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The basic characteristics of the covariant chiral current hJ�i and the covariant chiral energy-momentum

tensor hT��i are obtained from a chiral effective action. These results are used to justify the covariant

boundary condition used in recent approaches of computing the Hawking flux from chiral gauge and

gravitational anomalies. We also discuss a connection of our results with the conventional calculation of

nonchiral currents and stress tensors in different (Unruh, Hartle-Hawking and Boulware) states.
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I. INTRODUCTION

The motivation of this paper is to provide a clear under-
standing of the covariant boundary condition used in the
recent analysis [1–5] of deriving the Hawking flux using
chiral gauge and gravitational anomalies. Besides this we
also reveal certain new features in chiral currents and
energy-momentum tensors which are useful in exhibiting
their connection with the standard nonchiral expressions.

Long ago, Hawking [6] proposed an idea that black
holes evaporate, due to quantum particle creation, and
behave like thermal bodies with an appropriate tempera-
ture. This is essentially a consequence of quantization of
matter in a background spacetime having an event horizon.
There are several approaches to derive the Hawking effect
[7–10]. Recently, Wilczek and collaborators [1,11] gave an
interesting method to compute the Hawking fluxes using
chiral gauge and gravitational (diffeomorphism) anoma-
lies. It rests on the fact that the effective theory near the
event horizon is a two-dimensional chiral theory which,
therefore, has gauge and gravitational anomalies. This
method is expected to hold in any dimensions. In this sense
it is distinct from the trace anomaly method [10] which was
formulated in two dimensions.1 However, an unpleasant
feature of [1,11] was that whereas the expressions for
chiral anomalies were taken to be consistent, the boundary
conditions required to fix the arbitrary constants were
covariant. This was rectified by us [3] and a simplified
derivation using only covariant forms was presented. It
might be recalled that there are two types of chiral anoma-
lies—covariant and consistent. Covariant anomalies trans-
form covariantly under the gauge or general coordinate
transformation but do not satisfy the Wess-Zumino con-
sistency condition. Consistent anomalies, on the contrary,
behave the other way. Covariant and consistent expressions
are related by local counterterms [14–18].

In another new development also based on chiral gauge
and gravitational anomalies, Hawking fluxes were ob-

tained by us [4,5]. Contrary to the earlier approaches [1–
3,11] a splitting of the space in different regions (near to
and away from the horizon) using discontinuous (step)
functions was avoided. This split, apart from requiring
the necessity of both the normal and anomalous Ward
identities, poses certain conceptual issues [19]. In [4,5]
the only input was the structure of the covariant anomaly
while retaining the original covariant boundary condition,
i.e the vanishing of the covariant current/energy-
momentum (EM) tensor at the event horizon.
It is thus clear that the covariant boundary condition

plays an important role in the computation of Hawking
fluxes. However, a precise understanding of this boundary
condition is still missing. Here we give a detailed analysis
for this particular choice of boundary condition. It turns out
that, with this choice of covariant boundary condition, the
components for covariant current/EM tensors ðJr; Tr

tÞ ob-
tained from solving the anomaly equation match exactly
with the expectation values of the current/EM tensors,
obtained from the chiral effective action, taken by impos-
ing the regularity condition on the outgoing modes at the
future horizon. Furthermore, we discuss the connection of
our results with those found by a standard use of boundary
conditions on nonchiral (anomaly free) currents and EM
tensors. Indeed we are able to show that our results are
equivalent to the choice of the Unruh vacuum for a non-
chiral theory. This choice, it may be recalled, is natural for
discussing Hawking flux.
In Sec. II we provide a generalization of our recent

approach [4,5] of computing fluxes. The covariant cur-
rent/EM tensor following from a chiral effective action,
suitably modified by a local counterterm, are obtained in
Sec. III. The role of chirality in imposing constraints on the
structure of the current/EM tensor is elucidated. The arbi-
trary coefficients in J�, T�� are fixed by imposing appro-

priate regularity conditions on the outgoing modes at the
future event horizon (Sec. IV). Here we also discuss the
relation of the results obtained for a chiral theory, subjected
to the regularity conditions, with those found in a nonchiral
theory in different vacua. Some examples are given in
Sec. V. Our concluding remarks are contained in Sec. VI.
Finally, there is an appendix discussing the connection
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diffeomorphism anomaly approach, see [12,13]
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between the trace anomaly and gravitational anomaly for a
ð1þ 1Þ dimensional chiral theory.

II. CHARGE AND ENERGY FLUX FROM
COVARIANTANOMALY

Consider a generic spherically symmetric black hole
represented by the metric,

ds2 ¼ fðrÞdt2 � 1

hðrÞ dr
2 � r2ðd�2 þ sin2�d�2Þ; (1)

where fðrÞ and hðrÞ are the metric coefficients. The event
horizon is defined by fðrhÞ ¼ hðrhÞ ¼ 0. Also, in the
asymptotic limit the metric (1) become Minkowskian i.e
fðr ! 1Þ ¼ hðr ! 1Þ ¼ 1 and f00ðr ! 1Þ ¼ f000ðr !
1Þ ¼ h00ðr ! 1Þ ¼ h000ðr ! 1Þ ¼ 0. Now consider quan-
tum fields (scalar or fermionic) propagating on this back-
ground. It was shown that [1,11], by using a dimensional
reduction technique, the effective field theory near the
event horizon becomes two dimensional with the metric
given by the r� t section of (1)

ds2 ¼ fðrÞdt2 � 1

hðrÞdr
2: (2)

Note that
ffiffiffiffiffiffiffi�g

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg��

p ¼
ffiffi
f
h

q
� 1 (unless fðrÞ ¼

hðrÞ). On this two dimensional background, the modes
which are going in to the black hole (for example left
moving modes) are lost and the effective theory become
chiral. Two-dimensional chiral theory possesses gravita-
tional anomaly and, if gauge fields are present, also gauge
anomaly [14–18,20,21]. Hawking radiation, which is nec-
essary to cancel these anomalies, were obtained by solving
the anomalousWard identity near the horizon and the usual
(i.e anomaly free) conservation equations which are valid
far away from the horizon [1,11]. This approach used
consistent forms for gauge and gravitational anomaly.
However, the boundary condition used to fix the arbitrary
constants was covariant. As already stated, a reformulation
of this approach using only covariant structures was given
by us [3,4]. An efficient and economical way to obtain the
Hawking flux was discussed in [5] where the computation
involved only the expressions for anomalous covariant
Ward identities and the covariant boundary conditions.
The splitting of space into two regions [1–3,11] is avoided.
Here we would first generalize this new approach for the
generic black hole (2). This would also help in setting up
the conventions and introduce certain equations that are
essential for the subsequent analysis.

As already stated the effective theory near the event
horizon is a two-dimensional chiral theory. The relevant
contribution comes from the outgoing (right moving)
modes only. For these modes the expression for covariant
gauge anomaly is given by [17,18],

r�J
� ¼ � e2

4�
ffiffiffiffiffiffiffi�g

p ���F�� (3)

�01 ¼ ��10 ¼ 1, F�� ¼ @�A� � @�A�, and the gauge po-

tential is defined as At ¼ � Q
r . For a static background, the

above equation becomes,

@rð ffiffiffiffiffiffiffi�g
p

JrÞ ¼ e2

2�
@rAt: (4)

Solving this equation we get

ffiffiffiffiffiffiffi�g
p

Jr ¼ cH þ e2

2�
½AtðrÞ � AtðrhÞ�: (5)

Here cH is an integration constant which can be fixed by
imposing the covariant boundary condition i.e. covariant
current (Jr) must vanish at the event horizon,

Jrðr ¼ rhÞ ¼ 0: (6)

Hence we get cH ¼ 0 and the expression for the current
becomes,

Jr ¼ e2

2�
ffiffiffiffiffiffiffi�g

p ½AtðrÞ � AtðrhÞ�: (7)

Note that the Hawking flux is measured at infinity where
there is no anomaly. This necessitated a split of space into
two distinct regions—one near the horizon and one away
from it—and the use of two Ward identities [1–3,11]. This
is redundant if we observe that the anomaly (4) vanishes at
the asymptotic infinity. Consequently, in this approach, the
flux is directly obtained from the asymptotic infinity limit
of (7):

Charge flux ¼ Jrðr ! 1Þ ¼ � e2AtðrhÞ
2�

¼ e2Q

2�rh
: (8)

This reproduces the familiar expression for the charge flux
[1,3–5]. Next, we consider the expression for the two
dimensional covariant gravitational Ward identity [1–4],

r�T
�� ¼ J�F

�� þ ���

96�
ffiffiffiffiffiffiffi�g

p r�R; (9)

where the first term is the classical contribution (Lorentz
force) and the second is the covariant gravitational anom-
aly [20–22]. Here R is the Ricci scalar and for the metric
(2) it is given by

R ¼ f00h
f

þ f0h0

2f
� f02h

2f2
: (10)

By simplifying (9) we get, in the static background,

@rð ffiffiffiffiffiffiffi�g
p

Tr
tÞ ¼ @rN

r
t ðrÞ � e2AtðrhÞ

2�
@rAtðrÞ

þ @r

�
e2A2

t ðrÞ
4�

�
; (11)
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where

Nr
t ¼ 1

96�

�
hf00 þ f0h0

2
� f02h

f

�
: (12)

The solution for (11) is given by

ffiffiffiffiffiffiffi�g
p

Tr
t ¼ bH þ ½Nr

t ðrÞ � Nr
t ðrhÞ� þ e2A2

t ðrhÞ
4�

� e2

2�
AtðrhÞAtðrÞ þ e2A2

t ðrÞ
4�

: (13)

Here bH is an integration constant. Implementing the co-
variant boundary condition, namely, the vanishing of co-
variant EM tensor at the event horizon,

Tr
tðr ¼ rhÞ ¼ 0 (14)

yields bH ¼ 0. Hence (13) reads

ffiffiffiffiffiffiffi�g
p

Tr
tðrÞ ¼ ½Nr

t ðrÞ � Nr
t ðrhÞ� þ e2

4�
½AtðrÞ � AtðrhÞ�2:

(15)

Since the covariant gravitational anomaly vanishes asymp-
totically, we can compute the energy flux as before by
taking the asymptotic limit of (15)

energy flux ¼ Tr
tðr ! 1Þ ¼ �Nr

t ðrhÞ þ e2A2
t ðrhÞ
4�

¼ 1

192�
f0ðrhÞg0ðrhÞ þ e2Q2

4�r2h
: (16)

This reproduces the expression for the Hawking flux found
by using the anomaly cancelling approach of [1–3].

It is now clear that the covariant boundary conditions
play a crucial role in the computation of Hawking fluxes
using chiral gauge and gravitational anomalies, either in
the approach based on the anomaly cancelling mechanism
[1–3] or in the more direct approach [5] reviewed here.
Therefore it is worthwhile to study it in some detail. We
adopt the following strategy. The expressions for the ex-
pectation values of the covariant current and EM tensor
will be deduced from the chiral effective action, suitably
modified by a local counterterm. Local structures are ob-
tained by introducing auxiliary variables whose solutions
contain arbitrary constants. These constants are fixed by
imposing regularity conditions on the outgoing modes at
the future event horizon. The final results are found to
match exactly with the corresponding expressions for the
covariant current (7) and EM tensor (15), which were
derived by using the covariant boundary conditions (6) and
(14). Subsequently we show that our results are consistent
with the imposition of the Unruh vacuum on usual (non-
chiral) expressions.

III. COVARIANT CURRENTAND EM TENSOR
FROM CHIRAL EFFECTIVE ACTION

The two-dimensional chiral effective action [4,23] is
defined as,

�ðHÞ ¼ � 1

3
zð!Þ þ zðAÞ; (17)

where A� and !� are the gauge field and the spin connec-

tion, respectively, and,

zðvÞ ¼ 1

4�

Z
d2xd2y���@�v�ðxÞ��1ðx; yÞ@	½ð�	


þ ffiffiffiffiffiffiffi�g
p

g	
Þv
ðyÞ�: (18)

Here ��1 is the inverse of d’Alembertian � ¼ r�r� ¼
1ffiffiffiffiffi�g

p @�ð ffiffiffiffiffiffiffi�g
p

g��@�Þ. From a variation of this effective

action the energy-momentum tensor and the gauge current
are computed. These are shown in the literature [14–
18,20,21] as consistent forms. To get their covariant forms
in which we are interested, however, appropriate local
polynomials have to be added. This is possible since
energy-momentum tensors and currents are only defined
modulo local polynomials. We obtain,

��H ¼
Z

d2x
ffiffiffiffiffiffiffi�g

p �
1

2
�g��T

�� þ �A�J
�

�
þ l; (19)

where the local polynomial is given by [23],

l ¼ 1

4�

Z
d2x���

�
A��A� � 1

3
w��w� � 1

24
Rea��e

a
�

�

(20)

The covariant energy-momentum tensor T�� and the co-
variant gauge current J� are read off from the above
relations as [4,23],

T�
� ¼ e2

4�
ðD�BD�BÞ

þ 1

4�

�
1

48
D�GD�G� 1

24
D�D�Gþ 1

24
�
�
� R

�

(21)

J� ¼ � e2

2�
D�B: (22)

Note the presence of the chiral covariant derivative D�

expressed in terms of the usual covariant derivative r�,

D� ¼ r� � ����r� ¼ � ����D
�; (23)

where ���� ¼ ffiffiffiffiffiffiffi�g
p

��� and ���� ¼ 1ffiffiffiffiffi�g
p ���. The auxiliary

fields B and G in (21) and (22) are defined as

BðxÞ ¼
Z

d2y
ffiffiffiffiffiffiffi�g

p
��1ðx; yÞ ����@�A�ðyÞ (24)
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GðxÞ ¼
Z

d2y
ffiffiffiffiffiffiffi�g

p
��1ðx; yÞRðyÞ (25)

so that they satisfy

�BðxÞ ¼ ����@�A�ðxÞ (26)

�GðxÞ ¼ RðxÞ; (27)

where R is given by (10).
As a simple consistency check the covariant Ward iden-

tities (3) and (9) are obtained from (21) and (22). For
example, using (22), (24), and (26), we find,

r�J
� ¼ � e2

2�
�B ¼ � e2

2�
����@�A� ¼ �e2

4�
ffiffiffiffiffiffiffi�g

p ���F��

(28)

reproducing (3). Note also the existence of the covariant
trace anomaly2 following from (21),

T�
� ¼ R

48�
: (29)

The chiral nature of the current (22) and the stress tensor
(21) are revealed by the following conditions,

J� ¼ � ����J
� (30)

T�� ¼ � 1

2
ð ���	T

	
� þ ���	T

	
�Þ þ

g��

2
T�

�; (31)

which are a consequence of the presence of the chiral
derivative (23). This may be compared with the definitions
of J� and T��, obtained from a Polyakov type action valid

for a vector theory, which do not satisfy the chiral proper-
ties (30) and (31). These properties constrain the structure
of J�, T��.

After solving (26) and (27) we get,

BðxÞ ¼ BoðrÞ � atþ b; @rBo ¼ AtðrÞ þ cffiffiffiffiffiffi
fh

p (32)

and

G ¼ GoðrÞ � 4ptþ q; @rGo ¼ � 1ffiffiffiffiffiffi
fh

p
�

f0ffiffiffiffiffiffiffi�g
p þ z

�
;

(33)

where a, b, c, p, q, and z are constants. Now, by substitut-
ing (32) in (22) we obtain,

JrðrÞ ¼ e2

2�
ffiffiffiffiffiffiffi�g

p ½AtðrÞ þ cþ a� (34)

JtðrÞ ¼ e2

2�f
½AtðrÞ þ cþ a� ¼

ffiffiffiffiffiffiffi�g
p
f

Jr: (35)

Observe that there is only one independent component of
J� which is a consequence of (30). Likewise, by using (32)

and (33) in (21) we find

Tr
t ¼ e2

4�
ffiffiffiffiffiffiffi�g

p �A2
t ðrÞ þ 1

12�
ffiffiffiffiffiffiffi�g

p �P2ðrÞ

þ 1

24�
ffiffiffiffiffiffiffi�g

p
�

f0ffiffiffiffiffiffiffi�g
p �PðrÞ þ �QðrÞ

�
(36)

Tr
r ¼ R

96�
�

ffiffiffiffiffiffiffi�g
p
f

Tr
t (37)

Tt
t ¼ �Tr

r þ R

48�
(38)

with �AtðrÞ, �PðrÞ and �QðrÞ defined as

�A tðrÞ ¼ AtðrÞ þ cþ a (39)

�PðrÞ ¼ p� 1

4

�
f0ffiffiffiffiffiffiffi�g

p þ z

�
(40)

�QðrÞ ¼ 1

4
hf00 � f0

8

�
hf0

f
� h0

�
: (41)

Relation (38) is a consequence of the trace anomaly (29)
while (37) follows from the chirality criterion (31). The
r� t component of the EM tensor (36) calculated above is
same as the one given in [24].
To further illuminate the chiral nature, we transform the

various components of current/EM tensor to null coordi-
nates given by

v ¼ tþ r�; u ¼ t� r� (42)

dr

dr� ¼ ffiffiffiffiffiffi
fh

p
: (43)

The metric (2) in these coordinates looks like

ds2 ¼ fðrÞ
2

ðdudvþ dvduÞ: (44)

Finally, the expressions for the current and EM tensors in
these coordinates are given by,

Ju ¼ 1

2
½Jt �

ffiffiffiffiffiffi
fh

p
Jr� ¼ e2

2�
�AtðrÞ (45)

Jv ¼ 1

2
½Jt þ

ffiffiffiffiffiffi
fh

p
Jr� ¼ 0 (46)

and

2Observe that the chiral theory has both a diffeomorphism
anomaly (9) and a trace anomaly (29). This is distinct from the
vector case where there is only a trace anomaly T�

� ¼ R
24� . No

diffeomorphism anomaly exists. See the appendix for more
details.
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Tuu ¼ 1

4
½fTt

t � fTr
r þ 2

ffiffiffiffiffiffiffi�g
p

Tr
t�

¼ e2

4�
�A2
t ðrÞ þ 1

12�
�P2ðrÞ þ 1

24�

�
f0ffiffiffiffiffiffiffi�g

p �PðrÞ þ �QðrÞ
�

(47)

Tuv ¼ f

4
½Tt

t þ Tr
r� ¼ 1

192�
fR (48)

Tvv ¼ 1

4
½fTt

t � fTr
r � 2

ffiffiffiffiffiffiffi�g
p

Tr
t� ¼ 0; (49)

where extensive use has been made of (34) to (38). We now
observe that, due to the chiral property, the Jv and Tvv

components vanish everywhere. These correspond to the
ingoing modes and are compatible with the fact, stated
earlier, that the near horizon theory is a two dimensional
chiral theory where the ingoing modes are lost. Also, the
structure of Tuv is fixed by the trace anomaly. Only the Ju
and Tuu components involve the undetermined constants.
These will now be determined by considering various
vacuum states.

IV. VACUUM STATES

In a generic spacetime three different quantum states
(vacua) [25] are defined by appropriately choosing ’in’ and
’out’ modes. This general picture is modified when dealing
with a chiral theory since, as shown before, the ’in’ modes
always vanish. Consequently this leads to a simplification
and conditions are imposed only on the ’out’ modes.
Moreover, these conditions have to be imposed on the
horizon since the chiral theory is valid only there. The
natural condition, leading to the occurrence of Hawking
flux, is that a freely falling observer must see a finite
amount of flux at the horizon. This implies that the current
(EM tensor) in Kruskal coordinates must be regular at the
future horizon. Effectively, this is the same condition on
the ’out’ modes in either the Unruh vacuum [26] or the
Hartle-Hawking vacuum [27]. As far as our analysis is
concerned this is sufficient to completely determine the
form of J� or T��. We show that their structures are

identical to those obtained in the previous section using
the covariant boundary condition.

A more direct comparison with the conventional results
obtained from Unruh or Hartle-Hawking states is possible.
In that case one has to consider the nonchiral expressions
[2,28] containing both ’in’ and ’out’ modes. We show that,
at asymptotic infinity where the flux is measured, our
expressions agree with that calculated from Unruh vacuum
only. We discuss this in some detail.

A. Regularity conditions, Unruh and Hartle-Hawking
vacua

In Kruskal coordinates U the current takes the form

JU ¼ � Ju
�U , where � is the surface gravity. Since JU is

required to be finite at the future horizon where U !ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rh

p ðr ! rhÞ, Ju must vanish at r ! rh. Hence from

(39) and (45) we have,

cþ a ¼ �AtðrhÞ: (50)

Similarly, imposing the condition that TUU ¼ ð 1
�UÞ2Tuu

must be finite at future horizon leads to Tuuðr ! rhÞ ¼ 0.
This yields, from (39)–(41) and (47),

p ¼ 1

4
ðz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrhÞh0ðrhÞ

q
Þ: (51)

Using (50) and (51) in Eqs. (34)–(38) we obtain the final
expressions,

JrðrÞ ¼ e2

2�
ffiffiffiffiffiffiffi�g

p ½AtðrÞ � AtðrhÞ� (52)

JtðrÞ ¼
ffiffiffiffiffiffiffi�g

p
f

JrðrÞ (53)

for the current and the EM tensor,

ffiffiffiffiffiffiffi�g
p

Tr
t ¼ e2

4�
½AtðrÞ � AtðrhÞ�2 þ ½Nr

t ðrÞ � Nr
t ðrhÞ�

(54)

while, Tr
r and Tt

t follow from (37) and (38) and Nr
t is

given by (12).
The expressions for Jr (52) and Tr

t (54) agree with the
corresponding ones given in (7) and (15). This shows that
the structures for the universal components Jr, Tr

t obtained
by solving the anomalous Ward identities (3) and (9)
subjected to the covariant boundary conditions (6) and
(14) exactly coincide with the results computed by de-
manding regularity at the future event horizon.
It is possible to compare our findings with conventional

(nonchiral) computations where the Hawking flux is ob-
tained in the Unruh vacuum. We begin by considering the
conservation equations for a nonchiral theory that is valid
away from the horizon. Such equations were earlier used in
[1–3,11]. Conservation of the gauge current yields,3

r�
~J� ¼ 1ffiffiffiffiffiffiffi�g

p @�ð ffiffiffiffiffiffiffi�g
p ~J�Þ ¼ 0 (55)

which, in a static background, leads to,

3We use a tilde (J�) to distinguish nonchiral expressions from
chiral ones.
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~J r ¼ C1ffiffiffiffiffiffiffi�g
p (56)

where C1 is some constant.
As is well know there is no regularization that simulta-

neously preserves the vector as well as axial vector gauge
invariance. Indeed a vector gauge invariant regularization
resulting in (55) yields the following axial anomaly,

r�
~J5� ¼ e2

2�
ffiffiffiffiffiffiffi�g

p ���F��; ~J5� ¼ 1ffiffiffiffiffiffiffi�g
p ���~J�:

(57)

The solution of this Ward identity is given by,

~J t ¼ � 1

f

�
C2 � e2

�
AtðrÞ

�
(58)

where C2 is another constant.
In the null coordinates introduced in (42), (43), (45), and

(46) the various components are defined as,

~J u ¼ 1

2

�
C1 � C2 þ e2

�
AtðrÞ

�
; (59)

~J v ¼ � 1

2

�
C1 þ C2 � e2

�
AtðrÞ

�
: (60)

The constants C1, C2 are now determined by using appro-
priate boundary conditions corresponding to first, the
Unruh state, and then, the Hartle-Hawking state. For the
Unruh state ~Juðr ! rhÞ ¼ 0 and ~Jvðr ! 1Þ ¼ 0 yield,

C1 ¼ �C2 ¼ � e2

2�
AtðrhÞ; (61)

so that, reverting back to ðr; tÞ coordinates, we obtain,

~J r ¼ � e2

2�
ffiffiffiffiffiffiffi�g

p AtðrhÞ; (62)

~J t ¼ e2

�f

�
AtðrÞ � 1

2
AtðrhÞ

�
: (63)

The Hawking charge flux, identified with ~Jrðr ! 1Þ, re-
produces the desired result (8). Expectably, (62) and (63)
differ from our relations (52) and (53) which are valid only
near the horizon. However, at asymptotic infinity where the
Hawking flux is measured, both expressions match, i.e.

~J rðr ! 1Þ ¼ Jrðr ! 1Þ; (64)

~J tðr ! 1Þ ¼ Jtðr ! 1Þ: (65)

All the above considerations follow identically for the
stress tensor. Now the relevant conservation law is
r�

~T�� ¼ ~J�F
�� and the trace anomaly is T�

� ¼ R
24�

(see also footnote 2) which have to be used instead of
(55) and (57). Once again ~T�

� will not agree with our T
�
�

(54). However, at asymptotic infinity, all components
agree:

~T �
�ðr ! 1Þ ¼ T�

�ðr ! 1Þ; (66)

leading to the identification of the Hawking flux with
~Tr

tðr ! 1Þ.
The equivalences (64)–(66) reveal the internal consis-

tency of our approach. They are based on two issues. First,
in the asymptotic limit the chiral anomalies (3) and (9)
vanish and, secondly, the boundary conditions (6) and (14)
get identified with the Unruh state that is appropriate for
discussing Hawking effect. It is important to note that,
asymptotically, all the components, and not just the uni-
versal component that yields the flux, agree.
In the Hartle-Hawking state, the conditions ~Juðr !

rhÞ ¼ 0 and ~Jvðr ! rhÞ ¼ 0 yield,

C1 ¼ 0; C2 ¼ e2

�
AtðrhÞ (67)

so that,

~J rðrÞ ¼ 0; (68)

~J tðrÞ ¼ e2

�f
ðAtðrÞ � AtðrhÞÞ; (69)

Expectably, there is no Hawking (charge) flux now. The
above expressions, even at asymptotic infinity, do not agree
with our expressions (52) and (53).

B. Boulware vacuum

Apart from the Unruh and Hartle-Hawking vacua there
is another vacuum named after Boulware [29] which
closely resembles the Minkowski vacuum asymptotically.
In this vacuum, there is no radiation in the asymptotic
future. In other words this implies Jr and Tr

t given in
(34) and (36) must vanish at r ! 1 limit. Therefore, for
the Boulware vacuum, we get

cþ a ¼ 0 (70)

p ¼ 1

4
z: (71)

By substituting (70) in (34) and (35) we have

JrðrÞ ¼ e2

2�
ffiffiffiffiffiffiffi�g

p AtðrÞ (72)

JtðrÞ ¼ e2

2�f
AtðrÞ: (73)

Similarly, by substituting (70) and (71) in Eqs. (36)–(38),
we get

Tr
t ¼ e2A2

t ðrÞ
4�

ffiffiffiffiffiffiffi�g
p þ 1ffiffiffiffiffiffiffi�g

p Nr
t ðrÞ (74)
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Tr
r ¼ �e2A2

t ðrÞ
4�f

� 1

f
Nr

t ðrÞ þ R

96�
(75)

Tt
t ¼ e2A2

t ðrÞ
4�f

þ 1

f
Nr

t ðrÞ þ R

96�
: (76)

Observe that there is no radiation in the asymptotic region
in the Boulware vacuum. Also, the trace anomaly (29) is
reproduced since this is independent of the choice of
quantum state. Further, we note that, in the Kruskal coor-
dinates, JU and TUU components of current and EM tensors
diverge at the horizon. This can be seen by substituting
Eqs. (72) and (73) in (45). Then the expression for Ju in
Boulware vacuum becomes,

Ju ¼ e2

2�
AtðrÞ (77)

while, by putting (74)–(76) in (47), we obtain, for Tuu

Tuu ¼ e2A2
t ðrÞ

4�
þ Nr

t ðrÞ: (78)

Note that in the limit (r ! rh) Ju and Tuu do not vanish.
Hence, in the Kruskal coordinates, the current and EM
tensor diverge. This is expected since the Boulware vac-
uum is not regular near the horizon.

V. EXAMPLES

We discuss two explicit examples where the Hawking
flux and the complete expressions for the covariant current/
EM tensor are provided.

A. Reissner-Nordstrom black hole

For this black hole, the metric in the r� t sector is given
by

ds2 ¼ fðrÞdt2 � 1

fðrÞdr
2 (79)

with

fðrÞ ¼ 1� 2M

r
þQ2

r2
¼ ðr� rþÞðr� r�Þ

r2
; (80)

where r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
are the outer and inner hori-

zons. The gauge potential is given by At ¼ � Q
r . Note that

in this case
ffiffiffiffiffiffiffi�g

p ¼ 1. We can easily write the expressions

for various components of current and EM tensor for
Unruh, Hartle-Hawking, and Boulware vacua. As already
discussed the results for Unruh and Hartle-Hawking vacua
are identical. In this case we have from (52) and (53)

JrðrÞ ¼ e2

2�
½AtðrÞ � AtðrþÞ� (81)

JtðrÞ ¼ e2r2

2�ðr� rþÞðr� r�Þ ½AtðrÞ � AtðrþÞ�: (82)

The charge flux, obtained from the asymptotic limit of (81)
is,

Jrðr ! 1Þ ¼ � e2

2�
AtðrþÞ ¼ e2Q

2�rþ
(83)

reproducing the known result [1,3].
Similarly, the r� t component of the covariant EM

tensor from (54) is given by,

Tr
t ¼ e2

4�
½AtðrÞ � AtðrþÞ�2

þ 1

192�
½2fðrÞf00ðrÞ � f02ðrÞ þ f02ðrþÞ�; (84)

while, as before, the other components follow from (37)
and (38). As usual, the energy flux obtained from the
asymptotic limit of (84) yields,

Tr
tðr ! 1Þ ¼ e2Q2

4�r2þ
þ 1

192�

�
2

Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
� ðM2 þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
�Q2Þ

�
2
: (85)

This reproduces the usual expression of energy flux com-
ing from the Reissner-Nordstrom black hole [1,3].
For the Boulware vacuum, the expressions for current/

EM tensors (72)–(76) are given by,

Jr ¼ e2

2�
AtðrÞ (86)

Jt ¼ e2r2

2�ðr� rþÞðr� r�ÞAtðrÞ (87)

Tr
t ¼ e2

4�
A2
t ðrÞ þ 1

192�
½2ff00 � f02ðrÞ� (88)

Tr
r ¼� r2

ðr� rþÞðr� r�Þ
�
�
e2

4�
A2
t ðrÞþ 1

192�
½2ff00 � f02ðrÞ�

�
þ f00

96�
(89)

Tt
t ¼ �Tr

r þ f00

48�
(90)

As we can observe, by taking the asymptotic limit of (86)
and (88), there are no Hawking fluxes.

B. Garfinkle-Horowitz- Strominger (GHS) black hole

The GHS black hole is a member of a family of solutions
to low energy string theory [30,31]. The metric in the r� t
sector of this black hole is given by [32,33]

ds2 ¼ fðrÞdt2 � 1

hðrÞdr
2 (91)

where
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fðrÞ ¼
�
1� 2Me�o

r

��
1�Q2e3�o

Mr

��1
(92)

hðrÞ ¼
�
1� 2Me�o

r

��
1�Q2e3�o

Mr

�
; (93)

with �o being the asymptotic constant value of the dilaton

field. We consider the case whenQ2 < 2e�2�oM
2
for which

the above metric describes a black hole with an event
horizon [30,32,33],

rh ¼ 2Me�o: (94)

Note that in this limit there is only one event horizon (94)
and the gauge fields will not play any role in the subsequent
analysis. In other words we have only gravitational anom-
aly in the theory. Also, this is an example with distinct fðrÞ,
hðrÞ so that ffiffiffiffiffiffiffi�g

p
� 1. For this black hole we can write the

complete expressions for current/EM tensors for the Unruh
(Hartle-Hawking) (54) by substituting the values for fðrÞ
(92) and hðrÞ (94). For the sake of simplicity, here we just
give the asymptotic expression for Tr

t

Tr
tðr ! 1Þ ¼ 1

192�
f0ðrhÞh0ðrhÞ ¼ 1

768M2e2�o
; (95)

which gives the usual expression for energy flux from GHS
black hole [32,33].

For the Boulware vacuum, substituting (92) and (93) in
(74) we note that there is no Hawking flux in the asymp-
totic region, as expected.

VI. CONCLUSIONS

We have discussed in some details our method, briefly
introduced in [5], of computing the Hawking flux using
covariant gauge and gravitational anomalies. Contrary to
earlier approaches, a split of space into distinct regions
(near to and away from horizon) using step functions was
avoided. This method is different from the anomaly can-
celling mechanism of [1–3,11] although it uses identical
(covariant) boundary conditions. It reinforces the crucial
role of these boundary conditions, the study of which has
been the principal objective of this paper.

In order to get a clean understanding of these boundary
conditions we first computed the explicit structures of the
covariant current hJ�i and the covariant energy-

momentum tensor hT��i from the chiral (anomalous) ef-

fective action, appropriately modified by adding a local
counterterm [4,23]. The chiral nature of these structures
became more transparent by passing to the null coordi-
nates. In these coordinates the contribution from the in-
going (left moving) modes was manifestly seen to vanish.
The outgoing (right moving) modes involved arbitrary
parameters which were fixed by imposing regularity con-
ditions at the future horizon. No condition on the ingoing
(left moving) modes was required as these were absent as a
result of chirality. These findings by themselves are new.

They are also different from the corresponding expressions
for hJ�i, hT��i, obtained from the standard nonanomalous

(Polyakov) action, satisfying r�J
� ¼ 0, r�T

�� ¼
J�F

�� and T�
� ¼ R

24� , implying the absence of any gauge

or gravitational (diffeomorphism) anomaly. Only the trace
anomaly is present. Details of the latter computation may
be found in [2,28].
We have then established a direct connection of these

results with the choice of the covariant boundary condition
used in determining the Hawking flux from chiral gauge
and gravitational anomalies [1–5]. The relevant universal
component (Jr or Tr

t) obtained by solving the anomaly
equation subject to the covariant boundary condition (6)
and (14) agrees exactly with the result derived from im-
posing regularity condition on the outgoing modes at the
future horizon: namely, a free falling observer sees a finite
amount of flux at outer horizon indicating the possibility of
Hawking radiation. Our findings, therefore, provide a clear
justification of the covariant boundary condition.
Finally, we put our computations in a proper perspective

by comparing our findings with the standard implementa-
tion of the various vacua states on nonchiral expressions.
Specifically, we show that our results are compatible with
the choice of Unruh vacuum for a nonchiral theory which
eventually yields the Hawking flux.

APPENDIX

Unlike the case of vector theory, where the diffeomor-
phism invariance is kept intact in spite of the presence of
trace anomaly, the chiral theory has both a diffeomorphism
anomaly (gravitational anomaly) and a trace anomaly. In
1þ 1 dimensions it is possible to obtain a relation between
the coefficients of the diffeomorphism anomaly and the
trace anomaly by exploiting the chirality criterion.
To see this let us write the general structure of the

covariant Ward identity,

r�T
�
� ¼ J�F

�
� þ Na ����r�R; (A1)

where Na is an undetermined normalization. The func-
tional form of the anomaly follows on grounds of dimen-
sionality, covariance and parity. Likewise, the structure of
the covariant trace anomaly is written as,

T�
� ¼ NtR (A2)

with Nt being the normalization. In the null coordinates
(42) and (43) for � ¼ v, the left hand side of (A1) becomes

r�T
�
v ¼ ruT

u
v þrvT

v
v ¼ ruðguvTvvÞ þ rvðguvTuvÞ

¼ rvðguvTuvÞ; (A3)

where we have used the fact that for a chiral theory Tvv ¼
0 (see Eq. (49)). Also, in null coordinates, we have,

Tuv ¼ 1

2
ðguvTv

v þ guvT
u
uÞ ¼ guv

2
T�

� ¼ f

4
T�

�: (A4)
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By using (A2)–(A4) we obtain,

r�T
�
v ¼ Nt

2
rvR: (A5)

where we used guv ¼ 2
f (44).

The right-hand side of (A1) for � ¼ v, with the use of
the chirality constraint Jv ¼ 0 (46), yields

J�F
�
v þ Na ��v�r�R ¼ NarvR: (A6)

Hence, by equating (A5) and (A6) we find a relationship
between Na and Nt

Na ¼ Nt

2
(A7)

which is compatible with (9) and (29) with Na ¼ Nt

2 ¼ 1
96� .

It is clear that chirality enforces both the conformal and
diffeomorphism anomalies. The trivial (anomaly free) case
Na ¼ Nt ¼ 0 is ruled out because, using general argu-
ments based on the unidirectional property of chirality, it
is possible to prove the existence of the diffeomorphism
anomaly in 1þ 1 dimensions [22].
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