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We assess the statistical errors in estimating the parameters of nonspinning black hole binaries using

ground-based gravitational-wave detectors. While past assessments were based on partial information

provided by only the inspiral and/or ring-down pieces of the coalescence signal, the recent progress in

analytical and numerical relativity enables us to make more accurate projections using complete inspiral-

merger-ring-down waveforms. We employ the Fisher information-matrix formalism to estimate how

accurately the source parameters will be measurable using a single interferometric detector as well as a

network of interferometers. Those estimates are further vetted by full-fledged Monte Carlo simulations.

We find that the parameter accuracies of the complete waveform are, in general, significantly better than

those of just the inspiral waveform in the case of binaries with total massM * 20M�. In particular, for the
case of the Advanced LIGO detector, parameter estimation is the most accurate in the M ¼ 100–200M�
range. For an M ¼ 100M� system, the errors in measuring the total mass and the symmetric mass-ratio

are reduced by an order of magnitude or more compared to inspiral waveforms. Furthermore, for binaries

located at a fixed luminosity distance dL, and observed with the Advanced LIGO-Advanced Virgo

network, the sky-position error is expected to vary widely across the sky: For M ¼ 100M� systems at

dL ¼ 1 Gpc, this variation ranges mostly from about a hundredth of a square degree to about a square

degree, with an average value of nearly a tenth of a square degree. This is more than 40 times better than

the average sky-position accuracy of inspiral waveforms at this mass range. For the mass parameters as

well as the sky position, this improvement in accuracy is due partly to the increased signal-to-noise ratio

and partly to the information about these parameters harnessed through the post-inspiral phases of the

waveform. The error in estimating dL is dominated by the error in measuring the wave’s polarization and

is roughly 43% for low-mass (M� 20M�) binaries and about 23% for high-mass (M� 100M�) binaries
located at dL ¼ 1 Gpc.
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I. INTRODUCTION

Astrophysical black holes (BHs) are typically classified

into three groups: stellar-mass BHs (with a mass of ap-
proximately 3–30M�), [super]massive BHs (� 104–
1010M�), and intermediate-mass (IM) BHs
(� 30–104M�). There is strong observational evidence
for the existence of both stellar-mass and supermassive

BHs. The existence of stellar-mass BHs, which are the
end products of stellar evolution, has been primarily in-
ferred from observations of x-ray binaries that allow us to
estimate the mass of the compact object through measure-
ments of the orbital period and the maximum line-of-sight
Doppler velocity of the companion star [1]. The mecha-
nism for producing supermassive BHs is less certain but

the acceleration of gas disks in the bulges of nearly all local
massive galaxies point to their existence there [2]. Even

more convincingly, the observations of stellar proper mo-
tion in the center of the Milky Way have confirmed the
presence of a supermassive BH [3]. On the other hand, the
observational evidence for IMBHs is only suggestive. The
main hint comes from the observations of ultraluminous x-
ray sources, combined with the fact that several globular
clusters show evidence for an excess of dark matter in their
cores [4].
According to hierarchical galaxy-merger models,

[super]massive BH binaries should form frequently, and
should be common in the cores of galaxies. There is at least
one piece of clear evidence for the existence of a super-
massive BH binary, namely, the x-ray active binary black
hole (BBH) at the center of the Galaxy NGC 6240, which is
expected to coalesce in Hubble time [5]. There is also
growing observational evidence for the existence of
many other [super]massive BBHs [6–9]. Despite the lack
of any observational evidence for stellar-mass/intermedi-
ate-mass BH binaries, different mechanisms to form these
binaries have been proposed in the literature (see, for e.g.,
[10–13]).
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Coalescing BH binaries are among the most promising
sources of gravitational waves (GWs) for the ground-based
interferometric detectors. What makes them extremely
interesting is that their gravitational waveforms can be
accurately modeled and well parametrized by combining
a variety of analytical and numerical approaches to general
relativity. To wit, the gravitational waveforms from the
inspiral stage of the binary can be accurately computed
by the post-Newtonian (PN) approximation to general
relativity, while those from the ring-down stage can be
computed using BH perturbation theory. The recent break-
through [14–16] in numerical relativity has made it pos-
sible to compute accurate gravitational waveforms from
the hitherto unknown merger stage as well [14–21].

Concomitant with that breakthrough has been the no-
table progress in GW instrumentation. The Initial LIGO
(LIGOI) [22] detectors have completed their first science
run at design sensitivity. The Virgo detector [23] ran con-
currently with LIGO for part of that run. Currently, both
observatories are undergoing commissioning work with
the target of achieving second-generation sensitivities
over the next several years, to usher us into the era of
Advanced LIGO (AdvLIGO) [24] and Advanced Virgo
(AdvVirgo). Also, an intermediate, enhanced stage of
LIGO, called Enhanced LIGO (EnhLIGO), is expected to
be operational this year.

In the absence of any observational evidence of stellar-
mass/intermediate-mass BH binaries, the rate of binary
coalescence events is estimated by population synthesis
studies. Plausible rate estimates for stellar-mass BH co-
alescences detectable by LIGOI/EnhLIGO/AdvLIGO de-
tectors range from 7� 10�4=7� 10�3=2 per year to
2=20=4000 per year with a likely rate estimate of around
0:01=0:1=30 per year [25]. For the case of IMBH binaries,
the plausible rates for LIGOI/AdvLIGO detectors are
10�4=0:1 per year [12]. Similarly, for the case of stellar-
mass BHs merging with IMBHs (the so-called
intermediate-mass-ratio inspirals), plausible event rates
for LIGOI/AdvLIGO are 10�3=10 per year [13].1 A net-
work of interferometric detectors involving LIGO, Virgo,
and perhaps others, such as GEO600 [27], and TAMA [28],
will be able to extract a host of physical parameters of
those sources, complementing other detectors probing their
electromagnetic characteristics.

Indeed, some of the BBH mergers, e.g., triggered by the
mergers of galaxies/stellar clusters harboring
supermassive/intermediate-mass BHs, are likely to have

electromagnetic (EM) counterparts. To associate an EM
event with a GW signal from such a merger, and vice versa,
one needs to be able to locate the GW source with a high
enough accuracy so that the number of star clusters or
galaxies in the sky-position error box is sufficiently small.
As argued in Ref. [29], even arc-minute resolution can
make such associations quite feasible. Whereas the GW
observations are expected to provide more accurate dis-
tance measurements than their EM counterpart, the latter
will locate the sources in the sky with far greater resolution
than the former. This complementarity was explored in
Ref. [30] to argue that by combining GW and electromag-
netic observations it should be possible to constrain the
values of certain cosmological parameters. In particular,
using the distance-redshift relation from many BBH ‘‘stan-
dard sirens,’’ such multimessenger observations can put
interesting constraints on the equation of state of the dark
energy [31,32]. Supermassive BH binaries are also excel-
lent test beds for ‘‘strong-field’’ predictions of general
relativity (see, e.g., [33,34]). Also, GW observations of
BBH coalescences can be used to test theoretical predic-
tions such as the ‘‘no-hair’’ theorem [35]. The effectiveness
of these and other applications depends on the accuracy
with which we can estimate the parameters of the binary,
which includes the component masses, distance, orienta-
tion, and sky location.
In this work, we study the effect of detector noise in

limiting the accuracy with which parameters of a BBH
system can be determined with the present and planned
earth-based laser interferometers. In the past, in the ab-
sence of complete coalescence waveforms arising from
numerical relativity, parameter-estimation studies were
constrained to address this question only for the inspiral/
ring-down pieces of the signal present in the band of a
detector [36–45]. Here we extend those studies to estimate
how the astrophysical quest for characterizing such sys-
tems benefits from the knowledge of the complete coherent
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different detectors considered in this paper.

1It should be noted that these assessments take into account
only the inspiral stage (for the case of stellar-mass and
intermediate-mass-ratio binaries) or ring-down stage (for the
case of IMBH binaries) of the binary coalescence. The event
rates are likely to be higher for a search using inspiral-merger-
ring-down templates. See, for example, Fig. 14 of [26] for a
comparison of the sensitivities of searches employing different
templates.
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signal, comprising some or all of the inspiral, merger, and
ring-down pieces, that lies in a detector’s observational
band. Improvements in the accuracy of BBH parameter
measurements might be expected owing to the increased
signal-to-noise ratio (SNR) arising from the inclusion of
the post-inspiral pieces. A second avenue toward parame-
ter accuracy improvements can also arise, for some pa-
rameters, from the breaking of some parameter
degeneracies that the extra information carried by the
GW phasing of those pieces might offer. We employ the
phenomenological inspiral-merger-ring-down waveforms
proposed in Refs. [26,46,47] to explore these possibilities.2

The systematic errors that might arise in observations using
these complete3 BBH coalescence templates are studied in
Ref. [54].

To estimate the parameter errors, we adopt a two-
pronged approach. One of these is of obtaining the Fisher
information matrix and then inverting it to derive the
parameter-error variance-covariance matrix [55]. The ele-
ments of this matrix are then used to obtain the lower
bound on the parameter estimator errors [56,57]. This
approach is employed here, in spite of its known limita-
tions [37,38,58], since it has been studied extensively in the
community and allows for a fair comparison of our results
with those given in the literature. However, since by its
very design, this bound may not be respected for signals
with a low SNR (as first demonstrated by Refs. [37,38]),
we also assess estimator errors through Monte Carlo stud-
ies. For the parameter ranges considered here, the latter
approach corroborates the findings of the former, with a
few notable exceptions arising from parameter-space
boundaries, where the Monte Carlo estimates reflect better
the results expected from real-data searches.

In addition to addressing the primary question on how
large the parameter errors are, we also study their behavior
across the BBH parameter space. We study how the various
estimator errors scale with the mass parameters them-
selves. How much improvement do the complete wave-
forms impart to the determination of the sky position of
BBHs in multidetector searches? How does the sky-
position accuracy change with the BBH mass parameters?
A summary of our results is as follows: First, we find that
the parameter-estimation accuracies using the complete
waveforms are, in general, significantly better than those
using only their inspiral phases in the case of BBHs with a
total mass M � ðm1 þm2Þ * 20M�, where m1;2 are the

component masses, at least for mass ratios between 0.25
and unity. The observed trend suggests that this improve-
ment can be expected for somewhat lower mass ratios as
well. Second, for BBHs at a fixed effective distance and

M * 10M� whereas the fractional errors in the two mass
parameters, M and � � m1m2=M

2, scale mostly mono-
tonically with M for the inspiral-only waveforms; they do
not display that property for the complete waveforms. In
the latter case, they instead exhibit a distinct minimum,
whose location is determined by M, �, and the detector’s
noise power spectral density (PSD). Third, owing to the use
of complete vis-à-vis inspiral-only waveforms the sky-
position accuracy improves by factors of many. We also
show that for the complete waveforms alone, the sky-
position accuracy mostly degrades with increasing total
mass when the SNR is kept fixed. This is primarily caused
by a similar degradation in the estimation accuracy of the
signal’s times of arrival at the different detectors in a
network. This deterioration in accuracy, while not mono-
tonic in M at finer scales, is broadly so at large scales, and
is caused by the reduction in the number of in-band wave
cycles.
More specifically, for Advanced LIGO, the estimation of

the total mass, the symmetric mass ratio, and the effective
distance deff is the most accurate in the M ¼ 100–200M�
range. (For other detectors, that mass range is somewhat
different since it is partly determined by their noise PSDs.)
For such systems, the reduction of errors in parameter
estimates is by an order of magnitude or more due to the
inclusion of the post-inspiral phases. The improvement is
mainly due to the expected increase in SNR arising from
the inclusion of those phases. This expectation, which is
based on the assumed Gaussianity and stationarity of de-
tector noise, must be tempered by the observation that the
amount of increase in SNR can be less in real data.
We also observe that for a fixed SNR, the inclusion of

the post-inspiral phases improves the accuracy ofM and �
for a wide range of masses much more (by several times)
than that of the chirp mass Mc. This is due to the fact that
the inclusion of those phases helps in breaking the degen-
eracy between those two parameters (M and �) known to
exist in the inspiral waveform.
For a fixed SNR, the estimation of the luminosity dis-

tance for low-mass systems shows negligible change by the
inclusion of the post-inspiral phases. This is due to its
strong covariance with the polarization and the orbital
inclination angles of the binary, which is mostly unaltered
by the inclusion of the post-inspiral phases. Also, for a
fixed SNR, the luminosity-distance estimate deteriorates
with increasing M, for reasons discussed below. On the
other hand, for a fixed luminosity distance, the error in its
estimate initially improves with increasing M, due to the
increase in SNR, before degrading eventually owing to the
decreasing number of in-band wave cycles.
Before moving on, we wish to point out some limitations

of the present work. First, this study considers only the
dominant harmonic of nonspinning BBH waveforms.
Astrophysical BHs are expected to have spin, and includ-
ing spin effects can change the estimation of different BBH

2A similar study using the effective-one-body-numerical-
relativity waveforms [48–52] is being pursued as well [53].

3Throughout this paper, we refer to the waveforms modelling
all the three (inspiral, merger, and ring-down) stages of BBH
coalescence as complete waveforms.
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parameters [59]. Whereas on the one hand previous calcu-
lations have shown that the parameter-estimation accura-
cies generally deteriorate upon the inclusion of spin-orbit
and spin-spin couplings [36,59], on the other hand the
inclusion of spin-induced precession in the waveform
model can improve the parameter estimation [60,61].
Also, it has been noted in various studies that including
the higher harmonics can significantly increase the
parameter-estimation accuracies [32,62–66]. So, while
the results presented in this paper may not be too far
from the realistic case, we stress that a rigorous statement
on the parameter-estimation accuracies should consider
these effects as well. Moreover, neglecting spins and
higher harmonics in the waveform models can result in a
significant amount of systematic errors in estimating vari-
ous parameters. These systematic errors are out of the
scope of this paper. A preliminary investigation of this is
presented in Ref. [54].

This paper is organized as follows: Sec. II briefly in-
troduces the main aspects of the search for binary black
holes. In particular, Sec. II A reviews the phenomenologi-
cal inspiral-merger-ring-down waveform templates pro-
posed in Refs. [26,46,47], while Sec. II B provides a brief
introduction towards the statistical theory of parameter
estimation. In Sec. III, we present the results of our calcu-
lations in the case of a search using a single interferometric
detector. This section discusses the results from the ana-
lytical calculations using the Fisher-matrix formalism as
well as the numerical Monte Carlo simulations. Results
from the calculations in the case of a network of detectors
are discussed in Sec. IV, while Sec. V summarizes the main
results and provides a discussion of the possible astrophys-
ical implications of this work.

II. GRAVITATIONAL-WAVE OBSERVATIONS OF
NONSPINNING BINARY BLACK HOLES

In general relativity, the gravitational-wave strain at any
point in space can be expanded in terms of its two linear
polarization components hþðtÞ and h�ðtÞ or the two related
circular polarization components,

h ðtÞ � hþðtÞ � ih�ðtÞ ¼ AðtÞei’ðtÞ (2.1)

and its complex conjugate, with ’ðtÞ and AðtÞ denoting the
wave’s phase and amplitude. Generally, the GWemitted by
a coalescing binary has multiple harmonics. In this work,
we limit our study to only the dominant harmonic’s con-
tributions to ’ðtÞ and AðtÞ. Then the GW strain hðtÞ in a
detector is the linear combination of the two polarization
components, hðtÞ ¼ FþhþðtÞ þ F�h�ðtÞ, with the detec-
tor’s antenna-pattern functions given as:

Fþð�;�; c Þ ¼ �1
2ð1þ cos2�Þ cos2� cos2c

� cos� sin2� sin2c ;

F�ð�;�; c Þ ¼ 1
2ð1þ cos2�Þ cos2� sin2c

� cos� sin2� cos2c :

(2.2)

Above, � and� are the polar and azimuthal angles specify-
ing the location of the source in the sky in the detector
frame and c is the polarization angle.
The two polarization components of the BBH signals are

sinusoids with varying amplitude and frequency, and have
phases �=2 radians apart relative to each other.
Consequently, their GW signal in a detector can be written
as:

hðtÞ ¼ CAðtÞ cos½’ðtÞ þ ’0�; (2.3)

where the amplitude coefficient C and phase ’0 can be
assumed to be constant for signals lasting for a duration (up
to several minutes) much shorter than Earth’s rotational
time scale:

C ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos2�Þ2F2þ þ 4cos2�F2�

q
;

’0 ¼ tan�1

�
2F� cos�

Fþð1þ cos2�Þ
�
:

(2.4)

Above, � is the angle of inclination of the orbit to the line of
sight.

A. Detecting nonspinning binary black holes

The GW signal’s phase ’ðtÞ and amplitude AðtÞ are
functions of the physical parameters of the binary, such
as the component masses and the spins. Detecting a signal
requires analyzing interferometric data, which are noisy.
Defining a search strategy, therefore, necessitates the mod-
elling of this noise, which we take here to be zero-mean
Gaussian and stationary:

nðtÞ ¼ 0; (2.5)

~n�ðfÞ~nðf0Þ ¼ 1
2ShðfÞ�ðf� f0Þ; (2.6)

with the overbar denoting the ensemble average and the
tilde denoting the Fourier transform,

~nðfÞ ¼
Z 1

�1
nðtÞe�2�iftdt: (2.7)

Above, ShðfÞ is the Fourier transform of the autocovar-
iance of the detector noise and is termed as its (one-sided)
power spectral density. We also assume the noise to be
additive. This implies that when a signal is present in the
data xðtÞ, then

xðtÞ ¼ hðtÞ þ nðtÞ: (2.8)

The noise covariance Eq. (2.6) introduces the following
innerproduct in the function space of signals:
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ha; bi ¼ 4<
Z 1

0
df

~a�ðfÞ~bðfÞ
ShðfÞ ; (2.9)

where ~aðfÞ and ~bðfÞ are the Fourier transforms of aðtÞ and
bðtÞ, respectively.

Under the above assumptions about the characteristics
of detector noise, the Neyman-Pearson criterion [55] leads
to an optimal search statistic, which when maximized over
the amplitude coefficient C, is the cross correlation of the
data with a normalized template,

� � hĥ; xi; (2.10)

where the normalized template is ~̂hðfÞ � ~hðfÞ= ffiffiffiffiffiffiffiffiffiffiffiffihh; hip
. In

a ‘‘blind’’ search in detector data, where none of the
binary’s parameters are known a priori, the search for a
GW signal requires maximizing � over a ‘‘bank’’ of tem-
plates (see, for e.g., [67]) corresponding to different values
of those physical parameters. Apart from the physical
parameters, the waveform also depends on the (unknown)
initial phase ’0 and the time of arrival t0. Maximization
over the initial phase ’0 is effected by using two orthogo-
nal templates for each combination of the physical parame-
ters [68], and the maximization over t0 is attained
efficiently with the help of the fast Fourier transform
(FFT) algorithms [69].

Since the cross correlation between the data and the
template can be most efficiently computed in the Fourier
domain by using the FFT, waveform templates in the
Fourier domain are computationally cheaper.
Reference [26] proposed a family of analytical Fourier
domain templates for BBH waveforms of the form,

~hðfÞ � AeffðfÞei�eff ðfÞ; (2.11)

where the effective amplitude and phase are expressed as

AeffðfÞ � M5=6

deff�
2=3

ffiffiffiffiffiffi
5�

24

s
f�7=6
merg

�

8>>><
>>>:
ðf=fmergÞ�7=6 if f < fmerg

ðf=fmergÞ�2=3 if fmerg � f < fring

wLðf; fring; �Þ if fring � f < fcut;

�effðfÞ � 2�ft0 þ ’0 þ 1

�

X7
k¼0

ðxk�2 þ yk�þ zkÞ

� ð�MfÞðk�5Þ=3: (2.12)

In the above expressions,

L ðf; fring; �Þ �
�
1

2�

�
�

ðf� fringÞ2 þ �2=4
(2.13)

is a Lorentzian function that has a width �, and that is
centered around the frequency fring. The normalization

constant, w � ��
2 ð fringfmerg

Þ�2=3, is chosen so as to make

AeffðfÞ continuous across the ‘‘transition’’ frequency

fring. The parameter fmerg is the frequency at which the

power-law changes from f�7=6 to f�2=3. The effective
distance to the binary is denoted by deff , which is related
to the luminosity distance dL by deff ¼ dL=C. The phe-
nomenological parameters fmerg, fring,�, and fcut are given

in terms of the total massM and symmetric mass ratio � of
the binary as

�Mfmerg ¼ a0�
2 þ b0�þ c0;

�Mfring ¼ a1�
2 þ b1�þ c1;

�M� ¼ a2�
2 þ b2�þ c2;

�Mfcut ¼ a3�
2 þ b3�þ c3:

(2.14)

The coefficients aj, bj, cj, j ¼ 0 . . . 3 and xk, yk, zk, k ¼ 0,

2, 3, 4, 6, 7, are tabulated in Table I of Ref. [47].

B. Measuring binary black hole parameters

To evaluate how effective the detectors will be in estab-
lishing the field of GW astronomy, especially, with the
second-generation Earth-based interferometers scheduled
to come online around 2014, one needs to foremost assess
how accurately they can measure the astrophysical prop-
erties of compact object binaries. That quest will be lim-
ited, on the one hand, by the accuracy with which the
search templates can model actual gravitational wave-
forms, and, on the other hand, by the inherent statistical
noise in the measurement process. The former issue is one
of systematics, which will be discussed elsewhere (see,
e.g., Ref. [54]). Here, we discuss the latter issue in more
detail.
To determine how large the noise-limited errors can be

in the measured values of the signal parameter, we take
those values to be the maximum-likelihood estimators. The
discussion in the preceding section shows that a total of
nine parameters characterize the nonspinning BBH coales-
cence signals considered here. They are the total mass M,
the symmetric mass ratio �, the sky-position angles ð�;�Þ,
the binary’s orientation angles ðc ; �Þ, the luminosity dis-
tance dL, the initial (or some reference) phase ’0, and the
time of arrival (or some reference time) t0. For computing
the error estimates, we map them onto the components
of the parameter vector, # � flnA; t0; ’0; lnM; ln�;

�;�; c ; �g, where A ¼ M5=6

deff�
3=2

ffiffiffiffiffi
5�
24

q
. Owing to noise, their

maximum-likelihood estimators, #̂, will expectedly fluc-

tuate about the true values, i.e., #̂ ¼ # þ �#, where �#a

is the random error in estimating the parameter #a. The
magnitude of these fluctuations can be quantified by the

elements of the variance-covariance matrix, 	ab ¼
�#a�#b [55].
A relation between the 	ab and the signal is available

through the Cramér-Rao inequality, which dictates that

k � k	k � k�1; (2.15)
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where � is the Fisher information matrix:

�ab ¼
XN
I¼1

h@a ~hIð#Þ; @b ~hIð#ÞiðIÞ

� XN
I¼1

4<
Z

df
@a ~h

I�ðf;#Þ@bhIðf;#Þ
SIhðfÞ

; (2.16)

where I is the detector index and @a denotes taking partial
derivative with respect to the parameter #a. Therefore,

�#a � ð�#a�#aÞ1=2 ¼ ��1=2
aa gives the lower bound on

the root-mean-square (rms) error in estimating #a. The two
are equal in the limit of large SNR (see, e.g., [58]).

The errors in the sky-position angles will be presented in
terms of the error in the measurement of the sky-position
solid angle, defined as

�� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�cos���Þ2 � ð� cos���Þ2

q
: (2.17)

Each parameter error, �#a, falls off inversely with SNR.
Since the solid angle is two dimensional, its error falls off
quadratically with SNR [55,70,71].

III. PARAMETER ESTIMATION: SINGLE-
DETECTOR SEARCH

A. Analytical calculation using the Fisher information
matrix

In this section, we use the Fisher information-matrix
formalism to estimate the errors in measuring the parame-
ters of coalescing BBHs with a single GW interferometer.
We present results for three generations of ground-based
detectors, namely, Initial LIGO, Enhanced LIGO, and
Advanced LIGO. The one-sided noise PSD of the Initial
LIGO detector is given in terms of a dimensionless fre-
quency x ¼ f=f0 by [72,73]

ShðfðxÞÞ ¼ 9� 10�46½ð4:49xÞ�56 þ 0:16x�4:52

þ 0:52þ 0:32x2�; (3.1)

where f0 ¼ 150 Hz, while the same for Enhanced LIGO

reads [74]:

ShðfðxÞÞ ¼ 1:5� 10�46½1:33� 10�27e�5:5ðlnxÞ2x�52:6

þ 0:16x�4:2 þ 0:52þ 0:3x2:1�; (3.2)

where f0 ¼ 178 Hz. For Advanced LIGO [72],

ShðfðxÞÞ ¼ 10�49

�
x�4:14 � 5x�2

þ 111

�
1� x2 þ x4=2

1þ x2=2

��
; (3.3)

where f0 ¼ 215 Hz, and, for Advanced Virgo [75],

ShðfðxÞÞ ¼ 10�47½2:67� 10�7x�5:6

þ 0:59eðlnxÞ2½�3:2�1:08 lnðxÞ�0:13ðlnxÞ2�x�4:1

þ 0:68e�0:73ðlnxÞ2x5:34�; (3.4)

where f0 ¼ 720 Hz. The calculations presented in this
section were performed using the Initial LIGO, Enhanced
LIGO, and Advanced LIGO noise PSDs, while the calcu-
lations presented in Sec. IV consider a three-detector net-
work consisting of Advanced LIGO and Advanced Virgo.
The noise amplitude spectra of the different detectors are
plotted in Fig. 1.
The parameters that can be estimated through single-

detector observations are fAðdLÞ; t0; ’0;M;�g. To be pre-
cise, one can measure only the Doppler-shifted masses,
unless there are additional experiments for determining the
Doppler shift [36] and, therefore, allow the estimation of
the true masses. Doppler shifting can arise due to the
motion of the detector relative to the source or the cosmo-
logical expansion. In measurements with multiple detec-
tors, as discussed below, it is possible to measure the
source distance and sky position as well. There too, the
distance observed is actually the Doppler-shifted distance.
The Fisher-matrix elements in the fA; t0; ’0;M; �g

space are computed from the derivatives of the waveforms
described by Eqs. (2.11), (2.12), (2.13), and (2.14):

�ab ¼ h@a ~hðfÞ; @b ~hðfÞi

’ 4
Z fcut

flow

df
@aAeffðfÞ@bAeffðfÞ þ A2

effðfÞ@a�effðfÞ@b�effðfÞ
ShðfÞ ; (3.5)

where the low-frequency cutoff, flow, is chosen to be 10 Hz
for Advanced LIGO, and 40 Hz for Enhanced and Initial
LIGOs. The upper-frequency cuttoff, fcut is given by
Eq. (2.14).

The rms errors in parameters M, �, and t0 are com-
puted by inverting the Fisher-matrix elements as dis-
cussed in Sec. II B. The error in estimating the chirp
mass Mc and the effective distance deff are obtained by
propagating the errors in M, �, and A in the following
way:

�
�Mc

Mc

�
2 ¼

�
�M

M

�
2 þ 9

25

�
��

�

�
2 þ 6

5
CM�

�M

M

��

�
(3.6)

�
�deff
deff

�
2 ¼ 25

36

�
�M

M

�
2 þ 1

4

�
��

�

�
2 þ

�
�A
A

�
2

þ 5

6
CM�

�M

M

��

�
� 5

3
CMA

�M

M

�A
A

� C�A
��

�

�A
A

(3.7)

P. AJITH AND SUKANTA BOSE PHYSICAL REVIEW D 79, 084032 (2009)

084032-6



where�#a denotes the rms error in estimating#a obtained
from �ab, and Cab is the correlation coefficient between
parameters #a and #b.

Errors in the estimates of the parameters M, �, Mc, t0,
and deff in the case of the AdvLIGO detector are plotted
against the total mass M in Fig. 2. These errors are com-
puted assuming that the binary is placed at an effective
distance of 1 Gpc. Also plotted in the figures are the same
error bounds computed from the 3.5 PN accurate restricted
PN waveforms in the stationary phase approximation
(SPA), truncated at the Schwarzschild innermost stable
circular orbit (ISCO). It can be seen that, over a significant
range of the total mass, the error bounds in the complete
templates are largely better than those in the PN inspiral
waveforms. For binaries with M ¼ 100M� and � ¼ 0:25,
the error bounds in various parameters using the complete
[PN] templates are �M=M ’ 0:34 [5.38]%, ��=� ’ 0:84
[12.98]%, �Mc=Mc ’ 0:35 [2.47]%, �t0 ’ 0:46
[15.51] ms, and �deff=deff ’ 1:36 [5.24]%. The errors in
estimating the same parameters using Initial LIGO and
Enhanced LIGO detectors are plotted in Figs. 3 and 4.

The rate of variation in the errors in different regions of
the parameter space can be understood by studying the

overlap function, which is the ambiguity function maxi-
mized over t0 and ’0 [76]. Figure 5 plots the contours of
the overlap between waveforms generated at different
points in the ðM;�Þ space. Notice the change in the shape
and orientation of the ambiguity ellipses, especially, as the
total mass of the binary is varied. While, to a very good
approximation, the chirp mass continues to remain as one
of the eigencoordinates [77] in the case of the low-mass
(with M � 20M�Þ binary inspiral (PN) waveforms, this is
no longer true for the complete waveforms of higher mass
systems. This is because the latter waveforms have more
information about the component masses than just the
chirp mass. The eigendirections change dramatically with
increasing total mass. It can be seen that the error trends
reported in Fig. 2 closely follow the shape of these ambi-
guity ellipses. This also means that while placing templates
in the inspiral-merger-ring-down searches, we will have to
consider these changes in the orientation of the ambiguity
ellipses. This will be studied in a future work.
One common problem encountered in the estimation of

errors using the Fisher information matrix is the following:
In some cases (especially in the case of large number of
parameters), the Fisher matrix becomes badly conditioned,
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FIG. 2 (color online). Errors in estimating the total mass M (top left), symmetric mass ratio � (top middle), chirp mass Mc (top
right), time of arrival t0 (bottom left), and effective distance deff (bottom right) in the case of the Advanced LIGO noise spectrum,
plotted against the total mass of the binary. The errors of M, �,Mc, and deff are in percentages and the errors of t0 are in seconds. The
value of the symmetric mass ratio � is shown in the legends. The solid lines correspond to a search using complete BBH templates and
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FIG. 4 (color online). Same as in Fig. 2 except that the binary is placed at an effective distance of 100 Mpc and the noise PSD
corresponds to that of Enhanced LIGO.
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FIG. 3 (color online). Same as in Fig. 2 except that the binary is placed at an effective distance of 100 Mpc and the noise PSD
corresponds to that of Initial LIGO.

P. AJITH AND SUKANTA BOSE PHYSICAL REVIEW D 79, 084032 (2009)

084032-8



thereby, decreasing the fidelity of the error covariance
matrix derived by inverting it. This problem can often be
obviated by intelligently choosing the parameters and by
projecting out certain dimensions in the Fisher matrix (e.g.,
t0 and ’0). We have verified our results by comparing the
errors computed using the full Fisher matrix with those
computed using the projected matrix. In our calculations,
they turned out to be the same to the extent discernible in
the figures and tables presented here.

It may be noted that for a fiducial signal limited only to
the inspiral phase of the binary, i.e., for f < fmerg, the

parameterA is uncorrelated with the other signal parame-
ters, and hence one has �1a ¼ �1a�

2, which renders the
Fisher matrix in the block-diagonal form. However, for the
complete signal, with the merger and the ring-down pieces
included, the correlation of A with the other parameters
becomes nonzero, and the Fisher matrix is no longer block
diagonal with respect to this parameter. This implies that
the complete waveforms provide more information about
A and, hence, about the effective distance deff .

Figures 6–8 show the error estimates corresponding to a
fixed (single-detector) SNR of 10 in the case of Advanced

LIGO, Initial LIGO, and Enhanced LIGO noise spectra,
respectively. It is interesting to note that the parameter
estimation using the complete waveforms is still much
better than that using only the inspiral waveform even
though, in order to produce the same SNR using inspiral
templates, the effective distance to the binary has to be
often much smaller. The reason for this can be understood
through an analogy with parameter estimation with mul-
tiple detectors: Since the inspiral phase, on the one hand,
and the merger-ring-down phases, on the other hand, oc-
cupy two contiguous and, essentially, nonoverlapping fre-
quency bands, the detection of a complete signal is
equivalent to a coherent detection of these two pieces of
the waveforms by two coincident, coaligned detectors with
sensitivities limited to the two contiguous bands, respec-
tively. The two phases, however, are modulated by the two
mass parameters in complementary ways, in the sense that
the Fisher submatrices in the two-dimensional mass space
for these two fiducial detectors grow more linearly inde-
pendent of each other, the larger the total mass gets, even
while the total coherent SNR of this fiducial detector pair is
held constant. This linear independence causes the estima-
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FIG. 7 (color online). Same as Fig. 6 except that the noise PSD corresponds to that of Initial LIGO.
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tion of two mass parameters to improve. Contrastingly,
since the merger-ring-down pieces add very little informa-
tion about a system’s chirp mass, the improvement in its
accuracy arising from using complete waveforms is much
less even for high-mass systems.

Figure 9 plots the SNR produced at different detectors
by equal-mass binaries located at a fixed distance, as a
function of the total mass of the binary.

B. Monte Carlo simulations

The limitations of the Fisher-matrix formalism are well
known [37,38,58]. The parameter-error bounds provided
by it are trustworthy in the limit of high SNR and for
parameters on which the signal has linear dependence. In
the case of low SNRs the error bounds computed using the
Fisher-matrix formalism can be largely different from the
‘‘actual’’ errors. Also, the Fisher matrix does not recognize
the boundaries of the parameter space (such as the restric-
tion � � 0:25). Neither does it account for practical re-
strictions such as the finite sampling of the data. In order to
explore these limits of the Fisher formalism, we performed
Monte Carlo simulations, whereby maximum-likelihood
detections were made of simulated signals added to mul-
tiple statistically independent realizations of simulated
colored, Gaussian noise. The aim of this frequentist study
was to obtain the spread in the maximum-likelihood esti-
mates of the parameters and compare them with Fisher-
matrix calculations. It is worth clarifying that there is

another interesting question one can pose in the context
of parameter estimation, namely, ‘‘Given a specific signal
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FIG. 9 (color online). The curves labeled ‘‘IniLIGO’’ and
‘‘EnhLIGO’’ report the SNR produced by binaries located at
an effective distance of 100 Mpc at Initial LIGO and Enhanced
LIGO, respectively, as a function of the total mass. The curves
labeled ‘‘AdLIGO’’ and ‘‘AdVirgo’’ report the same produced by
binaries located at 1 Gpc at Advanced LIGO and Advanced
Virgo. The solid lines correspond to complete waveforms and the
dashed lines correspond to PN waveforms.
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and a particular noise realization, what are the posterior
distributions of the parameter estimates?’’ This is a ques-
tion from Bayesian statistics that can be answered using
Markov-Chain Monte Carlo simulations, as explored for
inspiral-only waveforms in Refs. [78–81]. We do not an-
swer that question here.

In this section we present results from the frequentist
Monte-Carlo simulation studies. These studies largely cor-
roborate the Fisher-matrix calculations in the parameter-
space regions where the latter is expected to be trustworthy.
The simulations also allow us to compute error bounds in
the parameter-space regions where the Fisher-matrix for-
malism can be unreliable (such as for � ’ 0:25). We
caution the reader that this is not meant to be an exhaustive
comparison between Fisher-matrix calculations and
Monte Carlo simulations. A detailed comparison of
Fisher-matrix formalism with Monte Carlo simulations in
the case of 3.5 PN inspiral signals can be found in the
recent work (Ref. [82]).

Colored Gaussian noise with one-sided PSD ShðfÞ is
generated in the frequency domain. If x̂k and ŷk denote the
real and imaginary parts of the discrete Fourier transform
of the noise at the frequency bin k, these are generated by

x̂ k ¼
ffiffiffiffiffiffiffi
Shk

q
xk=2; ŷk ¼

ffiffiffiffiffiffiffi
Shk

q
yk=2; (3.8)

where xk and yk are random variables drawn from a
Gaussian distribution of zero mean and unit variance, and
Shk denotes the discrete version of ShðfÞ. Frequency-

domain signal described by Eq. (2.11) is added to the noise.
The data is filtered through a matched filter employing
templates described by Eq. (2.11). The likelihood is maxi-
mized over t0 and ’0 as described in Sec. II. The max-
imization over the physical parameters (M and �) is best
performed by filtering the data using a template bank finely
spaced in the parameter space. But, in order to attain
sufficiently good accuracy (say, 1%), a large number of
simulations needs to be performed. Thus, computing error
bounds from a good volume of the parameter space is
computationally expensive in a template bank search. So,
in this paper, the maximization over the physical parame-
ters is performed with the aid of the computationally
cheaper Nelder-Mead downhill simplex algorithm [83].

We emphasize that this search may not be as accurate as
the template bank search. One reason for the inaccuracy is
that, in this method, we do not ‘‘sample’’ the parameter
space finely enough, and hence the ‘‘real maximum’’ can
very well be missed. This is especially the case when the
function that we want to maximize (likelihood in this case)
contains many secondary maxima. Indeed, it is well known
that the likelihood can have many secondary maxima aris-
ing due to global correlations in the parameter space. We
bypass this issue by starting the maximization algorithm
around the actual peak of the function. Hence, the error
distributions that we obtain are only indicative of the

spread of the maximum likelihood estimates around the
primary maxima. Unlike in the case of Markov-Chain
Monte Carlo simulations, this does not provide a complete
picture of the posterior distribution of the parameters.
Nevertheless, this is a worthwhile tool as an independent
verification of the Fisher-matrix calculation, enabling us to
‘‘scan’’’ a good volume of the parameter space using
Monte Carlo simulations.4

Nelder-Mead’s algorithm is a multidimensional minimi-
sation/maximisation algorithm. In order to maximize the
required function, we need to specify an initial ‘‘simplex’’
of nþ 1 dimensions where n is the dimensionality of the
parameter space. Since the dimensionality of our parame-
ter space is 2, the simplex in our case is a triangle. It is
important for the good convergence of the maximization
that the initial simplex ‘‘catch’’ the orientation of the
ambiguity ellipses in our parameter space, which often
depends strongly on the parameters themselves. Thus, we
start the maximization by specifying four different initial
simplexes, whose vertices have equal (coordinate) distance
from the ‘‘true’’ value of the parameters. The four triangles
are oriented in different directions in the parameter space.
We choose the parameters corresponding to the best among
the maximized likelihoods as the parameters of the injec-
tion. Figure 10 shows a scatter plot of the parameters
estimated from 104 simulations. Also overlaid in the left
plot is a cartoon of the initial simplexes chosen. The reader
may note the difference in the eigendirections in the two
plots.

FIG. 10 (color online). Scatter plot of parameters estimated
from 104 Monte Carlo simulations. The horizontal axis reports
the total mass and the vertical axis reports the symmetric mass
ratio. The left panel correspond to the injection with parameters
M ¼ 20M� and � ¼ 0:2222, and the right panel correspond the
injection with parameters M ¼ 200M� and � ¼ 0:2222. The
injections correspond to an SNR of 20. Also overlaid in the left
panel is a cartoon of the four different initial simplexes chosen
for the maximization algorithm. The true values of the parame-
ters are marked by a cross. Note that the eigendirections are
different in the two plots.

4In our simulations, a few hundred trials were sufficient for the
Nelder-Mead’s algorithm to converge to the fiducial maximum.
By contrast, a template bank search requires tens of thousands of
templates, in general.
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We found that the following points need to be taken care
of while performing this kind of simulations: (i) Since the
frequency-domain templates are abruptly cut off at the
frequency fcut, we need to make sure that the edges arising
from this do not corrupt our numerical calculations. This
means that, for high-mass systems (M> 200M�) we can-
not perform the simulations with very high SNR (� >
100), because the cutoff frequency is at the ‘‘sweet spot’’
of the detector; (ii) a sufficiently small tolerance level for
the maximization algorithm in order to ensure that the true
maximum is never missed; (iii) orthonormality of the
search templates, as emphasized by Ref. [38].

The frequency distributions of the estimated parameters
M, �, and Mc are shown in Fig. 11. The injection corre-
sponds to the parameter values M ¼ 20M� and � ¼ 0:16
and an SNR of 20. Also plotted in the figures are the
expected distributions computed using the Fisher-matrix
formalism. All the results are computed using the
AdvLIGO noise PSD. It can be seen that the two calcu-
lations agree very well. Figure 12 shows the errors com-
puted using the Monte Carlo simulations plotted against
the total mass of the binary for three different values of �.

The simulations are performed with an SNR of 20. Also
shown are the error bounds computed using the Fisher-
matrix formalism. In the case of mass ratios � ¼ 0:2222
and � ¼ 0:16, the simulations agree well with the Fisher-
matrix calculations. But the simulations disagree with the
Fisher calculations for the case of � ¼ 0:25. This is ex-
pected because the Fisher matrix does not recognize the
physical restriction that � can only take values less than, or
equal to 0.25. The Fisher-matrix calculation assumes that
the errors in estimating the parameters are Gaussian dis-
tributions centered around � ¼ 0:25, while the
Monte Carlo simulations enforce the restriction � �
0:25. As a result the error bounds estimated by the
Monte Carlo simulations will be less than that estimated
by the Fisher matrix.
Fisher-matrix calculations assume that the errors de-

crease inversely proportional to the SNR. But this approxi-
mation is not valid at low SNRs. So we have performed
Monte Carlo simulations with various SNRs in order
to study the SNR dependence of the errors. Figure 13
plots the errors estimated from the simulations against
the SNR of the injections. The top, middle, and bottom
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panels in the figure correspond to mass ratios � ¼ 0:25,
0.2222, and 0.16, respectively. The different markers
correspond to the Monte Carlo simulations and the
dashed lines correspond to the Fisher-matrix calculations.
It can be seen that, barring the case of � ¼ 0:25, the
simulations agree very well with the Fisher calculations
in the limit of high SNRs (� > 10). Because of the
�-boundary effects, the errors computed from the � ¼
0:25 simulations are less than those computed from the
Fisher calculations. For small SNRs (� � 10), the simula-
tion errors start to deviate from the Fisher calculations.
There are two reasons for this: (i) At low SNRs, as ob-
served by many others (see, for e.g., Ref. [38]) the Fisher
matrix largely underestimates the errors. This is the domi-
nating effect in the case of M ¼ 20M� binaries at low
SNRs in Fig. 13. (ii) At low SNRs, since the size of the
ambiguity ellipses are increased, they are cut by the � ¼
0:25 boundary, which is neglected by the Fisher calcula-
tions. Hence the Fisher matrix over estimates the errors.

This is the dominating effect in the case of M ¼ 200M�
binaries at low SNRs. It is the interplay between these two
competing effects that causes the discrepancy between the
simulations and Fisher calculations. In summary, the re-
sults from the Monte Carlo simulations, albeit the limita-
tions of the maximization algorithm used, should be more
reliable than the Fisher calculations.
Table I tabulates the errors in the case of Advanced

LIGO noise PSD, computed using both Fisher-matrix and
Monte Carlo simulations.

IV. PARAMETER ESTIMATION:
MULTIDETECTOR SEARCH

With a sufficiently large number of geometrically inde-
pendent and well-separated interferometric detectors it is
possible to measure all nine of the BBH parameters of an
adequately strong source [84,85]. To assess how accurately
such a measurement can be made with the AdvLIGO-
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AdvVirgo network, one can begin by computing the Fisher
matrix in the nine-dimensional parameter space, and then
invert it to obtain the error variance-covariance matrix. We
take the network to comprise three interferometers, with
one each at Hanford, Washington, USA, Livingston,
Louisiana, USA, and Cascina, Italy. The LIGO detectors
in Hanford and Livingston are assumed to be having the
AdvLIGO noise PSDs given in Eq. (3.3) and the Virgo
detector in Cascina is assumed to be having the AdvVirgo
noise PSD given in Eq. (3.4).

When interpreting the astrophysical implications of
these parameter errors, it is important to remember that it
is only when the signal is linear in the parameters or the
SNR is large that the maximum-likelihood estimator is
unbiased and the error deduced from the Fisher matrix
achieves the Cramér-Rao bound [55]. To aid this conform-
ity, we map four of the six extrinsic signal parameters (i.e.,
parameters that depend on the observers location in time
and space), viz., ðA; c ; �; ’0Þ, into new parameters, ak,
with k ¼ 1; . . . ; 4, such that the signal in Eq. (2.3) at any

given detector has a linear dependence on them:

hðtÞ ¼ X4
k¼1

akhkðtÞ; (4.1)

TABLE II. Sky-averaged errors in estimating � and dL using
complete BBH waveforms in the case of the AdvLIGO-
AdvVirgo network. The left column tabulates the errors corre-
sponding to a fixed value � ¼ 10 for the network SNR, while the
right column tabulates the errors corresponding to a fixed value
dL ¼ 1 Gpc of the luminosity distance. Errors computed using
PN templates are shown in parentheses. The � errors are given
in square degrees and the fractional dL errors are given in
percentages.

� ¼ 10 dL ¼ 1 Gpc
M=M� �� �dL=dL �� �dL=dL

20 0.78 (2.2) 55.7% (55.3%) 0.70 (2.1) 43.2% (46.8%)

100 0.55 (8.9) 111% (63.1%) 0.13 (5.9) 23.0% (39.8%)

TABLE I. Errors in estimating different parameters of the binary, as a function of the binary parameters and the SNR, computed
using the Fisher-matrix formalism. The same errors computed from the Monte Carlo simulations are shown in brackets.

� ¼ 0:25 � ¼ 0:2222 � ¼ 0:16
� M ¼ 20M� 100M� 200M� 20M� 100M� 200M� 20M� 100M� 200M�
�M=M� 100
6 2.30 (1.52) 4.35 (3.80) 10.0 (5.59) 2.12 (2.15) 4.37 (4.31) 8.50 (6.58) 1.66 (1.80) 4.59 (4.58) 5.11 (5.74)

10 1.38 (0.93) 2.61 (2.39) 6.02 (3.57) 1.27 (1.50) 2.62 (2.60) 5.10 (4.49) 1.00 (1.16) 2.75 (2.58) 3.07 (3.61)

20 0.69 (0.46) 1.30 (1.11) 3.01 (1.94) 0.64 (0.76) 1.31 (1.20) 2.55 (2.73) 0.50 (0.60) 1.38 (1.21) 1.53 (1.81)

40 0.34 (0.19) 0.65 (0.51) 1.50 (0.95) 0.32 (0.34) 0.66 (0.56) 1.28 (1.33) 0.25 (0.25) 0.69 (0.61) 0.77 (0.83)

100 0.14 (0.07) 0.26 (0.18) 0.60 (0.31) 0.13 (0.11) 0.26 (0.20) 0.51 (0.46) 0.10 (0.08) 0.28 (0.24) 0.31 (0.28)

��=�� 100
6 4.30 (2.51) 10.9 (4.40) 18.8 (6.93) 3.94 (3.98) 11.5 (7.25) 20.2 (10.2) 3.06 (3.29) 12.5 (9.98) 23.6 (15.4)

10 2.58 (1.77) 6.54 (3.13) 11.3 (4.96) 2.36 (2.96) 6.87 (5.26) 12.1 (9.58) 1.84 (2.27) 7.53 (6.64) 14.2 (12.1)

20 1.29 (0.88) 3.27 (1.54) 5.64 (2.93) 1.18 (1.45) 3.44 (3.01) 6.06 (6.43) 0.92 (1.13) 3.76 (3.44) 7.07 (7.25)

40 0.64 (0.36) 1.63 (0.69) 2.82 (1.48) 0.59 (0.65) 1.72 (1.45) 3.03 (3.25) 0.46 (0.47) 1.88 (1.69) 3.54 (3.63)

100 0.26 (0.14) 0.65 (0.29) 1.13 (0.52) 0.24 (0.21) 0.69 (0.53) 1.21 (1.16) 0.18 (0.15) 0.75 (0.67) 1.41 (1.33)

�Mc=Mc � 100
6 0.32 (0.94) 4.56 (3.86) 19.8 (7.92) 0.28 (1.16) 4.34 (4.64) 19.0 (10.6) 0.20 (1.16) 3.85 (4.22) 16.5 (12.0)

10 0.19 (0.31) 2.73 (2.62) 11.9 (5.56) 0.17 (0.35) 2.60 (3.20) 11.4 (9.30) 0.12 (0.26) 2.31 (2.76) 9.92 (9.51)

20 0.10 (0.10) 1.37 (1.24) 5.95 (3.23) 0.08 (0.13) 1.30 (1.65) 5.70 (6.24) 0.06 (0.09) 1.15 (1.45) 4.96 (5.52)

40 0.05 (0.03) 0.68 (0.55) 2.97 (1.64) 0.04 (0.05) 0.65 (0.68) 2.85 (3.14) 0.03 (0.03) 0.58 (0.59) 2.48 (2.67)

100 0.02 (0.01) 0.27 (0.20) 1.19 (0.57) 0.02 (0.01) 0.26 (0.26) 1.14 (1.11) 0.01 (0.01) 0.23 (0.23) 0.99 (0.97)

�deff=deff � 100
6 16.7 17.6 24.6 16.7 17.5 24.3 16.7 17.4 23.2

10 10.0 10.5 14.8 10.0 10.5 14.6 10.0 10.4 13.9

20 5.00 5.27 7.39 5.00 5.26 7.30 5.00 5.21 6.95

40 2.50 2.63 3.70 2.50 2.63 3.65 2.50 2.61 3.48

100 1.00 1.05 1.48 1.00 1.05 1.46 1.00 1.04 1.39

�t0 (ms)

6 0.37 5.90 15.8 0.39 7.22 20.0 0.42 11.7 36.3

10 0.22 3.54 9.47 0.23 4.33 12.0 0.25 7.04 21.8

20 0.11 1.77 4.73 0.12 2.17 6.00 0.13 3.52 10.9

40 0.06 0.88 2.37 0.06 1.08 3.00 0.06 1.76 5.45

100 0.02 0.35 0.95 0.02 0.43 1.20 0.03 0.70 2.18
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where the hkðtÞ’s are completely independent of those four
extrinsic parameters. (The two remaining extrinsic pa-
rameters are the sky-position angles.) To deduce their
dependencies as well as the forms of the ak’s we begin
by noting that the antenna-pattern functions can be treated
as the components of a vector that are related to two sky-
position dependent functions, uð�;�Þ and vð�;�Þ [41,85],
through a two-dimensional rotation by 2c :

Fþ
F�

� �
¼ cos2c sin2c

� sin2c cos2c

� �
u
v

� �
: (4.2)

With this well-known observation, one finds

h 1ðtÞ / uð�;�Þ cos½’ðtÞ�; h2ðtÞ / vð�;�Þ cos½’ðtÞ�;
h3ðtÞ / uð�;�Þ sin½’ðtÞ�; h4ðtÞ / vð�;�Þ sin½’ðtÞ�;

(4.3)

where the proportionality factor is a dimensionless (mass-
dependent) function of time.

The new parameters are themselves defined as

M a � a1 a3

a2 a4

� �
¼ yð�Þ

dL
O’0


 I 
O2c ; (4.4)

where yð�Þ � ½ð1þ cos2�Þ2 þ 4cos2��1=2, O
 is the two-
dimensional orthonormal rotation matrix for angle 
 and

I � ð1þ cos2�Þ=yð�Þ 0
0 2 cos�=yð�Þ

� �
: (4.5)

The Fisher matrix is then computed on the space
ðM;�; �;�; t0; a

1; a2; a3; a4Þ. The errors in the ak’s are
obtained by inverting that matrix. By using error-
propagation equations obtained from Eq. (4.4), we are
able to deduce error estimates for all four extrinsic
parameters.

In this paper, however, we present the error estimates
for, perhaps, the most astrophysically interesting of those,
namely, the luminosity distance. To obtain it, first notice
that

tr ðMT
aMaÞ ¼k a k2¼ y2ð�Þ

d2L
; (4.6)

where tr is the trace, and k a k2� P
4
k¼1ðakÞ2. This yields

dðdLÞ
dL

¼ dy

y
� d k a k

k a k ; (4.7)

which can then be used to deduce the rms error,�dL=dL by
accounting for the covariance between y and ak. Finally,
we choose a flat prior in yð�Þ, such that whenever its
estimate is negative or greater than its maximum possible
value (of four) the prior is set to zero. The distance errors
plotted below are for such a prior.

The error variance-covariance matrix described above
can also be used to derive the error estimates for the other
astrophysically interesting quantity, namely, the sky posi-

tion. Here again, to further keep our assessment robust, we
first reduce the dimensionality of the Fisher matrix to five
by projecting out the four above-mentioned extrinsic pa-
rameters. This helps in lowering the condition number of
the Fisher matrix across the parameter space. We do so by
taking a cue from Refs. [84,85], where it was shown that
the network likelihood ratio of compact binary inspiral
signals can be maximized analytically over those four
extrinsic parameters. Moreover, just as for the signal in a
single detector, it is possible to speed up the search in t0 by
using the FFT [85]. Thus, the only parameters that need to
be searched numerically through the help of a template
bank [86] are the following four parameters: ðM;�; �;�Þ.
The resulting Fisher matrix is well behaved everywhere

in the five-dimensional subspace except on a set of points
of measure zero, where the detectors in the network cease
to be geometrically independent. Its inverse yields the error
estimates for the two mass parameters and the sky position.
A sky map of the network SNR is presented in Fig. 14
while the sky maps of the errors in the source luminosity
distance and the sky position are given in Fig. 15 for equal-
mass BBH sources with M ¼ 100M� and located at dL ¼
1 Gpc.
Figure 16 shows the all-sky distribution of the errors in

estimating the solid angle �. The left plots show the
probability density and the right plots show the cumulative
distribution. We assume that the sources are distributed
uniformly across the sky. Top panels correspond to a binary

φ (degrees)

θ  
(d

eg
re

es
)

360 300 240 180 120 60

90

60

30

0

−30

−60 30

40

50

60

70

FIG. 14 (color online). The network SNR of a signal, corre-
sponding to the complete waveform, from an equal-mass binary
with M ¼ 100M� located at dL ¼ 1 Gpc, plotted as a function
of its sky position. The network here is the three-detector
AdvLIGO-AdvVirgo network, such that the two 4 km-arm-
length LIGO detectors in Hanford and Livingston have
AdvLIGO noise PSDs and the Virgo detector in Cascina has
AdvVirgo noise PSD. Above, � and � are the polar and azimu-
thal angles specifying the location of the source in the sky in the
geographic coordinate system.
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withM ¼ 20M� and � ¼ 0:25, and the bottom panels to a
binary with M ¼ 100M� and � ¼ 0:25. In each plot the
thick (red) traces correspond to the errors estimated using
the complete waveforms while the thin (black) traces
correspond to those estimated using restricted 3.5 PN

waveforms in the SPA truncated at Schwarzschild ISCO.
All the errors are computed for a network SNR of 10 for the
respective waveforms. The error estimates are obtained by
averaging over the angles ðc ; �Þ. These plots show that in
the case of an M ¼ 20M� and � ¼ 0:25 binary, assuming
that the sources are distributed uniformly across the sky,
the sky position of 70% [10%] of the sources can be
estimated with an accuracy better than 1 [0.1] square
degree. Using PN templates, the sky location of only
29% [6%] of the sources can be estimated with an accuracy
better than 1 [0.1] square degree. For the M ¼ 100M�
binary, the sky position of 90% [18%] of the sources can
be estimated with an accuracy of 1 [0.1] square degree
using complete waveforms, while only 15% [4%] of the
sources can be resolved with the same accuracy using
inspiral waveforms. It should be noted that in that figure
we have normalized the errors for SNR fixed to 10. For real
systems additional improvement might be seen from the
use of the complete waveforms provided their inclusion of
merger and ring-down phases actually improves the SNR
of those signals. This is indeed the case for high-mass
systems (M> 20M�). For an equal-mass binary withM ¼
20½100�M�, the improvement in the SNR by the inclusion
of merger and ring down is 9% [300%], in stationary,
Gaussian noise. (See the discussion of Fig. 18 below.)
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FIG. 15 (color online). The top plot shows the sky-position
error log10 [�� (in square degrees)] and the bottom plot shows
the fractional error in the luminosity distance log10 [�dL=dL (in
%)] as functions of the sky position of a BBH source. The source
studied here is the same equal-mass binary considered in Fig. 14,
and, � and � are the polar and azimuthal angles specifying the
location of the source in the sky in the geographic coordinate
system. Note how the effect of the varying network sensitivity, as
seen in the SNR plot in Fig. 14, is imprinted in the two error
plots. Additionally, the error plots display a full ‘‘sine-wave’’
pattern, which comprises a set of sky positions for which the
geometric independence of the LIGO-Virgo detectors is the
weakest. Extraction of the signal’s polarization is affected the
most at these locations. That in turn hurts the distance measure-
ment accuracy. The same locations do not necessarily hurt the
determination of the sky position, which is mostly driven by the
measurement accuracy of the times of arrival of the signal at the
three sites.
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FIG. 16 (color online). All-sky distribution of errors in esti-
mating the solid angle � in the case of the AdvLIGO-AdvVirgo
network. The left plots show the probability density and the right
plots show the cumulative distribution. The top panels corre-
spond to an equal-mass binary with M ¼ 20M�, and the bottom
panels to one with M ¼ 100M�. In each plot the thick (red)
traces correspond to the errors estimated using the complete
waveforms while the thin (black) traces correspond to those
estimated using restricted 3.5 PN waveforms. All the errors are
computed for a network SNR of 10 for the respective waveforms.
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Figure 17 shows the distribution of the errors in estimat-
ing the luminosity distance dL to two different types of
equal-mass binary systems, both producing a network SNR
of 10 in the AdvLIGO-AdvVirgo network. The top panels
correspond to a binary with M ¼ 20M� and the bottom
panel to a binary withM ¼ 100M�. As in Fig. 16, the thick
(red) traces correspond the complete waveforms while the
thin (black) traces correspond to the PN waveforms. These
plots suggest that for an SNR of 10 the luminosity distance
to around 10% [50%] of the sources can be estimated with
an accuracy of better than 38% [53%] in the case of low-
mass systems. They also reveal that, for a fixed value of the
network SNR, the error estimates using inspiral and com-
plete waveforms are almost identical. This is not surprising
because for low-mass systems the signal is dominated by
the inspiral phase. In the case of high-mass systems with an
SNR of 10, the luminosity distance to around 10% [50%]
of the sources can be estimated with an accuracy of 60%
[100%]. These errors are worse than those for the PN
waveform5 primarily because the covariances between
the initial phase and ðc ; �Þ are stronger in the case of
complete waveforms. This property of the complete wave-

forms mitigates the estimation accuracy of �, which, in
turn, affects the estimation of dL.
Figures 18 and 19 show the errors in estimating � and

dL in the case of binaries distributed uniformly across the
sky but located at a luminosity distance of 1 Gpc. These
errors also are averaged over c and �. These plots show
that in the case of an equal-mass binary with M ¼ 20M�
the sky position of around 10% [50%] of the sources can be
estimated with a resolution of 0.07 [0.5] square degree or
better. In the case of a M ¼ 100M� binary, 10% [50%] of
the sources can be estimated with a resolution of 0.01 [0.1]
square degrees. These plots in Fig. 18 also show that the
coherent addition of the merger and ring-down phases
brings about remarkable improvement (i.e., by several
times for most sky positions) in the estimation of �.
Figure 19 shows that the luminosity distance of 10%

[50%] of the M ¼ 20M� BBH sources can be estimated
with 32% [47%] accuracy or better and that of 10% [50%]
of the M ¼ 100M� binaries can be estimated with an
accuracy of 13% [20%] or better. While comparing
Figs. 17 and 19, it may help to track the mean errors listed
in Table II. Studying these plots and numbers reveals some
interesting aspects of these signals. First, for the PN wave-
forms the distance error improves only slightly in going
from an SNR of 10 to a source distance of 1 Gpc. This is
easily explained by the fact that the sky-averaged SNR of
these systems at dL ¼ 1 Gpc is only slightly greater than
10. Second, the distance error reduces a little for complete
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FIG. 17 (color online). All-sky distribution of errors in esti-
mating dL in the case of the AdvLIGO-AdvVirgo network. The
top plots show the probability density and the bottom plots show
the cumulative distribution. The top panels correspond to an
equal-mass binary with M ¼ 20M�, and the bottom panels to
one with M ¼ 100M�. In each plot the thick (red) traces
correspond to the errors estimated using the complete waveforms
while the thin (black) traces correspond to those estimated using
restricted 3.5 PN waveforms. All the errors are computed for a
network SNR of 10 for the respective waveforms.
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FIG. 18 (color online). Same as Fig. 16 except that the binary
is now placed at a fixed luminosity distance of 1 Gpc. Notice the
strong similarity between the plots in the top panel above and
those in the top panel of Fig. 16. This is because in the plots of
the top panel above the average SNR is relatively close to 10.
The plots in the bottom rows of the two figures are more
disparate: The average SNR above is several [few] times better
than the fixed SNR in Fig. 16 for the complete [inspiral-only]
waveforms.

5Note that, in order to get the same SNR in the case of PN
waveforms, the binary must be placed at a much closer distance.
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waveforms vis-à-vis inspiral ones at 1 Gpc. This is mainly
due to the increased SNR of the former. Third, the error for
the complete waveforms for the M ¼ 100M� system at
1 Gpc is still the smallest of all the cases studied here
because its sky-averaged SNR is sufficiently large; indeed,
it is large enough to even compensate for the increased
covariance between ’0 and ðc ; �Þ arising from the merger
and ring-down phases, as discussed above.

Finally, we compare our results with a couple of past
studies in the form of Refs. [36,41]. First, both of these
early studies used the same noise PSD for both LIGO and
Virgo detectors. Second, their noise PSD was different
from both the AdvLIGO and the AdvVirgo noise PSDs
used here; it made their detectors more sensitive (by a
factor of a few in amplitude) in the band below 70 Hz
and somewhat less sensitive at higher frequencies than the
AdvLIGO PSD used here. Third, they considered only
inspiral signals from binary neutron stars with a compo-
nent mass of 1:4M�, and distributed them uniformly across
a spatial volume. Fourth, in Ref. [41] the authors culled
every source that gave a distance error of greater than
100% or that had an SNR of less than 8.5. In our study,
where all sources were kept at a fixed distance of 1 Gpc,
none of them were culled. Also, whereas all our sources
with M ¼ 100M� have an SNR greater than about 25,
those with M ¼ 20M� have the smallest SNR equal to 6.
These differences make it difficult to compare these differ-
ent studies. It is, however, possible to make some limited
comparisons. Specifically, Fig. 15 in Ref. [41] suggests that
the fractional errors in the estimated source distances all

tend to be greater than 100% as their source distance
approaches 1 Gpc. Figure 14 of Ref. [36] depicts a similar
trend. This appears to be consistent with our numbers.

V. SUMMARY

In this paper, we studied the statistical errors in estimat-
ing the parameters of nonspinning BH binaries using
ground-based GW observatories. Our study was restricted
to the leading harmonic of the GW polarizations of such
sources; but employing waveforms modelling the inspiral,
merger, and ring-down stages of the binary coalescence.
We obtain results both for single- and multidetector
searches. The single-detector problem was investigated in
the context of two generations of ground-based detectors,
namely, Initial LIGO and Advanced LIGO, as well as
Enhanced LIGO, with intermediate sensitivity. On the
other hand, the multidetector problem was investigated in
the context of the Advanced LIGO-Advanced Virgo net-
work. For these calculations, we adopted a two-pronged
approach: We first analytically computed the error bounds
using the Fisher-matrix formalism.We then pointed out the
limitations of this approach and improved upon those
calculations by full-fledged Monte Carlo simulations.
To summarize, we find that with an Advanced LIGO

detector the total mass of an equal-mass binary with M ¼
20M�½100M�� located at 1 Gpc can be estimated with an
accuracy of �0:67½�0:34�%, while its symmetric mass
ratio can be estimated with an accuracy of
�1:26½�0:84�%. The effective distance can be estimated
with an accuracy of�4:87½�1:36�% and the time of arrival
can be placed within �0:11½�0:46� ms. We considered
binaries with three different mass ratios (� ¼ 0:25,
0.2222, 0.16) in the range 10M� � M � 450M� for these
calculations. These results predict for a significantly more
accurate astrophysical characterization than what has been
presented in the past literature (which use the post-
Newtonian waveforms intended to model only the inspiral
stage of the binary). To wit, the error bounds for total mass,
computed using the complete waveforms is better than
those computed using the inspiral-only waveforms by a
factor of �1:4½�16� for an equal-mass binary with total
mass 20M�½100M��. The error bounds on the symmetric
mass ratio is improved by a factor of �1:4½�15�, those on
the time of arrival is improved by a factor of�7½�34� and
those on the effective distance is improved by a factor of
�1:1½�4� by the inclusion of the merger and ring-down
stages.
In the case of a network consisting of two Advanced

LIGO detectors and one Advanced Virgo detector, we
found that the luminosity distance to an equal-mass binary
withM ¼ 20M� at 1 Gpc can be estimated with a sky- and
orientation-averaged accuracy of 43.2% and the sky loca-
tion can be estimated with a mean accuracy of 0.7 square
degrees. For a similar binary, but with M ¼ 100M�, the
respective mean accuracies are 23% and 0.13 square de-

10
1

10
2

0

2

4

6

8

10

12

10
1

10
2

0

2

4

6

P
ro

b
ab

ili
ty

 d
en

si
ty

10
1

10
2

0

0.2

0.4

0.6

0.8

1

10
1

10
2

0

0.2

0.4

0.6

0.8

1

∆ d
L
/d

L
 x 100

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n

FIG. 19 (color online). Same as Fig. 17 except that the binary
is placed at a fixed luminosity distance of 1 Gpc. By comparing
the above figure with Fig. 17, it is manifest that nearly all the
improvement in the luminosity-distance measurement accuracy,
when including the post-inspiral phases, arises due to the in-
creased SNR.
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grees. For low-mass binaries, with (M� 20M�), the im-
provement in the sky-position accuracy due to the inclu-
sion of merger and ring down is about a factor of 3, while
for high-mass binaries (M� 100M�), that improvement is
by a factor of 45. The inclusion of the same two phases
betters the distance estimates by a few (for low-mass
systems) to several (for high-mass systems) percent. In
short, the sky resolution is greatly improved by the inclu-
sion of merger and ring down, while the improvement in
the estimation of the luminosity distance arises largely
from the extra SNR contributed by the merger and ring
down.

In the case of the AdvLIGO-AdvVirgo detector network,
the parameter-estimation accuracy peaks for binaries with
M ’ 100M�. Although the observational evidence for BHs
in this mass range is only suggestive, there is growing
consensus in the astronomy community that IMBHs could
exist in dense stellar clusters. The existence of this class of
black holes could explain a number of observations, such
as the ultraluminous x-ray sources and the excess dark
matter concentration in globular clusters.

Several authors have considered the scenario of the
coalescence of IMBHs and have come up with
coalescence-rate predictions [11,13]. Particularly interest-
ing is the case of the merger of two stellar clusters each

hosting an IMBH considered in Ref. [11]. Since this is
expected to be a strong source of GW signal with a possible
EM counterpart,6 it is a worthwhile question to ask what
kind of constraints can be put on the values of cosmologi-
cal parameters by combining GW and EM observations of
such sources [30]. The improved parameter estimation
might help to tighten these constraints. This is being in-
vestigated in an ongoing work [87].
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useful comments on the manuscript, and K.G. Arun for
helpful discussions. S. B. would like to thank Bruce Allen
for his warm hospitality during his stay at Hannover.
Computations reported in this paper were performed with
the aid of the Morgane and Atlas clusters of the Albert
Einstein Institute. This work is supported in part by the
NSF Grants No. PHY-0239735 and No. PHY-0758172.

[1] R. Narayan, New J. Phys. 7, 199 (2005).
[2] J. Kormendy and D. Richstone, Annu. Rev. Astron.

Astrophys. 33, 581 (1995).
[3] R. Schodel et al., Nature (London) 419, 694 (2002).
[4] M.C. Miller and E. J.M. Colbert, Int. J. Mod. Phys. D 13,

1 (2004).
[5] S. Komossa et al., Astrophys. J. 582, L15 (2003).
[6] L. Ballo et al., Astrophys. J. 600, 634 (2004).
[7] M. Guainazzi, E. Piconcelli, E. Jimenez-Bailon, and G.

Matt, Astron. Astrophys. 429, L9 (2005).
[8] D. A. Evans et al., arXiv:0712.2669.
[9] S. Bianchi et al., arXiv:0802.0825.
[10] K. A. Postnov and L. R. Yungelson, Living Rev. Relativity

9, 5 (2006), http://www.livingreviews.org/lrr-2006-6.
[11] P. Amaro-Seoane and M. Freitag, Astrophys. J. 653, L53

(2006).
[12] J.M. Fregeau et al., Astrophys. J. 646, L135 (2006).
[13] I. Mandel, D. A. Brown, J. R. Gair, and M.C. Miller,

arXiv:0705.0285.
[14] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[15] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[16] J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006).
[17] F. Herrmann, I. Hinder, D. Shoemaker, and P. Laguna,

Classical Quantum Gravity 24, S33 (2007).
[18] U. Sperhake, arXiv:gr-qc/0606079.
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