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Using gauge-invariant perturbation theory, we study the effects of stellar magnetic fields on polar

gravitational waves emitted during the collapse of homogeneous dust. We found that the emitted energy in

gravitational waves depends strongly on the initial stellar radius as well as on the ratio between the

poloidal and toroidal magnetic components. The polar gravitational-wave output of such a collapse can

easily be up to a few orders of magnitude larger than what we get from the nonmagnetized collapse. The

changes due to the existence of a magnetic field could be helpful in extracting some information about

inner magnetic profiles of progenitors from the detection of the gravitational waves radiated during black

hole formation, which results from the stellar collapse.
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I. INTRODUCTION

Direct observation of gravitational waves is a significant
goal in theoretical and experimental physics. In order to
accomplish this task, several ground-based laser interfero-
metric detectors with kilometer-size arms, such as LIGO,
TAMA300, GEO600, and VIRGO, are currently operating,
and the next-generation detectors are also on the menu [1].
In addition to the ground-based detectors, projects de-
signed to launch a detector in space, such as LISA [2]
and DECIGO [3], are in progress. It is important to detect
gravitational waves directly so that one can obtain a new
method to see the Universe from gravitational waves,
which is called ‘‘gravitational-wave astronomy.’’ In fact,
by using the gravitational waves associated with the oscil-
lations of compact objects, it is possible to determine the
stellar radius, mass, equation of state, and so on [4–11].
Additionally, by collecting the observational data of gravi-
tational waves, we may be able to verify the gravitational
theory, as well as new physics in a high density or high
energy region.

For both ground-based and space detectors, the non-
spherical stellar collapse is one of the most promising
sources of gravitational waves. Because of their sensitivity,
ground-based detectors could detect black hole formation
with stellar mass, while space detectors might detect sig-
nals radiated from the creation of supermassive black holes
[12–14]. The most hopeful approach for calculating these
gravitational waves emitted during black hole formation is
numerical relativity, i.e., direct numerical integration of the
exact Einstein and hydrodynamic equations, which are
full-nonlinearly coupled with each other. In the last decade,
numerical relativity has made dramatic developments, and
it has become possible to treat complicated matter and
spacetimes [15–18]. Still, the computation of gravitational
waves with high accuracy is not technically easy, because
the gravitational waves emitted from the stellar collapse

are very weak and sometimes contain unphysical noises
due to gauge modes and/or numerical error. So in this
paper, as an alternative approach, we consider linear per-
turbation theory. This theory makes it possible to extract
weak gravitational waves with precision and also becomes
a cross-check for the numerical results with numerical
relativity.
With respect to the calculation of gravitational waves

radiated from the stellar collapse to a black hole, initially,
Cunningham, Price, and Moncrief derived perturbation
equations from the Oppenheimer-Snyder (OS) solution,
which describes a homogeneous dust collapse [19], and
they calculated radiated gravitational waves [20].
Subsequently, Seidel and coworkers studied gravitational
waves emitted from the stellar collapse that occurs when a
neutron star is born [21]; they used the gauge-invariant
perturbation formalism on the spherically symmetric
spacetime formulated by Gerlach and Sengupta [22].
Iguchi, Nakao, and Harada investigated nonspherical per-
turbations of a collapsing inhomogeneous dust ball [23],
which is described by the Lemaı̂tre-Tolman-Bondi solution
[24]. Further, Harada, Iguchi, and Shibata calculated the
axial gravitational waves emitted from the collapse of a
supermassive star to a black hole by employing the cova-
riant gauge-invariant formalism on a spherically symmet-
ric spacetime and the coordinate-independent matching
conditions at the stellar surface, which was devised by
Gundlach and Martı́n-Garcı́a [25]. Recently, with the
same formalism, Sotani, Yoshida, and Kokkotas consid-
ered the magnetic effect on the axial gravitational waves
emitted from the collapse of homogeneous dust sphere [26]
(hereafter, we refer to this article as Paper I).
In spite of many investigations of gravitational radiation

from stellar collapse with a linear perturbation analysis as
mentioned above, these papers have not included the effect
of the magnetic fields on the emitted gravitational waves,
except for Paper I. Note that Cunningham, Price, and
Moncrief also dealt with the electromagnetic perturbations
in the Oppenheimer-Snyder solution, but they did not*sotani@astro.auth.gr
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consider the direct coupling between a fluid and the mag-
netic field [20]. However, the importance of magnetic
effects on the evolution of compact objects has recently
been realized due to the appearance of new instruments
with high performance. One of the most remarkable ex-
amples is the discovery of magnetars, which are neutron
stars with a strong magnetic field such as B> 1015 G. With
magnetar models, one can successfully explain the specific
frequencies of quasiperiodic oscillations observed in the
decaying tail of giant flares [27–29]. Since a very strong
magnetic field exists in some neutron stars, which would be
produced after the stellar collapse, it is natural to take into
account its effect on stellar collapse. And it could also be
probable that the magnetic fields of the collapsing object
are amplified during the collapse due to the magnetic flux
conservation, and they would affect the emitted gravita-
tional waves, even if the initial magnetic field is weak.
Actually, Paper I shows that it is possible for magnetic
fields to affect the axial gravitational waves emitted during
the dust collapse. Additionally, there exists another ex-
ample that shows the importance of magnetic effects in
the evolution of compact objects, which is related to
gamma ray bursts; i.e., the short-duration gamma ray
bursts could arise from hypergiant flares of magnetars
associated with the soft gamma repeaters [30] or collapse
of a magnetized hypermassive neutron star [31].

Indeed, all examples mentioned above suggest that mag-
netic fields play an important role in the stellar collapse,
and their effects should not be negligible. So in this paper,
in order to explore the effects of magnetic fields on the
emitted gravitational waves for black hole formation, we
consider the polar gravitational waves radiated during the
collapse of a homogeneous dust ball with a weak magnetic
field. In particular, along with Paper I, we focus on only
quadrupole gravitational waves, which could be more im-
portant from the astrophysical point of view. The weak
magnetic fields are treated as small perturbations in the
Oppenheimer-Snyder solution, and we investigate, using
the covariant gauge-invariant formalism, the spherically
symmetric spacetime and the coordinate-independent
matching conditions at the stellar surface proposed by
Gundlach and Martı́n-Garcı́a [25]. It should be emphasized
that, so far, there has been no calculation of polar gravita-
tional waves on the dynamical background spacetime us-
ing the same method; i.e., this paper provides the first such
calculation. One reason why the polar gravitational waves
could not be solved might be the difficulty in dealing with
the boundary conditions at the stellar surface due to the
existence of many perturbative variables, in contrast to the
axial gravitational waves. Furthermore, as shown in the
main text for the ordering of perturbations, we consider the
first-order perturbations for the metric and fluid motion and
the second-order perturbations for magnetic fields, to see
the magnetic effects on the emitted gravitational waves.

This paper is organized as follows. In Sec. II we briefly
describe the gauge-invariant perturbation theory on the

spherically symmetric background, we give the back-
ground solution that we adopt in this paper, and we explain
how to introduce magnetic fields as perturbations. Next, in
Sec. III we derive the perturbation equations for polar
gravitational waves emitted during the collapse of a mag-
netized dust sphere. Then, the details of the numerical
procedure are given in Sec. IV, and Sec. V is devoted to a
description of the code tests. In Sec. VI we show the
numerical results related to the influence of the existence
of magnetic fields on the gravitational waves radiated
during the formation of a black hole. Finally, we give our
conclusion in Sec. VII. In this paper, we adopt units of c ¼
G ¼ 1, where c and G denote the speed of light and the
gravitational constant, respectively, and the metric signa-
ture is ð�;þ;þ;þÞ.

II. BASIC PROPERTIES

As in Paper I, we study electromagnetic fields as small
perturbations on a dust sphere since the magnetic energy is
much smaller than the gravitational binding energy, even if
the source of the gravitational waves involves a strong
magnetic field like a magnetar. Thus the background met-
ric g�� and the four-velocity of a fluid u� are determined

as solutions of a collapsing spherical dust sphere without
electromagnetic fields. Now it is convenient to introduce
two small dimensionless parameters related to the strength
of the magnetic field and to the amplitude of the gravita-

tional waves, i.e., �� jB=ðGM2R�4
s Þ1=2j and �� j�g��j,

where Rs is the stellar radius and we assume that the fluid
perturbations are also small, i.e., j�u�j � � and j��j � �.

Then the leading terms for the perturbations of tðMÞ
�� and

tðEMÞ
�� are �tðEÞ�� �Oð�Þ and �tðEMÞ

�� �Oð�2Þ, where tðMÞ
�� and

tðEMÞ
�� express the energy-momentum tensors for the fluid
and for the electromagnetic fields, respectively. In this
paper, since we focus on the effect of the magnetic field
on the emitted gravitational waves during the stellar col-
lapse, we omit terms of higher order such as Oð�2Þ and
Oð�1�2Þ. Further, with the assumption that �� �2, the
perturbed Einstein equations of order � are reduced to
the following form:

�G�� ¼ 8�f�tðMÞ
�� þ �tðEMÞ

�� g þOð�2Þ
¼ 8��t�� þOð�2Þ: (2.1)

Notice in this approximation that the gravitational pertur-
bations are driven by both the magnetic field and the fluid
motions of the collapsing dust sphere.

A. Gauge-invariant perturbation theory

For a spherically symmetric background spacetime, the
first-order gauge-invariant perturbation theory has been
formulated by Gerlach and Sengupta [22] and further
developed by Gundlach and Martı́n-Garcı́a [25]. In this
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subsection we briefly describe this formalism for the polar
parity perturbations.

1. Background spacetime

The background spacetime, which is a spherically sym-
metric four-dimensional spacetimeM, can be described as
a product of the formM ¼ M2 � S2, whereM2 is a two-
dimensional (1þ 1) reduced spacetime and S2 is a two-
dimensional sphere. In other words, the metric g�� and the

stress-energy tensor t�� on M can be written in the form

g�� � diagðgAB; r2�abÞ; (2.2)

t�� � diagðtAB;Qr2�abÞ; (2.3)

where gAB is an arbitrary (1þ 1) Lorentzian metric on
M2, r is a scalar on M2, Q is some function on M2,
and �ab is the unit curvature metric on S2. Note that if the
background spacetime is spherically symmetric, then Q ¼
taa=2. Here and henceforth the Greek indices denote the
spacetime components, the capital Latin indices denote the
M2 components, and the small Latin indices are used to
denote the S2 components. Furthermore, the covariant
derivatives on M, M2, and S2 are represented by ;�, jA,
and :a, respectively. Finally, the totally antisymmetric co-
variant unit tensor onM2 is denoted as "AB, and on S2 it is
denoted as "ab.

2. Nonradial perturbations

As mentioned before, in this paper we consider axisym-
metric polar parity perturbations for both the metric �g��

and the matter perturbations �t��, which are given by

�g�� � hABY
lm hðpÞA Ylm

:a
� r2ðKYlm�ab þGYlm

:abÞ

 !
; (2.4)

�t�� � �tABY
lm �t

ðpÞ
A Ylm

:a
� r2�t3Ylm�ab þ �t2Zlm

ab

 !
; (2.5)

where Zlm
ab � Ylm

:ab þ lðlþ 1ÞYlm�ab=2 and Ylm stands

for the spherical harmonics. With hAB, h
ðpÞ
A , K, G, �tAB,

�tðpÞA , �t3, and �t2, the gauge-invariant variables for the

nonradial perturbations are defined as

kAB � hAB � ðpAjB þ pBjAÞ; (2.6)

k � K � 2vApA; (2.7)

TAB � �tAB � tABjCpC � tACp
C
jB � tBCp

C
jA; (2.8)

TA � �tðpÞA � tACp
C � r2

2
QGjA; (2.9)

T2 � �t2 � r2QG; (2.10)

T3 � �t3 � ðQjC þ 2QvCÞpC þ lðlþ 1Þ
2

QG; (2.11)

where vA � rjA=r and pA � h
ðpÞ
A � r2GjA=2 [25]. Note

that TA is defined for l � 1 and T2 for l � 2. In terms of
the gauge-invariant variables, the linearized Einstein equa-
tions for the polar parity perturbations are given by [22]

2vCðkABjC � kCAjB � kCBjAÞ �
�
lðlþ 1Þ

r2
þGC

C

þGa
a þ 2R

�
kAB � 2gABv

CðkEDjC � kCEjD

� kCDjEÞgED þ gABð2vCjD þ 4vCvD �GCDÞkCD
þ gAB

�
lðlþ 1Þ

r2
þ 1

2
ðGC

C þGa
aÞ þR

�
kD

D

þ 2ðvAkjB þ vBkjA þ kjAjBÞ

� gAB

�
2kjC

jC þ 6vCkjC � ðl� 1Þðlþ 2Þ
r2

k

�
¼ �16�TAB;

(2.12)

kjA � kAB
jB þ kB

B
jA � vAkB

B ¼ �16�TA; (2.13)

ðkjAjA þ 2vAkjA þGa
akÞ � ½kABjAjB þ 2vAkAB

jB

þ 2ðvAjB þ vAvBÞkAB� þ
�
kA

A
jB

jB þ vAkB
B
jA

þRkA
A � lðlþ 1Þ

2r2
kA

A

�
¼ 16�T3; (2.14)

kA
A ¼ �16�T2; (2.15)

where R is the Gaussian curvature on M2, and GAB and
Ga

a are defined as

GAB � �2ðvAjB þ vAvBÞ þ gABV0; (2.16)

Ga
a � 2ðvA

jA þ vAv
A �RÞ; (2.17)

where V0 is defined as V0 � 2ð� _UþW 0 ��Uþ �WÞ þ
3ðW2 �U2Þ � r�2 and � � uAjA, � � nAjA, U � uAvA,

W � nAvA, _F � uAFjA, and F0 � nAFjA [32]. Now, if the

symmetric tensor kAB is decomposed in a coordinate-
independent way into three scalars,

kAB � qð�uAuB þ nAnBÞ þ	ðuAuB þ nAnBÞ
þ c ðuAnB þ nAuBÞ; (2.18)

and if to eliminate 	 we introduce the new variable 

defined as 
 � 	� kþ q, then from Eqs. (2.12), (2.13),
(2.14), and (2.15) we can get the perturbation equations for
the variables of the metric perturbations as

� €
 þ 
 00 þ 2ð��UÞc 0 ¼ S
 ; (2.19)
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� €kþ c2sk
00 � 2c2sUc 0 ¼ Sk; (2.20)

� _c ¼ Sc ; (2.21)

q ¼ �8�T2; (2.22)

where the source terms S
 , Sk, and Sc are given in

Appendix Awithout the variables for matter perturbations.
Namely, we can calculate the evolutions for metric pertur-
bations independent of the matter perturbations. On the
other hand, the variables associated with the matter pertur-
bations are given by

� 8�nAuBTAB ¼ ð _kÞ0 þ C�; (2.23)

8�uAuBTAB ¼ �k00 þ 2Uc 0 þ C!; (2.24)

� 16�uATA ¼ c 0 þ C�: (2.25)

Notice that the right-hand sides of Eqs. (2.23), (2.24), and
(2.25) are produced with only variables for metric pertur-
bations; i.e., the matter perturbations can be determined
after calculating the metric perturbations. The concrete
forms of C�, C!, and C� are described in Appendix A.

B. Oppenheimer-Snyder solution

We briefly describe the adopted background spacetime
which will later be endowed with a magnetic field. We
consider perturbations around a homogeneous spherically
symmetric dust collapse described by the OS solution,
whose line element inside the dust sphere is given by

ds2 ¼ �d�2 þ R2ð�Þ½d
2 þ sin2
ðd�2 þ sin2�d	2Þ�;
(2.26)

¼ R2ð�Þ½�d�2 þ d
2 þ sin2
ðd�2 þ sin2�d	2Þ�;
(2.27)

where 
 is a radial coordinate defined in the range 0 �

 � 
0 <�=2 and 
0 corresponds to the stellar surface.
Additionally, Rð�Þ and �ð�Þ are the scale factor and the
proper time of a comoving observer with a fluid, respec-
tively, which are defined in terms of the conformal time �
as follows:

Rð�Þ ¼ M

sin3
0

ð1þ cos�Þ; (2.28)

�ð�Þ ¼ M

sin3
0

ð�þ sin�Þ; (2.29)

where M is the total gravitational mass of the dust sphere.
The energy-momentum tensor for the dust fluid is written
as

tðMÞ
�� ¼ �u�u�; (2.30)

where � is the rest mass density given by

�ð�Þ ¼ 3sin6
0

4�M2
ð1þ cos�Þ�3; (2.31)

and u� denotes the four-velocity of the dust, described in
terms of comoving coordinates as

u� ¼ ��
� or u� ¼ Rð�Þ�1��

� (2.32)

where ��
� means the Kronecker delta. Also, with the four-

velocity u�, the spacelike unit vector defined as nA �
�"ABu

B is given by

nA ¼ Rð�Þ�1�A

; (2.33)

where nA is a normal vector on the sphere whose radius is
constant. Thus we have � ¼ U ¼ @�R=R

2, � ¼ 0, and

W ¼ cos
=ðR sin
Þ. Furthermore, the frame derivatives
are _F ¼ @�F=R and F0 ¼ @
F=R. The spacetime outside

the dust sphere is described by the Schwarzschild metric,
i.e.,

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ r2ðd�2 þ sin2�d	2Þ;
(2.34)

where fðrÞ � 1� 2M=r. Note that with the Schwarzschild
metric ~uA ¼ ð1= ffiffiffi

f
p

; 0Þ, ~nA ¼ ð0; ffiffiffi
f

p Þ, ~U ¼ ~� ¼ 0, ~W ¼ffiffiffi
f

p
=r, and ~� ¼ M=ðr2 ffiffiffi

f
p Þ, where we use the tilde to avoid

mixing of the variables inside the star. From the junction
conditions at the surface of the dust sphere, we obtain the
relationships between the ð�;
Þ coordinates and the ðt; rÞ
coordinates, which are given by

rs ¼ Rð�Þ sin
0; (2.35)

t

2M
¼ ln

��������½ðrs0=2MÞ � 1�1=2 þ tanð�=2Þ
½ðrs0=2MÞ � 1�1=2 � tanð�=2Þ

��������
þ
�
rs0
2M

� 1

�
1=2
�
�þ

�
rs0
4M

�
ð�þ sin�Þ

�
; (2.36)

where rs0 � rsðt ¼ 0Þ ¼ 2M=sin2
0 is the initial stellar
radius in Schwarzschild coordinates.

C. Magnetic fields

As mentioned above, we consider weakly magnetized
dust spheres in which the magnetic effects are treated as
small perturbations in the OS solution, where we can
consider that the electromagnetic fields are axisymmetric
due to the nature of a spherically symmetric background.
Thus, perturbations of the electromagnetic fields, �F��,

can be described in terms of the spherical harmonics Ylm

by the following relations:

�F01 ¼ ��F10 ¼ e2Y
lm; (2.37)

�F0a ¼ ��Fa0 ¼ e1S
lm

a þ e3Y
lm
:a; (2.38)
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�F1a ¼ ��Fa1 ¼ b1S
lm

a þ b3Y
lm
:a; (2.39)

�F23 ¼ ��F32 ¼ b2"23Y
lm; (2.40)

where Slma � "baY
lm
:b. These variables of �F�� are gov-

erned by the Maxwell equations, i.e.,

�F��;� þ �F��;� þ �F��;� ¼ 0; (2.41)

�F��
;� ¼ 4��J�; (2.42)

where �J� is the perturbation of the current four-vector.
Equations (2.41) and (2.42) are correct up to order �0�1.

In the interior of the dust sphere, we consider infinitely
conductive fluids; i.e., the ideal magnetohydrodynamic
approximation has been adopted, according to which
�F��u

� ¼ 0. With this approximation and the Maxwell

equation (2.41), we obtain the basic equations for electro-
magnetic fields inside the star,

e1 ¼ e2 ¼ e3 ¼ 0; (2.43)

@nb1 ¼ @nb2 ¼ @nb3 ¼ 0; (2.44)

lðlþ 1Þb1 þ @
b2 ¼ 0: (2.45)

Equation (2.44) tells us that the magnetic field does not
change for a comoving observer. Additionally, with the
Faraday tensor F��, since the magnetic field B� can be

described as B� ¼ �����u
�F��=2, one can see that the

quantities b1 and b2 are related to the poloidal magnetic
component, while b3 is associated with the toroidal mag-
netic component. Furthermore, similar to Paper I, in this
paper we consider the case where the magnetic fields are
confined in the stellar interior, i.e., b1 ¼ b2 ¼ b3 ¼ 0 at
the stellar surface. (In fact, the necessary condition for the
magnetic fields to be confined inside the star is only b2 ¼ 0
at the stellar surface, which is derived from the junction
conditions for the magnetic fields as in Paper I, but for
simplicity, in this paper we adopt the above conditions.) Of
course the electromagnetic fields outside the star are also
important for viewing the emission of electromagnetic
waves, but they can be seen in the near future elsewhere.
Additionally, in this paper we focus only on dipole elec-
tromagnetic fields, i.e., electromagnetic fields associated
with l ¼ 1. In the next section we will see how the dipole
electromagnetic fields can drive the quadrupole gravita-
tional radiation, which is more important in the
observation.

III. PERTURBATION EQUATIONS FOR POLAR
PARITY

A. Interior region of the star

The perturbation of the energy-momentum tensor �t��

is described as

�t�� ¼ �tðMÞ
�� þ �tðEMÞ

�� ; (3.1)

where �tðMÞ
�� and �tðEMÞ

�� correspond to the energy-
momentum tensors for the dust and the electromagnetic
field, respectively. Since the polar perturbation of the fluid
four-velocity, �u�, and the perturbation of the density, ��,

are defined as

�u� ¼ ½ð~�nA þ 1
2hABu

BÞYlm; ~�Ylm
:a�; (3.2)

�� ¼ ~!�Ylm; (3.3)

the expansion coefficients of �tðMÞ
�� in Eq. (2.5) are

�tðMÞ
AB ¼ �½~�ðuAnB þ nAuBÞ þ 1

2ðhBCuA þ hACuBÞuC�
þ ~!�uAuB; (3.4)

�t
ðpÞðMÞ
A ¼ ~��uA; (3.5)

�t2ðMÞ ¼ �t3ðMÞ ¼ 0: (3.6)

On the other hand, as mentioned before, we consider the
effect of the dipole magnetic fields on quadrupole gravita-
tional radiation. In this case the nonzero expansion coef-

ficients for �tðEMÞ
�� associated with l ¼ 2 gravitational

waves are given in Appendix A of Paper I as

�tðEMÞ
�� ¼ �

�
b2

2

R2sin4

� b1

2 þ b3
2

R2sin2


�
; (3.7)

�tðEMÞ


 ¼ ��

�
b2

2

R2sin4

þ b1

2 þ b3
2

R2sin2


�
; (3.8)

�t
ðpÞðEMÞ

 ¼ �b1b2

R2sin2

; (3.9)

�t2ðEMÞ ¼ �ðb32 � b1
2Þ

R2
; (3.10)

�t3ðEMÞ ¼ �b2
2

R4sin4

; (3.11)

where � ¼ ð8� ffiffiffiffiffiffiffi
5�

p Þ�1. Thus we can derive the gauge-
invariant quantities for the total matter perturbations,

T�� ¼ ��k�� þ!�R2 þ �

�
b2

2

R2sin4

� b1

2 þ b3
2

R2sin2


�
;

(3.12)

T

 ¼ ��

�
b2

2

R2sin4

þ b1

2 þ b3
2

R2sin2


�
; (3.13)

T�
 ¼ ���R2 � 1
2�k�
; (3.14)

T� ¼ ���R; (3.15)
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T
 ¼ �b1b2
R2sin2


; (3.16)

T2 ¼ �ðb32 � b1
2Þ

R2
; (3.17)

T3 ¼ �b2
2

R4sin4

; (3.18)

where �, �, and ! are a gauge-invariant set of fluid
perturbation defined as

� � ~�� pAuA; (3.19)

� � ~�� nA½pBuAjB þ 1
2u

BðpBjA � pAjBÞ�; (3.20)

! � ~!� pAðln�ÞjA: (3.21)

Then, with Eqs. (2.19), (2.20), and (2.21), the evolu-
tionary equations for the metric perturbations on the inte-
rior region are described as

� @2�
 þ @2

 � 2@�R

R
@�
 � 2 cos


sin

@



� ðl� 1Þðlþ 2Þ
sin2





¼ �S
; (3.22)

@2�kþ
3@�R

R
@�kþ

@�R

R
@�
 � cos


sin

@

 � 2k

�
�ðl� 1Þðlþ 2Þ

2 sin2

þ 2

�

 ¼ �Sk; (3.23)

@�c þ @

 þ 2@�R

R
c ¼ �Sc ; (3.24)

where we set cs ¼ 0 since the matter is considered to be
dust. Notice that the source terms �S
 , �Sk, and �Sc are

produced only by the perturbed magnetic fields, and the
concrete forms are given in Appendix A. In other words, as
mentioned in Sec. II A 2, we can calculate the metric
evolutions apart from the matter perturbations. At last,
with Eqs. (2.23), (2.24), and (2.25), the evolutions of matter
perturbations are determined by using the variables for the
metric and magnetic perturbations, which are described in
Appendix B. From the above system of equations for
metric perturbations, we can see that the variable 
 is
independent of k and c , while the equations for the vari-
ables k and c do not have such terms as @
k and @
c .

Thus for the interior region it is enough to calculate the
evolution for only 
 . After that, in order to adopt the
junction conditions (see Sec. III C), we have to calculate
k and c in the vicinity of the stellar surface with the given

 .

Considering the behavior of the metric perturbations
near the stellar center, we introduce a new variable, �
 ,
which is regular at the stellar center and defined as 
 ¼
ðR sin
Þlþ2 �
 [25]. With a new variable, the above pertur-
bation equation for 
 , Eq. (3.22), can be rewritten as

� @2� �
 þ @2
 �
 � 2ðlþ 3Þ@�R
R

@� �
 þ 2ðlþ 1Þ cos

sin


@
 �


� ðlþ 2Þ
�
@2�R

R
þ ðlþ 3Þ

�
@�R

R

�
2 þ l

�
�
 ¼

�S


ðR sin
Þlþ2
:

(3.25)

Furthermore, in the actual numerical calculations we adopt
the double null coordinates ðu; vÞ, defined as u ¼ �� 

and v ¼ �þ 
. In these coordinates, the perturbation
equation is rewritten as

@2 �


@u@v
þ 1

2

�
ðlþ 3Þ @�R

R
þ ðlþ 1Þ cos


sin


�
@ �


@u

þ 1

2

�
ðlþ 3Þ@�R

R
� ðlþ 1Þ cos


sin


�
@ �


@v
þ ðlþ 2Þ

4

�
�
@2�R

R
þ ðlþ 3Þ

�
@�R

R

�
2 þ l

�
�
 ¼ �

�S


4ðR sin
Þlþ2
:

(3.26)

B. Exterior region of the star

In the exterior region, the master equation for the per-
turbations can be reduced to the well-known Zerilli equa-
tion for the Zerilli function, Zðt; rÞ, which has the form

� @2t Zþ @�rZ� VZðrÞZ ¼ 0; (3.27)

VZðrÞ ¼ f

�
lðlþ 1Þ

r2
� 6M

r3
r2�ð�þ 2Þ þ 3Mðr�MÞ

ðr�þ 3MÞ2
�
;

(3.28)

where � ¼ ðlþ 2Þðl� 1Þ=2 and the tortoise coordinate r�
is defined as r� � rþ 2M lnðr=2M� 1Þ, which leads to
@r� ¼ f@r. The variable Zðt; rÞ is constructed with the

variables ~
 and ~k as

Zðt; rÞ ¼ AðrÞ~
ðt; rÞ þBðrÞ~kðt; rÞ þ CðrÞ@r� ~kðt; rÞ;
(3.29)

where

A ðrÞ ¼ 2r

�3

; BðrÞ ¼ r�1

�3

; CðrÞ ¼ �2r2

f�3

;

(3.30)

where �1 ¼ �1þ ðl2 þ lþ 1Þ=f and �3 ¼ �3þ ðl2 þ
lþ 1Þ=f [25]. On the other hand, the variables for the

metric perturbations, ~k, ~
 , and ~c , are produced with Z as
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~k ¼ Z

r
þ 2

lðlþ 1Þ
�
� 6MZ

r2�3

þ @r�Z

�
; (3.31)

~
 ¼ � 4rþ 3M

rð2rþ 3MÞZþ 6M

lðlþ 1Þ
4r2 � 7rM� 9M2

r2ð2rþ 3MÞ2 Z

� 2M

lðlþ 1Þ
5r� 3M

ðr� 2MÞð2rþ 3MÞ@r�Zþ 2r

lðlþ 1Þf @
2
r�Z;

(3.32)

~c ¼ � 2

lðlþ 1Þf
��ðl� 1Þðlþ 2Þ

�3

�M

r

�
@tZþ r@t@r�Z

�
:

(3.33)

Finally, the Zerilli equation (3.27) can be rewritten in terms
of the double null coordinates ~u ¼ t� r� and ~v ¼ tþ r�
as

@2Z

@~u@~v
þ 1

4
VZðrÞZ ¼ 0: (3.34)

C. Junction conditions at the stellar surface

In order to connect the metric perturbations of the
interior region with those of the exterior regions, we have
to impose the junction conditions at the stellar surface; they
are derived from the continuity of the induced metric and
the extrinsic curvature [25]. As mentioned above, in this
paper we focus on the case where the magnetic field is
confined inside of the star, i.e., q ¼ 0 at the stellar surface
[see Eq. (A7)]. In this case the junction conditions to
impose are the continuity of N, k, 
 , c , k0 þ 8��N, and

 0 þ 2�c , where the variable N is determined by using �
and c , such as _N ��N ¼ �ð�þ c =2Þ. These conditions
are equivalent to


 ¼ ~
; k ¼ ~k; c ¼ ~c ; (3.35)

@
kþ 8��RN ¼ @�R

f
sin
0ð@t~kÞ þ R

f
cos
0ð@r� ~kÞ;

(3.36)

@

 ¼ @�R

f
sin
0ð@t ~
Þ þ R

f
cos
0ð@r� ~
Þ: (3.37)

With these junction conditions, the exterior variable Z can
be described by using the interior variables 
 , k, and c
[25],

Z¼ rkþ 2r4

ðlþ 2Þðl� 1Þrþ 6M

1

R2

��
cos2
0

sin2
0

þ
�
@�R

R

�
2
�

� ð
 þ kÞ þ 2cos
0

sin
0

@�R

R
c � cos
0

sin
0

ð@
kþ 8��RNÞ

þ @�R

R
@�k

�
: (3.38)

IV. NUMERICAL PROCEDURE

The numerical procedure adopted in this paper is basi-
cally similar to that in Paper I. In order to calculate the
nonspherical perturbations, we divide the background
spacetime into three regions named I, II, and III (see
Fig. 1). Region I denotes the stellar interior while
regions II and III correspond to the exterior. Region II
corresponds to the intermediate exterior region, which is
introduced to help the matching procedure at the stellar
surface in the numerical computation. Region III is sepa-
rated from region II by the null hypersurface defined by
~v ¼ ~v0, which is the ingoing null ray emitted from the
point where the stellar surface reaches the event horizon,
i.e., the point H in Fig. 1.
In order to solve the wave equations numerically, we

adopt the finite difference scheme proposed by Hamadé
and Stewart [33], in which we use the double null coor-
dinates ðu; vÞ in region I and ð~u; ~vÞ in regions II and III. In
region I, to avoid numerical instabilities we integrate the
wave equations by using a first-order finite difference
scheme, while in regions II and III the numerical integra-
tion is a second-order finite difference scheme. In region I
we adopt the equally spaced grids for ðu; vÞ; i.e., �u and
�v are constant, and we set �u ¼ �v. With this assump-
tion, the intervals for � and 
, �� and �
, are also
constant, i.e., �� ¼ �
. The grid points in region II are
determined so that at the stellar surface they agree with the
grid points produced with the coordinates in region I. That
is, �~u and �~v are not constant and �~u � �~v in region II.
We note that with the initial data sets on � ¼ 0 in region I

FIG. 1. A schematic description of the Oppenheimer-Snyder
spacetime for the collapsing model in characteristic coordinates.
Region I denotes the stellar interior while regions II and III
correspond to the exterior. The stellar surface, where r ¼ rs or

 ¼ 
0, is the boundary between regions I and II, and the shaded
region corresponds to the stationary region outside the star.
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and on ~u ¼ ~u0 in region II, the evolutions in regions I and
II can be calculated, independently of the information in
region III. After the calculation of the evolutions in
regions I and II, with the data set on the null hypersurface,
~v ¼ ~v0, and the initial data set on ~u ¼ ~u0, the evolution in
region III can be calculated, where we adopt the equally
spaced grids for ð~u; ~vÞ. As mentioned before, hereafter we
focus only on the quadrupole gravitational waves (l ¼ 2),
which are coupled with the dipole magnetic fields (l ¼ 1).

Finally, it should be noted that in region III we calculate
the time evolution only for the variable Z, which is subject
to the Zerilli equation (3.34), while in region II, to make it
easy to deal with the junction conditions on the stellar
surface, we also calculate the time evolutions for the

variable ~
 as well as Z. The perturbation equation for ~

is derived from Eq. (2.19), which is described with null
coordinates as

@2 ~


@~u@~v
¼ 1

2r

�
1� 4M

r

��
@~


@~u
� @~


@~v

�
�M

r3

�
3� 7M

r

�
ð~
 þ ~kÞ

� f

r2
~
: (4.1)

In the rest of this section, we describe the initial data, the
boundary conditions at the stellar center and at spatial
infinity, and the special treatment of the junction condition
as the stellar surface approaches the event horizon.

A. Initial data

To start the numerical simulations, we need to provide a
data set on the initial hypersurface for the quantities �
 , @u �
 ,
and @v �
 as well as the magnetic perturbations of b2 and b3
for the interior region, and Z, @~uZ, and @~vZ for the exterior
region. Outside the star, we assume that the initial pertur-
bations are ‘‘momentarily static,’’ which is similar to the
initial condition in [20,26]. With this assumption the initial
distribution of Zðr; t ¼ 0Þ is determined by using the fol-
lowing equation:

� @2r�Zþ VZðrÞZ ¼ 0; (4.2)

with the boundary condition at infinity as

Zðr; t ¼ 0Þ ! q2

�
2M

r

�
2
; (4.3)

where q2 is a constant denoted the quadrupole moment of
the star. Similar to [20,26], we assume that q2 ¼ 2M. Since
this solution is static, the initial perturbation outside the
star, ZðrÞ, does not evolve until a light signal from the
stellar interior arrives there; i.e., on the gray region in Fig. 1
the solution ZðrÞ will not be changed. Thus we can use the
initial data ZðrÞ as the data set on the null hypersurface ~u ¼
~u0. Furthermore, with the assumption that @tZ ¼ 0 at t ¼
0, the data for @~uZ and @~vZ are given as @~uZ ¼ �ð@r�ZÞ=2
and @~vZ ¼ ð@r�ZÞ=2, respectively.

With respect to the initial condition inside the star, we
can choose appropriate functions of magnetic distributions,
b2ð
Þ and b3ð
Þ, where the conditions to determine the
electromagnetic perturbations are Eqs. (2.43), (2.44), and
(2.45). As mentioned before, since in this paper we focus
only on the case where the magnetic fields are confined
inside the star, we should put the boundary conditions at

 ¼ 
0, such as b1 ¼ b2 ¼ b3 ¼ 0. Then, similar to the
exterior region, if the momentarily static condition for �
 is
assumed, with the given initial distributions for the mag-
netic fields, the initial data for �
 can be determined by
integrating the equation

@2
 �
 þ 6 cos


sin

@
 �
 � 6 �
 ¼

�S

ðR sin
Þ4 : (4.4)

Notice that for the case of the nonmagnetized sphere the
value of @
 �
= �
 at the stellar surface is independent of the

central value of �
 because Eq. (4.4) does not have the
source term. Thus in this case we produce the initial data
of �
 so that at the stellar surface the metric perturbation is
not smooth but just continuous. However, the effect of this
nonsmoothness on the emitted gravitational waves looks
very small (see Figs. 2 and 3). Actually, Cunningham,
Price, and Moncrief also adopted the nonsmoothness initial
condition in their calculations [20]. Additionally, the initial
data for k, @
k, and c at 
 ¼ 
0 are derived from the

junction conditions. Then, as mentioned in the previous
section, the variables for the matter perturbations, �ð
Þ,
�ð
Þ, and !ð
Þ, can be determined by using the initial
distributions for the metric perturbations. Finally, we also
add an assumption that N ¼ 0 at � ¼ 0.

B. Boundary conditions

For the numerical integration we have to impose the
boundary conditions. One is the regularity condition at the
stellar center (
 ¼ 0), and the other is the no-incoming-
waves condition at infinity. The regularity condition at the
stellar center demands that @
 �
 ¼ 0, which is reduced to

@u �
 ¼ @v �
 . With respect to the no-incoming-radiation
condition at infinity, we adopt the condition @Z=@~u ¼ 0
(see, e.g., [33]).

C. Special treatment of the junction conditions near the
event horizon

When the stellar surface reaches the event horizon, the
junction conditions discussed earlier in Sec. III C cannot be
used anymore because the terms related to f�1 diverge.
Instead of these junction conditions, following [34], we
adopt an extrapolation for the value of Z on the junction
null surface, ~v ¼ ~v0, in the vicinity of the point H in
Fig. 1, as

Z ¼ ZNmax þ ZEH � ZNmax

rEH � rNmax
ðr� rNmaxÞ; (4.5)
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ZEH � ZNmax þ ZNmax � ZNmax�1

rNmax � rNmax�1
ðrEH � rNmaxÞ; (4.6)

where Zn and rn are the values of Z and r on ~v ¼ ~v0 at nth
time steps, while Nmax denotes the total number of time
steps in region II, and rEH ¼ 2M.

V. CODE TESTS

In order to verify our numerical code, we have calcu-
lated quadrupole gravitational radiations emitted during
the collapse of a nonmagnetized homogeneous dust sphere,
i.e., the gravitational waves emitted from the
Oppenheimer-Snyder solution. The number of spatial
grid points inside the star, N
, which corresponds to

region I, is chosen to be N
 ¼ 1000 because we cannot

see a dramatic improvement with a larger number of grid
points. Actually, as shown in Fig. 2, the waveforms of
gravitational waves emitted from a collapsing dust ball
with N
 ¼ 1000 are very similar to those with N
 ¼
2000, and the total energies of the emitted gravitational
waves defined later also agree with each other within
0.626% for rs0 ¼ 8M and 1.37% for rs0 ¼ 20M. In
region III, the step size for the integration is given as�~u ¼
ðumax � u0Þ=N~u, where umax is determined with the ex-
pected maximum time for the observer, tmax, and the

position of the observer described in tortoise coordinates,
r�ob, as umax � tmax � r�ob. In this paper we adopt tmax ¼
2000M and rob ¼ rs0 þ 40M, respectively, where the po-
sition of the observer is the same as in the previous study
by Cunningham, Price, and Moncrief [20]. Since the nu-
merical code in this region is essentially the same as that in
Paper I, the number of grid points for the outgoing null
coordinate ~u in region III is assumed to be N~u ¼ 10 000 in
this paper (see Table I in Paper I for the convergence test).
Then we have only one parameter to determine the emitted
gravitational waves, i.e., the initial radius rs0.
As noticed in [20], the emitted gravitational waves are

characterized by the quasinormal ringing oscillation and
the subsequent power-law tail. In Fig. 3, we show the
waveform of the gravitational waves for l ¼ 2 emitted
during the collapse of a homogeneous dust ball, where
the left and right panels are focused on the quasinormal
ringing and on the power-law tail, respectively. The fun-
damental frequency of the quasinormal ringing has been
calculated by Chandrasekhar and Detweiler [35], such as
2M! ¼ 0:747 34þ 0:177 92i. On the other hand, our nu-
merical results show that the oscillation frequency is
2M! ¼ 0:737, which agrees well with the previous value
with only 1.3% error, while the damping rate also consorts
with the theoretical value (see the left panel of Fig. 3). As
for the late-time tail, in the right panel of Fig. 3, we find

FIG. 2 (color online). Waveforms of gravitational waves for l ¼ 2 emitted from homogeneous dust collapse with the initial radii
rs0 ¼ 8M (left panel) and rs0 ¼ 20M (right panel). The solid and dashed lines correspond to the results for N
 ¼ 1000 and 2000,

respectively, where N
 is the number of spatial grid points inside the dust ball.

FIG. 3 (color online). Waveforms of quadrupole gravitational radiation emitted during the collapse of nonmagnetized homogeneous
dust, as a function of time. The initial radius of the dust sphere is set to rs0 ¼ 8M, while the fiducial observer is set at rob ¼ rs0 þ 40M.
In the right panel the late time is compared with its theoretical value ðt� t0Þ�ð2lþ2Þ, where t0 is the time when the observer receives the
first signal emitted from the stellar surface.
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that the amplitude of the gravitational wave decays as ðt�
t0Þ�6, where t0 is the time when the observer receives the
first signal emitted from the stellar surface, i.e., t0 �
r�ob � r�s0. This result is in good agreement with the

analytical estimate by Price [36], that is, ðt� t0Þ�ð2lþ2Þ.
Through these estimations for the frequency of quasi-
ringing and the late-time tail, we believe that it is possible
for our numerical code to derive the gravitational waves
with high accuracy.

At the end of this section, we compare the total energy
emitted during the collapse with the previous results by
Cunningham, Price, and Moncrief [20] (CPM1979). It is
worth noticing that the variables inside the star adopted in
CPM1979 are different from those in the equation system
for the gauge-invariant formalism proposed by Gerlach and
Sengupta [22] and Gundlach and Martı́n-Garcı́a [25]. The
total emitted energy EGW is estimated by integrating the
luminosity of gravitational waves, LGW, with respect to
time, where the luminosity is defined as

LGW ¼ 1

384�
ðZ;tÞ2; (5.1)

for the l ¼ 2 gravitational waves (e.g., [20]). In Fig. 4 we
show the total emitted energy of gravitational waves as a
function of the initial stellar radius rs0, where for compari-
son we also plot the result of CPM1979. Note that in this
figure we adopt the normalization for the quadrupole mo-
ment, q2, so that q2 ¼ 2M, as mentioned before. This
figure shows that there are small differences between our
results and those obtained in CPM1979. The main reason
for these differences could be the difference in how one
chooses the variables inside the star. Additionally, as we
noticed in Paper I, the difference of the accuracy in the
numerical code might also be a reason. Anyway, we can
observe that the total emitted energy systematically de-

creases as the initial stellar radius increases, and that the
emitted energy is very similar to that of CPM1979.
Furthermore, with our variables inside the star and with
our initial data, we derive the empirical formula for the
total emitted energy as

EGW

2M
¼ 3:37� 10�5 �

�
rs0
2M

��3
; (5.2)

which is also plotted in Fig. 4.

VI. GRAVITATIONALRADIATIONS FROMTHEOS
SOLUTION

In order to calculate the gravitational waves emitted
from the collapsing phase of a magnetized dust sphere,
we have to provide the initial distribution of the magnetic
field. In other words, one needs to set up the functional
forms of b2 and b3 on the hypersurface � ¼ 0. The initial
distributions can be determined when the following two
conditions are satisfied: (a) the regularity condition at the
stellar center and (b) the junction condition at the stellar
surface. Since we made assumptions in this paper that the
magnetic field is confined inside the star and that the value
of q becomes zero at the stellar surface, the conditions at
the stellar surface can be described as b1ð
0Þ ¼ b2ð
0Þ ¼
b3ð
0Þ ¼ 0. Now we introduce two new variables, �b2 and
�b3,

b2ð
Þ ¼ B2sin
2
 �b2ð
Þ; (6.1)

b3ð
Þ ¼ B3sin
3
 �b3ð
Þ; (6.2)

whereB2 B3 are arbitrary constants related to the strength
of the magnetic field. With the analytic functions �b2 and
�b3, the regularity condition at the stellar center for the
magnetic field is automatically satisfied. Since the geome-
try of the magnetic field is practically unknown when the
collapse sets in, here we adopt the following two types of
initial distributions for the magnetic field:

ðIÞ: �b2ð
Þ ¼ �b3ð
Þ ¼ 1� 2

�




0

�
2 þ

�




0

�
4
; (6.3)

ðIIÞ: �b2ð
Þ ¼ �b3ð
Þ ¼ 16

�




0

�
4
�
1� 2

�




0

�
2 þ

�




0

�
4
�
;

(6.4)

where the maximum values of �b2 and �b3 are chosen to be in
the range of 0 � 
 � 
0. For profile (I) the magnetic field
is stronger in the center of the sphere, while for profile (II)
the field becomes stronger in the outer region.
Additionally, note that for both profiles the value of
b1ð
Þ, defined as b1ð
Þ ¼ �@
b2ð
Þ=2, becomes zero at

the stellar surface; i.e., as mentioned before, the value of q
is zero at 
 ¼ 
0. With these magnetic profiles, we found
that the allowed values for B2 and B3 have to be in the
range ofB2 <B3, in order to produce the initial data set so

FIG. 4 (color online). Total energies emitted in gravitational
waves from homogeneous dust collapse without a magnetic field
as a function of the initial stellar radius, where rs0 ¼ 6M, 8M,
12M, 16M, 20M, and 24M. The filled circles correspond to the
results by Cunningham, Price, and Moncrief [20], while the
squares correspond to our numerical results. The dashed line
denotes the empirical formula derived from our results.
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that the inner metric perturbation is smoothly connected to
the stationary solution in the outer region at the stellar
surface. So, in what follows, we consider the two cases
for the magnetic field: the first is that only toroidal mag-
netic components exist, i.e.,B2 ¼ 0, and the second is that
both the poloidal and the toroidal magnetic components
exist, where B2 <B3.

A. Toroidal magnetic field

First we consider the case where only toroidal magnetic
components exist, i.e., B2 ¼ 0. In this case, the source
term in Eq. (4.4) to determine the initial distribution, �
 , is
proportional to B3

2. The value of B3 is determined so that

the initial inner metric perturbation should be smoothly
connected at the stellar surface to the stationary solution
for the exterior region. Then we can get the distributions
for the initial inner metric perturbation, �
ð
Þ, and for the
initial density perturbation, !ð
Þ, which are shown in
Fig. 5 with the two different magnetic profiles, (I) and
(II). In this figure the initial stellar radius is set to be rs0 ¼
8M, but the functional forms of �
ð
Þ and !ð
Þ, with
different initial stellar radii, are very similar to those with
rs0 ¼ 8M. From this figure, we can see that the initial
distributions of �
 and ! depend strongly on the magnetic
profiles even if the initial metric perturbations for the
exterior region are the same as the stationary solution

with q2 ¼ 2M. On the other hand, Fig. 6 shows the wave-
forms of the emitted gravitational waves with these initial
perturbations, where the left and right panels correspond to
the results with the initial radii rs0 ¼ 8M and 20M, re-
spectively. For comparison, the waveforms for the non-
magnetized dust collapse are also plotted. The first
observation of Fig. 6 is that the waveforms of the emitted
gravitational waves are almost independent of the mag-
netic profiles, in spite of the difference of the initial per-
turbations inside the star. That is, if the initial dust sphere
consists only of the toroidal magnetic component, it might
be difficult to distinguish the interior magnetic profile by
using direct detection of the waveform of the emitted
gravitational waves. Additionally, we can observe the dif-
ference between the waveforms of gravitational waves
with a toroidal magnetic field and without a magnetic field.
With a smaller initial radius, the shape of the waveform is
similar to that for the nonmagnetized case. Still, we can see
the effect of the existence of a magnetic field; i.e., the
quasinormal ringing can be seen earlier and the amplitude
is also enhanced a little due to the magnetic effect.
However, with a large initial radius, it is possible to watch
the obvious influence of the magnetic field on the wave-
form of emitted gravitational waves, where the amplitude
of the waveform grows large and the maximum value of the
gravitational wave becomes negative. In other words, with

FIG. 5 (color online). The initial distribution of the inner metric perturbation �
ð
Þ is shown on the left panel, and the initial density
perturbation !ð
Þ is shown on the right panel, where the initial radius is rs0 ¼ 8M.

FIG. 6 (color online). Waveforms of gravitational waves for l ¼ 2 emitted from the homogeneous magnetized dust collapse, with the
initial radius rs0 ¼ 8M on the left panel and rs0 ¼ 20M on the right panel. The solid and dotted lines correspond to the results with
magnetic profiles (I) and (II), respectively, while, for comparison, the dot-dashed line shows the result for the nonmagnetized case.
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a large initial radius, the waveform before the quasinormal
ringing would be observed can be changed remarkably.
The reason for this could be that, with a large initial radius,
it takes longer for the stellar surface to reach the event
horizon; then the inner magnetic field can affect the metric
perturbations for a longer time. In particular, the depen-
dence of the magnetic effect on the initial radius can be
seen clearly in the total energy of the emitted gravitational
waves. Figure 7 shows the total energy as a function of the
initial stellar radius, with circles for magnetic profile (I)
and triangles for magnetic profile (II), where for compari-
son the total energies for the nonmagnetized dust case are
also shown as squares. It is found from this figure that with
a large initial radius, due to the magnetic effect, the total
energy of the emitted gravitational wave becomes much
larger than that for the nonmagnetized dust collapse. Then
the dependence of the total energy for the dust collapse
with a toroidal magnetic field on the initial stellar radius is
quite different from the empirical formula (5.2) for the
nonmagnetized dust collapse.

B. Poloidal and toroidal magnetic fields

Next we consider the magnetic field, which consists of
the poloidal and toroidal components. In this case we can
introduce the new parameter �, defined as � ¼ B2=B3,
and if we choose this value of �, the initial inner metric
perturbations are determined, as they should be smoothly
connected to the outer stationary solution. Note that the
case for � ¼ 0 corresponds to the dust model, in which
only toroidal magnetic components exist, as shown in the
previous subsection. Table I shows the allowed maximum
values of � with different combinations of magnetic pro-
files for the poloidal and toroidal components and with
different initial stellar radii. From this table, it can be seen

that with a large initial radius it becomes more difficult to
produce a magnetized dust model with large values of �,
and that the maximum values of � depend strongly on the
inner magnetic profiles.
Similar to the collapse of magnetized dust with only

toroidal components, the magnetic effects can be seen a
little in the waveforms of gravitational waves. Figure 8
shows waveforms for the collapse of magnetized dust with
rs0 ¼ 8M and with several values of �, where magnetic
profile (I) is adopted for the poloidal and toroidal compo-
nents. From this figure it is found that the emitted gravita-
tional waves are basically characterized by the
quasinormal ringing, as well as by the case of nonmagne-
tized dust collapse. We can also see the specific magnetic
effects in the waveforms, where as the value of � becomes
larger, the amplitude of the gravitational waves is enhanced
and its maximum value changes from a positive to a
negative one. These are similar features to the case of
dust collapse with only toroidal components with a large
initial radius. In other words, with large values of the
magnetic ratio, even with a small initial radius, we can
see the magnetic effect in the waveform before the quasi-
normal ringing would be observed. This tendency holds for
the magnetized dust collapse with different magnetic pro-
files. As a result, with a large value for the magnetic ratio,
the total energy of the gravitational waves grows. The total
energies for rs0 ¼ 8M and 20M are plotted in Fig. 9 as a
function of the magnetic ratio, where the different lines
correspond to the different combinations of magnetic pro-
files for the poloidal and toroidal components. For ex-
ample, in this figure ‘‘(I)–(II)’’ means that the magnetic
profiles (I) and (II) are adopted for the magnetic variables
b2 and b3, respectively. This figure tells us that the total
energies emitted in the gravitational waves from the mag-
netized dust collapse depend strongly on the magnetic ratio
and the inner magnetic profiles. This sensitivity, as well as
the change of waveforms due to the existence of magnetic
fields, could be important for extracting some information
about the inner magnetic profiles of the progenitor from the
direct observation of gravitational waves during black hole
formation after stellar collapse.

FIG. 7 (color online). Total energies emitted in gravitational
waves from the homogeneous magnetized dust collapse as a
function of the initial stellar radius, where rs0 ¼ 6M, 8M, 12M,
16M, 20M, and 24M. The filled circles and triangles correspond
to the calculated results with magnetic profiles (I) and (II),
respectively, while the squares correspond to the total energy
emitted from the nonmagnetized dust collapse.

TABLE I. Allowed maximum values of � with the different
combinations of magnetic profiles for the poloidal and toroidal
components and with different initial stellar radii. As mentioned
before, b2 and b3 are associated with the poloidal and toroidal
magnetic components, respectively.

Profile rs0
b2 b3 6M 8M 12M 16M 20M 24M

(I) (I) 0.073 0.054 0.035 0.026 0.021 0.017

(I) (II) 0.26 0.20 0.13 0.10 0.080 0.067

(II) (I) 0.020 0.014 0.0094 0.0070 0.0055 0.0046

(II) (II) 0.072 0.053 0.035 0.026 0.021 0.017
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VII. CONCLUSION

In this article, with gauge-invariant perturbation theory
we have studied the dependence of stellar magnetic fields
on polar gravitational waves during the collapse of a
homogeneous dust sphere. It should be emphasized that
this is the first calculation of emitted polar gravitational
waves on the dynamical background spacetime, with the
covariant gauge-invariant formalism on the spherically
symmetric spacetime and the coordinate-independent
matching conditions at the stellar surface, as devised by
Gundlach andMartı́n-Garcı́a [25]. So far, such calculations
could not be done due to the difficulty of treating the
boundary conditions at the stellar surface. In order to solve
this difficulty, we evolve not only the Zerilli function Z, but

also the metric perturbation ~
 in the intermediate exterior
region (region II), and the calculation of the emitted gravi-
tational waves is successful.

With this numerical code, we consider the magnetic
effects on the polar gravitational waves from the
Oppenheimer-Snyder solution describing collapsing dust,
where the magnetic fields are introduced as a second-order
perturbation term. Even if the initial magnetic perturba-

tions are small, as the collapse proceeds they could get
amplified and become significant because of the conserva-
tion of the magnetic flux. In particular, similar to Paper I,
we have assumed that the magnetic field is axisymmetric,
where the dipole magnetic field perturbations are the ones
that couple to the quadrupole polar perturbations of the
gravitational field. Additionally, we assumed momentarily
static initial data and we have not taken into account the
influence of the exterior magnetic field in the propagating
gravitational waves.
Through this investigation, we found that there is evi-

dence for the strong influence of the magnetic field on the
gravitational-wave luminosity during the collapse.
Depending on the initial profile of the magnetic field and
its ratio between the poloidal and toroidal components, the
energy outcome can be easily up to a few orders higher
than what we get from the nonmagnetized collapse. In
addition, it is possible to observe an important change
before the quasinormal ringing is detected, which is in-
duced by the presence of the magnetic field. These mag-
netic effects can be seen in the collapsing model with a
large initial radius and with a large magnetic ratio between
the poloidal and toroidal components, since for a large

FIG. 9 (color online). The total energies emitted in gravitational waves from the homogeneous dust collapse with a magnetic field as
a function of the magnetic ratio, �, where the left and right panels correspond to the results for the initial radii rs0 ¼ 8M and rs0 ¼
20M. In the figure, the different lines correspond to the different combinations of magnetic profiles for the poloidal and toroidal
components. In the legend, for example, ‘‘(I)–(II)’’ shows that magnetic profiles (I) and (II) are adopted for the magnetic variables b2
and b3, respectively.

FIG. 8 (color online). Waveforms of gravitational waves emitted from the homogeneous magnetized dust collapse with the initial
radius rs0 ¼ 8M (left panel), where the three different lines correspond to the dust models with different magnetic ratios, �, and
magnetic profile (I) is adopted for both poloidal and toroidal components. Note that the line for � ¼ 0 is the result of collapse without
a poloidal magnetic component. The right panel is the magnification of the region encompassed by the square in the left panel.
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initial radius the time needed for black hole formation is
longer and the magnetic field acts on the collapsing fluid
for a longer time. Note that the magnetic effects on the
polar gravitational waves are different from those on the
axial ones; i.e., the axial gravitational waves are indepen-
dent of the magnetic ratio, and they depend only on the
magnetic strength such as the value of B2 �B3. Such
magnetic effects could be helpful in extracting some infor-
mation about the inner magnetic profiles of the progenitor
from the detection of gravitational waves radiated from
black hole formation after stellar collapse.

In conclusion, we believe that although this study might
be considered as a ‘‘toy problem,’’ it has most of the
ingredients needed to emphasize the importance of the
magnetic fields in the study of the gravitational-wave out-
put during collapse. The final answers to the questions
raised here would be provided by the 3D numerical
MHD codes (see [18,37] for recent developments), but
this work provides hints and raises issues that need to be
studied. Furthermore, for future work, we consider study-
ing magnetic effects on the gravitational waves emitted

from the more complicated background collapsing models
such as inhomogeneous dust collapse and stellar collapse
with a perfect fluid, while it is also important to take into
account the background magnetic field such as in [38].
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APPENDIX A: CONCRETE EXPRESSIONS FOR
THE SOURCE TERMS

In this appendix, we show the concrete expressions for
the source terms in the perturbation equations, which are
not written in the main text. Those for Eqs. (2.19), (2.20),
(2.21), (2.22), (2.23), (2.24), and (2.25) are

S
 ¼ 16�½T3 þ 2ðnATAÞ0 � nAnBTAB þ 2ð2��WÞnATA� þ 4ð��UÞ _kþ 3� _
 þ ð2W � 5�Þ
 0 � 2ð��UÞ _q
þ ð8�� 6WÞq0 þ 2q00 þ 2½2ð��UÞW � 2����0 þ _�þ 8�tABuAnB�c þ 2

�
2W 0 � 2�2 þ 2

r2
� 16�Q

þ 8�ðtAA þ tABpABÞ
�
ð
 þ kÞ þ 16�Q
 þ ðl� 1Þðlþ 2Þ

r2

 � 2

�
4W 0 þ 4�W � 2W2 � 2�2

þ lðlþ 1Þ þ 4

2r2
� 16�Qþ 8�ðtAA þ tABpABÞ

�
q; (A1)

Sk ¼ 8�½ð�c2su
AuB þ nAnBÞTAB þ 4WnATA� þ ðc2s þ 1ÞU _
 þ ½4Uþ c2sð�þ 2UÞ� _kþ ðc2s � 1ÞW
 0 � ð�þ 2c2sWÞk0

� 2U _qþ 2Wq0 þ
�
c2s

�
8�ðtAA � tABpABÞ þ 2Uð2�þUÞ þ lðlþ 1Þ

r2

�
� 8�ðtAA þ tABpABÞ þ 2

�
W2 � 1

r2

��

� ð
 þ kÞ � ðl� 1Þðlþ 2Þ
2r2

ðc2s þ 1Þ
 �
�
c2sf8�ðtAA � tABpABÞ þ 2Uð2�þUÞg � 8�ðtAA þ tABpABÞ

þ 6W2 � lðlþ 1Þ þ 2

r2

�
qþ 2½ðc2s þ 1ÞUð�þWÞ þ ðc2s � 1Þ�W � 8�ðc2s þ 1ÞtABuAnB�c ; (A2)

Sc ¼ 2�ð
 þ kÞ þ 2�c þ 
 0 � 2q0 þ 2ðW � �Þq� 16�nATA; (A3)

and

C� ¼ �W _
 þU
 0 þ ð2U��Þk0 � 2Uq0 þ
�
lðlþ 1Þ þ 2

2r2
þUð2�þUÞ �Wð2�þWÞ þ 8�tAA

�
c ; (A4)

C! ¼ U _
 þ ð�þ 2UÞ _kþW
 0 � 2Wk0 þ
�
8�ðtAA � tABpABÞ þ 2Uð2�þUÞ þ lðlþ 1Þ

r2

�
ð
 þ kÞ � ðl� 1Þðlþ 2Þ

2r2



� ½8�ðtAA � tABpABÞ þ 2Uð2�þUÞ�qþ 2½�Uþ�W þUW � 8�tABuAnB�c ; (A5)

C� ¼ 2�ð
 þ kÞ þ 2�c þ _
 þ 2 _k� 2qð�þUÞ; (A6)

where q is given by Eq. (2.22),
q ¼ b1

2 � b3
2ffiffiffiffiffiffiffi

5�
p

R2
: (A7)
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Additionally, the source terms in the perturbation equa-
tions for the metric perturbations (3.22), (3.23), and (3.24)
are

�S
 ¼ 2@2
q� 6 cos


sin

@
qþ 4cos2
� lðlþ 1Þ þ 4

sin2

q

þ 2ffiffiffiffiffiffiffi
5�

p
R2sin2


�
2b2

2

sin2

þ b1

2 þ b3
2 þ 2@
ðb1b2Þ

� 6 cos


sin

b1b2

�
; (A8)

�Sk ¼
2@�R

R
@�q� 2 cos


sin

@
qþ 6cos2
� lðlþ 1Þ � 2

sin2

q

þ 1ffiffiffiffiffiffiffi
5�

p
R2sin2


�
b2

2

sin2
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2 þ b3
2 � 4 cos


sin

b1b2

�
;

(A9)

�S c ¼ 2@
q� 2 cos


sin

qþ 2b1b2ffiffiffiffiffiffiffi

5�
p

R2sin2

: (A10)

APPENDIX B: MATTER PERTURBATIONS FOR
THE INTERIOR REGION

The matter perturbations are given by using the variables
for the metric and magnetic perturbations, which are de-
termined after the calculation for the evolution of the
metric perturbations. For Eqs. (2.23), (2.24), and (2.25),

they are

� ¼ 1

8��R2

�
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; (B1)
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