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The properties of compact stars made of massive bosons with a repulsive self-interaction mediated by

vector mesons are studied within the mean-field approximation and general relativity. We demonstrate that

there exists a scaling property for the mass-radius curve for arbitrary boson masses and interaction

strengths which results in a universal mass-radius relation. The radius remains nearly constant for a wide

range of compact star masses. The maximum stable mass and radius of boson stars are determined by the

interaction strength and scale with the Landau mass and radius. Both the maximum mass and the

corresponding radius increase linearly with the interaction strength so that they can be radically different

compared to the other families of boson stars where interactions are ignored.
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I. INTRODUCTION

White dwarfs, neutron, and quark stars, collectively
dubbed compact stars, are the final result of stellar evolu-
tion. White dwarfs are stabilized by the Fermi degeneracy
pressure. There exists an upper limit for the mass of a white
dwarf, the Chandrasekhar mass, which is about 1.4 times
the mass of the Sun [1]. Beyond this limit the white dwarf
is unstable against gravitational collapse. Neutron stars are
stable mainly due to the repulsive nature of the interactions
between nucleons. Therefore, the precise value of the
maximum mass for a neutron star is less certain, but is
presumably close to the predictions based on the Landau
consideration [2]. As shown in Ref. [3], Landau’s argument
can be extended to a general compact star made of fermi-
ons, a fermion star, with arbitrary fermion mass and inter-
action strength.

In the following we are studying compact stars made of
bosons. Unlike fermion stars, boson stars have no obser-
vational evidence, yet. Besides this the existence of any
stable scalar particle has never been experimentally veri-
fied. Wheeler [4] introduced a gravitational electromag-
netic entity called a geon. The gravitational attraction of its
own field energy confines the geon in a certain region.
Later Kaup [5] solved the Klein-Gordon Einstein equations
for scalar fields and found a new class of solutions for
gravitating objects. These boson stars are stable with re-
spect to spherically symmetric gravitational collapse.
Ruffini and Bonazzola [6] demonstrated that boson stars
describe a family of self-gravitating scalar field configura-
tions within general relativity. In Ref. [7] Takasugi and
Yoshimura calculated boson stars within an approach simi-
lar to the one conventionally adopted for neutron stars by
solving the Tolman-Oppenheimer-Volkoff (TOV) equation
[8–10] with a separate equation of state describing the
properties of matter. Boson stars with self-interactions

have been also considered, in particular, as candidates for
dark matter [11]. For reviews on boson stars we refer to
[12–14].
In the following, we consider boson stars as localized,

gravitationally bound objects made of self-interacting bo-
sons at zero temperature. The interactions between the
bosons is described by vector meson exchange in the
relativistic mean-field approximation. The resulting equa-
tion of state is used as input to solve the TOVequation for
boson stars, similar to the approach of Ref. [7] but with an
equation of state based on a field-theoretical approach. We
demonstrate that there are scaling relations for the mass-
radius curve. In particular, we show that the maximum
mass is controlled by the interaction strength and the
Landau mass, not by the boson mass. We compare our
results to previous works and to the case of fermion stars
with self-interactions.

II. SCALING RELATIONS FOR COMPACT STARS

We assume a spherically symmetric and static configu-
ration where the energy-momentum tensor is that of a
perfect fluid at rest. Then the star structure can be obtained
by solving the TOV equations, which can be conveniently
written as

dp

dr
¼ �GM�

r2

�
1þ p

�

��
1þ 4�r3p

M

��
1� 2GM

r

��1
(1)

with

dM

dr
¼ 4�r2�: (2)

Additionally, one needs an equation of state, pð�Þ, which
describes the microscopic properties of the stellar matter.
These coupled differential equations for the pressure pðrÞ
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and the mass profile MðrÞ are integrated from r ¼ 0 with
some central value p0 to a point where the pressure van-
ishes pðRÞ ¼ 0 which defines the radius R and the total
mass MðRÞ of the boson star.

The TOV equations have a similar scaling behavior as
the one for Newtonian hydrostatic equilibrium (see e.g.
[3]). Just the gravitational constant G and the boson mass
mb are used to rewrite the TOVequations together with the
equation of state in dimensionless form. Solving the di-
mensionless TOV equation for a certain class of equations
of state allows for deriving general solutions by just rescal-
ing the results by appropriate dimensionful parameters.

The first relativistic correction factor in Eq. (1), i.e. ð1þ
p=�Þ, can be scaled by choosing p0 ¼ p=�o and �0 ¼
�=�o. Here �o is a common factor with dimension of
mass to the fourth power. For the other two relativistic
factors in Eq. (1) we introduce the dimensionless mass
M0 ¼ M=a and the dimensionless radius r0 ¼ r=b. For a
dimensionless expression one has to set

b3�o

a
¼ 1 and

a

M2
Pb

¼ 1 (3)

that leads to the following relations:

a ¼ M3
Pffiffiffiffiffiffi
�o

p and b ¼ MPffiffiffiffiffiffi
�o

p (4)

where MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
@c=G

p
is the Planck mass. Note that the

Newtonian terms do not give any additional constraint.
Choosing �o ¼ m4

b, the rescaling factors are a ¼ M3
P=m

2
b

and b ¼ MP=m
2
b, which coincide with the expressions of

the maximum mass and the radius for compact stars intro-
duced by Landau [2],

ML ¼ M3
P

m2
b

and RL ¼ MP

m2
b

: (5)

We note in passing that for the Massachusetts Institute of
Technology bag equation of state these scaling factors are
�o ¼ B so that the maximum mass and the corresponding

radius scale as B�1=2, a well-known result for quark stars
[15].

III. MESON EXCHANGE MODEL FOR
INTERACTING BOSONS

We describe the interactions between scalar bosons by
the exchange of vector mesons. For a scalar field � and a
vector field V� the Lagrangian reads

L ¼ D�
��

�D���mb
2���� 1

4V��V
�� þ 1

2m
2
vV�V

�

(6)

with V�� ¼ @�V� � @�V�. The boson field is coupled to

the vector field by a minimal coupling scheme

D � ¼ @� þ igv�V�; (7)

where gv� is the �-V coupling strength. Note that the

vector field has a quadratic coupling term to the scalar
field in the Lagrangian which ensures that the vector field is
coupled to a conserved current (see below). We treat the
vector field as a classical field. In static bulk matter the
spatial components of the vector field vanish and the
equation of motion for the scalar field reads

½D�
�D� þmb

2��ðxÞ ¼ 0: (8)

In the mean-field approximation, after expanding into
plane waves, we obtain for the lowest energy mode k ¼ 0:

!� ¼ mb þ gv�V0: (9)

Note that the vector interaction between the scalar particles
is repulsive which ensures the overall stability of self-
interacting boson matter. The vector field is determined
from the equation

m2
vV0 ¼ 2gv�ð!� � gv�V0Þ��� ¼ 2gv�mb�

�� (10)

where we have used the dispersion relation for the � field
equation (9). The conserved current for the scalar field can
be obtained from the Lagrangian (8)

J� ¼ i

�
�� @L

@��� �
@L
@��

�

�

¼ ��i@��� ði@���Þ�þ 2gv�V��
��: (11)

The number density of bosons

nb ¼ J0 ¼ 2ð!� � gv�V0Þ��� ¼ 2mb�
�� (12)

is just the source term for the vector field. The total energy
density of the boson matter can be determined from the
energy-momentum tensor

� ¼ 2m2
b�

��þ 1

2
m2

vV
2
0 ¼ mbnb þ

g2v�

2m2
v

n2b (13)

where the equation of motion for the vector field has been
used. The pressure is given just by the vector field contri-
bution

p ¼ 1

2
m2

vV
2
0 ¼ g2v�

2m2
v

n2b: (14)

Note that these expressions are thermodynamically con-
sistent as can be checked by using the thermodynamic
relation

p ¼ n2b
dð�=nbÞ
dnb

: (15)

The form of the interaction is actually similar to the one
used for interacting fermions and the corresponding Fermi
stars in [3]. For the rescaled TOV equations we introduce
the dimensionless interaction parameter y ¼ mb=mI,

where mI ¼
ffiffiffi
2

p
mv=gv�, and set �0 ¼ �=m4

b and p0 ¼
p=m4

b. The equation of state for interacting boson matter
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can be summarized to be of the simple form

p0 ¼ y2n02b and �0 ¼ n0b þ y2n02b (16)

with the dimensionless number density n0b ¼ nb=m
3
b. It is

possible to represent the equation of state in a polytropic
form p ¼ �� for certain limits. For low densities, one
approaches p / �2, a polytrope with � ¼ 2. For high
densities, one has an equation of state of the form p ¼ �
with � ¼ 1, which is the stiffest possible equation of state
first discussed by Zel’dovich [16]. The switch between
those two limiting cases is controlled by the interaction
strength y. The larger y, the lower is the energy density to
approach the causal limit p ¼ �.

Figure 1 depicts the dimensionless pressure versus the
dimensionless energy density. The values of the interaction
strength y are chosen between 10�2 to 107. There are two
different slopes for small and large values of �0 corre-
sponding to the above mentioned limits. The point where
the slope changes shifts to lower densities with increasing
interaction strength y, but for low densities the slope is � ¼
2. At high �0 all curves merge to the limiting curve with a
slope of � ¼ 1.

IV. SCALING RELATION FOR BOSON STARS
WITH SELF-INTERACTION

We use the dimensionless equation of state to solve the
dimensionless TOV equations. The equation of state de-
pends only on the interaction strength y. Figure 2 shows the
double logarithmic plot of the dimensionless mass M0
versus the dimensionless radius R0 for different interaction
strengths y ranging from 10�3 to 105. One observes that
each mass-radius curve contains a constant radius part over
a wide range of masses. Also, the curves are very similar

and seem to be just shifted to larger masses and radii with
increasing interaction strength.
This interesting behavior can be explained by consider-

ing the equation of state described by a polytrope p� ��

with � ¼ 2. In general, the solution to the Lane-Emden
equation, see e.g. [17], results in a mass-radius relation of

the formM0 / �ð3��4Þ=2
c and R0 / �ð��2Þ=2

c , where �c is the
central energy density. Hence, at low densities and large
radius R � 2GM, where effects from general relativity
can be ignored, the mass of the star increases linearly
with �c while the radius R0 remains constant for � ¼ 2
that explains the peculiar form of the mass-radius curves.
There exists another interesting feature of the mass-

radius curves which reflects the scaling properties of the
equation of state and the TOV equations. To illustrate this
we plot in Fig. 3 the dimensionless maximum mass M0

max

as a function of the interaction strength y. It is interesting to
see that the maximum mass M0

max scales linearly with the
interaction strength y.
Therefore, one can conclude that by proper rescaling all

mass-radius curves can be reduced to one universal mass-
radius curve. Indeed, dividing the dimensionless mass M0
and the corresponding radius R0 by the interaction strength
y results in an unique mass-radius relation as depicted in
Fig. 4. This graph looks rather similar to the mass-radius
curve of a strongly interacting fermion star [3]. There the
maximum mass is constant for weak interactions (y � 1)
and increases linearly in y for strong interactions (y � 1).
Note that the part of the curve to the left of the maximum
mass represents unstable configurations; only the star con-
figurations at the maximum and to the right of it can exist.

FIG. 1. Double logarithmic plot of the dimensionless pressure
versus the dimensionless energy density for different interaction
strengths y.

FIG. 2. The dimensionless mass M0 is plotted versus the di-
mensionless radius R0 for different interaction strengths y rang-
ing from 10�3 to 105. Note that each mass-radius curve
terminates in a spiral at the left end, which is not visible in the
double logarithmic plot, but can be seen in the linear plot of
Fig. 4.
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The existence of a maximum mass is determined by the
change of the equation of state from a polytrope with � ¼
2 to one with � ¼ 1. The latter value is lower than the
critical value �c ¼ 4=3 for stable compact stars (effects of
general relativity will even increase this value slightly).

Figure 5 shows the two limiting radii for interacting
boson stars as a function of the interaction strength y.
Here, R0

max and R0
min denote the maximum and minimum

radius for boson stars, respectively. R0
min stands for radius

corresponding to the maximum mass configuration, while
R0
max is the radius of stars with masses much smaller than

the maximum mass. Both the maximum and the minimum
radius vary linearly with the interaction strength y and the

difference between the two radii is rather small, by a factor
of about 0.61 independent of the interaction strength.
Figure 6 shows the normalized density profile of

�0ðrÞ=�0ð0Þ over the normalized radius r0=R0 for different
interaction strengths calculated for the maximum mass
configuration. Again, there appears a universal curve inde-
pendent of the interaction strength and the mass of the
boson. The rate of the decrease of the density with the
radius is then the same for all interaction strengths y. The
density profile shows a small plateau in the core region up
to a radius of about r� 0:1R followed by a nearly linear
decrease up to the surface of the boson star.

FIG. 5. Plot of the two limiting radii R0
max and R0

min for boson
stars as a function of interaction strength y.

FIG. 6. The variation of the normalized density �0ðrÞ=�0ð0Þ
with the normalized radius r0=R0 for different interaction
strengths showing that there is only one universal curve.

FIG. 4. The dimensionless mass M0 is plotted versus the di-
mensionless radius R0 dividing both by the interaction strength y.
The result is a universal mass-radius relation.

FIG. 3. The dimensionless maximum massM0
max is plotted as a

function of interaction strength y.
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The scaling behavior observed for interacting boson
stars follows in a straightforward way from our discussion
above on the scaling features of the TOV equations. The
maximum mass configuration is determined by the equa-
tion of state at high central densities, where p ¼ �. The
pressure and the energy density, p and �, depend then on
the interaction strength as y2. Rescaling both, the energy
density and the pressure, by the factor m4

b=y
2 gives the

modified Landau mass and Landau radius

Mb
L ¼ y �M

3
P

m2
b

and Rb
L ¼ y �MP

m2
b

(17)

for compact stars with interacting bosons. The maximum
mass and the corresponding radius have to increase linearly
with the interaction strength y. This is in complete agree-
ment with the results of Ref. [11] where the self-interaction
term of the form ��4 was used to describe the interactions
between bosons. Also for this type of interaction, the
maximum mass and the corresponding radius were found
to scale with the interaction strength and the Landau mass

as Mmax / �1=2ML. The relation for the maximum mass is
compatible with our findings by realizing that the dimen-
sionless coupling constant � can be associated with our
interaction strength y2. In addition to the case of scalar self-
interaction, we find that for vector interactions the scaling
property is even more general as the whole mass-radius
curve can be described by a universal curve when using the
modified Landau mass and radius. We note that compact
stars made of fermions with vector interactions [3] reveal
the same scaling feature of the mass-radius curve for large
interaction strengths.

The maximum mass of boson stars as obtained from
numerical calculations is

Mmax � 0:164y �M
3
P

m2
b

(18)

and the two limiting radii of boson stars are given by the
expressions

Rmax � 1:252y �MP

m2
b

and Rmin � 0:763y �MP

m2
b

: (19)

The above relations can be used to calculate the maximum
mass and the maximum and minimum radii of boson stars
for arbitrary interaction strength y and boson masses mb.
The values for the Landau mass and radius are ML ¼
1:632M	 and RL ¼ 2:410 km, respectively, for a boson
mass of mb ¼ 1 GeV. One recovers the same scaling
relations as for the noninteracting case, see e.g. Ref. [7],
by setting the interaction scale equal to the Planck mass,
mI ¼ MP,

Mmax / M2
P

mb

and Rmin / 1

mb

; (20)

which are orders of magnitude smaller than for the case of
realistic interactions. We note that our numerical prefactors
are different from the ones of Takasugi and Yoshimura [7]
while the scaling with the boson mass is the same. These
authors adopt a different equation of state, where the
pressure has the form as for degenerate configurations,

e.g. in the low-density limit they recover that p / �5=3.
In our case the pressure is determined by interactions only
and is proportional to the density squared.
Table I gives the maximum mass and the corresponding

radius for four different cases of the interaction parameter.
By setting mI ¼ MP or y ¼ mb=MP one recovers the case
for ordinary boson stars with free bosons (see above) which
are just gravitationally bound. The case y ¼ 1 gives the
Landau mass and radius of compact stars, which is nearly
the same for boson stars and fermion stars when including
interactions. Finally, we consider the case of interactions
mediated by the weak interaction scale of about mI ¼
100 GeV and the QCD scale of about mI ¼ 100 MeV.
For the boson masses we choose the range from the elec-
troweak scale to a typical mass of axions, �10�5 eV. We
want to emphasize the following features of these calcu-
lations. For the free case mI ¼ MP one only reaches as-
trophysically interesting scales for boson masses of less

TABLE I. Order of magnitude scales of the maximum mass and the characteristic radius of compact stars made of different boson
masses and interaction strengths. The first set corresponds to the free case by setting y ¼ mb=MP (the boson stars are just bound by
gravity), and the second gives the Landau mass and radius by setting y ¼ 1, which holds for boson and fermion stars. The third and last
set lists the values for interaction mass scales of the standard model weak and strong interactions, i.e. of 100 GeV and 100 MeV,
respectively.

Boson mass 100 GeV 1 GeV 1 MeV 1 keV 1 eV 10�5 eV Interaction

MmaxðM	Þ 10�22 10�20 10�17 10�14 10�11 10�6 mI ¼ MP

R (km) 10�21 10�19 10�16 10�13 10�10 10�5 (Free case)

MmaxðM	Þ 10�5 0.1 105 1011 1017 1027 y ¼ 1
R (km) 10�4 1 106 1012 1018 1028 (Landau limit)

MmaxðM	Þ 10�5 10�3 1 103 106 1011 mI ¼ 100 GeV
R (km) 10�4 10�2 10 104 107 1012 (Weak scale)

MmaxðM	Þ 10�2 1 103 106 109 1014 mI ¼ 100 MeV
R (km) 0.1 10 104 107 1010 1015 (QCD scale)
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than 10�5 eV. Maximum masses close to the ones for
neutron stars, M� 1M	, can be reached by boson stars
for boson masses of around 1 GeV (Landau case), 1 MeV
for bosons with weak interactions, and 1 GeV for strong
interactions. The mass range of observed supermassive
black holes,M ¼ 106 to 109M	, is found for boson masses
between 1 keV and 1 MeV for the Landau case, 1 eV and
below for weak interactions, and 1 eV to 1 keV for strong
interactions. It is observed that the inclusion of interactions
results in a wide range of possible masses and radii for
boson stars, covering scales as small as a fraction of a solar
mass and below a kilometer to scales of supermassive
black holes. It is interesting to note that a boson with a
mass of 100 GeVand with QCD-type interaction strengths
gives star configurations with masses and radii as a neutron
star. Surprisingly, for a boson star made of axions (mb �
10�5 eV) and self-interactions on the scale of 1012 GeV,
one obtains a mass of about 30M	 with a radius of 200 km,
i.e. the mass of compact objects found in binary systems
which are attributed to light black holes. These values are
orders of magnitude different compared to the case of
boson stars with noninteracting axions, see also Ref. [7]
and Table I.

V. SUMMARY

We have constructed an equation of state for a system of
massive bosons interacting by the exchange of vector
mesons. By solving the TOV equations for such boson
stars, we have demonstrated that there exists a universal
mass-radius curve independent of the boson mass and the
interaction strength. The maximum mass and the corre-
sponding radius of boson stars are scaled with the Landau
mass and Landau radius times the interaction strength. For
masses much smaller than the maximum mass, the radius

stays constant and is only slightly larger than the one for
the maximum mass configuration.
The maximummass and the corresponding radius can be

computed with the simple formulas Mmax ¼ 0:164y �
M3

P=m
2
b and Rmin ¼ 0:763y �MP=m

2
b for any given boson

mass mb and interaction strength y. The possible masses
and radii for boson stars can therefore cover a wide range
and can be similar to the ones found for astrophysical
compact objects, be it neutron stars or black hole candi-
dates. For example, for a boson with QCD-type interaction
strength and a boson mass of 100 GeV the maximum mass
is Mmax � 0:3M	 with a radius of about 2 km. A boson
with a typical axionlike mass of 10�5 eV and an interac-
tion scale of 1012 GeV will give a maximum mass of the
boson star of 30M	 with a radius of 200 km. The compact-
ness of boson stars for the maximum mass configuration is
aboutR=ð2GMÞ � 2:3which is close to the value found for
fermion stars R=ð2GMÞ � 2:4 in Ref. [3]. It is interesting
that these values are below the radius of the innermost
stable circular orbit of nonrotating black holes
R=ð2GMÞ ¼ 3.
Finally, we mention that the full problem addressed here

involves solving the Einstein equations with the coupled
system of Klein-Gordon and Proca equations which we
leave to address as an interesting extension for future work.
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