermitian conjugate.’’ One can
also rewrite the field operator in terms of the annihilation

fân; ~̂ang and creation fâyn ; ~̂ayn g operators associated with the
positive and negative frequency solutions corresponding to
excitations of the ‘‘oscillators’’ qn and xn:

�̂ðt; �Þ ¼ X
n>0

1ffiffiffiffiffiffiffiffiffi
2�n

p MnðtÞ½cosðn�Þânðt0Þ

þ sinðn�Þ~̂anðt0Þ� þ H:c: (28)

In the Heisenberg picture, time evolution is, in principle,
provided by the Bogoliubov transformation (23), what

means that one can define operators ânðtÞ, âyn ðtÞ at time t,

related with the operators ânðt0Þ, âyn ðt0Þ at time t0 accord-
ing to

ânðtÞ
âyn ðtÞ

� �
¼ 
nðt; t0Þ �nðt; t0Þ

��
nðt; t0Þ 
�

nðt; t0Þ
� �

ânðt0Þ
âyn ðt0Þ

� �
; (29)

and a completely similar expression for ð~̂an; ~̂ayn Þ.
A key question is to elucidate whether the above trans-

formations correspond to unitary transformations in
F ðH Þ, i.e., whether or not the dynamics is implementable
in a unitary way on the Fock representation determined by
J0 (in the following, we will call it the J0-Fock representa-
tion). Let us recall that a symplectic transformation R can
be unitarily implemented on a Fock representation, con-
structed from a complex structure J, if and only if (Rþ
JRJ) is an operator of the Hilbert-Schmidt type on the
corresponding one-particle Hilbert space [17,18].
Equivalently, R is implementable as a unitary transforma-
tion if and only if the representations defined by J and
RJR�1 are unitarily equivalent, i.e., if and only if (J �
RJR�1) is Hilbert-Schmidt.

In the case of the family of symplectic transformations
Uðt; t0Þ defined by the classical dynamics [and specified
by the matrices Unðt; t0Þ], the Hilbert-Schmidt condition
for a unitary implementation in the J0-Fock representation
becomes a square summability condition on the coeffi-
cients �n, namely,

P1
n¼1 j�nðt; t0Þj2 <1 8t 2 I, given a

fixed reference time t0. Before proving that this condition
is indeed satisfied, let us conclude the subsection with
some additional comments.

(1) In order to construct the Fock representation, we
could have considered the space SþT , determined by

the complex structure JT , rather than the space of
positive frequency solutions specified by J0. Since
the time T can take any value in I, we would have
obtained in this way a uniparametric family of
JT-Fock representations. Clearly, the J0-Fock rep-
resentation belongs to this family and corresponds
to T ¼ t0. Note that unitary implementability of the
dynamics on the J0-Fock representation (and ac-
tually on any representation within the family)
amounts to the unitary equivalence of all the
JT-Fock representations.

(2) By considering the counterpart of J0 on the canoni-
cal phase space � (rather than on S), one can con-
struct the functional representation which is
unitarily equivalent to the J0-Fock description (see
[19] for a detailed treatment in complex variables
and [20] for the Gelfand-Naimark-Segal relation-
ship between Schrödinger and Fock representa-
tions). The result is a Schrödinger representation
of the canonical commutation relations on the
Hilbert space H ¼ L2ðQ; 
Þ of square integrable
functions on the infinite dimensional linear space

Q ¼ fðqn; xnÞ; n 2 Nþg ffi ðR2ÞNþ
, with respect to

the Gaussian measure

d
 ¼ Y
n>0

�
e�nðq2nþx2nÞ n

�
dqndxn

�
: (30)

The basic operators of configuration (q̂n and x̂n) and
momentum (p̂n and ŷn) act as multiplicative and
derivative operators, respectively:

q̂ n� ¼ qn�; x̂n� ¼ xn�; (31)

p̂n� ¼ �i
@

@qn
�þ inqn�;

ŷn� ¼ �i
@

@xn
�þ inxn�:

(32)

Here, � 2 H is an arbitrary ‘‘wave function’’.
If one employs relation (20) to introduce operators

ðân; ~̂anÞ and ðâyn ; ~̂ayn Þ, it is easy to check that these
provide the annihilation and creation operators of
the representation. Thus, the constructed represen-
tation is just the one which is naturally associated
with the free massless field case. A different way to
see this fact is by computing the counterpart of the
complex structure J0 on the canonical phase space,
j0, which in terms of the variables ð’;PÞ takes the
familiar form

j0 ¼ 0 �ð��Þ�1=2

ð��Þ1=2 0

 !
: (33)

Obviously, the massless free field dynamics is im-
plemented as a unitary transformation in this repre-
sentation; actually, the corresponding coefficients
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�n vanish identically, since the complex structure is
invariant under the free field dynamics.
Nevertheless, in the next section we will prove a
nontrivial result, namely, that the dynamics of the
field � that we are studying admits also a unitary
implementation in the considered representation tai-
lored to the free massless field.

IV. UNITARY DYNAMICS

In this section, we want to address the question of
whether the sequences f�ng are square summable or not.
Thus, we will be interested in the large n limit of the
coefficients �n, and therefore in the behavior of the equa-
tions of motion (19) for large n.

Let us start by writing the general solution to those
equations of motion in the form

qnðtÞ ¼ An exp½n�nðtÞ� þ A�
n exp½n��

nðtÞ�; (34)

where, for each n, An is a complex constant and �n is a
particular complex solution of the characteristic equation

n €�n þ n2 _�2
n þ n2 þ f ¼ 0; (35)

arising from Eqs. (19) and (34).
A simple calculation shows the relation between �nðtÞ

and the modesMnðtÞ associated with the complex structure
J0:

MnðtÞ ¼ � expfn½�nðtÞ ��nðt0Þ�g 1� i _��
nðt0Þ

2 Im _�nðt0Þ

þ expfn½��
nðtÞ ���

nðt0Þ�g 1� i _��
nðt0Þ

2 Im _�nðt0Þ
: (36)

It is worth pointing out that Eq. (35) involves only the

function _�n and its derivative. Actually, it is just a first-

order differential equation of the Riccati type for _�n.
Hence, the functions�n are determined only up to additive
constants. We use this freedom to set �nðt0Þ ¼ 0. Let us
consider now the freedom in choosing a particular solution
to Eq. (35) for each n 2 Nþ. By computing the relation
between the initial data ðqnðt0Þ; pnðt0ÞÞ, on the one hand,

and _�nðt0Þ and the complex arbitrary constants An appear-
ing in Eq. (34), on the other hand, one can check that it is
possible to reach any value of the initial data while setting
_�nðt0Þ ¼ �i. This condition fixes then the solution to
Eq. (35). The choice is motivated by our knowledge of

the free massless scalar field, case in which _�n ¼ �i is
satisfied not only initially, but at all times. Substituting the
resulting relation between ðqnðt0Þ; pnðt0ÞÞ and An in
Eq. (34), it is easy to obtain the evolution matrices in terms
of the original variables ðqn; pnÞ. Changing from those
variables to the annihilation and creationlike variables
ðan; a�nÞ, one can deduce the expression of the
Bogoliubov coefficients 
nðt; t0Þ and �nðt; t0Þ as functions
of the real and imaginary parts of �nðtÞ, which we call

rnðtÞ and snðtÞ, respectively:

nðt; t0Þ ¼ 1

2e
nrnðtÞeinsnðtÞ½1þ i _rnðtÞ � _snðtÞ�; (37)

�nðt; t0Þ ¼ 1
2e

nrnðtÞe�insnðtÞ½1þ i _rnðtÞ þ _snðtÞ�: (38)

In the equations of motion (19), the n2 term dominates over
the mass term fðtÞ in the limit of large n modes, and we
thus expect that the solutions qnðtÞ converge to those
corresponding to the massless case for the same initial
conditions, at least for sufficiently regular functions fðtÞ
on I. Hence, the exponential enrnðtÞ tends to 1, and thus
�nðt; t0Þ is square summable if and only if so is

2e�nrnðtÞ�nðt; t0Þ. Therefore, in the following we will focus
our analysis on the behavior of _rn and _sn for large n.

Let us write the functions _�n in the form

_� n ¼ �iþWn

n
: (39)

The initial condition on _�n translates then into the vanish-
ing of Wn at t0. Besides, from Eq. (35), it follows that the
functions Wn satisfy the first-order differential equations

_W n ¼ 2inWn �W2
n � f; (40)

also of the Riccati type. We want to show now that, in the
large n-limit, the desired solutions to Eq. (40) admit ‘‘ul-
traviolet modes’’ of order 1=n. Thus, in particular, the
sequences WnðtÞ tend to zero, and the sequences WnðtÞ=n
are square summable8t. The argument is the following. In
the asymptotic limit of large n, the quadratic term W2

n in
Eq. (40) is expected to be dominated by the linear term in
Wn, whose coefficient is proportional to n and therefore
grows in the asymptotic regime under consideration. We
will hence neglect that quadratic term, show that the re-
sulting linear equation admits solutions �Wn of order 1=n,
and check that, in the asymptotic limit n ! 1, the con-
tribution of the quadratic term for such solutions is in fact
negligible in our original differential equation.
Thus, let us consider the linear equation obtained from

Eq. (40) after removing the quadratic term W2
n:

_�W n ¼ 2in �Wn � f: (41)

The solution to Eq. (41) satisfying the initial condition
Wnðt0Þ ¼ 0 is given by

�W nðtÞ ¼ � expð2intÞ
Z t

t0

d�tfð�tÞ expð�2in�tÞ: (42)

A simple integration by parts leads then to

�WnðtÞ ¼ � ifðtÞ
2n

þ ifðt0Þe2inðt�t0Þ

2n
� expð2intÞ

2in

Z t

t0

d�t _fð�tÞ

� expð�2in�tÞ; (43)

and one can easily check that the absolute value of the last

term is bounded by 1
2n

R
t
t0
dtj _fj. It is therefore clear that, for
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sufficiently regular fðtÞ, there is a function CðtÞ, indepen-
dent of n, such that the absolute value of the solutions (42)
is bounded by CðtÞ=n. To reach this conclusion, one only

needs that the function fðtÞ is differentiable (so that _f
exists) and its derivative is integrable in every interval
½t0; t� 
 I [for instance, these conditions are satisfied if
fðtÞ is a C1 function in I]. Then, in particular, the sequence
�WnðtÞ tends to zero in the asymptotic limit of infinite n,
8t 2 I.

We now return to the original differential equation (40).
Given the behavior of the functions (42), the quadratic term
�W2
n is bounded in absolute value by CðtÞ2=n2, and is hence

negligible, in particular, compared with the linear term in
that equation. Therefore, the functions �WnðtÞ defined in
formula (42) can be taken as asymptotic solutions, in the
limit of large n, to Eq. (40) up to subdominant terms, terms
which in any case do not affect the square summability of
the sequence WnðtÞ=n.

Considering again the real and imaginary contributions

of the solutions _�n, and splitting also Wn in real and
imaginary parts, Wn ¼ Rn þ iIn, one gets

_r nðtÞ ¼ RnðtÞ
n

; _snðtÞ ¼ �1þ InðtÞ
n

: (44)

According to our analysis, the real functions RnðtÞ and InðtÞ
tend to zero in the asymptotic limit of large n, for all
allowed values of the time t.2

It is now a simple exercise to check that the coefficients
�nðt; t0Þ, given in Eq. (38), are square summable for all t,
since the leading term of j�nj in the asymptotic limit of
large n is just ðRn þ iInÞ=ð2nÞ. This proves that, for a free
real scalar field � on S1, or an axisymmetric one on S2,
which is subject to a time-dependent potential Vð�Þ ¼
fðtÞ�2=2 (or, equivalently, with a time-dependent mass),
there exists at least one Fock representation in which the
dynamics is implemented as a unitary transformation. This
Fock representation is the one naturally associated with the
massless scalar field with vanishing potential. In particular,
this representation is S1-invariant, i.e., it is defined by a
complex structure J0 which is invariant under the action of
the group of S1-translations (15)—if we consider the case
of a field on S2 instead, the invariance is under the group
SOð3Þ. This means that the representation also provides us
with a unitary implementation of the symmetry group of
the field equations.

A natural question is whether or not the above result
holds for other nonequivalent Fock representations which
satisfy as well the requirement of invariance under the
symmetries of the field equations. An answer in the posi-
tive would imply that one cannot pick out a preferred

S1-invariant Fock representation [or an SOð3Þ-invariant
one for axisymmetric fields on the sphere] by demanding
the unitary implementation of the dynamics. In contrast, if
the answer is in the negative, the J0-Fock representation
would be confirmed as the unique (up to unitary equiva-
lence) Fock representation which is invariant under the
symmetry group of the field equations and fulfills the
demand of allowing a unitary quantum evolution. In the
next section we will show that this is indeed the case.

V. UNIQUENESS OF THE QUANTIZATION

Since, for the analyzed case of a free scalar field on the
circle with a time-dependent mass or potential, we are
interested just in S1-invariant Fock representations, we
will consider only complex structures J that are invariant
under the group of translations (15): J ¼ T�1


 JT
 8
 2
S1. We will refer to such complex structures simply as
invariant ones. Now, given a �-compatible invariant com-
plex structure J, it can be shown [5] that it is related to J0
via J ¼ KJJ0K

�1
J , whereKJ is a block diagonal symplectic

transformation, with 4� 4 blocks of the form

ðKJÞn ¼
ðKJÞn 0

0 ðKJÞn

 !
; ðKJÞn ¼ �n �n

��
n ��

n

 !

j�nj2 � j�nj2 ¼ 1; 8 n 2 Nþ: (45)

The fact that j�nj2 � j�nj2 ¼ 1, implies that j�nj � 1 and
j�nj � j�nj. Consequently, in particular, the sequence
f�n=�

�
ng is bounded.

On the other hand, for the alternate case of an axisym-
metric field on S2, the complex structures that descend
from SOð3Þ-invariant ones were discussed in Ref. [11].
Besides, it was shown in Ref. [12] that these invariant
complex structures can be parametrized in the same way
as the S1-invariant ones. Using this common parametriza-
tion, all of the following discussion applies as well for this
other family of field models.
Let us return to the mainstream of our argumentation.

Given a symplectic transformation R, it is not difficult to
see that it admits a unitary implementation with respect to
the complex structure J ¼ KJJ0K

�1
J if and only ifK�1

J RKJ

is unitarily implementable with respect to J0. Thus, the
time evolution U (specified by the sequence of matrices
fUng) will be unitarily implementable with respect to the
Fock representation determined by J ¼ KJJ0K

�1
J if and

only if the J0-Fock representation admits a unitary imple-
mentation of the symplectic map K�1

J UKJ. This last con-
dition amounts to the square summability of the sequences

�J
nðt; t0Þ ¼ ð��

nÞ2�nðt; t0Þ � �2
n�

�
nðt; t0Þ

þ 2i��
n�n Im½
nðt; t0Þ�; 8 t 2 I; (46)

where 
n and �n are the Bogoliubov coefficients corre-
sponding to J0, given in Eqs. (37) and (38). Summarizing, a
different Fock representation, defined by a different invari-

2Of course, a more detailed analysis of the asymptotic behav-
ior of the solutions _�n can be performed, as Eq. (43) already
suggests. However, for our purposes the current estimate is
sufficient.
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ant complex structure J ¼ KJJ0K
�1
J , allows a unitary im-

plementation of the � field dynamics if and only if the
sequence (46) is square summable at every instant of time t
in the domain I.

On the other hand, we recall that the Fock representation
specified by J ¼ KJJ0K

�1
J and the J0-Fock representation

are unitarily equivalent if and only if the sequence f�ng is
square summable (details on this point can be found in
Ref. [5]). In the rest of this section, we will demonstrate
that, if the sequences f�J

nðt; t0Þg 8t 2 I are square sum-
mable, the same must necessarily happen to the sequence
f�ng. This will prove that the J0-Fock representation is in
fact unique, up to unitary equivalence.

Let us suppose that the dynamics, for some function
fðtÞ, is unitarily implemented in the invariant Fock repre-
sentation determined by the complex structure J; that is, let
us suppose that f�J

nðt; t0Þg is square summable 8t 2 I.
Since j�nj> 1, it then follows that the sequence provided
by

�J
nðt; t0Þ
ð��

nÞ2
¼ �nðt; t0Þ �

�
�n

��
n

�
2
��

nðt; t0Þ

þ 2i

�
�n

��
n

�
Im½
nðt; t0Þ� (47)

is also square summable. Moreover, we already know that
the sequence f�n=�

�
ng is bounded and that the sequence

f�nðt; t0Þg is square summable (this was shown in the
previous section). These facts guarantee then that
f�nðt; t0Þ � ð�n=�

�
nÞ2��

nðt; t0Þg is square summable. Since
the space of square summable sequences is a linear space,
one is led to conclude that the sequence
fð�n=�

�
nÞ Im½
nðt; t0Þ�g has to be square summable as well.

The analysis that we presented in Sec. IV to show the
square summability of f�nðt; t0Þg at all instants of time t
can now be applied to check that the sequence
fIm½
nðt; t0Þ� þ sinðnðt� t0ÞÞg is also square summable.
Thus, from the bound on �n=�

�
n and using linearity, we

conclude that fð�n=�
�
nÞ sinðnTÞg is also a square summable

sequence. Here, we have called T ¼ t� t0 in order to
simplify the notation. Therefore, the function

gðTÞ :¼ lim
M!1

XM
n¼1

j�nj2
j�nj2

sin2ðnTÞ (48)

exists for all T in the interval �I, obtained from I after a
negative shift by t0. In particular, the function gðTÞ is well
defined at least on some closed subinterval of the form
�IL ¼ ½a; aþ L� � �I (for a suitable choice of the time a),
where L is some finite number strictly smaller than the
length of I. Related to this number L, let us introduce also,
for later use, a fixed positive integer n0 such that the
product n0L is larger than the unity, a condition that can
always be fulfilled.

We can now apply Luzin’s theorem [21], which ensures

that, for every � > 0, there exist: (i) a measurable set E� 


�IL such that its complement �E� with respect to �IL satisfiesR
�E�
dt < �, and (ii) a function F�ðTÞ, continuous on �IL,

which coincides with gðTÞ in E�. We then get

XM
n¼1

j�nj2
j�nj2

Z
E�

sin2ðnTÞdT 

Z
E�

gðTÞdT ¼: I�;

8 M 2 Nþ; (49)

where I� ¼ R
E�

F�ðTÞdT is some finite number. SinceZ
E�

sin2ðnTÞdT ¼
Z
�IL
sin2ðnTÞdT �

Z
�E�

sin2ðnTÞdT

� L

2
� 1

2n0
� �; 8 n � n0; (50)

we have that

XM
n¼n0

j�nj2
j�nj2


 2n0I�
n0L� 1� 2n0�

8 M> n0: (51)

Here, we have used that it is possible to choose 2� < ðL�
1=n0Þ, thatZ
�IL
sin2ðnTÞdT ¼ L

2
� sin½2nðaþ LÞ�

4n
þ sinð2naÞ

4n

� L

2
� 1

2n
8 n 2 Nþ; (52)

and that ðL� 1=nÞ � ðL� 1=n0Þ 8n � n0. Let us empha-
size that Eq. (51) is valid for arbitrary large M. Then, the
right-hand side of that equation, which does not depend on
M, provides a bound to the increasing sequence of partial
sums fPM

n¼n0
ðj�nj2=j�nj2Þg, where n0 is fixed. As a result,

the sequence f�n=�ng is necessarily square summable.
Employing the square summability of f�n=�ng and the

identity j�nj2 � j�nj2 ¼ 1, it is straightforward to see that
the sequence f�ng is bounded. Thus, the sequence f�n ¼
�nð�n=�nÞg is square summable, as we wanted to show.
Therefore, we conclude that the J0-Fock representation is
the unique (up to unitary equivalence) invariant quantum
description in which the dynamics is implemented as a
unitary transformation and, consequently, the unique in-
variant quantum theory where the Schrödinger picture can
be consistently defined.

VI. DISCUSSION AND CONCLUSIONS

It is well known that, in contrast to systems with a finite-
dimensional linear phase space, there are inequivalent
representations of the canonical commutation relations in
quantum field theory.3 Clearly, this raises the issue of
which choice of representation, if any, is the adequate
one for a given classical field theory. Since, in addition to

3We mean representations of the regular type, i.e., giving rise
to irreducible representations of the Weyl relations satisfying the
standard criteria of weak continuity.
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its kinematics, a field theory is characterized by its dynam-
ics and its group of symmetries, it is most natural to take
into account these ingredients and let them play a funda-
mental role when elucidating the appropriate quantum
representation. In fact, from a physical point of view, it is
highly questionable that one could accept as a satisfactory
quantization of the system a representation of the canonical
commutation relations which fails to produce a unitary
implementation of the dynamics, or of the symmetries.

Therefore, given a classical field theory, the first funda-
mental issue that arises regarding its quantization is
whether there exists or not a quantum representation with
a proper unitary dynamics and symmetry group. Note that,
for Poincaré invariant theories, dynamics and symmetries
are unified under the Poincaré group, and one looks in fact
for unitary implementations precisely of that group. In the
particular case of free scalar fields on Minkowski space-
time, representations with the desired properties are known
to exist, of course. These are the familiar free field repre-
sentations, defined by Poincaré invariant complex struc-
tures, and are distinguished by the value of the mass. This
means that, for each mass m, there exists a different,
unitarily inequivalent, representation of the canonical com-
mutation relations. The dynamics of the massive field with
mass equal to m is unitarily implemented on the corre-
sponding m-representation, but not on any of the distinct
representations defined by m0 � m.

The situation described above is a neat example of the
necessity of invoking the dynamics, and the symmetries, in
the quantization process. It illustrates the general belief
that, in quantum field theory, the representation depends on
the dynamics. One can, furthermore, expect that dynamical
(or energy related) considerations might fix the represen-
tation uniquely4 (up to unitary equivalence). This is indeed
the case for free fields.

In the present work, we have carried out the analysis of
the canonical quantization of a free scalar field �ðt; �Þ on
the circle in the presence of an explicitly time-dependent
potential Vð�Þ ¼ fðtÞ�2=2, interpretable as a time-
dependent mass. With respect to the set of field theories
commented above, there are two major differences. On the
one hand, the effective space where the field lives is now
the compact space S1, which is an important simplification.
On the other hand, the field is not truly free, as the ‘‘mass’’
term depends on time. Time translation invariance is there-
fore lost and, though linear, the dynamics is nontrivial.
Thus, the existence of a representation with unitary dy-
namics is not granted a priori.

The first result that we have demonstrated is that, for the
considered type of field theories, there exists indeed a
representation which allows a unitary implementation of
the dynamics, namely, the representation which is naturally
associated with the massless free field on S1. Moreover,

this result holds for all sufficiently regular functions fðtÞ [it
suffices that fðtÞ is differentiable and its derivative is
integrable in every compact subinterval of the domain of
definition].
This result is better understood by reminding the reader

that the above mentioned inequivalence between the free
field representations in Minkowski spacetime is due to the
long range behavior (see Ref. [13]), which is absent in the
S1 case. Actually, the representations of the canonical
commutation relations associated with free fields on S1

are all unitarily equivalent [5], for any value of the mass.
We have shown that, remarkably, the zero mass represen-
tation (and therefore the free field representation for
any other value of the mass) also supports the dynamics
of our field for every choice of the (regular) function fðtÞ.
In this sense, the free field representation emerges in
the compact case as a fixed stage where (at least some)
different representations of interest are simultaneously
realized. Moreover, the free field representation is defined
by a complex structure which is invariant under
S1-translations, and therefore carries as well a unitary
implementation of that symmetry group.
The second result that we have proved is the uniqueness

of the quantum representation. In addition to a unitary
implementation of the dynamics, we require that the rep-
resentation is defined by a S1-invariant complex structure.
Under these conditions, we have shown that any represen-
tation which supports a unitary dynamics for the field �, for
a given function fðtÞ, is unitarily equivalent to the massless
free field representation. Thus, our conditions provide a
successful uniqueness criterion.
It may be worth commenting on a couple of points to

clarify the significance of this result. On the one hand, the
set of representations defined by S1-invariant complex
structures is quite large and definitely contains different
unitary equivalence classes. Therefore, the fact that unitary
implementation of the dynamics selects precisely one
equivalence class has to be considered nontrivial. Of
course, it would be desirable to extend our results in order
to include representations defined by general S1-invariant
algebraic states, rather than just states induced by complex
structures. However, since our symmetry group of (con-
stant) S1-translations is relatively small, that would
leave us with a huge set of states with, at least to our
knowledge, no manageable characterization. On the other
hand, we note that the condition of S1-invariance, though
not strictly necessary for the unitary implementation of
S1-translations, is certainly natural, and follows the general
procedure for the implementation of symmetries (provided
that invariant states exist, of course).
Although we have centered our attention on the S1 case,

mainly for simplicity, we have seen that all our results
extend to the case of axisymmetric fields on the two-
sphere, with the proper adaptations [for instance, the sym-
metry group would be SOð3Þ rather than S1]. In this regard,4Leaving aside situations of spontaneous symmetry breaking.
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let us stress that the general analysis here presented is
motivated by the current interest in the quantization of
symmetry reductions of general relativity in the presence
of two commuting spacelike Killing vectors. Actually, the
two considered cases of the field on the circle and the
axisymmetric field on the sphere cover all symmetry re-
ductions of this kind found in cosmology, when one re-
stricts to compact spatial sections, provided that the Killing
vectors are hypersurface orthogonal (linear polarization).
Such symmetry reductions correspond to the families of
Gowdy spacetimes. Thus, our analysis includes the recent
treatments of the quantum Gowdy cosmologies: specifi-
cally, the linearly polarized T3 model [2–6] is described by
a scalar field � on S1 with fðtÞ ¼ 1=ð2tÞ2, whereas the
Gowdy S1 � S2 and S3 models [10–12] admit a description
in terms of an axisymmetric field � on S2 with fðtÞ ¼ ð1þ

csc2tÞ=4. With the present unified treatment, we expect to
have contributed both to a better understanding of the
previously obtained results, and to an extension of them
which can find applications in other symmetry reductions
of general relativity or, more generally, in quantum field
theory on curved backgrounds.
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