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A low frequency stochastic background of gravitational waves may be detected by pulsar timing

experiments in the next 5 to 10 yr. Using methods developed to analyze interferometric gravitational wave

data, in this paper we lay out the optimal techniques to detect a background of gravitational waves using a

pulsar timing array. We show that for pulsar distances and gravitational wave frequencies typical of pulsar

timing experiments, neglecting the effect of the metric perturbation at the pulsar does not result in a

significant deviation from optimality. We discuss methods for setting upper limits using the optimal

statistic, show how to construct skymaps using the pulsar timing array, and consider several issues

associated with realistic analysis of pulsar timing data.
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I. INTRODUCTION

The search for gravitational waves is at the forefront of
current fundamental physics research. The direct detection
of gravitational waves will usher in a new era in astronomy
and astrophysics. Gravitational waves will reveal informa-
tion about black holes, supernovae, and neutron stars that
cannot be gleaned from electromagnetic observations.
Furthermore, the detection of a gravitational wave back-
ground will open an observational window onto a time in
the early universe before recombination, prior to which the
universe is opaque to electromagnetic waves. The scientific
rewards for such a detection would be truly exceptional.
Several international efforts are underway to detect gravi-
tational waves and two of these efforts are expected to
result in the detection of gravitational waves in the next 5
to 10 yr: Interferometric ground-based gravitational wave
detectors and pulsar timing observations.

Neutron stars radiate powerful beams of radio waves
from their magnetic poles. If a neutron star’s magnetic
poles are not aligned with its rotational axis, the beams
sweep through space like the beacon on a lighthouse and
the neutron star is said to be a pulsar. If the Earth lies within
the sweep of a pulsar’s beams, the star is observed as a
point source in space emitting short, rapid bursts of radio
waves [1]. Because of their enormous mass, neutron stars
have a very large moment of inertia and the radio pulses we
observe arrive at a very constant rate. Pulsar timing experi-
ments exploit this regularity [2,3]. Fluctuations in the time
of arrival of radio pulses, after all known effects have been

subtracted out, could be due to the presence of gravita-
tional waves. Since the 1970s, when these ideas were first
conceived, pulsar timing precision has improved dramati-
cally. Several known pulsars can now be timed with a
precision of about 1 �s, and a handful can be timed with
a precision around several hundred nanoseconds [4].
Recent work [5] has shown that the presence of nanohertz
gravitational waves could be detected by observing 20 pul-
sars with timing precisions of 100 ns over a period of 5 to
10 yr. Nondetection would still improve current bounds on
the low frequency stochastic gravitational wave back-
ground [6].
Gravitational waves from supermassive black hole bi-

nary systems could be detected via pulsar timing observa-
tions [7–11]. In addition, pulsar timing has the potential to
measure the polarization properties of gravitational waves
which could confirm (or even change) the current theory of
gravity [12,13]. Gravitational wave observations in the
nanohertz band could also yield information about the
early universe [14]. Cosmic strings, linelike topological
defects, could produce gravitational waves in the nanohertz
band. Cosmic strings can form during phase transitions in
the early universe due to the rapid cooling that takes place
after the Big Bang [15–17]. Cosmic string production is
generic in supersymmetric grand unified theories [18].
Additionally, in string theory motivated cosmological
models cosmic strings may also form (dubbed cosmic
superstrings to differentiate them from field theoretic cos-
mic strings) [19–24]. Cosmic strings and superstrings are
expected to produce a background of stochastic gravita-
tional waves and bursts of gravitational waves [25–30] that
could be detected using pulsar timing observations. Pulsar
timing observations are already producing some of the
most interesting constraints on cosmic string models and
a detection would have profound implications [29,30].
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Recently Lommen [31] produced an upper limit on the
stochastic gravitational wave background using observa-
tions of 3 ms pulsars spanning 17 yr. The methods used by
Lommen were based on those developed by Kaspi and
collaborators [32] and have been the subject of some
criticism in the literature [6,28]. More recently Jenet and
collaborators [5,6] developed a new technique for gravita-
tional wave stochastic background searches in pulsar tim-
ing data and applied it to the Parkes pulsar timing array
data [33,34].

In this paper we consider optimal strategies for extrac-
tion of a gravitational wave stochastic background signal
using data from a pulsar timing array. Our methods are
based on those developed for and used in ground-based
interferometric gravitational wave detectors such as LIGO
and Virgo [35–43], and improve on existing methods in
several ways. In Sec. II we write the redshift of pulsar
signals induced by passing gravitational waves, first de-
rived by Detweiler [2], in a coordinate-independent way
more suitable for our analysis, and discuss its form in the
frequency domain including the long-wavelength limit. In
Sec. III we construct the optimal cross correlation filter for
a pulsar pair by maximizing the signal to noise. We find
that the overlap reduction function is well approximated by
a constant, or equivalently, that the metric perturbation at
the pulsar can be neglected for values of pulsar distances
and gravitational wave frequencies typical of pulsar timing
experiments, without significant losses in sensitivity. In
Sec. III we also show how to construct the optimal combi-
nation of cross correlations of pulsar pairs in a pulsar
timing array and include a more sophisticated derivation
of the optimal detection statistic based on the likelihood
ratio. In Sec. IV we discuss upper limit and detection
methods. In Sec. V we show how to construct skymaps
using pulsar timing data—a pulsar timing radiometer. In
Sec. VI we discuss several important issues relating to the
realistic analysis of pulsar timing data, including the
Lomb-Scargle periodogram for power spectrum estimation
of unevenly sampled data, and optimal procedures for
computing Fourier transforms. We conclude in Sec. A.
Lommen, Romano, and Woan [44] will extend our work
using a likelihood based approach developed in [45], and
consider the case of stochastic backgrounds that are loud
compared to the noise, closely examine time-domain im-
plementations of the optimal statistic, and provide a de-
tailed comparison of the optimal statistic described here
with the methods of Jenet and collaborators [5,6].

II. THE SIGNAL

Gravitational waves affect pulsar timing measurements
by creating perturbations in the null geodesics that the
radio signals emitted from the pulsar travel on [2]. In this
section we will describe the relationship between the met-
ric perturbation and the signal measured in pulsar timing
experiments.

A metric perturbation in a spatial, transverse, traceless
gauge has a plane wave expansion given by [38]

hijðt; ~xÞ ¼
X
A

Z 1

�1
df

Z
S2
d�̂ei2�fðt��̂� ~xÞhAðf; �̂ÞeAijð�̂Þ;

(1)

where f is the frequency of the gravitational waves, ~k ¼
2�f�̂ is the wave vector, �̂ is a unit vector that points
along the direction of travel of the waves, i, j ¼ x, y, z are
spatial indices, and the index A ¼ þ, � labels polariza-

tions. The polarization tensors eAijð�̂Þ are
eþij ð�̂Þ ¼ m̂im̂j � n̂in̂j; (2a)

e�ij ð�̂Þ ¼ m̂in̂j þ n̂im̂j; (2b)

where

�̂ ¼ ðsin� cos�; sin� sin�; cos�Þ; (3a)

m̂ ¼ ðsin�;� cos�; 0Þ; (3b)

n̂ ¼ ðcos� cos�; cos� sin�;� sin�Þ: (3c)

Now consider the metric perturbation from a single

gravitational wave traveling along the z-axis so that �̂ ¼
ẑ. The metric perturbation is given explicitly by

hijðt; �̂ ¼ ẑÞ ¼ X
A

Z 1

�1
dfei2�fðt�zÞhAðf; ẑÞeAijðẑÞ

� hijðt� zÞ: (4)

The physical metric due to the perturbation is given by

gab ¼ �ab þ habðt� zÞ

¼
�1 0 0 0
0 1þ hþ h� 0
0 h� 1� hþ 0
0 0 0 1

0
BBB@

1
CCCA; (5)

where �ab ¼ diagf�1; 1; 1; 1g is the Minkowski metric, a,
b are spacetime indices, and

hþ;� ¼ hþ;�ðt� zÞ ¼
Z 1

�1
dfei2�fðt�zÞhþ;�ðf; ẑÞ: (6)

In this background, a pulsar emitting pulses at frequency
�0 and direction cosines �, �, and 	, with respect to the x-,
y-, and z-axes, respectively, will be observed to change its
frequency in the Solar System reference frame according
to [2]

zðt; ẑÞ � �0 � �ðtÞ
�0

¼ �2 � �2

2ð1þ 	Þ ðh
p
þ � heþÞ þ

��

1þ 	
ðhp� � he�Þ; (7)

where heþ;�, h
p
þ;� are the gravitational wave strains at the
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Solar System barycenter and the pulsar, respectively. This
central result was obtained by Detweiler [2], who general-
ized a result of Estabrook and Wahlquist [46] to include
both gravitational wave polarizations and for pulsars at
arbitrary locations. They, in turn, based their calculation
on an earlier one by Kaufmann [47]. A detailed derivation
of this result is provided in Appendix A.

Looking at Eq. (7) (and as shown in Appendix B) we can

write the redshift zðt; �̂Þ of signals from a pulsar in the
direction of the unit vector p̂ produced by a gravitational

wave coming from the direction �̂ as

zðt; �̂Þ ¼ 1

2

p̂ip̂j

1þ �̂ � p̂�hij; (8)

where

�hij � hijðtp; �̂Þ � hijðte; �̂Þ; (9)

is the difference in the metric perturbation traveling along

the direction �̂ at the pulsar and at the center of the Solar
System. The vectors ðte; ~xeÞ and ðtp; ~xpÞ give the spacetime

coordinates of the Solar System barycenter and the pulsar,
respectively. The metric perturbation at each location takes
the form

hijðt; �̂Þ ¼ X
A

Z 1

�1
dfei2�fðt��̂� ~x0ÞhAðf; �̂ÞeAijð�̂Þ; (10)

for a fixed ~x0.
We choose a particular coordinate system by placing the

Solar System barycenter at the origin and the pulsar some
distance L away. With these conventions

tp ¼ te � L � t� L; (11)

~x e ¼ 0; (12)

~x p ¼ Lp̂: (13)

If we assume that the amplitude of the metric perturbation
is the same at the Solar System barycenter and the pulsar
then we can use Eq. (10) to write out�hij in our coordinate

system as

�hij ¼
Z 1

�1
dfei2�ftðe�i2�fLð1þ�̂�p̂Þ � 1Þ

�X
A

hAðf; �̂ÞeAijð�̂Þ

� �hijðt; �̂Þ: (14)

Ultimately, we will be interested in the Fourier transform
of this quantity which is simply

�~hijðf; �̂Þ ¼ ðe�i2�fLð1þ�̂�p̂Þ � 1ÞX
A

hAðf; �̂ÞeAijð�̂Þ:

(15)

We can then write the Fourier transform of Eq. (8) as

~zðf; �̂Þ ¼ ðe�i2�fLð1þ�̂�p̂Þ � 1ÞX
A

hAðf; �̂ÞFAð�̂Þ; (16)

where we have defined

FAð�̂Þ � eAijð�̂Þ 1
2

p̂ip̂j

1þ �̂ � p̂ : (17)

As shown in Appendix B the total redshift is given by
summing over the contributions coming from gravitational
waves in every direction

~zðfÞ ¼
Z
S2
d�̂ ~zðf; �̂Þ; (18)

and similarly for zðtÞ.
In fact, it is not the redshift, but a related quantity called

the residual that gets reported in pulsar timing measure-
ments. The residual, RðtÞ, is defined as the integral of the
redshift

RðtÞ �
Z t

0
dt0zðt0Þ: (19)

This simple relationship gives us the freedom to develop
the data analysis for either variable and we henceforth limit
our attention to the redshift, but the results here can be
phrased in terms of the residual with minimal effort.
In the literature, searches for gravitational waves using

pulsar timing data are typically performed in the time
domain. The (unknown) metric perturbation at the pulsar
in, say, Eqs. (7) or (8) is neglected because one can treat it
as another noise term which averages to zero when per-
forming correlations between measurements of different
pulsars. In the frequency domain this is unnecessary.
Equation (16) does not depend explicitly on the metric
perturbation at the pulsar, rather the dependence is all in
a distance and frequency dependent phase factor. It is then
conceivable that if we could determine the distance to a
pulsar L with sufficient accuracy we could use the metric
perturbation at the pulsar to improve the sensitivity of our
searches. Unfortunately, such measurements of pulsar dis-
tances are unavailable. We will show in Sec. III A, how-
ever, that for the case of a stochastic background search in
pulsar timing data the phase factor can be neglected with-
out any significant loss in sensitivity. It is unclear whether
this is true for other types of gravitational wave searches.
From the ground-based interferometer perspective

Eqs. (7) or (8) are somewhat counter-intuitive. This diffi-

culty arises from the factor of 1þ �̂ � p̂ in the denomina-
tor; in Appendices A and B we show explicitly how this

factor enters the expression. When �̂ � p̂ ¼ �1, i.e. the
gravitational wave and the pulsar directions are parallel or
antiparallel, Eqs. (16) and (17) lead to no redshifting of the
pulsar signal for completely different reasons. When they
are parallel the reason is the transverse nature of gravita-
tional waves, and when they are antiparallel it is because
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the pulsar signals ‘‘surf’’ the gravitational waves. Our
surprise is a result of our long-wavelength limit intuition.

Equation (16) has an obvious long-wavelength limit. We
can use this limit to compare the form of our results with
those of ground-based interferometers such as LIGO.
When 2�fL � 1 we can Taylor expand the exponential
and to first order Eq. (16) becomes

~zðf; �̂Þ � �i�fLp̂ip̂j
X
A

hAðf; �̂ÞeAijð�̂Þ: (20)

Typical values of f are in the range 1=10 yr�1 to 10 yr�1.
Typical values of the Earth pulsar distance L are in the
range 100 ly to 104 ly. This means fL is in the range 10 to
105 and pulsar timing experiments are never in the long-
wavelength limit. However, the Taylor expansion can also

be done for large fL when the angle between �̂ and p̂ is
sufficiently close to �. In this case the pulsar signals can
surf the gravitational waves and not undergo redshifting.
Writing that angle as �� 
 with 
 � 1, then the Taylor

expansion is also valid when 
 � ð�fLÞ�1=2.
Taking the inverse Fourier transform of Eq. (20) yields

~zðtÞ � �L

2
p̂ip̂j _hijðt; ~xeÞ; (21)

which is the projection of the time derivative of the metric
perturbation at the Solar System barycenter onto the unit
vector that points to the pulsar. Note that unlike Eq. (8),
this equation no longer depends on the direction of the
gravitational wave and can be expressed in terms of the full
metric perturbation (derivative). For the case of ground-
based interferometers the signal, the so-called strain, is
proportional to the difference in length of the two arms
because the signal at the dark port of the interferometer
depends on that difference. If the arms point in the direc-

tions of the unit vectors X̂ and Ŷ the strain is given by

hðtÞ � hijðt; ~xÞ 12 ðX̂
iX̂j � ŶiŶjÞ; (22)

which is the metric perturbation hijðt; ~xÞ projected onto the
difference of the arms.

III. DETECTION STATISTIC

With an understanding of the signal in hand we now turn
our attention to developing an optimal detection strategy.
In this section we will first derive the optimal cross corre-
lation statistic for a single pulsar pair using arguments
based on maximizing signal to noise ratio (SNR). We
will then determine the best way to combine measurements
from multiple pulsar pairs to obtain the most constraining
upper limit. This section will conclude with a more sophis-
ticated derivation of the optimal detection statistic based
on the likelihood ratio.

A. The optimal filter

In this section we will derive the optimal filter for
detecting a stochastic background of gravitational waves
from the cross correlation of redshift measurements of two
different pulsars. This problem was addressed in detail by
Allen and Romano [38], for the case of interferometric
gravitational wave detectors and our analysis follows theirs
closely.
Consider the signals from two pulsars

s1ðtÞ ¼ z1ðtÞ þ n1ðtÞ; (23)

s2ðtÞ ¼ z2ðtÞ þ n2ðtÞ; (24)

where ziðtÞ is the redshift and niðtÞ is the noise intrinsic in
the measurement. Throughout this work we will assume
that each niðtÞ is stationary and Gaussian, and is greater in
magnitude than the redshift. Additionally we assume that

hniðtÞi ¼ 0; hziðtÞi ¼ 0;

hn1ðtÞn2ðtÞi ¼ 0; hniðtÞzjðtÞi ¼ 0;
(25)

for all i and j, where the angle brackets denote an expec-
tation value.
A stochastic background will show up in the data as

correlated noise between measurements with different de-
tectors. Our goal is to find a filter, Qðt� t0Þ, that optimizes
the cross correlation statistic

S �
Z T=2

�T=2
dt

Z T=2

�T=2
dt0s1ðtÞs2ðt0ÞQðt� t0Þ; (26)

where T is the observation time. We will define the optimal
filter to be the Qðt� t0Þ that maximizes the signal to noise
ratio

SNR � �

�
; (27)

where � and � are the mean and square root of the
variance, respectively, associated with the cross correlation
signal defined in Eq. (26).
We start by assuming that the observation time is much

greater than the separation of the two detectors and extend
the limits of the integral over dt0 to �1. Technically our
assumption is not correct because pulsars are typically
separated by distances far greater than the observation
time. Later we will see that neglecting the phase terms
that correspond to the metric perturbation at the pulsar
location is an excellent approximation. In effect this makes
our detectors colocated though not coaligned, and our
assumption about the observation time is appropriate. We
work in the frequency domain so that Eq. (26) becomes

S ¼
Z 1

�1
df

Z 1

�1
df0�Tðf� f0Þ~s�1ðfÞ~s2ðf0Þ ~Qðf0Þ; (28)

where �Tðf� f0Þ is the finite-time approximation to the
delta function
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�TðfÞ � sinð�fTÞ
�f

: (29)

The mean of the cross-correlation is

� � hSi ¼
Z 1

�1
df

Z 1

�1
df0�Tðf� f0Þh~z�1ðfÞ~z2ðf0Þi ~Qðf0Þ:

(30)

Because of Eqs. (16), (18), and (25), taking the expectation

value above requires us to evaluate hh�Aðf; �̂ÞhA0 ðf0; �̂0Þi.
The assumptions that the stochastic background is station-
ary, unpolarized, and isotropic lead us to take

hh�Aðf; �̂ÞhA0 ðf0; �̂0Þi ¼ �2ð�̂; �̂0Þ�AA0�ðf� f0ÞHðfÞ;
(31)

where HðfÞ ¼ Hð�fÞ is the gravitational wave spectrum.
HðfÞ is related to �gwðfÞ through

�gwðfÞ � 1


crit

d
gw

d lnf
; (32)

where 
crit ¼ 8�=3H2
0 and


gw ¼ 1

32�
h _habðt; ~xÞ _habðt; ~xÞi; (33)

is the energy density in gravitational waves. It follows from
the plane wave expansion Eq. (1) along with Eqs. (31) and
(32) in Eq. (33) that

HðfÞ ¼ 3H2
0

32�3
jfj�3�gwðjfjÞ; (34)

and therefore

hh�Aðf; �̂ÞhA0 ðf0; �̂0Þi ¼ 3H2
0

32�3
�2ð�̂; �̂0Þ�AA0�ðf� f0Þ

� jfj�3�gwðjfjÞ; (35)

which is sometimes written in terms of the characteristic
strain

h2cðfÞ ¼ 3H2
0

2�2

1

f2
�gwðjfjÞ: (36)

The expectation value we set out to evaluate is then

h~z�1ðfÞ~z2ðf0Þi ¼
3H2

0

32�3

1

�
�ðf� f0Þjfj�3�gwðjfjÞ�ðjfjÞ;

(37)

where we defined

�ðjfjÞ ¼ �
X
A

Z
S2
d�̂ðei2�fL1ð1þ�̂�p̂1Þ � 1Þ

� ðe�i2�fL2ð1þ�̂�p̂2Þ � 1ÞFA
1 ð�̂ÞFA

2 ð�̂Þ; (38)

the pulsar timing analogue of the overlap reduction func-
tion [38], which has a normalization factor �. The normal-

ization is chosen so that �ðjfjÞ ¼ 1 for coincident,
coaligned detectors. As we show below, pulsar timing
experiments are in a regime where the exponential factors
in Eq. (38) can be neglected. In this situation, which we
will assume henceforth, the normalization factor is easy to
determine and we have that

�0 � 3

4�

X
A

Z
S2
d�̂FA

1 ð�̂ÞFA
2 ð�̂Þ

¼ 3

�
1

3
þ 1� cos�

2

�
ln

�
1� cos�

2

�
� 1

6

��
; (39)

where � ¼ cos�1ðp̂1 � p̂2Þ is the angle between the two
pulsars. This quantity is proportional to the Hellings and
Downs curve [48]. A detailed derivation of this result is
provided for completeness in Appendix C 1.
The rationale given in the literature for throwing out the

pulsar term in Eq. (7), or equivalently Eqs. (8) and (9), is
that the unknown metric perturbation at the pulsars can be
thought of as a kind of noise term which averages to zero
when performing a correlation between different pulsars.
The equivalent procedure in the frequency domain is to
neglect the phase factors in Eq. (16), or in terms of our
optimal filter, approximating Eq. (38) with Eq. (39). The
regime where the approximate Eq. (39) is valid, is helpful
in quantifying the accuracy of the rationale. Figure 1 shows
the overlap reduction function for two pulsars a distance L
from the Solar System barycenter. Since the distance to
both pulsars is the same, the overlap reduction function can
be written as just a function of fL. The top two (blue)
curves show Eq. (38) with � ¼ 3=4� (solid line) and
Eq. (39) (dashed line) for two pulsars at an angle � ¼
�=8 as a function of fL. The middle (red) and bottom
(green) curves show the same quantities for two pulsars at
� � 0:86 and � ¼ �=2 respectively. As discussed in the
last section, the smallest value of the frequency fmin 	
0:1 yr�1 and the closest pulsars used in timing experiments
are at a distance of Lmin 	 100 ly so that fL * 10. As
shown in Fig. 1 this range of fL puts pulsar timing experi-
ments in the regime where Eq. (39) is an excellent approxi-
mation to Eq. (38), and we can neglect the pulsar term
while remaining close to optimal.
Returning to Eq. (30), we now have

� ¼ 3H2
0

32�3

1

�
T
Z 1

�1
dfjfj�3�gwðjfjÞ�ðjfjÞ

� H2
0

8�2
T�0

Z 1

�1
dfjfj�3�gwðjfjÞ: (40)

With the assumption that the noise is much greater than
the signal, the variance, �2, depends only on the statistical
properties of the noise in each detector. We have

�2 � hS2i � hSi2 � hS2i

� T

4

Z 1

�1
dfP1ðjfjÞP2ðjfjÞj ~QðfÞj2; (41)
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where

h~n�i ðfÞ~niðf0Þi ¼ 1
2�ðf� f0ÞPiðjfjÞ; (42)

is the (one-sided) noise power spectrum.
With � and �2 in hand, we next define a positive-

definite inner product using the noise power spectra of
the two detectors

ðA; BÞ �
Z 1

�1
dfA�ðfÞBðfÞP1ðjfjÞP2ðjfjÞ: (43)

With this definition it is easy to see that

� � H2
0

8�2
T

�
~Q;

�gwðjfjÞ�0

jfj3P1ðjfjÞP2ðjfjÞ
�
; (44)

�2 � T

4
ð ~Q; ~QÞ; (45)

from which it follows from the definition of SNR in
Eq. (27) and Schwartz’s inequality that the optimal filter
is given by

~QðfÞ ¼ �
�gwðjfjÞ�0

jfj3P1ðjfjÞP2ðjfjÞ
; (46)

for some normalization constant, �. Our primary interest
will be in stochastic backgrounds with power law spectra,
�gwðfÞ ¼ ��f

� (for constant ��). In that case the nor-

malization constant for the optimal filter, ~Q�ðfÞ, is chosen
so that

� ¼ ��T0; (47)

where T0 is some arbitrary constant with dimensions of
time. From Eq. (44) it follows that

� ¼ ��

T0

T

8�2

H2
0

�Z 1

�1
df

�2
gwðjfjÞ�2

0

f6P1ðjfjÞP2ðjfjÞ
��1

: (48)

Finally, we can compute

SNR � H2
0

4�2
T1=2

�Z 1

�1
df

�2
gwðjfjÞ�2

0

f6P1ðjfjÞP2ðjfjÞ
�
1=2

: (49)

The differences between these results and those for
interferometers can all be traced to the differing overlap
reduction function �ðfÞ � �0. The normalization of �0

means that the maximal SNR (for coincident, coaligned
detectors) is only 5=6 of that obtainable from interferome-
ters, assuming the noise power spectra are the same in each
case.
To construct the optimal filter, Eq. (46), the noise power

spectra for the two pulsars P1ðjfjÞ and P2ðjfjÞ must be
determined. These can either be modeled, or measured
with the methods described in Sec. VI. Once constructed
the optimal filter can be applied in the frequency domain.
Section VI gives a prescription for taking Fourier trans-
forms of unevenly sampled data. The optimal filter can also
be inverse Fourier transformed and the correlation per-
formed in the time domain. It is unclear which of these
two methods is more robust and the authors of [44] will
explore the time-domain approach in detail. In the deriva-
tion of the optimal filter we have assumed that the noise in
pulsar timing data is uncorrelated between pulsars. While
we expect the majority of noise sources (timing noise,
scattering, dispersion, etc.) to be uncorrelated, it is con-
ceivable that correlations in the measurements of pulsar
timing residuals are introduced by the detector. If this
correlated component turns out to be important the cross-
spectral density would need to be estimated and included in
the optimal filter.

B. The pulsar timing array

The question we would like to address in this section is:
Given redshift measurements from N different pulsars
(which each have a different noise profile), what is the
best way to combine those measurements to produce the
most constraining upper limit? One can consider the cross
correlations between any even number of detectors, but it
has been shown [38,49] that the optimal choice is the
combination of pairwise cross correlations. As it turns
out, the solution to this problem also solves the problem
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≈ 0.61, ξ = π/8

Pulsar timing experiments

fL > 10

Γ
0

≈ 0, ξ ≈ 0.86

FIG. 1 (color online). Plot of the full overlap reduction,
Eq. (38), along with the approximation Eq. (39) for two pulsars
a distance L from the Solar System barycenter. The overlap
reduction function is a function of fL. The top two (blue) curves
show Eq. (38) with � ¼ 3=4� (solid line) and Eq. (39) (dashed
line) for two pulsars at an angle � ¼ �=8 as a function of fL.
The middle (red) and bottom (green) curves show the same
quantities for two pulsars at � � 0:86 and � ¼ �=2 respectively.
The smallest value of the frequency fmin 	 0:1 yr�1 and the
closest pulsars used in timing experiments are at a distance of
Lmin 	 100 ly so that fL * 10. This range of fL puts pulsar
timing experiments in the regime where Eq. (39) is an excellent
approximation to Eq. (38) and we are justified in throwing out
the pulsar term while remaining close to optimal.

ANHOLM, BALLMER, CREIGHTON, PRICE, AND SIEMENS PHYSICAL REVIEW D 79, 084030 (2009)

084030-6



of nonstationarity in the noise power spectra over periods
longer than the typical observation time, T.

First let

ðijÞS1;ðijÞ S2; . . . ;ðijÞ Snij ; (50)

be nij measurements of the cross correlation between the

ith and jth pulsar. We will assume that each measurement
is taken with an optimal filter normalized so that while
searching for a background of the form �gwðfÞ ¼ ��f

�,

hðijÞSki ¼ ��T0 � �; (51)

where T0 is an arbitrary constant introduced for dimen-
sional reasons. Each measurement therefore has the form

ðijÞSk ¼
Z 1

�1
df

Z 1

�1
df0�Tðf� f0Þ~s�i;kðfÞ~sj;kðf0ÞðijÞQkðfÞ;

(52)

with

ðijÞQkðfÞ ¼ ðijÞ�k

�gwðjfjÞðijÞ�0

jfj3Pi;kðjfjÞPj;kðjfjÞ
; (53)

where ðijÞ�0 is the overlap reduction function of the (ij)
pulsar pair, si;k is the kth measurement of the signal from

the ith pulsar, and Pi;k is the associated noise power

spectrum. Additionally

ðijÞ�k ¼ ��

T0

ðijÞTk

8�2

H2
0

�Z 1

�1
df

�2
gwðjfjÞðijÞ�2

0

f6Pi;kðjfjÞPj;kðjfjÞ
��1

;

(54)

where ðijÞTk is the observation time of the kth measurement

of the (ij) pulsar pair. Our task is to combine the ðijÞSk in a

way that optimizes SNR. The first step is to form the
sample mean for each set of measurements

ðijÞ�̂ � 1

nij

Xnij
k¼1

ðijÞSk; (55)

which is both an unbiased estimator and random variable.
It therefore has a mean

�ij � hðijÞ�̂i ¼ �; (56)

and a variance

�2
ij � hðijÞ�̂2i � hðijÞ�̂i2 ¼

ðijÞ�2

nij
; (57)

where

ðijÞ�2 ¼ Xnij
k¼1

ðijÞTk

4

Z 1

�1
dfðijÞ�2

k

�2
gwðjfjÞðijÞ�2

0

f6Pi;kðjfjÞPj;kðjfjÞ
:

(58)

The next step is combine the sample mean for each set of
measurements into a single estimator we can use to deter-

mine an upper bound on �� and hence �gw ¼ ��f
�. We

do so by introducing an unbiased estimator consisting of a
weighted average of the sample means

�̂ �
P

l
i¼1

P
l
j<i �ij

ðijÞ�̂P
l
i¼1

P
l
j<i �ij

; (59)

for some constants, �ij, which has mean

��̂ � h�̂i ¼ �; (60)

and variance

�2
�̂ � h�̂2i � h�̂i2 ¼

P
l
i¼1

P
l
j<i �

2
ij�

2
ij

ðPl
i¼1

P
l
j<i �ijÞ2

: (61)

The object is to now determine the �ij that maximizes the

SNR of �̂. The (squared) SNR of �̂ is

SNR 2
�̂ � �2

ðPl
i¼1

P
l
j<i �ijÞ2P

l
i¼1

P
l
j<i �

2
ij�

2
ij

: (62)

To find the �ij that maximize the SNR, we exploit the same

trick that led us to the optimal filter. Namely, we introduce
an inner product

ðA; BÞ � Xl
i¼1

Xl
j<i

A�
ijBij�

2
ij; (63)

which allows us to write

SNR 2
�̂ � �2 ð�;��2Þ

ð�; �Þ ; (64)

from which it follows that choosing

�ij / ��2
ij ; (65)

maximizes the SNR. The optimal statistic, choosing �ij ¼
��2

ij , is then given by

Sopt ¼
P

l
i¼1

P
l
j<i �

�2
ij

ðijÞ�̂P
l
i¼1

P
l
j<i �

�2
ij

¼
P

l
i¼1

P
l
j<i

ðijÞ��2
Pnij

k¼1
ðijÞSkP

l
i¼1

P
l
j<i nij

ðijÞ��2
: (66)

Because the estimator defined in Eq. (59) is unbiased and

defined so that � ¼ hSopti ¼ ��T0, the estimate of �̂� is

found using

�̂ � ¼ Ŝopt
T0

; (67)

where Ŝopt is the measured value of the optimal statistic.

The expected variance of Ŝopt follows from Eq. (61)

�2
�̂ ¼

�Xl
i¼1

Xl
j<i

��2
ij

��1
: (68)
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Aside frommaximizing the SNR, the linear combination
of sample means that forms the optimal statistic in Eq. (66)
serves two important and related purposes. First of all, as
mentioned at the beginning of this section, weighing each
ðijÞ�̂ by the inverse of the squared variance means that less
noisy measurements (those with smaller variances) con-
tribute more to the sum, which helps minimize the effect of
long term nonstationarity. This is augmented by the nor-
malization convention we chose in Eq. (51) for the mean of
each measurement. Using Eqs. (45) and (46) with the � that

follows from Eq. (51), we see that ðijÞ��2 / ðijÞT, and so
longer observation times are also favored in the sum.

C. Computational procedure

In this subsection we describe how the quantities neces-
sary for a stochastic background search are computed. The
goal is to produce a measurement of the optimal statistic,

Ŝopt, using Eq. (66). The optimal statistic can then be used

to make detection or upper limit statements (see Sec. IV).
First the power spectra for each pulsar (and each

stretch), Pi;kðjfjÞ, must be determined. The spectra can

either be modeled or measured with the methods described

in Sec. VI. Then the overlap reduction functions, ðijÞ�0,

need to be computed for each pulsar pair. To optimize the
statistic for particular spectra the value of � (in �gwðfÞ ¼
��f

�) needs to be chosen. The normalizations, ðijÞ�k, can

then be computed using Eq. (54). The normalizations allow

us to compute the variances, ðijÞ��2, given by Eq. (58), in
the numerator and denominator of Eq. (66), as well as the

filters, ðijÞQkðfÞ, through Eq. (53). Note that the unknown

factors of �� cancel everywhere: From Eq. (54) it is easy

to see the normalization ðijÞ�k / ��1
� , so there is a cancel-

lation factor of �� in Eq. (53), and a factor of �2
� in

Eq. (58). With these quantities in hand the cross correla-

tions, ðijÞSk, in Eq. (52) can be computed by taking Fourier

transforms of the data (see Sec. VI). Alternatively, a set of

time-domain filters, ðijÞQkðtÞ, can be created by taking

inverse Fourier transforms of Eq. (53) and applied to the
data in the time domain using Eq. (26).

Note that there is no dependence on the arbitrary con-
stant T0 introduced in Eq. (51) for dimensional reasons.

The ðijÞ�k are linear in T0 and enter the variances quadrati-

cally [see Eq. (58)]. The dependence cancels in Eq. (66)
because it is present in both numerator and denominator. T0

also enters Sopt linearly through ðijÞ�k in
ðijÞQk but cancels

in Eq. (67) so that the point estimate of �̂� is independent
of T0.

D. Likelihood approach

The detection statistic that has been derived is also an
optimal statistic in the sense that it is the logarithm of the
likelihood ratio, at least in the limit where the expected

signal is smaller than the noise, and therefore it is the
optimal statistic in both the Bayesian sense and by the
Neyman-Pearson criterion. This section is based on the
likelihood analysis of [45], generalized to consider mul-
tiple detector pairs.
As we did previously, we assume that the noise is sta-

tionary and Gaussian, as is the stochastic background. For
any given pulsar i we assume that there are discrete
samples of data which form a vector si. Although the
discussion below does not place requirements on the data
sampling, we will assume that the observations of the
pulsars all involve the same number of points N at the
same evenly spaced sampling interval so that sample j of
pulsar i is si½j
 ¼ siðj�tÞ where �t is the sampling inter-
val. This signal vector is the sum of a noise vector ni and
the redshift vector zi, si ¼ zi þ ni. The data is a combi-
nation of two random processes: the instrumental noise and
the contribution from the stochastic background. The au-

tocorrelation matrix Ri ¼ hsyi � sii is an N � N matrix
which contains both of these contributions and, since we
assume Gaussian noise and stochastic background, this
matrix completely characterizes the distribution of the
data. As we did previously, we assume that the measure-
ment noise in a pulsar observation is independent of the
noise in the observations of other pulsars; the stochastic
background, however, is correlated amongst the pulsar
signals. This correlation is characterized by the stochastic

background correlation matrix 
2Sij ¼ hzyi � zji. Here 
 is
an order parameter which we will use to expand the proba-
bility distribution in powers of the small stochastic back-
ground signal. It can also be interpreted as an overall
amplitude parameter of the stochastic background. The
probability distribution for the collection of all pulsar
observations is given by a multidimensional Gaussian
distribution

pðxj
Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2��Þp exp

�
� 1

2
xy ���1 � x

�
; (69)

where

x ¼
s1
s2
..
.

sl

2
66664

3
77775; (70)

is a column vector formed from all of the data vectors and

� ¼
R1 
2S12 � � � 
2S1l


2S21 R2 � � � 
2S2l

..

. ..
. . .

. ..
.


2Sl1 
2Sl2 � � � Rl

2
66664

3
77775; (71)

is the correlation matrix for the collective observation
vector x. In this weak signal limit we find
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��1¼

R�1
1 0 ��� 0

0 R�1
2 ��� 0
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.

0 0 ��� R�1
l

2
66666664

3
77777775
�
2

0 R�1
1 �S12 �R�1

2 ��� R�1
1 �S1l �R�1

l

R�1
2 �S21 �R�1

1 0 ��� R�1
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.
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þ
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m�1
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1

P
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m¼1
m�1;2

R�1
1 �S1m �R�1

m �Sm2 �R�1
2 ��� P

l
m¼1
m�1;l

R�1
1 �S1m �R�1

m �Sml �R�1
lP

l
m¼1
m�2;1

R�1
2 �S2m �R�1

m �Sm1 �R�1
1

P
l
m¼1
m�2

R�1
2 �S2m �R�1
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2 ��� P

l
m¼1
m�2;l

R�1
2 �S2m �R�1
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l

..
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.

P
l
m¼l
m�l;1

R�1
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m �Sm1 �R�1
1

P
l
m¼l
m�l;2

R�1
l �Slm �R�1
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2 ��� P
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m�l

R�1
l �Slm �R�1
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l

2
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7777777775

þOð
6Þ; (72)

and

ln det� ¼ Xl
i¼1

ln detRi

þ 
4
Xl
i¼1

Xl
j<i

trðR�1
i � Sij �R�1

j � SjiÞ þOð
6Þ:

(73)

The logarithm of the likelihood ratio is

ln�¼ lnpðxj
Þ � lnpðxj0Þ

¼ 
2
Xl
i¼1

Xl
j<i

<ðsyi �R�1
i � Sij �R�1

j � sjÞ

þ 1

2

4

Xl
i¼1

�Xl
j<i

trðR�1
i � Sij �R�1

j � SjiÞ

� 2
Xl
j�i

Xl
m¼1
m�i;j

<ðsyi �R�1
i � Sim �R�1

m � Smj �R�1
j � sjÞ

�

þOð
6Þ
¼ 
2S� 1

2

4N 2 þOð
6Þ: (74)

This is the optimal detection statistic for a weak stochastic
background. We have identified S as the Oð
2Þ-term and
�2N 2 as the Oð
4Þ-term of the log-likelihood ratio.

The locally-optimal detection statistic is obtained in the

 ! 0 limit; it is the leading Oð
2Þ term,

lim

!0

ln�


2
¼ S ¼ Xl

i¼1

Xl
j<i

<ðsyi �R�1
i � Sij �R�1

j � sjÞ:

(75)

Although this presentation has been described in terms of
observational vectors in the time domain, the derivation of
the likelihood ratio has not explicitly required this choice
of basis. It is convenient to perform a unitary transforma-

tion that diagonalizes the various correlation matrices. This
transformation is called a Karhunen-Loeve transformation;
for a stationary process with a correlation time much
shorter than the time spanned by the l samples, the linear
combinations of the time series that diagonalize the corre-
lation matrices asymptotically approach the discrete
Fourier transform. Therefore we can approximately ex-
press our result in the frequency domain where the Ri

and Sij matrices can be understood in terms of the power

spectrum and the expectation value of the redshift cross
correlation, respectively [cf. Eqs. (42) and (37)]. The
locally-optimal detection statistic is therefore

S ¼ 3H2
0

16�3

1

�

Xl
i¼1

Xl
j<i

Z 1

�1
�̂gwðjfjÞðijÞ�ðjfjÞ~s�i ðfÞ~sjðfÞ

f3PiðjfjÞPjðjfjÞ
df

¼ 1

2
�̂�T0

Xl
i¼1

Xl
j<i

ðijÞ��2ðijÞS (76)

where �gwðfÞ ¼ 
2�̂gwðfÞ and �� ¼ 
2�̂�. This is the

same optimal detection statistic Sopt of Eq. (66) (with the

simplification of nij ¼ 1) up to a normalization constant.

The locally-optimal statistic is optimal in the limit of
weak signals. However, the likelihood ratio is only deter-
mined by this statistic up to a unknown factor which
depends on the (unknown) strength of the signal. It is
important now to distinguish between the assumed ampli-
tude of the stochastic background, 
, and the true ampli-
tude, 
true. The true gravitational wave spectrum�gwðfÞ is
now related to the template spectrum �̂gwðfÞ via�gwðfÞ ¼

2true�̂gw. To measure the strength of the stochastic back-

ground, given a set of pulsar observations, we can use the
maximum likelihood estimator (MLE): the value of 
,

MLE, for which the likelihood ratio is a maximum. That
is, we wish to find the value of 
MLE for which
d ln�=d
2j
MLE

¼ 0. From Eq. (74) we see that this esti-

mate is


2MLE ¼ N �2S; (77)
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where N 2, from the Oð
4Þ-term of the log-likelihood
ratio, is a normalizing factor which also includes the
data. By substituting Eq. (77) into Eq. (74) we obtain the
maximum likelihood detection statistic,

max



ln� ’ 1

2

S2

N 2
; (78)

where the terms of Oð
6Þ have been discarded. Notice that
this statistic is not simply the square of the cross correla-
tion statistic. The data also appears in the factorN �2. This
factor effectively suppresses elements of the pulsar net-
work where the data measured greatly exceeds the normal
noise level.

Some insight into the maximum likelihood detection
statistic and the maximum likelihood amplitude estimate
can be obtained by computing the expectation value of the
log-likelihood ratio, Eq. (74). We find, to leading order in

,

hN 2i ¼ 
�2
truehSi

¼
�
3H0

32�3

�
2 1

�2
T
Xl
i¼1

Xl
j<i

Z 1

�1
df

�̂2
gwðjfjÞðijÞ�2ðjfjÞ
f6PiðjfjÞPjðjfjÞ

:

(79)

Therefore

hln�i ¼ 
2hSi � 1

2

4hN 2i

¼ 
2
�

2true � 1

2

2
��

3H0

32�3

�
2

� 1

�2
T
Xl
i¼1

Xl
j<i

Z 1

�1
df

�̂2
gwðjfjÞðijÞ�2ðjfjÞ
f6PiðjfjÞPjðjfjÞ

þOð
6Þ: (80)

If we ignore the Oð
6Þ terms, this is maximized when

MLE ¼ 
true, in which case

max



hln�i ’ 1

2

�
3H0

32�3

�
2

� 1

�2
T
Xl
i¼1

Xl
j<i

Z 1

�1
df

�2
gwðjfjÞðijÞ�2ðjfjÞ
f6PiðjfjÞPjðjfjÞ

:

(81)

This gives a scale of the value of the likelihood ratio we
would expect to achieve.

IV. UPPER LIMITS AND DETECTION

Several methods exist in the LIGO literature that are
appropriate for upper limit computation and detection us-
ing pulsar timing data [38–43]. These methods can be
divided into two classes: Frequentist and Bayesian.

We expect that the optimal statistic Eq. (66) will be
formed from a large number of pulsar pairs. For example,

the Parkes pulsar timing array [33,34] consists of 20 pulsars
and the optimal statistic could be constructed from up to
190 cross correlation pairs. In this case we can make use of

the central limit theorem: The distribution of Ŝopt should be

well approximated by a Gaussian with a mean � ¼
hSopti ¼ ��T0 and variance �

2
�̂ given by Eq. (68), namely,

pðŜoptj���̂Þ ¼ 1

��̂

ffiffiffiffiffiffiffi
2�

p exp

��ðŜopt ��Þ2
2�2

�̂

�
: (82)

A straightforward frequentist upper limit can then be set
by finding the value of�ul such that in some predetermined
fraction C (called the confidence) of hypothetical experi-
ments, the value of the optimal statistic exceeds the actual

value Ŝopt found in the search. In other words wewould like

to find the value �ul such that

Z 1

Ŝopt

dSoptpðSoptj�ul��̂Þ ¼ C: (83)

The solution to this is

�ul ¼ Ŝopt þ
ffiffiffi
2

p
��̂erfc

�1ð2ð1� CÞÞ: (84)

The assertion is that the real value of� is less than�ul with
confidence C, because if � ¼ �ul, a fraction C of the time

we would have observed a value of Sopt greater than Ŝopt.

An equivalent, though potentially more robust, frequentist
method to set upper limits involves performing simulated
signal injections in the timing data set. Multiple injections
are performed to determine the value of �ul such that a
fraction C of the time the value of the optimal statistic
measured in the data sets with injections exceeds the value
found in the search. Frequentist detection methods such as
Neyman-Pearson or maximum likelihood are well de-
scribed in the literature (see, for example, [38] and refer-
ences therein) and we will not discuss them here.
Additionally Feldman and Cousins [50] provide a means
to smoothly transition between upper limits and detection.
Bayesian upper limits can be computed by constructing

a posterior distribution using the value of the optimal
statistic found in the search, and variance along with priors.
We begin by applying the product rule to the probability

density of � along with the measured value Ŝopt given ��̂

to write

pð�Ŝoptj��̂Þ ¼ pð�jŜopt��̂ÞpðŜoptj��̂Þ
¼ pðŜoptj���̂Þpð�j��̂Þ; (85)

then solve for pð�jŜopt��̂Þ to obtain Bayes’ theorem

pð�jŜopt��̂Þ ¼ pðŜoptj���̂Þ
pð�j��̂Þ
pðŜoptj��̂Þ

; (86)

the posterior probability density for�, or equivalently��.
One can then choose a prior pð�j��̂Þ (for example requir-

ing �> 0) and normalize the probability distribution [the
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probability pðŜoptj��̂Þ does not depend on� so it is a prior

dependent normalization constant], and find the �ul such
that

M
Z �ul

�1
d�pð�jŜopt��̂Þ ¼ C; (87)

where M is the normalization constant. For sufficiently
simple choices of the prior distribution pð�j��̂Þ the inte-
gral equation (87) can be performed analytically to obtain
the Bayesian analog of Eq. (84). As with frequentist meth-
ods [38,50], Bayesian detection methods involve selecting
thresholds, in this case on the odds ratio, which is the ratio
of the posteriors, suitably integrated over, say, different
ranges of �. For more details see Refs. [51,52].

V. A PULSAR TIMING RADIOMETER:
CONSTRUCTING SKYMAPS OF THE

STOCHASTIC BACKGROUND

A skymap may be created by computing �gwðfÞ for a
collection of pixels in the sky. We do this by assuming that
the only signal present comes from a single location on the
sky. We begin by relaxing the assumption that the stochas-
tic background is isotropic. That is, we take

hh�Aðf; �̂ÞhA0 ðf0; �̂0Þi ¼ 3H2
0

32�3
�2ð�̂; �̂0Þ�AA0�ðf� f0Þ

� Pð�̂Þjfj�3�gwðjfjÞ; (88)

where Pð�̂Þ is the strength or brightness [53] of gravita-

tional waves from the direction �̂.
In this case, the overlap reduction function takes the

modified form

ðijÞ�P ¼ 3

4�

X
A

Z
S2
d�̂Pð�̂ÞFA

i ð�̂ÞFA
j ð�̂Þ: (89)

where we have ignored the pulsar phase factors, and the
optimal filter is given by

ðijÞ ~QPðfÞ ¼ ðijÞ�
ðijÞ�P�gwðjfjÞ

jfj3PiðjfjÞPjðjfjÞ
; (90)

where we have suppressed the k index which specifies the
particular measurement of the (ij) pulsar pair. We can

further optimize for point sources by taking Pð�̂Þ ¼
�2ð�̂� �̂0Þ. The optimal filter then becomes

ðijÞ ~Q
�̂
ðfÞ ¼ ðijÞ�

ðijÞ�
�̂
�gwðjfjÞ

jfj3PiðjfjÞPjðjfjÞ
; (91)

with

ðijÞ�
�̂
¼ 3

4�

X
A

FA
i ð�̂ÞFA

j ð�̂Þ: (92)

Figure 2 shows two examples of the sky location dependent
overlap reduction function. The top panel shows j��̂j from

Eq. (92) for two pulsars with � ¼ �=2 located at 0

declination (Dec) and 9 h and 15 h right ascension (RA),
respectively. The bottom panel shows the same quantity for
two pulsars with � ¼ � located at 0
 Dec and 6 h and 18 h
RA, respectively.
One could also imagine computing the overlap reduction

function for each term in a multipole expansion of Pð�̂Þ.
The overlap reduction function for the monopole term in
the expansion (appropriate for an isotropic stochastic
gravitational wave search) is the Hellings-Downs curve
given by Eq. (39) in Sec. III. Surprisingly, the dipole
overlap reduction function is given by a similarly simple
equation. We find

�dip ¼ ðcos�1 þ cos�2Þ
�
2� 3

2
cos�þ 6tan2

�

2
ln

�
sin

�

2

��
;

(93)

where as before � is the angle between the two pulsars, and
�1 and �2 are the angles each of two pulsars make to the
direction of the dipole. A detailed derivation of this result
is given in Appendix C 2. This result is relevant to searches
for a dipole anisotropy in the gravitational wave sky using
pulsar timing data.
The sky dependence of the sensitivity of a pulsar net-

work can be estimated by computing the signal to noise for
sources at the sky locations of interest. We start by taking
the expectation value of the optimal statistic, Eq. (66),

using the optimal filter for a sky location �̂ assuming the
redshift data contain a stochastic signal from that location.
We then divide by the square root of the variance given in

FIG. 2. Plots of jðijÞ�
�̂
j from Eq. (92) for two pulsars with � ¼

�=2 (top panel) and � ¼ � degrees (bottom panel).
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Eq. (68). The result is proportional to

Gð�̂Þ ¼
�Xl
i¼1

Xl
j<i

ðijÞ�2
�̂

�
1=2

; (94)

where we have assumed (for illustrative purposes) that the
noise spectra of all pulsars is the same, the observation
times for all pairs is the same, and nij ¼ 1 for all pulsar

pairs. Figure 3 shows the Eq. (94), for the 20 pulsars of the
Parkes pulsar timing array [33,34]. Since most of the
pulsars are in the Southern Hemisphere the Parkes pulsar
timing array is most sensitive in that region.

Another quantity of interest is the point spread function,
which measures the intrinsic spatial correlation of the sky-
map, or equivalently, the ability of a pulsar network to
locate a stochastic source of gravitational waves. We con-
struct the point spread function by computing the signal to
noise for a source at some sky location that we search for
using the optimal filter for some other location. In particu-
lar, we take the expectation value of the optimal statistic,

Eq. (66), using the optimal filter for a sky location �̂
assuming the redshift data contain a signal from another

location �̂0, then we divide by the square root of the
variance given in Eq. (68). The result is proportional to

Að�̂; �̂0Þ ¼
P

l
i¼1

P
l
j<i

ðijÞ�
�̂
ðijÞ�

�̂0

ðPl
i¼1

P
l
j<i

ðijÞ�2
�̂
Þ1=2 ; (95)

where we have again assumed that the noise spectra of all
pulsars are the same, the observation times for all pairs are
the same, and nij ¼ 1 for all pulsar pairs. Figure 4 shows

the point spread function, Eq. (95), for the 20 pulsars of the
Parkes pulsar timing array [33,34] for a source at 6 h RA
45
 Dec (top panel) and another at 18 h RA �45
 Dec
(bottom panel). Current earth-bound detectors operate in a
different frequency band, around 100 Hz. This means that
the time of arrival of gravitational waves at different ter-
restrial detectors can be used for additional angular reso-
lution relative to pulsar timing experiments–the achievable
angular resolution is given by the detector separation and
observation frequency. For a pulsar timing array there is no

observable time of arrival difference and the angular reso-
lution is determined by the pulsar density in the direction
of the signal (see Fig. 4).
The point spread function can be understood in terms of

the likelihood ratio of Sec. III D: Suppose that the like-
lihood ratio is computed using the overlap reduction func-
tion ��̂ appropriate for a stochastic signal coming from

direction ��̂ when the true signal is in fact coming from

direction ��̂. The expectation value of the log-likelihood

ratio is [cf. Eq. (80)]

hln�i ¼ 
2
2true
Xl
i¼1

Xl
j<i

ðijÞ�
�̂
ðijÞ�

�̂0
ðijÞC

� 1

2

4

Xl
i¼1

Xl
j<i

ðijÞ�2
�̂
ðijÞCþOð
6Þ; (96)

with

ðijÞC ¼
�
3H0

32�3

�
2
T
Z 1

�1
df

�̂2
gwðjfjÞ

f6PiðjfjÞPjðjfjÞ
: (97)

If ðijÞC is approximately the same for all pulsar pairs then

max



hln�i / A2ð�̂; �̂0Þ: (98)

In this sense the point spread function describes the degree
to which the position of a point source of stochastic gravi-
tational waves can be located in terms of the likelihood
ratio.

FIG. 3. Skymap of the sensitivity, Eq. (94), for the Parkes
pulsar timing array.

FIG. 4. Plot of the point spread function Eq. (95) for the Parkes
pulsar timing array for a source at 6 h RA 45
 Dec (top panel)
and 18 h RA �45
 Dec (bottom panel).
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VI. ISSUES WITH PULSAR TIMING DATA

We have derived the optimal statistic for detecting a
stochastic background. In this section we would like to
discuss some issues associated with departures from the
idealizations made to arrive at the optimal statistic.

A. Colored noise and nonstationarity

In contrast to previous methods [5,6] the techniques
presented here do not rely on the data being white. The
power spectra PiðjfjÞ in the optimal statistic account for
colored noise. However, the methods assume the data is
stationary.

If the data is nonstationary over long time scales it can
be divided into short stationary (or almost stationary)
stretches and the power spectrum can be estimated using
the Lomb-Scargle periodogram described below, or mod-
eled for each stretch. The optimally filtered data stretches
can then be combined along the lines discussed in
Sec. III B. One concern associated with breaking the data
up into small stretches is loss of low frequency informa-
tion: Gravitational waves with periods larger than the
length of the short stretches will be lost in this procedure.
The problem can be avoided by first computing the quan-
tities siðfÞ=PiðjfjÞ for each of the short stretches and then
combining them using the Dirichlet kernel to construct full
time baseline versions of these quantities.

If the spectrum is measured it can be smoothed by
performing a running average over a small frequency
window, which if the data are stationary in the stretch the
spectrum is estimated, is equivalent to ensemble averaging.

B. Unevenly sampled data

The fact that pulsar timing measurements are not taken
continuously leads to a data set that is unevenly sampled in
time. This poses a problem for frequency-domain analyses
not present in their time-domain counterparts. The authors
of [44] will explore the time-domain approach in detail. It
is unclear which of these two methods will turn out to be
more robust. In what follows we address the specific issues
of computing periodograms and Fourier transforms for
unevenly sampled data sets which we think is useful in
any case.

1. The Lomb-Scargle periodogram

The problem of constructing periodograms from un-
evenly sampled data comes up in the data analysis of
variable stars. It was in precisely this context that Lomb
[54] and Scargle [55] proposed a least-squares solution to
the problem. The basic idea is as follows: Let xðtiÞ be a
time series with zero mean sampled at i ¼ 0 � � �N � 1
unevenly spaced times. Now fit the time series by finding
the coefficients amin and bmin that minimize the square of
the residual

r2ðfÞ � XN�1

i¼0

fxðtiÞ � a cos½2�fðti � �ðfÞÞ


� b sin½2�fðti � �ðfÞÞ
g2; (99)

where

tanð4�f�ðfÞÞ ¼
P

N�1
i¼0 sinð4�ftiÞP
N�1
i¼0 cosð4�ftiÞ

: (100)

Then the periodogram is defined up to normalization by the
difference

�r2ðfÞ ¼ XN�1

i¼0

x2ðtiÞ � r2minðfÞ

¼ ðPN�1
i¼0 xðtiÞ cos½2�fðti � �ðfÞÞ
Þ2P

N�1
i¼0 cos2½2�fðti � �ðfÞÞ


þ ðPN�1
i¼0 xðtiÞ sin½2�fðti � �ðfÞÞ
Þ2P

N�1
i¼0 sin2½2�fðti � �ðfÞÞ
 ; (101)

where r2minðfÞ is the quantity in Eq. (99) with a ¼ amin and

b ¼ bmin. After normalization [56] and generalization to
data with nonzero mean, we have the Lomb-Scargle peri-
odogram

PLS
X ðfÞ ¼ 1

2�2
x

�ðPN�1
i¼0 ½xðtiÞ ��x
 cos½2�fðti � �ðfÞÞ
Þ2P

N�1
i¼0 cos2½2�fðti � �ðfÞÞ


þ ðPN�1
i¼0 ½xðtiÞ ��x
 sin½2�fðti � �ðfÞÞ
Þ2PN�1

i¼0 sin2½2�fðti � �ðfÞÞ

�
;

(102)

where �x and �2
x are the mean and variance, respectively,

of xðtiÞ. Note that the definition of �ðfÞ in Eq. (100) ensures
that the resulting periodogram is independent of where
t ¼ 0.

2. Fourier transforms

The idea of using a least-squares minimization is also
useful for constructing Fourier transforms. To do so, we
borrow an idea from the radar community [57]. Suppose
we have a time series, xðtiÞ, nonuniformly sampled at times
t0 � � � tN�1 and we wish to approximate its Fourier trans-
form over M evenly spaced frequencies, f0 � � � fM�1. The
strategy we will employ is to use a least-squares procedure
to find the best fit to the original time series after an inverse
Fourier transform. That is, the (squared) residual to be
minimized is given by

r2 ¼ XN�1

j¼0

��������xðtjÞ �
XM�1

k¼0

~�ðfkÞei2�fktj
��������

2

; (103)

where the ~�ðfkÞ are least-squares Fourier coefficients we
set out to determine. Defining

Akj ¼ ei2�fktj ; (104)
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we can write

r2 ¼ k ~x� A~~�
2k: (105)

The least-squares solution to this problem is given by

~~� ¼ ðAyAÞ�1Ay ~x: (106)

The problem is then purely a computational one, which,
because of the limited amount of pulsar timing data avail-
able, is completely tractable on a modern computer, re-
gardless of the efficiency of the algorithm. On a final note,
one can actually improve upon this procedure [57] by
weighting the residual in Eq. (103) by the square root of
the variance, �xðtjÞ, associated with each data point,

r2 ¼ XN�1

j¼0

1

�xðtjÞ

��������xðtjÞ �
XM�1

k¼0

~�ke
i2�fktj

��������
2

; (107)

which has the advantage of automatically including the
error bars associated with individual pulsar timing data
points.

VII. SUMMARYAND CONCLUSIONS

A stochastic background of gravitational waves could be
detected via pulsar timing observations in the next 5 to
10 yr. This background may be astrophysical, such as that
produced by supermassive black holes, or cosmological,
such as that produced by a network of cosmic (super)
strings. In the latter case a detection would open a window
onto a time in the early universe prior to recombination and
could have profound consequences. Leveraging techniques
developed for ground-based instruments such as LIGO and
Virgo, in this paper we have shown how to optimally
extract the signal produced by a stochastic background of
gravitational waves using cross correlations of timing data
from a pulsar timing array.

We started by considering the redshift induced by a
gravitational wave on the frequency of arrival of radio
pulses from a pulsar first derived by Detweiler [2]. The
redshift is proportional to the difference in the metric
perturbation at the pulsar (when a pulse is emitted) and
at the Earth (when that pulse is received). Using a conve-
nient coordinate-independent description of the signal we
examined the form of the signal in the frequency domain.
The term involving the metric perturbation at the pulsar is
typically neglected because it can be treated as a sort of
noise term which averages to zero in correlations of timing
measurements of different pulsars. In the frequency do-
main the dependence on the metric perturbation at the
pulsar is in a phase factor that depends on the distance to
the pulsar. It is possible that if we could determine the
distance to pulsars with sufficient accuracy we could use
the metric perturbation at the pulsar to improve the sensi-
tivity of our searches. Unfortunately, accurate measure-
ments of pulsar distances are unavailable. By first finding

the optimal cross correlation filter, we have shown that for
pulsar distances and gravitational wave frequencies typical
of pulsar timing experiments, the metric perturbation at the
pulsar can be neglected without a significant deviation
from optimality. It is unclear whether this is true for other
types of gravitational wave searches. We have also deter-
mined the optimal way to combine pulsar timing data from
a pulsar timing array, which is constructed from pairs of
optimally filtered cross correlations. We have assumed
throughout that the gravitational wave is smaller than the
noise in the sense that it does not affect our noise estima-
tion. When the first detection of gravitational waves is
made using pulsar timing data we expect to be in the
regime where the signal is small, and the techniques pre-
sented here should be near optimal. As pulsar timing
accuracies improve we may move into a regime where
the gravitational wave signal is appreciable in the timing
residuals of individual pulsars. At this point different tech-
niques may become necessary [44].
We have discussed and illustrated frequentist and

Bayesian methods for setting upper limits using the distri-
bution of the optimal statistic. We have shown how to
construct a pulsar timing radiometer: A map of the sky
created by optimizing the cross correlation statistic for
particular sky directions. We have also shown how to
determine the intrinsic spatial correlation of such maps,
which in turn determines the ability of a pulsar timing array
to locate a source of stochastic gravitational waves.
We have ended with a discussion of some problems

related to realistic analysis of pulsar timing data, particu-
larly the issues of nonstationarity and uneven sampling.
The optimal filter is constructed from power spectra of the
pulsar timing data, which can be modeled or measured, and
accounts for the effects of colored noise. We have de-
scribed a technique, the Lomb-Scargle periodogram, for
robust spectrum estimation that can be used to construct
the optimal filter. The optimal filter can then be applied in
the frequency domain and we have described a procedure
for taking Fourier transforms of unevenly sampled data
that accounts for error bars in the individual pulsar timing
data points. The optimal filter can also be inverse Fourier
transformed and applied in the time domain where uneven
sampling is not an issue. Regardless of which method turns
out to be more useful and robust for stochastic background
searches, we believe the development of Fourier tech-
niques for unevenly sampled data will be beneficial.
Lommen, Romano, and Woan [44] will examine time-
domain methods in detail.
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APPENDIX A: DERIVATION OF DETWEILER’S
FORMULA USING THE GEODESIC EQUATION

For completeness of presentation, we include a deriva-
tion of Detweiler’s formula. We consider, as we did in
Sec. II, the metric perturbation due to a single gravitational

wave traveling in the �̂ ¼ ẑ direction, so Eqs. (4)–(6) hold.
Then, if a vector sa is null in Minkowski space, the
corresponding null vector, �a, in the perturbed spacetime
gab ¼ �ab þ hab is given by [58]

�a ¼ sa � 1
2�

abhbcs
c: (A1)

The null vector in Minkowski space that points from the
pulsar to the Solar Sytem is sa ¼ �ð1;��;��;�	Þ,
where, as before, �, �, and 	 are the direction cosines
with the x, y, and z directions, respectively. The corre-
sponding perturbed vector is readily computed from
Eq. (A1)

�a ¼ �

1
��ð1� 1

2hþÞ þ 1
2�h���ð1þ 1

2hþÞ þ 1
2�h��	

0
BBB@

1
CCCA: (A2)

The geodesic equation tells us that the t component of
�a satisfies

d�t

d�
¼ ��t

ab�
a�b: (A3)

It follows from the form of the metric perturbation in
Eq. (5) that

�t
ab ¼ � 1

2
gtc

�
@gbc
@xa

þ @gac
@xb

� @gab
@xc

�
¼ 1

2
_gab

¼ 1

2

0 0 0 0
0 _hþ _h� 0
0 _h� � _hþ 0
0 0 0 0

0
BBB@

1
CCCA; (A4)

where the overdot denotes a derivative with respect to t.
The geodesic equation then reads

d�t

d�
¼ � 1

2
_gab�

a�b

¼ � 1

2
½ _gxxð�xÞ2 � _gyyð�yÞ2
 � _gxy�

x�y

¼ � 1

2
_hþ½ð�xÞ2 � ð�yÞ2
 þ _h��x�y: (A5)

After a little algebra Eq. (A2) leads to

ð�xÞ2 � ð�yÞ2 ¼ �2ð�2 � �2Þ þOðhÞ; (A6)

as well as

�x�y ¼ �2��þOðhÞ; (A7)

so that

� d�

d�
¼ 1

2
_hþ�2ð�2 � �2Þ þ _h��2��: (A8)

We proceed by writing the time derivatives in Eq. (A8) as
derivatives with respect to the affine parameter �. In par-
ticular, since hþ;� ¼ hþ;�ðt� zÞ we have

dhþ;�
d�

¼ @hþ;�
@t

dt

d�
þ @hþ;�

@z

dz

d�
: (A9)

Moreover, we also have that the frequency � ¼ dt=d�, in
addition to @hþ;�=@z ¼ �@hþ;�=@t and dz=d� ¼ ��	.
Therefore we can write Eq. (A9) as

_hþ;� ¼ 1

�ð1þ 	Þ
dhþ;�
d�

: (A10)

Then Eq. (A8), the geodesic equation, becomes

� 1

�

d�

d�
¼ 1

2

�2 � �2

1þ 	

dhþ
d�

þ ��

1þ 	

dh�
d�

; (A11)

which we integrate to find

�ðtÞ
�0

¼ exp

�
� 1

2

�2 � �2

1þ 	
�hþ � ��

1þ 	
�h�

�
: (A12)

It is worth pointing out that the direction cosines are
functions of the affine parameter. The dependence is in
terms of OðhÞ, and we have neglected this dependence in
going from Eq. (A11) to Eq. (A12). The final result is
obtained by expanding this expression to first order in
hþ;�,

�0 � �ðtÞ
�0

¼ 1

2

�2 � �2

1þ 	
�hþ þ ��

1þ 	
�h�; (A13)

where�hþ;� ¼ hpþ;� � heþ;� is the difference between the

metric perturbation at the pulsar and the detector. This
expression is precisely Eq. (7).
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APPENDIX B: LINEARITY OF THE REDSHIFT

In this appendix we will explicitly demonstrate that the
total redshift is the sum of the contributions from gravita-
tional waves in every direction, as written in Eq. (18). The
derivation is merely a generalization of the results derived
in the previous appendix. We begin by considering a metric
perturbation, hab, in a spatial transverse-traceless gauge

comprised of the sum of metric perturbations, hðiÞab, from
gravitational waves inN different directions, �̂ðiÞ. Namely,

hab ¼ XN
ðiÞ

hðiÞabðt� �̂ðiÞ � ~xÞ; (B1)

where t and ~x form a four vector, xa, in the background
(Minkowski) geometry. Adjusting the notation from
Appendix A

sa ¼ dxa=d� ¼ �ð1;��;��;�	Þ � �ð1;�p̂Þ; (B2)

as a null vector in Minkowski space. The null geodesic is
perturbed by Eq. (B1), resulting in a

�a ¼ sa þ �sa: (B3)

As before, our interest is in the quantity

d�t

d�
¼ ��t

ab�
a�b: (B4)

The spatial nature of the gauge we have chosen ensures that

�t
ab ¼ 1

2
_gab; (B5)

¼ 1
2
_hab; (B6)

which is evident from the first line of Eq. (A4). It follows
from these definitions that

d�t

d�
¼ � 1

2
_hab�

a�b

¼ � 1

2
_habðsa þ �saÞðsb þ �sbÞ

¼ � 1

2
_habs

asb

¼ � 1

2
_hijð�2pipjÞ; (B7)

where i and j are spatial indices. As before, we want to
write the expression above in terms of the affine parameter
along sa. We begin by noting that for term in Eq. (B1)

dhðiÞabðt� �̂ðiÞ � ~xÞ
d�

¼ @hðiÞabðt� �̂ðiÞ � ~xÞ
@t

dt

d�

þ @hðiÞabðt� �̂ðiÞ � ~xÞ
@ð�̂ðiÞ � ~xÞ

dð�̂ðiÞ � ~xÞ
d�

¼ @hðiÞabðt� �̂ðiÞ � ~xÞ
@t

�

� @hðiÞabðt� �̂ðiÞ � ~xÞ
@t

�̂ðiÞ � d~xd�

¼ �ð1þ �̂ðiÞ � p̂Þ
@hðiÞabðt� �̂ðiÞ � ~xÞ

@t
;

(B8)

where we have used the (t� �̂ðiÞ � ~x) dependence of the

metric perturbation to write the spatial derivatives as time
derivatives along with Eq. (B2). Putting this together with
Eq. (B7), the result is that

� 1

�

d�

d�
¼ XN

ðiÞ

1

2

p̂ip̂j

1þ �̂ðiÞ � p̂
hðiÞij ðt� �̂ðiÞ � ~xÞ; (B9)

which can be integrated to give the redshift

z � �0 � �ðtÞ
�0

¼ XN
ðiÞ

1

2

p̂ip̂j

1þ �̂ðiÞ � p̂
�hðiÞij ðt� �̂ðiÞ � ~xÞ;

(B10)

which is the discrete version of Eq. (18).

APPENDIX C: THE OVERLAP REDUCTION
FUNCTION IN THE HIGH-FREQUENCY LIMIT

1. Derivation of the Hellings-Downs curve

In this section we derive the Hellings and Downs curve
[48] given by Eq. (39). We begin with the definition of the
overlap reduction function, Eq. (38), and we ignore the
exponential factors. Thus we wish to evaluate

�0 ¼ �
X

A¼þ;�

Z
S2
d�̂FA

1 ð�̂ÞFA
2 ð�̂Þ; (C1)

and using the definition of FAð�̂Þ given by Eq. (17) we find

�0 ¼ 1

4
�

X
A¼þ;�

Z
S2
d�̂

p̂i
1p̂

j
1

1þ �̂ � p̂1

� p̂k
2p̂

l
2

1þ �̂ � p̂2

eAijð�̂ÞeAklð�̂Þ: (C2)

The two unit vectors p̂1 and p̂2 are those pointing from the
Earth toward the first and second pulsar, respectively, and

the polarization tensors eþij ð�̂Þ and e�ij ð�̂Þ for a gravita-

tional wave traveling in direction �̂ are given by Eqs. (2a)
and (2b) respectively. To evaluate the integral we choose a
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coordinate system in which p̂1 is parallel to the z-axis and
p̂2 is in the x� z plane. Then

p̂1 ¼ ð0; 0; 1Þ; (C3a)

p̂2 ¼ ðsin�; 0; cos�Þ; (C3b)

where � is the angular separation between the two pulsars.
Because we have chosen coordinates in which p̂ � m̂ ¼ 0
[cf. Eq. (3b)], the �-polarization terms vanish and our
expression for �0 becomes

�0 ¼ � 1

4
�
Z
S2
d�̂

sin2�ðsin2�sin2�� sin2�cos2�cos2�� cos2�sin2�þ 2 sin� cos� sin� cos� cos�Þ
ð1þ cos�Þð1þ cos� cos�þ sin� sin� cos�Þ : (C4)

Straightforward manipulation shows that this integral be-
comes

�0 ¼ 1
4�ðI þ JÞ; (C5)

with

I ¼
Z
S2
d�̂ð1� cos�Þð1� cos� cos�� sin� sin� cos�Þ

¼ 4�

�
1þ 1

3
cos�

�
; (C6)

and

J ¼ �2sin2�
Z �

0
d� sin�ð1� cos�ÞK; (C7)

where we have defined

K �
Z 2�

0
d�

sin2�

1þ cos� cos�þ sin� sin� cos�
: (C8)

K may be trivially evaluated by contour integration in the
complex plane. The result is

K ¼ 2�
1þ cos� cos�þ j cos�þ cos�j

sin2�sin2�

¼ 2�

�
1� cos�

sin2�

��
1� cos�

sin2�

�
; (C9)

where the negative sign applies when 0< �<�� � and
the positive sign applies when �� � < � < �. Hence we
find that

J ¼ �4�ð1� cos�Þ
Z ���

0
d�

ð1� cos�Þ2
sin�

� 4�ð1þ cos�Þ
Z �

���
d� sin�

¼ 16�ð1� cos�Þ ln
�
sin

�

2

�
: (C10)

Combining Eqs. (C5), (C6), and (C10), we obtain

�0 ¼ 4�

3
�

�
1þ 3ð1� cos�Þ

�
ln

�
sin

�

2

�
� 1

12

��

¼ 4�

3
�

�
1þ 3

2
ð1� cos�Þ

�
ln

�
1� cos�

2

�
� 1

6

��
:

(C11)

The expression in braces achieves a maximum value of
unity when � ¼ 0, so the correct normalization constant is
� ¼ 3=4�. With this normalization we recover Eq. (39).

2. Generalization to a dipole stochastic background

We now generalize the Hellings-Downs curve to the case
of a stochastic background with a dipole moment in the

direction D̂. We will start by defining the following quan-
tities:

D̂ ¼ ðsin�1 cos�; sin�1 sin�; cos�1Þ; (C12)

D̂ � �̂ � cos� ¼ cos�1 cos�þ sin�1 sin� cosð�� �Þ;
(C13)

D̂ � p̂1 � cos�1; (C14a)

D̂ � p̂2 � cos�2

¼ cos�1 cos�þ sin�1 sin� cos�: (C14b)

This derivation differs from the derivation of the Hellings-

Downs curve only in that a factor D̂ � �̂ must be included
in the integral.

�dip ¼ 1

4
�

X
A¼þ;�

Z
S2
d�̂

p̂i
1p̂

j
1p̂

k
2p̂

l
2e

A
ijð�̂ÞeAklð�̂Þ

ð1þ �̂ � p̂1Þð1þ �̂ � p̂2Þ
D̂ � �̂:

(C15)

This integral can be written as

�dip ¼ � 1

4
�
Z
S2
d�̂ cos�

sin2�ðsin2�sin2�� sin2�cos2�cos2�� cos2�sin2�þ 2 sin� cos� sin� cos� cos�Þ
ð1þ cos�Þð1þ cos� cos�þ sin� sin� cos�Þ : (C16)

As in the previous section, we write

�dip ¼ 1
4�ðI þ JÞ; (C17)

where the first term is now given by
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I ¼
Z
S2
d�̂ cos�ð1� cos�Þð1� cos� cos�� sin� sin� cos�Þ ¼ � 4�

3
ðcos�1 þ cos�2Þ; (C18)

and J is as in Eq. (C7), but K is now given by

K ¼
Z 2�

0
d�

cosð�Þsin2�
1þ cos� cos�þ sin� sin� cos�

; (C19)

and may be evaluated by the same methods. The result is

K ¼ 2�

sin2�
ða� cot� csc�þ b�cot2�þ c�csc2�Þ; (C20)

where the following constant terms have been defined:

a� ¼ cos�1ð1� cos�Þ � cos�2 � cos�1 cos�

sin2�

� ð1� cos�Þ2; (C21a)

b� ¼ � cos�1ð1� cos�Þ � cos�2 � cos�1 cos�

2sin2�

� ð1� cos�Þ2; (C21b)

c� ¼ � cos�2 � cos�1 cos�

2sin2�
ð1� cos�Þ2; (C21c)

and aþ, bþ, and cþ are to be used in the case where the

inequality 0< �< �� � holds, and a�, b�, and c� are to
be used otherwise. Thus, the integral J must again be split
into two sections, and the result of the integration is

J ¼ 4�ðcos�� 1Þðcos�1 þ cos�2Þ
� 16�ðcos�1 þ cos�2Þtan2 �2 ln

�
sin

�

2

�
: (C22)

Thus, we see that

�dip ¼��ðcos�1þ cos�2Þ
�
cos�� 4

3
� 4tan2

�

2
ln

�
sin

�

2

��
:

(C23)

Because we wish for �dip to have maximal value of unity at
� ¼ 0 and � ¼ � (where it is clear that �1 ¼ �2 ¼ 0), we
must select a normalization constant of � ¼ �3=2�.
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