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We study the mechanics of D-dimensional isolated horizons (IHs) for Einstein gravity in the presence

of arbitrary p-form matter fields. This generalizes the analysis of Copsey and Horowitz to nonstationary

spacetimes and therefore the local first law in D> 4 dimensions to include nonmonopolar (dipole)

charges. The only requirement for the local first law to hold is that the action has to be differentiable. The

resulting conserved charges are all intrinsic to the horizon and are independent of the topology of the

horizon cross sections. We explicitly calculate the local charges for five-dimensional black holes and

black rings that are relevant within the context of superstring theory. We conclude with some comments on

the black-hole/string correspondence principle and argue that IHs (or some other quasilocal variant)

should play a fundamental role in superstring theory.
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I. INTRODUCTION

The advent of superstring theory revolutionized our
view of the Universe, for example, with the requirement
of extra spatial dimensions. The natural question that
should be investigated is the following: What properties
of black holes in four dimensions carry over to higher-
dimensional spacetimes? More specifically, we should ask
the following question: What are the generic features of
black holes in higher-dimensional spacetimes in general,
and within the superstring theory context in particular?An
ideal method for investigating such questions is to employ
a covariant phase space framework that includes all black-
hole solutions to the equations of motion for a given action
principle.

Such a framework does exist and is known as the iso-
lated horizon (IH) framework [1]. The classical theory of
IHs was motivated by earlier considerations of trapping
horizons [2], but the framework is considerably different as
covariant phase space methods [3–6] are employed in the
case of IHs. All the quantities that appear in the first law of
IH mechanics are defined intrinsically at the horizon. The
concept of such a surface generalizes the notion of a
Killing horizon to much more general, and therefore physi-
cal, spacetimes that may include external radiation fields
that are dynamical. Examples of such systems in general
relativity are given by the so-called Robinson-Trautman
spacetimes [7,8].

The focus of this paper is to examine the consequences
of the IH boundary conditions on the covariant phase space
of solutions to the equations of motion in the presence of
generic p-form matter fields and to determine the con-
served charges from the symplectic structure. Among other
results, we find that the natural conserved charge associ-
ated with the matter term for the electric dual of Einstein-

Maxwell theory with dilaton that arises from the symplec-
tic structure is the electric dipole charge, not the magnetic
monopolar charge that one would expect. This work gen-
eralizes two sets of constructions: the first law of Copsey
and Horowitz [9] is generalized to nonstationary space-
times and the IH framework in D> 4 dimensions [10–12]
is extended to include nonmonopolar charges.
We consider a D-dimensional manifold M bounded by

two spacelike partial Cauchy surfaces, M1 and M2, which
are asymptotically related by a time translation and extend
from the internal boundary � [with � \M ffi SD�2 for
some compact (D� 2)-space SD�2 with positive constant
curvature] to the boundary at infinity �1.
In the first-order formulation of general relativity, the

action for the theory that we consider is given by

S ¼ 1

2�D

Z
M

�IJ ^�IJ þLM½�;F ;A� � 1

2�D

�
Z
�1

�IJ ^ AIJ: (1)

Here, �D ¼ 8�GD with GD the D-dimensional gravita-
tional constant. This action depends on the coframe eI, the
gravitational SOðD� 1; 1Þ connection AI

J, the scalar field
� and the generic p-form field F ¼ dA (with p an
integer such that 2 � p � D� 2). The coframe deter-
mines the metric gab ¼ �IJea

I � eb
J, (D� 2)-form�IJ ¼

½1=ðD� 2Þ!��IJK1...KD�2e
K1 ^ � � � ^ eKD�2 and spacetime

volume form � ¼ e0 ^ � � � ^ eD�1, where �I1...ID is the

totally antisymmetric Levi-Civita tensor. The connection
determines the curvature 2-form

�I
J ¼ dAI

J þ AI
K ^ AK

J ¼ 1
2R

I
JKLe

K ^ eL; (2)

with RI
JKL as the Riemann tensor. In this paper, spacetime

indices a; b; . . . 2 f0; . . . ; D� 1g are raised and lowered
using the metric gab and internal indices I; J; . . . 2
f0; . . . ; D� 1g are raised and lowered using the*liko@gravity.psu.edu
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Minkowski metric �IJ ¼ diagð�1; . . . ; 1Þ. The boundary
term at the timelike cylinder �1 at infinity is required in
order that the action be differentiable. It is the natural
boundary term associated with the first-order action prin-
ciple. Important properties of this boundary term are dis-
cussed in [13–15].

II. HORIZON STRUCTURES AND
DIFFERENTIABILITY OF THE ACTION

Let us remind the reader of the basic definition of a
rotating weakly isolated horizon [11,16,17], with a suitable
generalization of the boundary conditions tailored to in-
clude the presence of p-form matter fields.

Definition I. A rotating weakly isolated horizon (WIH)
� is a null surface and has a degenerate metric qab with
signature 0þ . . .þ (with D� 2 nondegenerate spatial
directions) along with an equivalence class of null normals
[‘] (the equivalence relation being defined by ‘0 ¼ z‘ for
some constant z) and spacelike rotational vector fields �a

�

(� 2 f1; . . . ; bðD� 1Þ=2cjb�c denotes “integer value of”g)
such that the following conditions hold: (1) the expansion
�ð‘Þ of ‘a vanishes on �; (2) the field equations hold on �;
(3) the stress-energy tensor is such that the vector �Ta

b‘
b

is a future-directed and causal vector; (4) L‘!a ¼ 0 and
L‘A ¼ 0 for all ‘ 2 ½‘� (see below); (5) �a

� satisfy

L�qab ¼ L�‘a ¼ L�!a ¼ L�A ��� ¼ L� F ��� ¼ 0.

The first three conditions determine the intrinsic geome-
try of �. Since ‘ is normal to � the associated null con-
gruence is necessarily twist-free and geodesic. By
condition (1) that congruence is nonexpanding. Then the
Raychaudhuri equation implies that Tab‘

a‘b ¼ �	ab	
ab,

with 	ab the shear tensor, and applying the energy condi-
tion (3) we find that 	ab ¼ 0.

In addition, the vanishing of the expansion, twist and
shear imply that [16]

ra 
‘b � !a‘b; (3)

with ‘‘�’’ denoting equality restricted to � and the under-
arrow indicating pullback to �. Thus the 1-form ! is the
natural connection induced on the horizon. The conditions
also imply that

‘ zF ��� ¼ 0: (4)

This property will play an important role in the derivation
of the first law with nonmonopolar charges for black rings.
We emphasize that this condition is a consequence of the
boundary conditions and not an assumption.

Condition (5) captures the notion of a WIH rotating with
angular velocities �� whereby the rotational vector fields
�a

� are symmetries of �. For a multidimensional rotating
WIH, a suitable evolution vector field on the covariant
phase space is given by [11,17]


a ¼ z‘a þ XbðD�1Þ=2c
�¼1

���
a
� : (5)

This vector field is spacelike in general and becomes null
when all angular momenta are zero.
We do not fix the fields at the inner boundary �, so we

need to determine explicitly the surface terms for which the
action (1) will be differentiable. To this end, let � 2
fe; A;�;F g denote the set of field variables. Then, taking
the first variation of (1) gives

�S ¼ 1

2�D

Z
M

E½����� 1

2�D

Z
�
J½�; ���; (6)

with E½�� ¼ 0 representing the equations of motion and
J½�; ��� representing a linear combination of gravita-
tional and matter-field surface terms. In the present case,
we have that

J½�; ��� ¼ �IJ ^ �AIJ þ� ^ �A; (7)

here we defined � ¼ DLM=DF as the functional deriva-
tive of the Lagrangian density LM with respect to F .
It turns out that the pullback of J to � vanishes, and

therefore the action (1) is indeed differentiable and the
equations of motion E½�� ¼ 0 follow from the variational
principle �S ¼ 0. In particular, the pullback of the gravi-
tational surface term is given by [12]

� ^ � A ��� � ~� ^ �!; (8)

with ~� ¼ #ð1Þ ^ . . . ^ #ðD�2Þ the area element of the cross
section SD�2 of the horizon, and #ðiÞ (i 2 f2; . . . ; D� 1g)
are D� 2 spacelike vectors adapted to SD�2 that satisfy
the orthogonality condition #ðiÞ � #ðjÞ ¼ �ij. The key prop-

erty of � is that the variation of ‘ is proportional to ‘ itself.
Then from the WIH condition (4) it follows that L‘�! ¼
0. However, ! is held fixed on Mf1;2g which means that

�! ¼ 0 on the initial and final cross-sections of � (i.e. on
M1 \� and onM2 \�), and because �! is Lie dragged on
� it follows that ~� ^ �! � 0. The same argument also
holds for the matter-field part of the surface term: from
condition (4) L‘A ��� ¼ 0, and with �‘ / ‘ on � it follows

that � ^ �A ��� � 0, whence

J½�; ���j� � 0: (9)

Therefore, in the presence of an internal null boundary �
satisfying the conditions of Definition I, the action (1) is
differentiable.

III. COVARIANT PHASE SPACE AND CONSERVED
CHARGES

As in the previous papers on IHs (e.g. [11,12,16,17]), the
first law follows directly from applying standard covariant
phase space methods [3–6]. The symplectic current is
obtained from antisymmetrizing the second variation of
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the surface term; integrating over the boundaryM1 [M2 [
� (because the asymptotic conditions ensure that the in-
tegral over �1 vanishes) gives the symplectic structure
� 	�ð�1; �2Þ. The first law then follows directly from
evaluating the symplectic structure at ð�; �
Þ.

In the present case the closed and conserved symplectic
structure is given by

� ð�1; �2Þ ¼ 1

2�D

Z
M
½�½1�IJ ^ �2�AIJ � �½1� ^ �2�A�

þ 1

�D

I
SD�2
½�½1~� ^ �2�c þ �½1� ^ �2���:

(10)

Here we defined the potential c for the surface gravity �ð‘Þ
and analogous (p� 2)-form � for the (p� 2)-form �ð‘Þ
such that

L ‘c � ‘ z! ¼ �ð‘Þ and L‘� � ‘ zA ¼ ��ð‘Þ:
(11)

We find that evaluating the horizon integral at ð�; �
Þ is
given by

�j� ¼ 1

�D

I
SD�2

�ðz‘Þ�~�þ 1

�D

I
SD�2

�ðz‘Þ ^ ��

þ XbðD�1Þ=2c
�¼1

��

�D

�
I
SD�2
½ð�� z!Þ~�þ ð�� zAÞ ^��;

(12)

where we used �ðz‘Þ ¼ Lz‘c ¼ z‘ z! and �ðz‘Þ ¼
Lz‘� ¼ z‘ zA. These quantities are constant for any
given horizon, but in general vary across the phase space
from one point to another. This implies that (12) is in
general not a total variation. However, if �ðz‘Þ, �ðz‘Þ and
�� can be expressed as functions of the entropy S, charge
Q, and angular momenta J � defined by

S ¼ 1

4GD

I
SD�2

~�; (13)

Q ¼ 1

8�GD

I
SD�2

�; (14)

J � ¼ 1

8�GD

I
SD�2
½ð�� z!Þ~�þ ð�� zAÞ ^��; (15)

and satisfy the integrability conditions

@�

@J
¼ @�

@S
;

@�

@Q
¼ @�

@S
;

@�

@Q
¼ @�

@J
; (16)

then there exists a function E such that [11,17]

� j�ð�; �
Þ ¼ �E: (17)

In this case (12) becomes

�E ¼ �ðz‘Þ
2�

�S þ 1

�D

I
SD�2

�ðz‘Þ ^ ��þ XbðD�1Þ=2c
�¼1

���J �;

(18)

which is the first law (for a quasistatic process). Therefore,
rotating WIHs in D-dimensional asymptotically flat space-
times with generic p-formmatter fields satisfy the first law.
The first law (18) holds for any rotating WIH in the

presence of p-form matter fields, regardless of the topol-
ogy of the horizon cross section. For WIHs in asymptoti-
cally flat spacetimes, there is a very strong constraint on the
possible topologies. As was shown in [12], the integral of
the scalar curvature of the horizon cross section is strictly
positive. This implies that in four dimensions (together
with the Gauss-Bonnet theorem) S2 ffi S2 and that in five
dimensions S3 can only be a finite connected sum of the
three-sphere S3 or of the ring S1 � S2. These results on
topology are in agreement with the recent extension of the
Hawking topology theorem to higher dimensions [18–22].
In addition, we note that the first law (18) is the equi-

librium version of the first law of black-hole mechanics.
That is, (18) relates the infinitesimal changes of the con-
served charges of two nearby WIHs within the covariant
phase space of solutions. However, as was discussed in
[23], a local first law such as (18) also has a natural
interpretation as the physical process version of black-
hole mechanics [24–26], whereby the infinitesimal
changes of the conserved charges of a single black hole
are related when a small mass is dropped into the horizon
and the black hole is allowed to settle into a new equilib-
rium state.
An extension of the current framework to asymptotically

anti-de Sitter (ADS) spacetimes, along the lines of [11], is
straightforward. In the presence of a negative cosmological
constant � ¼ �ðD� 1ÞðD� 2Þ=ð2L2Þ the covariant
phase space of WIHs is modified to include a set of
conserved charges at the boundary at infinity S (with S \
M ffi CD�2 for some compact (D� 2)-space CD�2) [11].
These are the Ashtekar-Magnon-Das (AMD) charges
[27,28]

Q ðIÞ

 ¼

L

8�GD

I
CD�2

~Eabk
a~ub~"; (19)

with ka a Killing vector field that generates a symmetry
(i.e. time translation etc.), ~ua the unit timelike normal to
CD�2, ~" the area form on CD�2 and ~Eab the leading-order

electric part of the Weyl tensor ~Cabcd. Explicitly we have
that

~E ab ¼ 1

D� 3
�3�D ~Cabcd~n

c~nd; (20)

where ~na ¼ ~ra� and � is a function on the conformally

completed manifold cM ffiM [ S that defines the unphys-
ical metric ~gab on M in terms of the physical spacetime
metric gab via ~gab ¼ �2gab. As was shown in Appendix B
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of [29], inclusion of antisymmetric tensor fields in the
action does not contribute anything to the charges at I
because the fields fall off too quickly. In particular this
implies that in the presence of generic p-form fields the
charges at infinity are the AMD charges. It is important to
keep in mind that the charges at I are the charges of the
spacetime and are independent of the local charges at �.

IV. EXAMPLE THEORIES

The preceding analysis was rather abstract and techni-
cal. In this section we will apply the framework to two
effective theories that arise within superstring theory. This
will serve to illustrate the generality of the IH framework
and will lead to some interesting surprises.

Let us consider first Einstein-Maxwell theory in five
dimensions with electromagnetic Chern-Simons term.
The action for this theory in five dimensions is given by

S ¼ 1

2�5

Z
M

�IJ ^�IJ � 1

4
F ^ ?F� 2

3
ffiffiffi
3
p A ^ F ^ F

� 1

2�5

Z
�1

�IJ ^ AIJ: (21)

Here, F ¼ dA is the field strength of the connection 1-
formA and ‘‘?’’ denotes the Hodge dual. The last term is a
Chern-Simons (CS) term for the electromagnetic field. For
this theory we take F ¼ F and A ¼ A. Then �ðz‘Þ ¼
�z‘ zA ¼ �ðz‘Þ is just a scalar potential and � ¼ ?Fþ
½4=ð3 ffiffiffi

3
p Þ�A ^A. The first law then takes the form

�E ¼ �ðz‘Þ
2�

�S þ�ðz‘Þ�Qþ
XbðD�1Þ=2c
�¼1

���J �; (22)

with electric charge Q given by

Q ¼ 1

8�G5

I
S3

?Fþ 4

3
ffiffiffi
3
p A ^ F: (23)

This is the natural conserved charge for both S3 ffi S3 and
S3 ffi S1 � S2 topologies; it is a monopolar electric charge.

Let us now consider the electric dual of Einstein-
Maxwell theory with dilaton in five dimensions. The action
for this theory is given by

S ¼ 1

2�5

Z
M

�IJ ^�IJ � 1

12
e��’H ^ ?H

� 1

2
d’ ^ ?d’� 1

2�5

Z
�1

�IJ ^ AIJ: (24)

Here, ’ is the dilaton field with coupling �, and H ¼ dB
is the field strength of the 2-form B. Because H is a 3-
form, one expects to define a magnetic monopolar charge
associated with black holes within this theory. However,
this is not the case for IHs. As we will now show, the IH
boundary conditions will give a dipolar electric charge that
is conserved. For this theory we takeF ¼ H andA ¼ B.
Then �ðz‘Þ ¼ �z‘ zB is a 1-form potential, and � ¼

e��’ ?H. The first law then takes the same form as (22)
, but with a charge Q that is radically different from the
electric charge (23). Here we have

I
S3

�ðz‘Þ ^ �� ¼
I
S3
ðz‘ zBÞ ^ �ðe��’ ?HÞ: (25)

The key observation is that �ðz‘Þ is a closed 1-form at the

horizon. This follows from the Cartan identity
dðz‘ zB ���Þ ¼ Lz‘ B ��� � z‘ zH ���; pulling this identity

back to the horizon gives

dðz‘ zB ���Þ ¼ L
z‘

B ����z‘ zH ���: (26)

Then from Condition (4) of Definition I and Eq. (4) it
immediately follows that the right hand side is zero.
Because dðz‘ zB ���Þ � 0 we conclude that at the horizon

z‘ zB is a closed 1-form and must therefore be the sum of
an exact 1-form df and harmonic 1-form dh. That is,

z‘ zB � dfþ cdh; (27)

with c a constant. The only nonzero contribution to the
charge then comes from integrating h over S1, otherwise
the charge is zero [9] (see also [30,31]). Taking 2� to be
the affine length of S1, we conclude that

I
S1�S2

cdh ^ �ðe��’ ?HÞ ¼ 2�c�
I
S2
e��’ ?H; (28)

whence the charge

Q ¼ 1

8�G5

I
S2
e��’ ?H: (29)

This is the natural conserved charge for the S3 ffi S1 � S2

topology. By contrast to the previous charge (23), however,
(29) is a dipole electric charge.
The first law (18) that we obtained for IHs is in agree-

ment with that which was found for stationary spacetimes
[9]. However, we note that in the latter approach there also
appeared a dipole charge in the first law for Einstein-
Maxwell theory with electromagnetic Chern-Simons
term. This charge does not appear in (22) which means
that the dipole charge, although possible to define, is not a
conserved charge for IHs. This is in agreement with what is
known about the black ring solutions of Elvang et al [32–
34].
The dipole charge (29) that we obtained for the electric

dual of Einstein-Maxwell theory with dilaton is in agree-
ment with that obtained for stationary spacetimes [9] for
the dipole ring solution [35]. There the dipole charge is
interpreted as an electric Kalb-Ramond charge localized on
a fundamental string that winds around a contractible circle
[36]. However, the other conserved charges are still mea-
sured at infinity. By contrast, here we have found a first law
whereby all conserved charges, including the dipole
charge, are localized at the source. This may have impor-
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tant consequences for the black-hole/string correspon-
dence principle [37,38].

V. ISOLATED HORIZONS AND THE
CORRESPONDENCE PRINCIPLE

The black-hole/string correspondence principle asserts
that there is a smooth transition from a black hole to a
string in the limit when the string coupling is decreased
[37]. Let us briefly discuss two subtleties which suggest
that IHs (or their nonequilibrium generalizations such as
dynamical horizons [39,40]) should be the most appropri-
ate framework for studying black-hole physics in super-
string theory.

For the correspondence principle to work, the entropies
of the black hole and string are required to be equal for a
particular value of the string coupling constant, which
ultimately means that the conserved charges of the two
states must overlap [38]. However, the conserved charges
of the black hole (other than the dipole charge) are typi-
cally measured at infinity (e.g. for Killing horizons), while
the conserved charges of the string are localized on the
string state; to define the conserved charges of the string no
reference needs to be made to infinity at all. The conserved
charges of the black hole should therefore not be defined at
infinity!

In addition, specification of the conserved charges of the
black hole requires an a priori knowledge of the internal
topology, e.g. typically some density is integrated over a

(D� 2)-dimensional surface with some topology such as
S2 in four dimensions and S3 or S1 � S2 in five dimensions.
At the transition point when the conserved charges are
equal, however, the topology of the black hole is not really
important because the spacetime loses its metric interpre-
tation. Therefore, a framework for black holes should be
employed that does not in any way rely on the internal
topology of the horizon cross sections.
As we have shown in this paper, the IH framework

together with covariant phase space methods can be used
to derive a first law whereby all quantities are defined at the
horizon. In order for this derivation to work we only
require that the action be differentiable. The conserved
charges of an IH in a specific theory naturally arise after
the corresponding matter Lagrangian density is specified.
Two important properties of IHs are that the conserved
charges are intrinsic to the horizon and that there is no need
to specify the topology of the horizon cross sections at any
time. IHs should therefore be the norm rather than the
exception in superstring theory.
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