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It is generally accepted that Einstein’s theory will get some as yet unknown corrections, possibly large

in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact

objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-

Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at

low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity

theories: they evade the ‘‘no-hair’’ theorem of general relativity but were proven to be stable against radial

perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide

some means to distinguish them from black holes in general relativity. We start by extending previous

works and establishing the stability of these black holes against axial perturbations. We then look for

solutions of the field equations describing slowly rotating black holes and study geodesic motion around

this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution,

one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to

black holes in general relativity. In the most favorable cases, the difference amounts to a few percent.

Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity

from electromagnetic observations or even with gravitational-wave detectors.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) has passed
numerous consistency and experimental tests in a spec-
tacular way [1]. Nevertheless, it is the general consensus
that GR will get modified at some scale, if only because
GR has resisted all attempts at its quantization. Moreover,
other theories of gravity also pass the experimental tests,
some with a better ‘‘quantum behavior’’ and should be
taken as serious candidates. Unfortunately, the majority
of these alternative theories are vastly more complex than
GR in their full-fledged form. It is thus not surprising that
progress in understanding the exact differences between
one and the other, especially differences one can measure
experimentally, has been slow and mostly focusing on the
weak- and far-field behavior.

One of the candidates for a theory of quantum gravity is
string theory [2]. Since it is still difficult to study geomet-
rical settings in superstring theories, most analyses have
been performed by using low-energy string-inspired effec-
tive theories [3]. Thus, quantum gravity predictions can be

tested by studying modifications of GR due to some low-
energy truncation of string theory [4]. Typically the effec-
tive theories are supergravities involving not only the
metric but also a scalar field (the dilaton) as well as several
gauge fields [5]. One of such theories is the one-loop
corrected four-dimensional effective theory of the heterotic
superstrings at low energies, and a simple particular case is
known as Einstein-Dilatonic-Gauss-Bonnet (EDGB) the-
ory (see for instance Ref. [6] and references cited therein
for a nice and concise introduction to this theory). In
EDGB theory the gauge fields are neglected and only the
(spacetime-dependent) coupling between the dilaton and
the gravity is considered, with the anomaly canceling
Chern-Simons term also neglected (see for instance [7–
10] for work taking this term into account). At the first
order in the Regge slope, �0, higher-derivative gravita-
tional terms such as the Gauss-Bonnet (GB) curvature-
squared term are present in the action, hence the name.
The GB terms avoid some pathological features, for ex-
ample, the theory is ghost-free. Since the equations of
motions are still of second order, EDGB theory provides
one of the simplest consistent high-energy modifications to
GR. Even though it does not seem to be a viable cosmo-
logical model [11], the parametrized post-Newtonian [12]
expansion of this theory is identical (to lowest order) to that
of GR [13,14], which means that it passes all solar system-
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like experimental tests of gravity. Differences arise only
from full nonlinear effects and the ideal place to look for
these is near compact objects such as black holes.

Dilatonic black holes (DBHs) do exist in EDGB theory
[15–17]. They have a regular event horizon and the ge-
ometry is asymptotically flat at infinity (recently DBHs in
higher dimensions [18] and with nonflat asymptotical ge-
ometries [19] have also been studied). In what follows, we
refer to DBHs in EDGB theory only. DBHs are interesting
for many theoretical and practical reasons. DBHs can
evade the classical ‘‘no-scalar-hair’’ theorem [20], and be
dressed with classical nontrivial dilaton hair. This is a
direct consequence of the GB term [15] and opens up the
exciting possibility of ruling out such objects and theories
by testing the no-hair theorem, either by gravitational-
wave observations of ringdown [21] or by observations
of highly eccentric orbits around supermassive black holes
[22]. The lack of experimental data and some problems on
the theoretical side make it very difficult to explore string
theory and other theories of quantum gravity. Since quan-
tum gravity effects are expected to play a significant role in
strong gravity regime such as in cosmology [23] and in
black hole physics, the investigation of black holes (BHs)
in EDGB theory can shed new light on some aspects of
quantum gravity and/or be used to develop testable pre-
dictions of the theory.

Astrophysical implications

Our purpose here is to begin exploring differences be-
tween GR and alternative theories that could be experi-
mentally tested through astrophysical observations, in the
strong-field regime. Thus, even though the theory with
which we will work is only a first order truncation of the
full action, we will elevate it to the status of a complete
theory, therefore we place no restriction on the Regge
slope. The first important problem concerns the stability
of DBHs. Credible alternatives to the Schwarzschild and
Kerr metric of GR must be stable spacetimes. It has been
shown [24,25] that DBHs are stable against a small subset
of all possible perturbations, linear radial perturbations. In
this work, we characterize completely half of the possible
degrees of freedom by studying general axial perturba-
tions. We find that DBHs are stable also against these
perturbations. By itself this is an interesting result confirm-
ing that high-energy contributions lead to viable alterna-
tives to classical BHs arising in GR. The viability of DBHs
poses the following question: can one devise observational
tests to discern a DBH from a classical BH? In classical
Einstein-Maxwell theory BHs are characterized by three
parameters [26]: mass M, electric charge Q, and angular
momentum J � aM � M2. Astrophysical BHs are likely
to be electrically neutral because of the effect of surround-
ing plasma [27], and therefore tests of alternative theories
of gravity can in general focus on rotation alone. The task
is still highly nontrivial and as we mentioned earlier,

strong-field effects must be searched for in theories that
are not already ruled out by solar system experimental data
[14].
Most if not all of present-day astrophysical observations

related to compact objects, concern directly or indirectly
the motion of matter. Thus, a study of geodesic motion
around compact objects in alternative theories is of utmost
importance. Geodesics convey very important information
on the background geometry. In particular circular orbits
whose radius is close to the horizon may be extremely
useful because they already probe strong-field regions.
They can be used to compute the ‘‘innermost-stable-circu-
lar-orbit’’ (ISCO), a notion which is very important for
interpretation of the experimental data concerning astro-
physical black holes. For the Schwarzschild spacetime,
rISCO ¼ 6M, while for an extremal rotating Kerr geometry,
rISCO ¼ M, 9M for corotating and counterrotating circular
orbits, respectively. Measurements of the ISCO are also
useful to evaluate the angular momentum of Kerr BHs [28].
Current methods to measure the ISCO include spectral
fitting, quasiperiodic oscillations, and relativistic iron line
measurements [28]. Here, we show that differences in the
ISCO of slowly rotating DBHs and classical Kerr black
holes can be significant, depending on the coupling pa-
rameter. These differences, which may be detectable in
near-future experiments, are likely to increase for highly
spinning black holes (which are unfortunately out of the
scope of this work). In fact, it seems an exciting possibility
that the GRAVITY experiment [29], designed to make
precision measurements of orbits of stars in the neighbor-
hood of the black hole in the center of our Galaxy, might
already be able to discriminate between these black hole
solutions and GR solutions, or otherwise impose stringent
bounds on the coupling parameter.
Current techniques to evaluate the angular momentum

of astrophysical compact objects are based only on ISCO
measurements [28]. One needs to assume a particular
theory of gravity in order to evaluate J. Thus discerning
a DBH from a Kerr black hole by ISCO measurements is
not an easy task. Future gravitational-wave experiments
will provide a viable method to measureM and J indepen-
dently [30]. The analysis below suggests that a possible
deviation from the expected ISCO in GR can be explained
in term of dilatonic charged BH. Therefore in a near-future,
gravitational-wave astronomy may offer the possibility to
explore string theory-inspired modifications of GR.
Finally, null unstable geodesics are closely related to the

appearance of compact objects to external observers
[31,32] and have been associated with the characteristic,
or quasinormal modes (QNMs) of BHs [33,34].
Quasinormal modes are very important in devising experi-
mental tests of GR and for gravitational-wave astronomy.
Measuring QNM frequencies may provide a definitive
proof of the existence of BHs in GR and it could be useful
to study corrections to GR too. Thus the analysis of geo-
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desic motion around a DBH can shed new light on various
and important aspects of high-curvature corrections to
gravity.

Other theories might also suggest a different ISCO
location, different quasinormal modes, etc. Thus, a devia-
tion in these quantities is not a verification of a particular
theory, but is a first step in understanding what different
theories and scenarios predict in the strong-field regime,
which could potentially discriminate GR from other
alternatives.

The paper is organized as follows. In Sec. II, we briefly
review the main aspects of BHs in EDGB theory. In
Sec. III, we prove the linear stability of DBHs against axial
perturbations. We proceed by studying slowly rotating
DBHs in Sec. IV. We prove that such slowly rotating
solutions do exist and we characterize them, including a
discussion on the ergoregion in these spacetimes.
Section V discusses geodesics in both spherically symmet-
ric and slowly rotating DBHs as well as the possible
experimental tests which can be performed to discern a
DBH from a Kerr BH. We compute the ISCO dependence
on the angular momentum and the QNM frequencies for a
spherical symmetric DBH in the eikonal limit. Conclusions
are discussed in Sec. VI. In our notation, we use the
signature (þ���) and the curvature tensor is defined
by Ra

ijk ¼ @j�
a
ik þ . . . .

II. SPHERICALLY SYMMETRIC BHS IN
EINSTEIN-DILATON-GAUSS-BONNET THEORY

We consider the following low-energy effective action
for the heterotic string [5]:

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 1

2
@��@��þ �0e�

4g2
R2

GB

�
; (2.1)

where

R 2
GB ¼ R����R

���� � 4R��R
�� þ R2 (2.2)

is the GB invariant, �0 is the Regge slope, and g2 is some
gauge coupling constant. We set g ¼ 1 for the rest of this
paper. String-inspired Oð�0Þ corrections to Einstein’s
gravitation are included in the action (2.1), while gauge
fields and matter are omitted for simplicity. We also note
that there is some arbitrariness in the coupling; depending
on which frame we take as fundamental [18], we choose to
keep the e� coupling in line with previous works. We shall
refer to the action (2.1) as EDGB theory.

The dilaton field and Einstein’s equations derived from
(2.1) are

1ffiffiffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p
@��� ¼ �0

4
e�R2

GB; (2.3)

G�� ¼ 1

2
@��@��� 1

4
g��ð@��Þ2 � �0K��; (2.4)

where G�� ¼ R�� � 1
2g��R is the Einstein tensor and

K �� ¼ ðg��g�� þ g��g��Þ�	��0
rg½ ~R�g
�0
@	f�:

(2.5)

Here,

����� ¼ �����ð�gÞ�ð1=2Þ; �0ijk ¼ ��ijk;

~R
��
	� ¼ �����R��	�; f ¼ e�

8
:

From the right-hand side of the modified Einstein’s equa-
tion (2.4), one can construct a conserved ‘‘energy momen-
tum tensor,’’ r�T

�� ¼ 0,

T�� ¼ � 1

2
@��@��þ 1

4
g��ð@��Þ2 þ �0K��: (2.6)

In Ref. [15], it is shown that the time component of�T��,

which in Einstein’s gravity would correspond to the local
energy density E, can be negative. The reason is that, as a
result of the higher-derivative GB terms, there are contri-
butions of the gravitational field itself to T��. The positive-

ness of �T00 is one of the main assumptions of the no-
scalar-hair theorem [20] which can be (and indeed is)
evaded in EDGB theory.
We now focus on BH solutions in EDGB theory, con-

sidering the following spherically symmetric ansatz for the
metric:

ds2 ¼ e�ðr;tÞdt2 � e�ðr;tÞdr2 � r2ðd�2 þ sin2�d’2Þ:
(2.7)

The equations of motion derived from (2.3) and from (2.4)
can be found in Ref. [24]. In a static, asymptotically flat
geometry, black hole solutions exist only if [15]

e�h � r2h
�0 ffiffiffi

6
p ; (2.8)

where rh and�h are quantities evaluated on the horizon. In
particular black hole solutions may exist only for �0 > 0.
From the asymptotic behavior of the fields one can extract
the ADMmassM and the chargeD. As shown in Ref. [15],
M andD are not independent quantities, thereby leading to
the secondary nature of the dilaton hair [35]. These black
hole solutions are uniquely characterized by two parame-
ters ð�h; rhÞ, which correspond to a unique choice of
ðM;DÞ. The equations of motion remain invariant under
a shift � ! �þ�0 and a simultaneous radial rescaling

r ! re�0=2. As a consequence of the radial rescaling, the
two other asymptotic parameters, M and D, are also re-

scaled according to the rule M ! Me�0=2 and D !
De�0=2. Because of the above invariance it is sufficient to
vary only one of rh and �h. Following [24] we choose to
keep rh fixed and to vary�h. Typical background fields are
shown in Fig. 1. Differences in the metric coefficients
occur only very close to the horizon. We checked our
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numerical solutions reproducing results shown in the
Table 1 of Ref. [15].

After the rescaling, Eq. (2.8) can be written in terms of
the coupling constant

0<
�0

M2
& 0:691: (2.9)

The maximum value �0=M2 � 0:691 corresponds to

D=M� 0:572. For larger values of the coupling constant
no DBH solution exists. The dilaton charge D, as a func-
tion of �0=M2, is shown in Fig. 2, where it is compared
with the analytical solution in the �0 ! 0 limit, D=M ¼
�0=ð2M2Þ [36].

III. LINEAR STABILITYANALYSIS

The framework for a linear stability analysis of black
holes in theories with Gauss-Bonnet terms was laid down
by Dotti and Gleiser [37–39] in higher dimensions (with no
dilaton), and generalized by Moura and Schiappa [6] in the
context of Riemann tensor, R2, corrections. Perturbations
of four-dimensional DBHs were considered by Kanti et al.
[24] and Torii and K. I. Maeda [25]. Unfortunately these
authors considered only a very specific type of perturba-
tions; here, we want to generalize their results. Consider
therefore perturbing the spacetime in the following linear
way:

g��ðx�Þ ¼ gð0Þ��ðx�Þ þ �h��ðx�Þ;
�ðx�Þ ¼ �0ðx�Þ þ �
�ðx�Þ;

(3.1)

where � � 1, gð0Þ��, and �0ðx�Þ are the background fields,
while h�� and 
�ðx�Þ are the perturbations. The back-

ground metric gð0Þ�� and dilaton field�0ðx�Þ are given by the
numerical static black hole solution described above [15].

A. General formalism

To study this problem we use the approach first de-
scribed by Regge and Wheeler [40]. After a decomposition
in tensorial spherical harmonics [41,42], the perturbations
fall into two distinct classes: axial (odd) with parity
ð�1Þlþ1 and polar (even) with parity ð�1Þl, where l is
the angular momentum of the particular mode. The theory
described by (2.1) is invariant under diffeomorphisms,1 as
Einstein’s theory is. We can then use the gauge freedom in
order to simplify the elements h��. In the classical Regge-

Wheeler gauge the canonical form for the metric perturba-
tions is (see also Ref. [43]):
(i) axial perturbations:

h�� ¼
0 0 0 h0
0 0 0 h1
0 0 0 0
h0 h1 0 0

2
6664

3
7775e�i!tðsin�@�ÞPl; (3.2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

M2

D
M

FIG. 2 (color online). The dilaton charge D, as a function of
(rescaled) �0=M2 (solid line). The whole range of �0=M2 in
which a black hole solution exists is shown. Numerical solution
behaves as D=M� �0=ð2M2Þ in the �0 ! 0 limit [36] (dashed
line).

1.0 1.2 1.4 1.6 1.8 2.0

0.01

0.1

1

10

100

r rh

grr r GR
gtt r GR
grr r EDGB
gtt r EDGB

FIG. 1 (color online). Metric components gtt and grr for a
DBH (solid lines) compared with an equal mass Schwarzschild
hole (dotted lines) (�0=M2 � 0:691, which corresponds to
D=M� 0:572).

1Despite the covariant derivative in Eq. (2.5), equations of
motion do not contain higher derivatives of the metric g��

because of the GB term (see Eq. (4) in [25]). This allows one
to use the same gauge transformations first proposed in Ref. [40].
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(ii) polar perturbations:

h�� ¼

H0e
�ðrÞ H1 0 0

H1 H2e
�ðrÞ 0 0

0 0 r2K 0

0 0 0 r2Ksin2�

2
666664

3
777775

� e�i!tPl:

Where Pl ¼ Plðcos�Þ is the Legendre polynomial with
angular momentum l and h0, h1, H1, H2, and K are
unknown radial functions.

Perturbations of the dilaton field, 
�, do not appear in
the axial equations (see also [44]). The linear stability
analysis proceeds by mapping the system of the equations
of motion for the perturbation fields under consideration to
a stationary one-dimensional Schrödinger problem, in an
appropriate potential well, in which the ‘‘squared frequen-
cies’’ !2 are the ‘‘energy eigenvalues.’’ Instabilities, then,
correspond to bound states, i.e. to negative energy eigen-
states or equivalently to frequencies ! with a positive
imaginary component.

Presumably because polar perturbations are extremely
complex to analyze, Kanti et al. [24] focused on a certain
subset, the radial perturbations. They found that the space-
time was stable against radial perturbations, their results
being confirmed in Ref. [25]. Thus, there are good indica-
tions that the spacetime is stable under polar perturbations.
We thus focus here on the other set of perturbations, axial
perturbations, which as far as we know are not dealt with in
the literature.

B. Axial perturbations

For axial perturbations only three nontrivial Einstein
equations can be obtained by substituting (3.2) and (3.1)
into (2.4). The zeroth-order equations are identically zero,
due to the background solution, while the equations for the
perturbations, h0 and h1, read

ð’; �Þ: h0ðrÞ þ A1h1ðrÞ þ A2h
0
1ðrÞ ¼ 0; (3.3)

ð’; rÞ: h00ðrÞ �
2

r
h0ðrÞ þ 1; lh1ðrÞ ¼ 0; (3.4)

ð’; tÞ: C1;lh0ðrÞ þ C2;lh1ðrÞ þ C3;lh
0
0ðrÞ þ C4;lh

0
1ðrÞ

þ C5;lh
00
0 ðrÞ ¼ 0; (3.5)

where Ai, Bi;l, and Ci;l depend on the radial background

function �, �0, �00, �, �0, �0, �
0
0, and �00

0 found in [15].

Their explicit form can be found in Appendix A. We
observed numerically that Eq. (3.5) is automatically satis-
fied as a consequence of the other two equations and of
background solutions. So we are left with a system of two
ordinary differential equations (ODEs) for two unknown

functions h0ðrÞ and h1ðrÞ. Eliminating h0 from the first
order equation (3.3) we obtain a second order differential
equation for h1 which can be recast (see Appendix A for
details) in the following Schrödinger-like equation:

u00ðrÞ þ ½VðrÞ þ!2KðrÞ�uðrÞ ¼ 0: (3.6)

These functions are shown in Fig. 3.
The asymptotic behavior of Eq. (3.6) (see Appendix A

for details) is

u00ðrÞ þ
�
Vh þ!2Kh

ðr� rhÞ2
�
uðrÞ ¼ 0; r ! rh; (3.7)

u00ðrÞ þ!2uðrÞ ¼ 0; r ! 1: (3.8)

The asymptotic solutions are

0 200 400 600 800 1000

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

r rh

M
2

V
r

l 3

l 3

l 2

0 200 400 600 800 1000
1.000

1.005

1.010

1.015

1.020

1.025

r rh

K
r

FIG. 3 (color online). Top panel: The potential VðrÞ for the
axial perturbations for a EDGB black hole. Different values of
the angular momentum l are shown for �0=M2 � 0:691, which
corresponds to D=M� 0:572. Bottom panel: The function KðrÞ
for the axial perturbations equation for a EDGB black hole for
�0=M2 � 0:691.
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uðrÞ � u0ðr� rhÞð1=2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þ�Vh�!2Kh

p
; r ! rh;

(3.9)

uðrÞ � u1e�i!r; r ! 1: (3.10)

Figure 4 shows the coefficients Vh and Kh as functions of
�0=M2. For a Schwarzschild BH, Vh � 1=4 and Kh �
4M2. In the EDGB case one finds one finds Vh � 1=4
and Kh & 4M2 in the whole range (2.9). Thus the asymp-
totic solution (3.9) simplifies

uðrÞ � u0ðr� rhÞð1=2Þ�i!M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKh=M

2Þ
p

; r ! rh: (3.11)

Since ! is complex, the sign in Eqs. (3.10) and (3.11)
above has to be chosen so that the solution is regular on
the horizon and at infinity. Thus for unstable modes
Imð!Þ> 0, the choice of the minus and the plus sign in
Eqs. (3.10) and (3.11), respectively, guarantees that the
corresponding eigenfunctions will vanish at infinity and
at the horizon. We have searched for unstable modes using
these boundary conditions. We integrated Eq. (3.6) out-
ward starting from the horizon until we found the eigen-
frequency corresponding to a vanish field at infinity. We
used a Runge-Kutta fourth order method, considering rh ¼
1 and different �h values corresponding to different BH
solutions [15]. We systematically span the whole range
(2.9) for l ¼ 2, 3, 4. We also randomly span other values
for �0 and l to no avail: no unstable modes were found. We
checked the numerical accuracy of our results by changing
numerical parameters such as r1. Our results strongly
suggest that EDGB black holes are stable against axial
perturbations. This completes the previous linear stability

analysis [24,25] performed for radial perturbations. It
would be of great interest to also understand polar pertur-
bations and reduce them to a single master ordinary dif-
ferential equation. Because of the complexity of the
equations involved we did not perform such an analysis.
We note that the present analysis is only possible because
axial and polar perturbations decouple in this theory, unlike
for instance in Chern-Simons theory [45].

IV. SLOWLY ROTATING BHS IN EDGB THEORY

Astrophysical black holes are expected to be highly
spinning because of accretion and merger events [46–49].
Unfortunately the GB term is very hard to deal with for
generic axisymmetric metrics and thus general rotating
black holes are difficult to study without a full numerical
integration of Einstein’s equations. Expansion in �0 is
another promising approach, which has been successfully
implemented for nonrotating DBHs [36]. Here we use
another method, searching for solutions describing rotating
BHs at every order in �0, but in a slow rotation approxi-
mation. This method allow us to prove that such (slowly)
rotating BHs do exist in EDGB theory. This strongly
suggests that, in general, rotating DBHs exist. In alterna-
tive high-energy modifications of GR, such as Chern-
Simons modified gravity BHs, rotating black-hole solu-
tions are harder to find [50,51].
We follow Hartle’s approach [52] which is based on

axisymmetric perturbations of a spherically symmetric
equilibrium solution and on an expansion of the perturbed
quantities in a power series of the angular velocity � for
frame dragging. The equilibrium solution is the one devel-
oped in Ref. [15] and explored in the previous sections. To
first order in � the perturbed metric is

ds2 ¼ e�ðrÞdt2 � e�ðrÞdr2 � r2½d�2 þ sin2�ðd’��dtÞ2�;
(4.1)

where � � �ðr; �Þ is the angular velocity d�=dt of an
observer at ðr; �Þ freely falling from infinity. Since we
consider only axisymmetric perturbations, we neglected
the � dependence and we can expand �ðr; �Þ in terms of
Legendre polynomials

�ðr; �Þ ¼ X1
l¼1

�lðrÞ
�
� 1

sin�

dPlðcos�Þ
d�

�
: (4.2)

Both the metric and dilaton perturbations are functions of
even powers of the angular velocity�, thus we can use the
unperturbed metric and the unperturbed dilaton field to find
�-order corrections neglecting �2-order terms. Using the
expansion (4.2) only the ft; ’g component of modified
Einstein equations (2.4) is first order in� and, interestingly
enough, it gives a separable differential equation as fol-
lows:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.88

0.90

0.92

0.94

0.96

0.98

1.00

M2

Kh 4 M2

Vh 0.25

FIG. 4 (color online). The coefficients Vh (solid line) and Kh

(dashed line) as functions of �0=M2 in the whole range (2.9). As
for a Schwarzschild BH, Vh � 1=4, whereas Kh is always
smaller than its Schwarzschild counterpart, Kh & 4M2.
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�00
l ðrÞ þ

G2ðrÞ
G3ðrÞ�

0
l þ

�
e�

G1ðrÞð2� lðlþ 1ÞÞ
G3ðrÞ

�
�l ¼ 0;

(4.3)

where

G1ðrÞ ¼ 2e� þ �0e�ð�0�0 � 2ð�02 þ�00ÞÞ;
G2ðrÞ ¼ �e�rð�8þ rð�0 þ �0ÞÞ

þ ��0e�ð�0ð6� rð3�0 � 2�0 þ �0ÞÞ þ 2r�00Þ;
G3ðrÞ ¼ 2r2e� � 2�0re��0; (4.4)

and �, �, � are zeroth order in �, therefore given by the
spherically symmetric background [15]. For �0 ¼ 0
Eq. (4.3) is equivalent to the standard GR form (Eq. (43)
in Ref. [52] with a vanishing stress tensor).

To solve the above equation we must specify the bound-
ary condition for large r. Since the scalar field vanishes
asymptotically, the solution should approach flat space
solution. Thus for large r we can define the angular mo-
mentum of the BH via the following behavior:

�lðrÞ � 2J

r3
: (4.5)

It is worth noting that the dilaton field can introduce order
1=r3 corrections to the off diagonal metric coefficients. In
the slowly rotating approach we use, these corrections are
neglected. The asymptotic behavior of Eq. (4.3) is

�0
lðrÞ þ

4

r
�0

lðrÞ þ
2� lðlþ 1Þ

r2
�lðrÞ ¼ 0; (4.6)

whose general solution is

�lðrÞ � �r�2�l þ 
r�1þl; (4.7)

where � and 
 are constant. With the asymptotic behavior
(4.5), the equation above implies that only the l ¼ 1 mode
is allowed. Thus the equation to solve is

�00
1 ðrÞ þ

G2ðrÞ
G3ðrÞ�

0
1 ¼ 0: (4.8)

The solution of the above equation is

�1ðrÞ ¼ C1 þ C2

Z r

rh

dte
�
R

t

rh
dsðG2ðsÞ=G3ðsÞÞ; (4.9)

where the constants C1 and C2 are fixed asking for the
asymptotic condition at infinity, Eq. (4.5). The analogous
procedure to find slowly rotating Kerr solutions in classical
GR is presented in Appendix B for completeness, which is
basically a reproduction of the results of Hartle [52]. There
we show that this procedure leads to the Kerr metric in
lowest order and furthermore that the l ¼ 1 term is the only
possible term in the expansion. Applying the same proce-
dure to a static boson star [53], one can prove that such
slowly rotating solutions do not exist [54].

In what follows, we shall drop the index � � �1. The
angular velocity �ðrÞ for different slowly rotating BHs is
shown in Fig. 5. In the limit �0 ! 0, one recovers the
results for a small rotating BH in general relativity, ob-
tained perturbing a Schwarzschild BH, as described in the
section below. Interestingly, the angular velocity of a BH in
the EDGB can be �40% larger than the one for a slowly
rotating Kerr BH (see the bottom panel in Fig. 5) with the
same angular momentum. A numerical relation which can

1 2 3 4 5
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M
r
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M
r h
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FIG. 5 (color online). Top panel: Angular velocity � as a
function of r for different slowly rotating BHs in EDGB theory.
From top to bottom: decreasing values for �0=M2. For �0 ! 0 or
D ! 0 solutions approach the slowly rotating Kerr BH (solid
line). Bottom panel: Angular velocity of the BH, �h ¼ �ðrhÞ,
for a DBH (dashed line) with �0=M2 � 0:691 compared to the
same for a slowly rotating Kerr BH (solid line) and a Kerr BH
(dotted line). Up to J=M2 � 0:5 results for the slowly rotating
Kerr BH reproduce the exact ones. The difference in the angular
velocity between slowly rotating DBHs and slowly rotating Kerr
BHs and can be as large as �40%.

ARE BLACK HOLES IN ALTERNATIVE THEORIES . . . PHYSICAL REVIEW D 79, 084031 (2009)

084031-7



be computed from Fig. 5 is

M�h � M�ðrhÞ � 0:37
J

M2
; (4.10)

while for a slowly rotating Kerr BH the above relation is
M�h ¼ 0:25J=M2. Thus, a DBH is more ‘‘compact’’ than
a BH with same mass and angular momentum.

Ergoregion and superradiance

Ergoregions can develop in rotating spacetimes. The
ergoregion is found by computing the surface on which
gtt vanishes. An approximate equation to the location of
the ergoregion [55] is

0 ¼ �e�ðrÞ þ�2ðrÞr2sin2�; (4.11)

which is expected to be a good approximation especially
for very compact objects, such as BHs. The solution of
Eq. (4.11) is topologically a torus. In the equatorial plane
we have

r�ðrÞ ¼
ffiffiffiffiffiffiffiffiffi
e�ðrÞ

p
: (4.12)

The existence and the boundaries of the ergoregions can be
computed from the above equations. The ergoregion width
for a DBH compared to both a slowly rotating and a full
rotating Kerr BH is shown in Fig. 6 for different J values.
The ergoregion width W for a Kerr BH on the equatorial

plane is W=M ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða=MÞ2p

. The ergoregion width
for a DBH can be�50% larger than the width for a slowly
rotating Kerr BH. Therefore BH superradiance in EDGB is
expected to be stronger than in GR. As expected the

difference between slowly rotating DBHs and slowly rotat-
ing Kerr BHs tends to zero in the �0 ! 0 limit.

V. BH GEODESICS IN EDGB THEORY

In this section, geodesics in the exterior of both non-
rotating and slowly rotating EDGB black holes are dis-
cussed. If we neglect backreaction effects, which we do in
the following, the geodesics in this spacetime correspond
to paths followed by timelike or null particles. In principle
backreaction effects should be important for large bodies
or strong dilaton fields. However, for small point particles
around DBH black holes they should be negligible. From
the analysis of the geodetic motion we compute orbital
frequencies related to the ISCO for both nonrotating and
slowly rotating DBHs and the QNM frequencies for spheri-
cally symmetric BHs in EDGB theory in the eikonal limit.
These quantities can be directly measured and can be used
as a promising tool to study high-energy modifications of
GR.
The motion of test particles around a DBH is deeply

related to the coupling between matter and the dilaton.
However it turns out that the coupling depends on the
choice between two different frames, namely, the string
frame and the Einstein frame (for a discussion in scalar-
tensor theories see Ref. [56] and references therein). The
two frames are nonequivalent. In the string frame the
coupling between matter and the dilaton field is minimal,
but Newton constant GN depends on the coordinates and
light bending is not correctly reproduced [57]. Conversely,
in the Einstein frame the light bending is correctly repro-
duced, since GN is constant, but particles nonminimally
couple to the dilaton field. This leads to a violation of the
equivalence principle. This violation is small and compat-
ible with the available tests of the equivalence principle
[56] and it is indeed regarded as an important test in
discerning the two frames. Which of the two frames is
the physically relevant is an open question, which will
eventually be settled by experiments.
Following Refs. [15,16] we always assume the Einstein

frame. In this frame the total action reads

STOT ¼ Sþ Sc þ Sts

¼ Sþ Sc �m
Z

dteb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��

@x�

@t

@x�

@t

s
; (5.1)

where S is the EDGB action, Eq. (2.1),m is the mass of the
test particle, and Sc is the action which describes some
coupling between the test particle and the dilaton field. The
constant b in the equation above is the coupling between
the matter and the dilaton field. Its particular value depends
on the specific theory from which the low-energy theory
comes. For low-energy modifications from heterotic string
theory, b ¼ 1=2. We shall discuss the motion of a test
particle keeping a general value of b and we only special-
ize to b ¼ 1=2 when we discussing numerical results. As
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FIG. 6 (color online). Ergoregion width W
M for a DBH (solid

line), a Kerr BH (dashed line), and a slowly rotating Kerr BH
(dotted line) as function of the angular momentum J for
�0=M2 � 0:691. Up to J=M2 � 0:3 results for the slowly rotating
Kerr BH reproduce the exact ones. The ergoregion width for a
rotating DBH can be �50% larger than the one for a Kerr BH.
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already mentioned, in the equation above we neglect gauge
fields, such as Maxwell fields. Furthermore we neglect any
coupling between the dilaton field and the test particle,
Sc ¼ 0, as well as any backreaction of the background
fields.

The string frame and the Einstein frame are related by a
Weyl transformation [58]. Since null geodesics equations
are Weyl invariant, the motion of massless particles is the
same in both frames and it is described by the standard
geodesics equations.

A. Geodesics: nonrotating case

Following Chandrasekhar [34,59] we consider a four-
dimensional stationary, spherically symmetric line element

ds2 ¼ fðrÞdt2 � 1

gðrÞdr
2 � r2ðd�2 þ sin2�d’2Þ: (5.2)

We also take a spherically symmetric dilaton and set
HðrÞ ¼ 2b�ðrÞ. Because of the symmetry of the above
background fields, the trajectory of a particle is planar,
say � ¼ �=2 and the following conserved quantities can be
defined: the (dimensionless) specific energy of the test
particle, E ¼ e=m, and the specific angular momentum,
L ¼ ‘=ðmÞ, where e, ‘ and m are the energy, the angular
momentum, and the mass of the test particle, respectively.
Let us restrict attention to circular orbits, for which the
Lagrangian is

2L ¼ eHðrÞ
�
fðrÞ _t2 � 1

gðrÞ _r
2 � r2 _’2

�
: (5.3)

From the Lagrangian above, the equations of motion for
the coordinates x� ¼ ðt; r; �;�Þ read

_r 2 ¼ VðrÞ ¼ gðrÞ
e2HðrÞ

�
E2

fðrÞ �
L2

r2
� 
1e

HðrÞ
�
; (5.4)

_’ ¼ L

r2
e�HðrÞ; _t ¼ E

fðrÞ e
�HðrÞ; (5.5)

where 
1 ¼ 0, 1 for lightlike and timelike geodesics, re-
spectively, and the derivative is intended to respect with the
proper time.

1. Timelike geodesics

We set 
1 ¼ 1 in Eq. (5.4). The requirement for a
circular orbit at r ¼ rt is VðrtÞ ¼ V 0ðrtÞ ¼ 0, thus

E2 ¼ eHt
2f2t ð1þ rtH

0
t=2Þ

2ft � rtf
0
t

;

L2 ¼ eHt
r3t f

0
tð1þH0

tft=f
0
tÞ

2ft � rtf
0
t

:

We choose the notation ft � fðrtÞ, with the subscript t
standing for timelike. Since the energy must be real we
require

2þ rtH
0
t

2ft � rtf
0
t

> 0: (5.6)

The condition for a stable circular orbit is

V 00
t ¼ 2

gt
ft
e�Ht

�ð2ðf0tÞ2 � ftf
00
t Þð1þ rtH

0
t=2Þ � 3ftf

0
t=rtð1þH0

tft=f
0
tÞ

2ft � rtf
0
t

þ� ft
2
½H00

t þ ðH0
tÞ2�

�
< 0: (5.7)

From Eqs. (5.5) we define the orbital angular velocity

�t ¼ _’

_t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0t
2rt

�
1þH0

tft=f
0
t

1þ rtH
0
t=2

�s
: (5.8)

The equations above reduce to the usual ones forHðrÞ � 0.
For the well-known Schwarzschild case we have fðrÞ ¼

gðrÞ ¼ 1� 2M=r andHðrÞ ¼ 0. In this case, the condition
(5.6) reads rt > 3M and from condition (5.7) for stable
orbits, we find rt > 6M. For 3M< rt < 6M only unstable
orbits exist, hence the radius r ¼ rISCO ¼ 6M is known as
innermost-stable-circular-orbit. The orbital angular veloc-

ity at the ISCO is M�ISCO ¼ 1=ð6 ffiffiffi
6

p Þ.
To compute the above quantities in EDGB theory we set

fðrÞ ¼ e�ðrÞ, gðrÞ ¼ e��ðrÞ, and HðrÞ ¼ �ðrÞ, where �ðrÞ,
�ðrÞ, and �ðrÞ represent the spherically symmetric BH
solution found in Ref. [15]. We also specialize to the case
b ¼ 1=2. Numerical results for a EDGB nonrotating BH
are shown in Table I and Fig. 7. The comparison with
Schwarzschild BH (with the same mass) and inclusion of

null geodesics is discussed in the section below. For com-
pleteness we show results both for b ¼ 1=2 and b ¼ 0. The
effect of a nonvanishing coupling is leading and it makes
the angular frequency for a DBH smaller than in the
Schwarzschild case (conversely the ISCO is larger). We
find that the difference between the orbital frequency in
GR and in EDGB theory can be as large as�20%, depend-
ing on the coupling constant �0=M2. In the �0 ! 0 limit,
Schwarzschild results are recovered. The largest deviations
occur when relation (2.8) is saturated by choosing the
appropriate �h. This corresponds to the maximum value
�0=M2 � 0:691, or equivalently to D=M� 0:572. It is
worth noticing that the same occurs for a Reissner-
Nordström BH, for which we have a relation between the
electrical charge and the mass, Q=M < 1. Qualitatively,
taking in account the coupling b, in EDGB theory the
ISCO is always larger than it is for a Schwarzschild BH
and the orbital frequency for a timelike geodesic is always
smaller. Results for null geodesics do not depend on the
coupling b, as explained in the section below. In Table I we

ARE BLACK HOLES IN ALTERNATIVE THEORIES . . . PHYSICAL REVIEW D 79, 084031 (2009)

084031-9



also show the quantity

� ¼ E1 � EISCO

E1
;

which is the binding energy per unit rest mass at the ISCO.
Because the accretion inside the ISCO is assumed to be in
free fall, this is equal to the integrated luminosity per unit
rest mass accreted, i.e. the radiative efficiency of accretion.
This efficiency ranges from �5:7% for a Schwarzschild
black hole to �42% for an extremal Kerr hole.

Finally, we searched for static equilibrium solutions
(following Maki and Shiraishi [60]), i.e., a point particle
at rest at a distance, say, r ¼ r0. For this, we set L ¼ 0 in
Eq. (5.4) and ask for Vðr0Þ ¼ V 0ðr0Þ ¼ 0. We find no
solution to these equations, meaning such a configuration
does not seem to be possible for this theory.

2. Null geodesics

We now consider null circular geodesics, labeled by a
‘‘c’’ subscript. It is easy to show that, setting 
1 ¼ 0 in
Eq. (5.4), the dilaton field HðrÞ gives no contribution.
Requiring Vc ¼ V0

c ¼ 0 we find

E

L
¼ �

ffiffiffiffiffi
fc
r2c

s
; 2fc ¼ rcf

0
c: (5.9)

The condition for a circular orbit reads

V00
c ¼ 2

L2gce
�2Hc

r4cfc
ð2fc � rcf

00
c Þ; (5.10)

whose sign does not depend on HðrÞ. The orbital angular
velocity is

�c ¼ 1

bc
¼ _’

_t
¼

ffiffiffiffiffi
fc

p
rc

; (5.11)

where bc ¼ L=E is the impact parameter. In the
Schwarzschild case the condition (5.9) restricts the null
circular orbits to rc ¼ 3M. The orbital angular velocity is

M�c ¼ 1=ð3 ffiffiffi
3

p Þ. Results for a EDGB spherically sym-
metric BH are summarized in Table I. In this case, there is
no effect from the coupling b and the difference between
EDGB and GR theory is of the order 1%. From (5.10) we
find that V 00

c > 0 and therefore only unstable null circular
orbits exist. Hence also in EDGB case null geodesics are
always unstable against small perturbations.

3. QNMs in the large l limit for spherically symmetric
EDGB BHs

Particularly promising for gravitational-wave detection
are the characteristic vibration modes of black holes
[21,33]. These modes, called quasinormal modes
(QNMs), are exponentially damped sinusoids and carry
an imprint of the black hole, its features being independent
on what exactly excited the modes. QNMs are excited to a

TABLE I. Some geodesics-related quantities for a spherically symmetric EDGB BH: orbital frequencies for timelike (�ISCO), and
null (�c) circular orbits and the radiative efficiency, �. We compare to the Schwarzschild case, for different values of �0=M2 covering
whole spectrum 0<�0=M2 & 0:691. We also give the percentage (%) difference between EDGB and GR and we show results both for
the coupling b ¼ 1=2 and b ¼ 0. Null-like geodesics do not depend on the coupling b.

�0=M2 D=M M�ISCO (b ¼ 0) (�%) M�ISCO (�%) M�c (�%) � (b ¼ 0) (�%) � (�%)

0 0 0:0681� 1
6
ffiffi
6

p 0:0681� 1
6
ffiffi
6

p 0:1925� 1
3
ffiffi
3

p 0:0572� 3�2
ffiffi
2

p
3 0:0572� 3�2

ffiffi
2

p
3

3� 10�6 10�6 0.0681 (� 0%) 0.0681 (� 0%) 0.1925 (� 0%) 0.0572 (� 0%) 0.0572 (� 0%)

3� 10�3 2� 10�3 0.0681 (� 0%) 0.0680 (� 0%) 0.1925 (� 0%) 0.0572 (� 0%) 0.0571 (� 0%)

0.027 0.013 0.0681 (0%) 0.0677 (� 0:5%) 0.1925 (� 0%) 0.0572 (� 0%) 0.0567 (� 0:9%)

0.238 0.129 0.0681 (þ 0:2%) 0.0646 (� 5:0%) 0.1926 (þ 0:1%) 0.0572 (þ 0:1%) 0.0525 (� 8:3%)

0.417 0.246 0.0684 (þ 0:5%) 0.0617 (� 9:4%) 0.1930 (þ 0:3%) 0.0574 (þ 0:3%) 0.484 (� 15:4%)

0.545 0.350 0.0687 (þ 1:0%) 0.0591 (� 13:1%) 0.1936 (þ 0:6%) 0.0575 (þ 0:6%) 0.0449 (� 21:6%)

0.630 0.441 0.0691 (þ 1:6%) 0.0569 (� 16:3%) 0.1942 (þ 0:9%) 0.0577 (þ 0:9%) 0.0419 (� 26:7%)

0.677 0.516 0.0695 (þ 2:1%) 0.0552 (� 18:9%) 0.1948 (þ 1:2%) 0.0579 (þ 1:2%) 0.0396 (� 30:8%)

0.691 0.572 0.0697 (þ 2:5%) 0.0539 (� 20:9%) 0.1953 (þ 1:5%) 0.0580 (þ 1:3%) 0.0378 (� 33:9%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.80

0.85

0.90
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1.00
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null like
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FIG. 7 (color online). Angular frequency for circular timelike
�ISCO for b ¼ 0 (solid line) and for b ¼ 1=2 (dashed line), and
for null-like �c (dotted line) geodesics, normalized to the
Schwarzschild value.
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large amplitude for instance in the inspiral and subsequent
merger of black hole or neutron star binaries. In fact, the
ringdown phase of supermassive black holes can have a
larger signal-to-noise ratio than any other signal
[21,33,61,62], justifying dedicated searches for ringdown
in current gravitational-wave detectors such as LIGO or
TAMA [63,64].

It was recently shown [34] that there is a simple relation
between QNMs and circular null geodesics in general
spacetimes in the eikonal, i.e. large-l limit,

!QNM ¼ �cl� iðnþ 1=2Þj�j; (5.12)

where �c is defined in Eq. (5.11) and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gc
2r2c

ð2fc � r2cf
00
c Þ

s
; (5.13)

is the Lyapunov exponent, describing the inverse of the
instability timescale of the geodesic. For circular null geo-
desics the argument of the square root in Eq. (5.13) is
always positive. QNMs are easily computed from the
equation above and again the difference between the real
and imaginary part of the QNM frequency for a DBH and
for a Schwarzschild BH is order 1%, as shown in Table II.
We have not attempted to compute the least damped QNMs
for these black holes, but wewill assume they behave in the
same way as the coupling constant varies [33].
Discriminating such small percentage differences is in
principle doable with the gravitational-wave detector
LISA [21,62], though it may be very challenging due to
systematic errors [21,33,62,65,66]. As far as we know, the
QNMs of DBHs have not been considered in the literature,
even though their computation is extremely relevant.
Nevertheless, the computation of QNMs of black holes in
higher-dimensional Gauss-Bonnet theories without a dila-
ton, or purely dilatonic black holes has been done [67–69];
we expect the four-dimensional case to proceed along
similar lines.

B. Geodesics: rotating case

We will now consider geodesics in the slowly rotating
DBHs spacetime studied earlier in Sec. IV. For that, let us
take the general four-dimensional static axisymmetric
spacetime on the equatorial plane

ds2 ¼ fðrÞdt2 � 1

gðrÞdr
2 � hðrÞd’2 þ 2jðrÞdtd’;

(5.14)

where we specialize to � ¼ �=2 and d� ¼ 0. We also
consider the dilaton field on the equatorial plane and set
HðrÞ ¼ 2b�ðrÞ. Some interesting special cases of the met-
ric above are listed in Table III. Following Chandrasekhar
[59], we consider planar orbits, for which the Lagrangian is

2L ¼ eHðrÞ
�
fðrÞ _t2 � 1

gðrÞ _r
2 � hðrÞ _’2 þ 2jðrÞ _t _’

�
:

(5.15)

The generalized momenta are

pt ¼ const ¼ eHðrÞ½fðrÞ _tþ jðrÞ _’� � E;

�p’ ¼ const ¼ eHðrÞ½�jðrÞ _tþ hðrÞ _’� � L;

�pr ¼ eHðrÞ

gðrÞ _r;

and the Hamiltonian is

2H ¼ 2ðpt _tþ p’ _’þ pr _r�LÞ

¼ E _t� L _’� eHðrÞ

gðrÞ _r2 ¼ 
1; (5.16)

where again 
1 ¼ 1, 0 for timelike and null geodesics,
respectively. Using the integrals of motion E and L the
equations of motion read

TABLE II. Real and imaginary part of the QNM frequencies
defined by the formula !QNM ¼ �cl� iðnþ 1=2Þj�j in the

eikonal approximation [34]. Terms between parenthesis are the
differences with respect to the Schwarzschild case, for which
M� ¼ M� ¼ 1=ð3 ffiffiffi

3
p Þ.

�0=M2 D=M M�c (�%) M� (�%)

3� 10�6 10�6 0.1925 (� 0%) 0.1925 (� 0%)

3� 10�3 2� 10�3 0.1925 (� 0%) 0.1925 (� 0%)

0.027 0.013 0.1925 (� 0%) 0.1925 (� 0%)

0.238 0.129 0.1926 (þ 0:1%) 0.1924 (� 0:1%)

0.417 0.246 0.1930 (þ 0:3%) 0.1921 (� 0:2%)

0.545 0.350 0.1936 (þ 0:6%) 0.1916 (� 0:4%)

0.630 0.441 0.1942 (þ 0:9%) 0.1909 (� 0:8%)

0.677 0.516 0.1948 (þ 1:2%) 0.1901 (� 1:3%)

0.691 0.572 0.1953 (þ 1:5%) 0.1892 (� 1:7%)

TABLE III. Some particular cases of interest of the metric
(5.14) along the equatorial plane: axially and spherically sym-
metric spacetimes. Then we specialize to the Kerr metric and its
slow rotation limit [slow Kerr (SK)] discussed in Appendix B,
and finally to the general slowly rotating metric described in
Sec. IV and then we compare this to the slowly rotating Kerr
solution, discussed.

Axially

symmetric

Spherically

symmetric

Kerr SK Slow

rotation

fðrÞ fðrÞ 1� 2M
r 1� 2M

r fðrÞ
gðrÞ gðrÞ 1� 2M

r þ a2

r2
1� 2M

r gðrÞ
hðrÞ r2 r2 þ a2 þ 2a2M

r r2 r2

jðrÞ 0 2aM
r

2J
r r2�ðrÞ

HðrÞ HðrÞ 0 0 HðrÞ
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_r2 ¼ VðrÞ ¼ gðrÞe�2HðrÞ
�
hðrÞE2 � fðrÞL2 � 2jðrÞEL

j2ðrÞ þ fðrÞhðrÞ
� 
1e

HðrÞ
�
;

_’ ¼ jðrÞEþ fðrÞL
j2ðrÞ þ fðrÞhðrÞ e

�HðrÞ;

_t ¼ hðrÞE� jðrÞL
j2ðrÞ þ fðrÞhðrÞ e

�HðrÞ:

(5.17)

1. Timelike geodesics

Setting 
1 ¼ 1 in Eq. (5.17) and requiring V ¼ V 0 ¼ 0
at the radius r ¼ rt we find a system of nonlinear algebraic
equations for E and L

0 ¼ htE
2 � ftL

2 � 2jtEL� eHtðj2t þ fthtÞ;
0 ¼ h0tE2 � f0tL2 � 2j0tELþ�eHt½2jtj0t þ f0tht þ fth

0
t

þH0
tðj2t þ fthtÞ�:

The system above can be solved analytically but the form
of the solutions is not particularly useful. Solutions of the
system above can be substituted in

V00
t ¼ gte

�2Ht

j2t þ ftht
½h00t E2 � f00t L2 � 2j00t EL

� eHtð½H00
t þ ðH0

tÞ2�ðj2t þ fthtÞ
þ 2H0

tð2jtj0t þ f0tht þ fth
0
tÞ þ 2j02t þ 2jtj

00
t þ f00t ht

þ 2f0th0t þ fth
00
t ÞÞ� (5.18)

and in

�t ¼ _’

_t
¼ jtE=Lþ ft

htE=L� jt
:

From Eq. (5.18) above we can find the ISCO for a generic
rotating BH asking for V 00

t � 0. Setting hðrÞ � r2 and
jðrÞ � 0, the equations above reduce to ones for a spheri-
cally symmetric spacetime. The requirement for the energy
E to be real imposes the constraint rt > rmin. Results for
circular timelike geodesics are shown in Table IV for
corotating orbits. For rmin < rt < rISCO only unstable cir-
cular orbits are permitted. For rt > rISCO circular orbits are
stable, while for rt < rmin no circular orbits exist.
Measurements of the ISCO can be used to evaluate the
angular momentum of an astrophysical BH [28]. Figure 8
shows how the ISCO and the orbital frequency �t depend
on J for slowly rotating BHs both in EDGB theory and in
GR. Figure 8 can be used to evaluate the angular momen-
tum once the ISCO has been measured (see Fig. 2 in
Ref. [28] for details). Again the role of the coupling b is
leading for timelike geodesics. As a qualitative result the
orbital frequency is smaller for a slowly rotating EDGB
BH than the one for a Kerr BH and the ISCO is larger.
Differences range from 10% to �20% depending on the
angular momentum J=M2 and on the dilatonic charge
D=M. The difference is monotonically decreasing for
larger rotations; it strongly depends on b but not on J.
The effect of rotation seems to be subleading.

2. Null geodesics

Focusing on circular orbits (
1 ¼ 0), we require V ¼
V0 ¼ 0 at the radius r ¼ rc. These two conditions read

TABLE IV. Results for corotating timelike (at the ISCO) and null geodesics in slowly rotating
EDGB BH spacetimes compared to the slowly rotating Kerr case.

�0=M2 J=M2 M�ISCO (b ¼ 0) (�%) M�ISCO (�%) M�c (�%)

3� 10�3 0.3 0.0901 (� 0%) 0.0900 (� 0:1%) 0.2220 (� 0%)

3� 10�3 0.2 0.0808 (� 0%) 0.0807 (� 0:1%) 0.2101 (� 0%)

3� 10�3 0.1 0.0737 (� 0%) 0.0736 (� 0:1%) 0.2005 (� 0%)

0.027 0.3 0.0901 (� 0%) 0.0896 (� 0:6%) 0.2220 (� 0%)

0.238 0.3 0.0903 (þ 0:3%) 0.0855 (� 5:1%) 0.2224 (þ 0:2%)

0.417 0.3 0.0910 (þ 1:0%) 0.0818 (� 9:2%) 0.2232 (þ 0:5%)

0.417 0.1 0.0742 (þ 0:6%) 0.0668 (� 9:3%) 0.2012 (þ 0:4%)

0.545 0.3 0.0919 (þ 2:0%) 0.0787 (� 12:6%) 0.2244 (þ 1:1%)

0.545 0.1 0.0746 (þ 1:2%) 0.0641 (� 13:0%) 0.2019 (þ 0:7%)

0.630 0.3 0.0929 (þ 3:2%) 0.0763 (� 15:3%) 0.2258 (þ 1:7%)

0.630 0.2 0.0827 (þ 2:4%) 0.0681 (� 15:8%) 0.2120 (þ 1:3%)

0.630 0.1 0.0751 (þ 1:9%) 0.0619 (� 16:1%) 0.2027 (þ 1:1%)

0.677 0.3 0.0939 (þ 4:3%) 0.0744 (� 17:4%) 0.2272 (þ 2:4%)

0.677 0.2 0.0834 (þ 3:2%) 0.0661 (� 18:1%) 0.2139 (þ 1:8%)

0.677 0.1 0.0756 (þ 2:5%) 0.0600 (� 18:6%) 0.2035 (þ 1:5%)

0.691 0.3 0.0947 (þ 5:1%) 0.0729 (� 19:0%) 0.2284 (þ 2:9%)

0.691 0.2 0.0839 (þ 3:8%) 0.0647 (� 19:9%) 0.2148 (þ 2:2%)

0.691 0.1 0.0759 (þ 3:0%) 0.0586 (� 20:4%) 0.2041 (þ 1:8%)
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E

L
¼ jc

hc
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jc
hc

�
2 þ fc

hc

s
; (5.19)

h0c
�
E

L

�
2 � f0c þ 2j0c

E

L
¼ 0: (5.20)

In this case

V 00
c ¼ L2gce

�2Hc

j2c þ fchc

�
h00c

�
E

L

�
2 � f00c � 2j00c

E

L

�
; (5.21)

which is positive at r ¼ rc. As expected, the positiveness
of equation above does not depend on the dilaton HðrÞ.
Therefore only unstable null circular orbits are allowed.
The angular velocity is

�c ¼ 1

bc
¼ jc

hc
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2c þ fchc

p
hc

; (5.22)

where bc ¼ L=E is the impact parameter. The double sign
in the above equation is related to orbits which are corotat-
ing and counterrotating with the BH. Results for corotating
null orbits are shown in Table IV and in Fig. 9. As we
expect, results for J=M2 ! 0 smoothly tend to the ones for
the nonrotating case. Interestingly enough, percentile dif-
ferences between GR results can be larger than order 5%
for corotating orbits. The radius for circular null orbits is
always smaller for a rotating EDGB BH than for a Kerr BH
in GR.

VI. DISCUSSION

Einstein-Dilatonic-Gauss-Bonnet theories are viable
theories of gravity, which share many features in common
with Einstein’s gravity but have a better understood quan-
tum limit. We have improved the linear stability analysis
for static black holes in this theory. We found that they are
stable and can in principle be used to discriminate between
the two theories. For the slowly rotating black holes we
studied here, the differences in measurable quantities
amount to a few percent in the most favorable cases (large
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FIG. 8 (color online). Top panel: The innermost-stable-circu-
lar-orbit radius, rISCO=M as a function of the angular momen-
tum, J=M2 for a slowly rotating DBH with �0=M2 � 0:691 for
b ¼ 1=2 (solid line), b ¼ 0 (dashed line) and in the GR limit,
�0=M2 � 0 (dotted line). From these plots and from the mea-
surements of rISCO the value of the angular momentum J=M2 can
be evaluated (see Fig. 2 in Ref. [28]). Bottom panel: The orbital
frequency at the ISCO �ISCO as a function of the angular
momentum, J=M2 for a slowly rotating DBH with �0=M2 �
0:691 for b ¼ 1=2 (solid line), b ¼ 0 (dashed line) and in the GR
limit, �0=M2 � 0 (dotted line). Negative values for J correspond
to counterrotating orbits.
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FIG. 9 (color online). The orbital frequency �c for circular
null-like orbits as a function of the angular momentum, J=M2 for
a slowly rotating DBH with �0=M2 � 0:691 (solid line) and in
the GR limit, �0=M2 � 0:03 (dashed line). Negative values for J
correspond to counterrotating orbits.
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coupling constant). Given the current state-of-the-art, it
does not seem possible to distinguish the correct theory
of gravity from measurements of either the ISCO (from
electromagnetic observation) or even of ringdown modes
with future gravitational-wave detectors.

There are at least two important extensions to be made,
which could prove to be very relevant:

(i) Consider highly spinning black holes. One could
attempt to extend the small rotation expansion to
second order in �, but we found such procedure to
be extremely complex, due to the symbolic manipu-
lations required. If carried through, it would allow a
computation of other multipole moments of the hole,
which could potentially lead to important tests
[21,22]. Given that many of the astrophysical black
hole candidates have a large spin, this could be a
promising way of discriminating EDGB and
Einstein’s theory. To find a highly spinning DBH
solution most likely requires a full numerical inte-
gration of the field equations (see for instance
Ref. [70] for a concise overview of possible methods
to handle this).

(ii) Waveforms of inspiralling particles. The calculation
of waveforms is highly nontrivial: it includes either
a rederivation of the post-Newtonian expansion, or a
full-blown numerical solution of the problem. The
payoff is huge: particles orbiting around black holes
are able to probe the background geometry in its
entirety [71]. The resulting gravitational waveform
should be sensitive enough to the field equations,
especially at late stages in the inspiral, when the
particle is about to merge. Indeed, the particle
spends a large number of cycles near the ISCO,

which could potentially increase by orders of mag-
nitude the ability to probe the geometry better, if
compared to ringdown.

Of course much more remains to be done. For instance,
it would be desirable to have a quantitative analysis of the
lowest lying ringdown modes. Most of all, it would be
extremely important to understand how general theories of
gravity affect the strong-field regime, the ISCO location
and frequency, etc. Perhaps then one might understand how
to discriminate between the correct theory of gravity with
future electromagnetic or gravitational-wave observations.
We hope to tackle these issues in future works.
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APPENDIX A: LINEAR STABILITYANALYSIS:
AXIAL PERTURBATIONS

In this appendix, we derive the Schrödinger-like equa-
tion which represents a eigenvalue problem for the com-
plex frequency!. Detailed calculations can be found in the
online MATHEMATICA notebooks which are available at
http://paolo.casadiale.com/EDGB_BHs.zip.
The coefficients in Eqs. (3.3), (3.4), and (3.5) read

A1ðrÞ ¼ ie��þ�ð2e�ð�0 � �0Þ � �0e�0ð�0ð��0
0ð�3�0 þ 2�0

0 þ �0Þ � 2�00
0 Þ � 2�0

0�
00ÞÞ

2!ð2e� þ �0e�0ð�0�0
0 � 2ð�02

0 þ�00
0 ÞÞÞ

; (A1)

A2ðrÞ ¼ ie��þ�ð�2e� þ �0e�0�0
0�

0Þ
!ð2e� þ �0e�0½�0�0

0 � 2ð�02
0 þ�00

0 Þ�Þ
; (A2)

B1;lðrÞ ¼ � ie��

2r!ðe�r� �0e�0�0
0Þ
f�0e�0½�2e�r�02

0 �
0 � 2e�r�0�00

0 þ�0
0ð2e�r!2 � e�ððe�ðlðlþ 1Þ � 2Þ � 3r�0Þ�0

þ r�02 þ 2r�00ÞÞ� þ þe�½�2e�r2!2 þ e�ð2e�ðlðlþ 1Þ � 2Þ þ rðr�02
0 þ ð2þ r�0Þð�0 ��0Þ þ 2r�00ÞÞ�g:

(A3)

The explicit form of the Ci;l coefficients is not shown here.
One can numerically prove that Eq. (3.5) is automatically
satisfied as a consequence of the other two equations and of
background solutions. So we are left with a system of two
ODEs for the unknown functions h0ðrÞ and h1ðrÞ.
Eliminating h0 from the first order equation (3.3) we obtain

a second order differential equation for h1,

AðrÞh001 ðrÞ þ 2BðrÞh01ðrÞ þ CðrÞh1ðrÞ ¼ 0; (A4)

where AðrÞ ¼ A2, BðrÞ ¼ 1
2 ðA1 þ A0

2 � 2A2

r Þ, and CðrÞ ¼
A0
1 � 2A1

r � B1;l. The function CðrÞ can be decomposed in
CðrÞ ¼ QðrÞ þ!2EðrÞ, where QðrÞ and EðrÞ do not de-
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pend on !. The functions A, B, E, and Q depend on the
radial background functions �, �0, �00, �, �0, �0, �

0
0, �

00
0 ,

and on �000
0 . In order to eliminate the term proportional to

h01, we define

F ¼ exp

�Z r

rh

dr0
Bðr0Þ
Aðr0Þ

�
: (A5)

Setting u ¼ Fh1, Eq. (A4) takes the Schrödinger-like form

u00ðrÞ þ ½VðrÞ þ!2KðrÞ�uðrÞ ¼ 0; (A6)

which is Eq. (3.6) with

VðrÞ ¼ Q

A
�

�
B

A

�
2 � d

dr

�
B

A

�
; KðrÞ ¼ E

A
: (A7)

In the limit r ! rh the coefficients A, B, Q, and E take the
form

A ¼ Ah þOðr� rhÞ; B ¼ Bh

ðr� rhÞ þOð1Þ; (A8)

Q ¼ Qh

ðr� rhÞ2
þO

�
1

r� rh

�
; (A9)

E ¼ Eh

�1

1

ðr� rhÞ2
þO

�
1

r� rh

�
: (A10)

In the equations above, we have used the following asymp-
totic behavior near the event horizon:

e��ðrÞ ¼ �1ðr� rhÞ þ . . . ; (A11)

e�ðrÞ ¼ �1ðr� rhÞ þ . . . ; (A12)

�ðrÞ ¼ �h þ�0
hðr� rhÞ þ . . . ; (A13)

where

�1 ¼ 2

ð�0
g2
e�h�0

h þ 2rhÞ
; (A14)

and �1 is an arbitrary finite positive integration constant,
which cannot be fixed by the equations of motion, since the
latter involve only �0ðrÞ and not �ðrÞ. This constant is fixed
by the asymptotic limit of the solutions at infinity. The
asymptotic behavior near the event horizon for VðrÞ and
KðrÞ is

V ¼ Vh

ðr� rhÞ2
; K ¼ Kh

ðr� rhÞ2
;

where Vh � 1=4 andKh & 4M2. The constants Ah, Bh,Qh,

Eh, Vh, and Kh depend on rh, �h, and �0
h. For a

Schwarzschild BH, Vh � 1=4 and Kh � 4M2. When r !
1, V ! 0, and K ! 1. The asymptotic behavior for
Eq. (3.6) is described by Eqs. (3.7) and (3.8).

APPENDIX B: SLOWLY ROTATING KERR BLACK
HOLES IN THE HARTLE APPROXIMATION

A useful check on the method described in Sec. IV is to
consider classical GR, and repeat the calculation adding
rotation to a Schwarzschild black hole. Perturbing the
Schwarzschild metric and retaining only first order terms
in �, Eq. (4.3) reduces to

�00
l ðrÞ þ

4

r
�0

l þ
2� lðlþ 1Þ
rðr� 2MÞ �l ¼ 0; (B1)

which can be solved analytically in terms of special func-
tions

�lðrÞ ¼ C1F

�
1� l; 2þ l; 4;

r

2M

�

þ C2G
20
20

r
2M

�������� �1� l; l
�3; 0

� �
; (B2)

where F is the hypergeometric function andG is the Meijer
function. The asymptotic behavior of Eq. (B1) is the same
as Eq. (4.6). The asymptotic behavior (4.5) and the solution
at infinity (4.7) imply that only the l ¼ 1 mode is allowed.
A list of the general solution of the equation above is

�1ðrÞ ¼ C1 þ C2

r3
; l ¼ 1; (B3)

�2ðrÞ ¼ C1

�
r

M
� 2

�

þ C2

�
M3

r3
þM2

r2
þ 3M

2r
� 3

2
þ 3

4

�
r

M
� 2

�

� log
r

r� 2M

�
; l ¼ 2; (B4)

�3ðrÞ ¼ C1

�
r

M
� 2

��
3
r

M
� 4

�

þ C2

�
4
M3

r3
þ 10

M2

r2
þ 30

M

r
� 105þ 45

r

M

� 45

2

�
r

M
� 4

3

��
r

M
� 2

�
log

r

r� 2M

�
; l ¼ 3:

(B5)

Demanding a correct asymptotic behavior at infinity,
Eq. (4.5), we verify that l ¼ 1 is the only mode able to
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satisfy regularity at the horizon (the result extends to l > 3
modes, though we do not show those here). We therefore
get the exact result � ¼ 2J=r3. This coincides with the
expansion (first order in a ¼ J=M) of a Kerr metric in
Boyer-Lindquist coordinates,

ds2 ¼
�
1� 2M

r

�
dt2 �

�
1� 2M

r

��1
dr2

� r2
�
d�2 þ sin2�

�
d’� 2aM

r3
dt

�
2
�
; (B6)

which we have named slow Kerr (SK) metric in this work.
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