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In the scalar-tensor theory of gravitation it seems nontrivial to establish if solutions of the cosmological

equations in the presence of a cosmological constant (or a vacuum energy) behave as attractors

independently of the initial values. We develop a general formulation in terms of two-dimensional phase

space, mainly according to the Brans-Dicke model requiring the scalar field decoupled from the matter

Lagrangian in the Jordan frame. We show that there are two kinds of fixed points, one of which is an

attractor depending on the coupling constant and equation of state. We find that the static universe in the

Jordan frame is an attractor in the presence of a cosmological constant for some range of the coupling

constant. We extend our analysis to a power-law potential, finding a new type of power-law inflation

caused by the coupling to the matter fluid, also as an attractor.
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I. INTRODUCTION

Einstein’s general relativity has proved to be the sim-
plest theory for the successful understanding of a number
of experiments and observations. Still, on the other hand,
there seem to be growing indications that a yet-to-be-
discovered scalar field might play fundamental roles in
cosmology. A list of the possible sources include the one
expected from higher-dimensional theories of gravitation
such as superstring/M theory and a scalar field (a volume
modulus) which couples to 4-dimensional gravity after
compactification, also those in the context of the brane
world scenario. We may reasonably expect that realistic
consequences of these hypotheses can be implemented in
terms of the scalar-tensor theory proposed first by Jordan
[1], developed later by Brans and Dicke [2,3].

One of the recent focuses of the scalar field is aimed
particularly at the origin of the dark energy which appears
to be required from the observed acceleration of the uni-
verse, with the renewed interest of today’s version of the
cosmological constant problem, culminating to the twin
questions; the fine-tuning problem and coincidence prob-
lem. We argued [4–7] that the scalar-tensor theory is
precisely what causes the behavior, �� t�2 realized nu-
merically by 10�120 � ð1060Þ�2 [8], where 1060 is today’s
age of the universe in units of the Planck time �10�43 s,
hence preparing another simple implementation of the
scenario of the decaying cosmological constant as dis-
cussed in [9,10].

Before reaching conclusions to be compared with ob-
servation, however, we must go through certain complica-
tions including details on the choice of the conformal
frames among other things. Also many consequences de-

rive from leaving the Brans-Dicke model [2,3], as required
ultimately by a single technical aspect on the attractor
nature of the cosmological solutions. This motivated us
to develop a general framework of studying dynamics of
the system including the scalar field taking the unique roles
of the conformal transformation properly into account.
After a brief introduction of the action of the scalar-

tensor theory in both conformal frames, the Jordan and
Einstein frames in Sec. II, we enter Sec. III to develop a
formulation in the Einstein frame in which we may trace
how the cosmological solutions evolve in two-dimensional
phase space. We assume the presence of the exponential
potential of the scalar field corresponding to the simple
cosmological constant in the Jordan frame. It is crucially
important to make a right choice of the new extended time-
coordinate other than the conventional cosmic time. Also
of central importance is to deal with self-autonomous
systems.
In Subsection III A we discuss the fixed points in phase

space. We show that there are two different sets of fixed
points: one (FP1) is for the well-known universe of scalar-
field dominance, and the other (FP2) represents a new type
of the universe in which the matter fluid energy is scaled to
the potential of the scalar field because of the coupling with
the matter fluid. We find that the universe of the latter type
always expands in the same way as the radiation-dominant
universe in the Einstein frame. In Subsection III B, we
present the stability analysis and the behavior of the at-
tractor solutions. Flows of trajectories in phase space are
illustrated for the examples taken from the radiation-
dominant universe. Basically the same analysis will be
repeated in Sec. IV now in the Jordan frame.
In Sec. V we generalize the argument to the power-law

potential with a monomial of the scalar field multiplied by
the cosmological constant chosen in the preceding section
in the Jordan frame. We find a new type of inflation at the
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fixed point FP2 even for the potential which is too steep to
cause inflation without the coupling with the matter fluid.
Section VI is devoted to the concluding remarks.

In Appendix A, we discuss the effect of the curvature
term not included in the preceding sections. In the subse-
quent three appendices, we add related discussions on the
accelerating universe. Appendix B reveals the presence of
a complication in the numerical analysis in the Jordan
frame, while in Appendix C we discuss the attractor nature
of the scale-invariant model as an alternative to the Brans-
Dicke model. The final Appendix D will be devoted to
offering another simplified approach to the power-law
potential.

II. SCALAR-TENSOR THEORY: JORDAN FRAME
VS EINSTEIN FRAME

We discuss cosmology in the scalar-tensor theory of
gravitation. We assume the presence of a potential Vð�Þ
in the Jordan frame. The action is

S ¼ Sg þ Sm; (2.1)

where

Sg ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�

2
�2R� �

2
ðr�Þ2 � Vð�Þ

�
; (2.2)

Sm ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
Lmðg;�Þ; (2.3)

with � ¼ �1 [11]. Note that the matter action Sm is as-
sumed to have no scalar field � according to the Brans-
Dicke model [2,3], in which the weak equivalence princi-
ple (WEP) is intended to be respected. The scalar-tensor
theory defined in this way is equivalent to the traditional
Jordan-Brans-Dicke theory with an added potential
Uð’Þ ¼ Vð�Þ, often expressed as

Sg ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
’R�!

’
ðr’Þ2 �Uð’Þ

�
; (2.4)

with the Brans-Dicke constant ! ¼ �=ð4�Þ and ’ ¼
ð�=2Þ�2.

Although we may further extend this type of the scalar-
tensor theory with an arbitrary function of the scalar field
� multiplied with R, we confine ourselves to the original
simple’, because it features global scale invariance except
generally for the Vð�Þ term.

The choice � ¼ �1 in (2.2) is closely related to string
theory. TheD-dimensional action for the zero modes in the
closed string sector is given [12] by

S ¼ 1

2

Z
dDx

ffiffiffiffiffiffiffi�g
p

e�2�½RðgÞ þ 4ðr�Þ2�; (2.5)

which, reexpressed according to our own sign convention
[13] as in (1.30) of [4], corresponds to the first two terms in
(2.2) with � ¼ �1 and � ¼ 1=4, hence ! ¼ �1, by in-
troducing � ¼ 2e��.

We can always move to the Einstein frame by a confor-
mal transformation [1–3,14–17]

g�� ! g��� ¼ �2g��; (2.6)

where

�2 ¼ ��2 ¼ expð2��Þ; (2.7)

with

�2 � ð6þ ���1Þ�1 ¼ ð6þ 4!Þ�1; (2.8)

which defines a canonical scalar field � in the Einstein
frame;

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g�

p �
1

2
R� � 1

2
ðr��Þ2 � V�ð�Þ

�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g�

p
Lmðc �; g�; �Þ; (2.9)

where

V�ð�Þ ¼ expð�4��ÞVð�Þ: (2.10)

We mark the quantities in the Einstein frame with the
subscript �, while those in the Jordan frame are left un-
marked, unless otherwise indicated. This is in accordance
with the notation used in [4].
We point out that � ¼ �1, apparently indicating a ghost

nature of the nondiagonalized field �, is a real difficulty
only if �2 turns out to be negative implying a negative
energy for the diagonalized field �. Because of the non-
minimal coupling term, which mixes � with the spinless
component of the rank-2 tensor field g��, � is a non-

diagonalized field as was argued in Chapter 2.6 of [4].
See also [18]. The conformal transformation to the
Einstein frame can be viewed to remove this mixing by
means of a diagonalized field �, as was also discussed near
the beginning of Chapter 1.3.2 of [4]. We always assume
the condition

�2 > 0: (2.11)

This can be obeyed even if � ¼ �1 if � > 1=6. Imposing
� > 0, which we assume throughout this paper, due to the
required positivity of the energy of tensor gravity, we find
that � ¼ 1 allows any � but with �2 < 1=6, while � ¼ �1
constrains � > 1=6 and �2 > 1=6, as displayed graphically
in Fig. 1 of [6].
The parameters in (2.5) give �2 ¼ ðD� 2Þ=4 which is

1=2 for D ¼ 4. If � ¼ �1 and � ¼ 1=6, we find �2 ! 1,
implying no kinetic term in the Einstein frame, hence no
degree of freedom. We do not consider this choice any
further.
Because we assume that no � field enters Lm in the

Jordan frame, we find that the energy-momentum of the
matter fluid is conserved in the Jordan frame;

r�T�
� ¼ 0; (2.12)

KEI-ICHI MAEDA AND YASUNORI FUJII PHYSICAL REVIEW D 79, 084026 (2009)

084026-2



for whichWEP is respected. The energy-momentum tensor
in the Einstein frame is obtained by

T��� ¼ expð�4��ÞT�
�; (2.13)

which is no longer conserved;

r��T
�
� � ¼ ��T�r�

� �; (2.14)

where T� ¼ T���. Note that the universal free-fall (UFF) is
still maintained, as an expression of WEP.

III. COSMOLOGY WITH A COSMOLOGICAL
CONSTANT: ANALYSIS IN THE EINSTEIN FRAME

We discuss cosmology in the scalar-tensor theory with a
cosmological constant V ¼ V0. In this section, we discuss
it in the Einstein frame, though the analysis in the Jordan
frame is given in the next section.

A. The basic equations and the fixed points

The metric of the isotropic and homogeneous universe is
given by the Friedmann-Robertson-Walker (FRW) form:

ds2� ¼ �dt2� þ a2�ds23; (3.1)

where ds23 is the metric of maximally symmetric three-

dimensional space with the curvature constant k ¼ 0 or
�1.

The basic equations in the Einstein frame are

H2� þ k

a2�
¼ 1

3

�
1

2
_�2 þ V� þ ��

�
; (3.2)

€�þ 3H� _�þ @V�
@�

¼ �ð�� � 3P�Þ; (3.3)

where H� ¼ _a�=a, P�, and �� are the Hubble expansion
parameter, the pressure, and the energy density in the
Einstein frame, respectively. The dot implies d=dt�
throughout in the Einstein frame. Equation (2.14) in the
Einstein frame is then reexpressed as

_� � þ 3H�ðP� þ ��Þ ¼ �� _�ð�� � 3P�Þ: (3.4)

Assuming the equation of state P� ¼ ð	� 1Þ��, we
further reexpress Eqs. (3.2), (3.3), and (3.4) into

H2� þ k

a2�
¼ 1

3

�
1

2
_�2 þ V� þ ��

�
; (3.5)

€�þ 3H� _�� 4�V� ¼ �ð4� 3	Þ��; (3.6)

_� � þ 3	H��� ¼ ��ð4� 3	Þ _���: (3.7)

We now introduce a new dimension-free time coordinate

� by

d
� ¼ 2
ffiffiffiffiffiffi
V�

p
dt�: (3.8)

We further introduce H � ¼ a0�=a�, where the prime is for

a differentiation with respect to 
�. We then put Eqs. (3.5),
(3.6), and (3.7) into the new form

H 2� þ k

4V�a2�
¼ 1

6

�
�02 þ 1

2

�
1þ ��

V�

��
; (3.9)

�00 þ 3H ��0 � �

�
2�02 þ 1þ ð4� 3	Þ��

4V�

�
¼ 0;

(3.10)

�0� þ 3	H ��� ¼ ��ð4� 3	Þ�0��: (3.11)

Focusing on k ¼ 0, we differentiate Eq. (3.9) with re-
spect to 
� to obtain

H 0� ¼ � 2� 	

4
�02 þ 	

8
þ 2��0H � � 3	

2
H 2�: (3.12)

Here we have used Eqs. (3.9) and (3.10) as well as the
equation

ð��=V�Þ0 ¼ �3	ðH � � ��0Þð��=V�Þ; (3.13)

which is obtained from Eq. (3.11) and the definition (2.10)
of V�.
In the same way we put Eq. (3.10) into

�00 ¼ �3H ��0 þ 3	�

4
ð2�02 þ 1Þ þ 3�ð4� 3	ÞH 2�;

(3.14)

where Eq. (3.9) has been used to obtain the last term on the
right-hand side. A set of Eqs. (3.12) and (3.14) gives a self-
autonomous system. In fact, by introducing the variables x
and y defined by x ¼ �0 and y ¼ ��1H �, we derive

x0 ¼ 3�

4
½2	x2 � 4xyþ 4�2ð4� 3	Þy2 þ 	�; (3.15)

y0 ¼ 1

8�
½�2ð2� 	Þx2 þ 16�2xy� 12�2	y2 þ 	�:

(3.16)

By choosing x0 ¼ y0 ¼ 0, we find four fixed points in
this system;

FP 1�: ðxF; yFÞ ¼ ðxð�Þ
1 ; yð�Þ

1 Þ

� �
�

2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 8�2

p ;
1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 8�2

p �
; (3.17)

FP2�: ðxF; yFÞ ¼ ðxð�Þ
2 ; yð�Þ

2 Þ

� �
� ffiffiffiffi

	
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2� 	� 2ð4� 3	Þ�2Þp ;

ffiffiffiffi
	

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� 	� 2ð4� 3	Þ�2Þp �

: (3.18)
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The fixed points FP1� exist if �2 < 3=8, while the fixed
points FP2� exist if 	 � 4=3 or if 	 < 4=3 with �2 < ð2�
	Þ=½2ð4� 3	Þ� (equivalently, 	 > 2ð4�2 � 1Þ=ð6�2 � 1Þ).
For � ¼ 1=2, two types of fixed points coincide with each
other. In Fig. 1, we show in which portion of the �2-	 plane
we find the fixed points.

From (3.9) with k ¼ 0, we obtain

��
V�

¼ 2ð6�2y2 � x2Þ � 1; (3.19)

which is constant at the fixed points.
At the fixed point FP1�, we find immediately

ð��=V�ÞFP1 ¼ 0; (3.20)

while at the fixed point FP2þ, we obtain�
��
V�

�
FP2

¼ 2ð4�2 � 1Þ
2� 	� 2ð4� 3	Þ�2 : (3.21)

This result is consistent with Eq. (3.13), i.e.�
��
V�

�0 ¼ �3	�ðy� xÞ
�
��
V�

�
; (3.22)

the right-hand side of which vanishes at the fixed point
FP2þ, showing that the ratio of the energy density to the
potential is constant.

Next we discuss the scale factor and scalar field at the
fixed points. We have

�0 ¼ xF; ðlna�Þ0 ¼ �yF; (3.23)

for fixed points.

For FP1þ, we have ðxF; yFÞ ¼ ðxðþÞ
1 ; yðþÞ

1 Þ, giving

� ¼ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 8�2

p 
� þ �0; (3.24)

a� ¼ a�0 exp
�


�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 8�2

p �
: (3.25)

By inverting (3.8) and substituting from (3.23) we obtain

t� ¼ t�0 exp
�

4�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 8�2

p 
�
�
: (3.26)

Substituting this back into (3.25) and (3.26) then yields

� ¼ 1

2�
ln

�
t�
t�0

�
þ �0; (3.27)

a� ¼ a0

�
t�
t�0

�
1=ð8�2Þ

: (3.28)

In order to fix �0, we go back to the original equations of
motion, i.e., setting �� ¼ 0 finding

H2� ¼ 1

3

�
1

2
_�2 þ V�

�
; (3.29)

which gives the value of the scalar field �0 at t� ¼ t�0 as

expð�4��0Þ ¼ 3� 8�2

64�4t20V0

: (3.30)

Equation (3.28) shows that the solution with � < 1=ð2 ffiffiffi
2

p Þ
gives a power-law inflation.

For the fixed point FP2þ, we have ðxF; yFÞ ¼
ðxðþÞ

2 ; yðþÞ
2 Þ, replacing (3.27) and (3.28) and by

� ¼
ffiffiffiffi
	

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� 	� 2ð4� 3	Þ�2Þp 
� þ �0; (3.31)

a� ¼ a�0 exp
�

�
ffiffiffiffi
	

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� 	� 2ð4� 3	Þ�2Þp 
�

�
; (3.32)

respectively. The cosmic time in the Einstein frame is

t� ¼ t�0 exp
�

2�
ffiffiffiffi
	

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� 	� 2ð4� 3	Þ�2Þp 
�

�
: (3.33)

Hence we find

� ¼ 1

2�
ln

�
t�
t�0

�
þ �0; (3.34)

a� ¼ a�0
�
t�
t�0

�
1=2

: (3.35)

It is important to notice that a� � t1=2� follows also for dust
dominance. In fact this behavior is true for any equation of
state. For the remedy of this unfavorable result, the reader
is advised to see Sec. 4.4.3 of [4] or Sec. 3.4 of [6].
To fix �0, we use the original Friedmann equation

H2� ¼ 1

6
_�2 þ V�

3

�
1þ ��

V�

�
; (3.36)

where ��=V� is a constant given by Eq. (3.21). We then find
FIG. 1. The fixed points FP1� and FP2� exist in the horizon-
tally and vertically shaded regions, respectively.
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expð�4��0Þ ¼ ð4�2 � 1Þ½2� 	� 2ð4� 3	Þ�2�
16	�4t2�0V0

:

(3.37)

Note that spacetime in this range is static in the Jordan
frame, as will be shown in (4.22).

B. Stability analysis and the attractors

Next we analyze stability of the fixed points FP1� and
FP2� in the self-autonomous system (3.15) and (3.16).

1. Perturbation analysis

The simplest way is to apply a perturbation analysis. We
perturb the variable ðx; yÞ around the fixed point ðxF; yFÞ as

x
y

� �
¼ xF þ �x

yF þ �y

� �
: (3.38)

Inserting Eq. (3.38) into the basic equations (3.15) and
(3.16), we find a set of the linear differential equations:

�x

�y

 ! 0
¼ Axx Axy

Ayx Ayy

� �
�x
�y

� �
; (3.39)

where the components of the matrix A is given by

Axx ¼ 3�ð	xF � yFÞ;
Axy ¼ 3�ð�xF þ 2�2ð4� 3	ÞyFÞ;

Ayx ¼ � 2� 	

2�
xF þ 2�yF;

Ayy ¼ �ð2xF � 3	yFÞ:

(3.40)

Assuming �x, �y / e!
� , we find the equation for the
eigenvalue ! as

!2 � TrA!þ detA ¼ 0; (3.41)

where

TrA ¼ 1

4�2 � 1
½ðxF � 4�2yFÞ þ f3	ð4�2 � 1Þ

� ð3� 8�2ÞgðxF � yFÞ�; (3.42)

detA ¼ 3

2ð4�2 � 1Þ ½ð2� 	� 2ð4� 3	Þ�2ÞðxF � 4�2yFÞ2

� 2	�2ð3� 8�2ÞðxF � yFÞ2�: (3.43)

In this expression, the first terms in (3.42) and (3.43) vanish
for FP1�, while the second terms disappear for FP2�. The
fixed point is stable in the following two cases:

(i) Equation (3.41) has two negative real roots.
(ii) Equation (3.41) has two complex conjugate roots

with a negative real part.
The condition is

Tr A < 0 and detA > 0: (3.44)

For FP1�, we find

ðTrAÞFP1� ¼ ½4ð3	þ 2Þ�2 � 3ð	þ 1Þ�yð�Þ
1 ; (3.45)

ðdetAÞFP1� ¼ 3	�2ð3� 8�2Þð4�2 � 1Þðyð�Þ
1 Þ2: (3.46)

For the expanding universe (FP1þ), which we are inter-
ested in, the above condition (3.44) gives

�2 < 1
4: (3.47)

For FP2�, we have

ðTrAÞFP2� ¼ �yð�Þ
2 ; (3.48)

ðdetAÞFP2� ¼ �3	�2ð3� 8�2Þð4�2 � 1Þðyð�Þ
2 Þ2: (3.49)

The stability condition for the expanding universe (the
fixed point FP2þ) gives

�2 > 1
4: (3.50)

In this way we find that FP1þ and FP2þ are the attractors
for �2 < 1=4 and for �2 > 1=4 (also with �2 < ð2�
	Þ=½2ð4� 3	Þ� for the existence of FP2þ), respectively.
For �2 ¼ 1=4, two types of fixed points merge with each
other, sharing the same behaviors, but like a saddle point
rather than an attractor. Figure 2 shows in which portion of
the �2-	 plane we have the attractor fixed points.

2. Phase-space analysis

We also study stability by use of a phase-space analysis
of the dynamical system with (3.15) and (3.16) [19–22].
We may discuss global stability rather than a local one in
the perturbative approach, as we will show shortly. There is
a limitation, however, because dependence on the values of
	, �2 is not as simple as shown in (3.45) and in the
subsequent equations. We must develop the computation
for each of these parameters separately, though without any
difficulty in principle. For this reason, we show the follow-
ing examples of radiation dominance (	 ¼ 4=3) illustrat-

FIG. 2. The attractor fixed points (FP1þ and FP2þ) in the same
parameter space of �2 and 	, also the same shading pattern as in
Fig. 1.
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ing generic features shared commonly by this type of
analyses with any values of the parameters.

For the sake of convenience we start with reproducing
(3.15) and (3.16) for 	 ¼ 4=3;

x0 ¼ �ð2x2 � 3xyþ 1Þ; (3.51)

y0 ¼ 1

2�

�
� 1

3
x2 þ 4�2xy� 4�2y2 þ 1

3

�
; (3.52)

which determine how the point ðx; yÞ representing the
solution moves with time. The fixed points are (3.17) for

FP1�, while ðxð�Þ
2 ; yð�Þ

2 Þ ¼ �ð1; 1Þ from (3.18) for FP2�.
We also focus upon FP2�.

A basis for the required analysis is prepared first by
drawing the ‘‘null curves’’ for x0 ¼ 0 and y0 ¼ 0. By
choosing the vanishing left-hand sides of (3.51) and
(3.52), we find that the former curves, solid (blue), are in
fact hyperboloids, whereas the latter ones, dashed (red)
curves are either hyperbolic or elliptic depending on �2 >
1=3 or �2 < 1=3, respectively, as shown in Figs. 3 and 4,
used separately for the analyses of the two choices for �2.
The crossings represent fixed points. Note that there are
four fixed points (FP1�, FP2�) for �2 < 1=3, while two
fixed points (FP2�) for �2 > 1=3.

In Fig. 3(a), we draw two sets of hyperboloids for �2 >
1=3. It is rather easy to determine which side of each curve
implies positive or negative x0 and y0, as shown by the
symbols like þx and þy, for x

0 > 0 and y0 > 0, respec-

tively. We then determine in what direction a point, or
better called a trajectory, ‘‘flows’’ with time in a given

region in x-y space bounded by the null curves, as illus-
trated symbolically by arrows (green). In Fig. 3(b), we
show a typical trajectory represented by a dotted curve
which enters the diagram first near the lower-left corner,
making a big loop outside the frame of the diagram, then
reentering again, and finally spirals into the crossing at
FP2þ (x ¼ y ¼ 1), which corresponds to (3.34) and (3.35).
This is the way we now establish our previous numerical
results obtained on the basis of the heuristic approach [4,6]
to be an authentic attractor in a strict sense.
We notice, on the other hand, that a trajectory, or the

solution, may not always converge to a fixed point, straying
instead toward infinity, as will be illustrated in
Appendix B. Obviously, however, not reaching the point
of x0 ¼ y0 ¼ 0 implies the destination not corresponding to
the steady and lasting solution, as given by (3.34) and
(3.35), for example. In other words, any solution that
survives a long time must come from the attractor.
There is another fixed point FP2� (x ¼ y ¼ �1) to

which no trajectory flows into as long as we start with a
positive �, the same sign as V0. Note that this fixed point
corresponds to the contracting universe. The flows shown
in Fig. 3(c) indicate that this is a repeller to be interpreted
as the time-reversed point against the attractor at FP2þ.
We encounter another complication, on the other hand,

if �2 < 1=3, for which we have four crossings as illustrated
in Fig. 4(a). Focusing upon the behaviors in the upper-right
quadrant, we have magnified views at each of the two, one
in (b) around x ¼ y ¼ 1, corresponding to the fixed-point
solution of FP2 given by (3.34) and (3.35) above, and
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FIG. 3 (color online). An example of �2 > 1=3 in the phase diagram of x ¼ �0 and y ¼ ��1H �. In the overall diagram (a), we chose
an example of �2 ¼ 1=2 to draw solid (blue) and dashed (red) curves for the null curves for x0 ¼ 0 and y0 ¼ 0, respectively. They
separate regions of different signs of them, denoted by þx and þy, for x

0 > 0 and y0 > 0, respectively, for example. The crossings, or

fixed points, occur between two hyperboloids, marked with a blob at FP2þðx ¼ y ¼ 1Þ as an attractor, and the one at FP2�ðx ¼ y ¼
�1Þ as a repeller (no fixed points FP1� for this parameter). In each of the smaller regions bounded by the null curves, as shown in (b)
and (c), close-up views near the attractor and the repeller, respectively, we have directions of flows of solutions, or trajectories, shown
symbolically by the arrows together with a nearby pair of signs for the increment (þ ) or decrement (� ) of the x and y components
denoted in this order. A dotted curve in (b) is a trajectory starting from the initial values ln� ¼ 0:1, ’ ¼ 0:1, _’ ¼ 0 at the initial Jordan
frame ‘‘time’’ lnt ¼ 1, where ’ ¼ ð�=2Þ�2 with � ¼ 1=4. The trajectory flows basically in accordance with the arrows, entering the
frame of diagram near the lower-left corner, traversing to go outside beyond the right edge, reentering at the top, spiraling finally into
the attractor.
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another shown in (c) now categorized into the type of FP1.
The flows in (b) do indicate that the solution in all direc-
tions tends finally to the crossing, a real attractor, while
according to those illustrated in (c) there are some narrow
strips sandwiched between two null curves in which the
trajectory tends away from the crossing. This reminds us of
a saddle-point potential rather than the purely attractive or
repulsive potential in mechanics, hence implying an un-
stable solution which may not survive a long time, leading
ultimately to the same drift toward infinity, as was re-
marked toward the end of the discussion of the preceding
example in Fig. 3. For 1=4< �2 < 1=3, therefore, we may
fail to reach the attractor solution with some probability
depending on the initial values or on what portion in the x-y

plane we started off. We may constrain ourselves to �2 >
1=3, though another a posteriori attitude might be sug-
gested: Given what we are at present, right initial values, or
right initial locations in phase space, must have been
chosen to reach the attractor solution (3.34) and (3.35).
We apply the same analysis for any values of 	, finding

similar results. We summarize the power index of scale
factor of the attractor solutions (FP1þ for � < 1=2, and
FP2þ for � > 1=2) in Fig. 5. We find that the power-law
inflation appears when �2 < 1=8. The power exponent of
the scale factor in the Einstein frame is always 1=2 for
FP2þ, which does not depend on the equation of state of
the matter fluid, as derived in (3.35).

IV. COSMOLOGY IN THE JORDAN FRAME

We repeat the similar analysis for the same system as in
Sec. III now in the Jordan frame.
From (2.1) together with the FRW metric

ds2 ¼ �dt2 þ a2ds23; (4.1)

we derive

3��2

�
H2 þ k

a2

�
þ 6�H� _� ¼ �

2
_�2 þ V0 þ �; (4.2)

�ð� €�þ _�2 þ 3H� _�Þ ¼ �2ð4V0 þ �� 3PÞ; (4.3)

_�þ 3HðPþ �Þ ¼ 0; (4.4)

where

H ¼ _a

a
; (4.5)

while P ¼ P� expð4��Þ and � ¼ �� expð4��Þ are the

x

-2 0 2
-2

-1

0

1

2

x

0.98 0.99 1 1.01 1.02
0.98

0.99

1

1.01

1.02

x

1.3 1.31 1.32 1.33
1.11

1.12

1.13

1.14

1.15

FIG. 4 (color online). An example of 1=4< �2 < 1=3. In the overall diagram (a), we chose an example of �2 ¼ 0:2916, � ¼ 0:3890.
Unlike in Fig. 3, the dashed (red) null curve is an ellipsoid, thus producing four crossings. In addition to the attractor at FP2þðx ¼
y ¼ 1Þ, denoted by a blob (green), we have another at FP1þ (x ¼ 1:322, y ¼ 1:134) marked by a cross (green), both accompanied with
the time-reversal counterparts in the left-lower quadrant (FP1� and FP2�), which we ignore for brevity. In a close-up view (b) around
FP2þ, we show an example of a trajectory with the same initial values as considered in Fig. 3(b), certainly spiraling into the fixed point
in accordance with the arrows of flows, while we find no trajectories in (c) around another crossing of the type FP1þ. The behaviors of
the arrows in the right-upper and left-lower strips remind us of a saddle-point potential resulting in unstable motion.

FIG. 5. The power index p� of the scale factor in the Einstein
frame for the attractor solutions. The power-law inflation appears
when �2 < 1=8. The power exponent is always 1=2 for FP2þ,
independent of 	.
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pressure and the energy density, respectively, in the Jordan
frame. Note that the quantities in the Jordan frame are all
denoted unmarked in contrast to those marked with the
subscript � in the Einstein frame. Accordingly, the dots in
(4.2), (4.3), and (4.4) imply differentiation with respect to t
instead of t�.

Since ds2 ¼ ��2ds2� with �2 ¼ ��2 ¼ expð2��Þ, we
have the relations between the variables in Jordan frame
and those in the Einstein frame as

dt ¼ ��1dt�; (4.6)

a ¼ ��1a�: (4.7)

Note that we do not change the coordinate system when we
perform a conformal transformation. However, since we
use a cosmic time in each frame, we have to change the
time coordinate between t� and t according to (4.6). The
Hubble expansion parameters H and H� are defined by
each cosmic time as

H ¼ 1

a

da

dt
; H� ¼ 1

a�
da�
dt�

: (4.8)

Hence we have the relation

H� ¼ ��1

�
Hþ d ln�

dt

�
: (4.9)

Introducing the new time coordinate 
 and new scalar
field �, which are defined by

d
 ¼ 2��1=2V1=2
0 ��1dt; (4.10)

� ¼ ln�; (4.11)

respectively, we rewrite Eqs. (4.2), (4.3), and (4.4) as

6H 2 þ 3k�e2�

2V0a
2
¼ 1

�2
ð�0Þ2 þ 1

2

�
1þ �

V0

�
; (4.12)

�00 � 2ð�0Þ2 þ 3H�0 ¼ �2
�
1þ ð4� 3	Þ�

4V0

�
; (4.13)

�0 þ 3	ðH ��0Þ� ¼ 0; (4.14)

where

H � a0

a
þ�0; (4.15)

and the prime is the derivative with respect to 
. We also
assume the equation of state, P ¼ ð	� 1Þ�.

Now, we consider only the spatially flat universe, i.e.,
k ¼ 0 (See Appendix A for k � 0). Taking the derivative
of Eq. (4.12) and using Eqs. (4.12), (4.13), and (4.14), we
find

H 0 ¼ 	� 2

4�2
ð�0Þ2 þ 2H�0 � 3	

2
H 2 þ 	

8
; (4.16)

�00 ¼ 3	

2
ð�0Þ2 � 3H�0 þ 3ð4� 3	Þ�2H 2 þ 3	

4
�2:

(4.17)

This is again a self-autonomous system with two variables
x and y:

x0 ¼ 3�

4
½2	x2 � 4xyþ 4�2ð4� 3	Þy2 þ 	�; (4.18)

y0 ¼ 1

8�
½�2ð2� 	Þx2 þ 16�2xy� 12	�2y2 þ 	�;

(4.19)

where x ¼ ��1�0 and y ¼ ��1H . These equations turn
out to be precisely the same as Eqs. (3.15) and (3.16),
respectively, implying the same dynamical system, sharing
the same fixed points: FP1� (3.17) and FP2� (3.18).
The energy density is given by

�

V0
¼ 12H 2 � 2

�2
ð�0Þ2 � 1 ¼ 12�2y2 � 2x2 � 1;

(4.20)

precisely the same as (3.19) for the Einstein frame.
We only show the explicit solutions of the fixed points,

because the dynamical properties such as an attractor is the
same as that in the Einstein frame. For FP1�, we have

a ¼ a0ð
� 
0Þð1=4�2Þ�1; � ¼ � 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 8�2

p ð
� 
0Þ;

� ¼ 0: (4.21)

This gives a power-law inflation for �2 < 1=8.
For FP2�, we have

a ¼ a0; (4.22)

� ¼ �
ffiffiffiffi
	

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� 	� 2ð4� 3	Þ�2Þp ð
� 
0Þ; (4.23)

� ¼ 2ð4�2 � 1Þ
2� 	� 2ð4� 3	Þ�2 V0; (4.24)

where a0 and 
0 are integration constants. The spacetime is
a static Minkowski space, in contrast with the expansion in
the Einstein frame as shown by (3.35).
The vacuum solution in radiation dominance in [9] may

be interpreted as the limit �2 ! 1=4 in (4.22), (4.23), and
(4.24). The constant a was also derived in [23].

V. COSMOLOGY WITH A POWER-LAW
POTENTIAL

The analysis in the preceding section can be readily
extended to include the power-law potential

Vð�Þ ¼ �
�

 (5.1)
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in the Jordan frame. An example is provided by extending
the action (2.5) in string theory to

S ¼ 1

2

Z
dDx

ffiffiffiffiffiffiffi�g
p

e�2�½RðgÞ � 2�þ 4ðr�Þ2�; (5.2)

in which we have added the term of �, to be corresponded
to (5.1) by choosing 
 ¼ 2 and �2 ¼ �=4.

The action equivalent to (5.1) but expressed in the
Einstein frame is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g�

p �
1

2
R�ðg�Þ � 1

2
ðr��Þ2 � V�ð�Þ

�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g�

p
Lð�; c �; g�Þ; (5.3)

where

V� ¼ exp½��ð4� 
Þ��V0; (5.4)

with V0 ¼ �
=j�j
=2. Since this is of the same form as
Eq. (2.9), we repeat the same analysis as before. One of the
points to be kept in mind is that the conformal transforma-
tion is always the same as (2.6) with (2.7). Hence we have
the same energy-momentum conservation law (3.4), as
well. Notice also V� ! const hence an ordinary type of
inflation in the Einstein frame, as 
 ! 4.

The basic equations for cosmology are then

H� þ k

a2�
¼ 1

3
ð _�2 þ V� þ ��Þ; (5.5)

€�þ 3H� _�þ @V�
@�

¼ �ð�� � 3P�Þ; (5.6)

_� � þ 3H�ðP� þ ��Þ ¼ �� _�ð�� � 3P�Þ: (5.7)

Introducing a new dimension-free time coordinate as

d
� ¼ 2
ffiffiffiffiffiffi
V�

p
dt�; (5.8)

also assuming the equation of state and focusing on k ¼ 0
as before, we obtain formally the same equations as (3.9),
(3.10), and (3.11), but replace (3.13) by

ð��=V�Þ0 ¼ �½3	H � � �ð3	� 
Þ�0�ð��=V�Þ: (5.9)

Computing in the same way as before, we come to
replacing (3.15) and (3.16) by

x0 ¼ �

4
½2ð3	� 
Þx2 þ 12�2ð4� 3	Þy2

� 12xyþ 3	� 
�; (5.10)

y0 ¼ 1

8�
½�2ð2� 	Þx2 � 12	�2y2 þ 4�2ð4� 
Þxyþ 	�;

(5.11)

respectively, where x ¼ �0 and y ¼ ��1H � as before.

We find four fixed points as the previous case:

FP 1�: ðxF; yFÞ ¼ ðxð�Þ
1 ; yð�Þ

1 Þ

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð6� �2ð4� 
Þ2Þp �

�ð4� 
Þ; 1
�

�
;

(5.12)

FP2�: ðxF;yFÞ¼ ðxð�Þ
2 ;yð�Þ

2 Þ
�� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6½3	ð2�	Þ�2ð4�3	Þð3	�
Þ�2�p
�ð3	;3	�
Þ: (5.13)

The fixed points FP1� exist if

4

�
1�

ffiffiffi
6

p
4�

�
<
< 4

�
1þ

ffiffiffi
6

p
4�

�
: (5.14)

For fixed points FP2�, the constraint for existence is a little
more complicated, as we find


> 3	

�
1� 2� 	

2ð4� 3	Þ
1

�2

�
for 	 <

4

3
; (5.15)

any values of � and 
 for 	 ¼ 4

3
; (5.16)


< 3	

�
1þ 2� 	

2ð3	� 4Þ
1

�2

�
for 	 >

4

3
: (5.17)

Next we analyze the solutions of these fixed points. In
what follows, we consider only the expanding universe
(yF > 0), i.e. FP1þ, while FP2þ for 
< 3	 and FP2�
for 
> 3	.
For FP1þ, we find

� ¼ �ð4� 
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð6� �2ð4� 
Þ2Þp 
� þ �0; (5.18)

a� ¼ a�0 exp
�


�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð6� �2ð4� 
Þ2Þp �

: (5.19)

The cosmic time t� is given by

t� ¼ t�0 exp
�

�2ð4� 
Þ2
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð6� �2ð4� 
Þ2Þp �

: (5.20)

Hence the solution of FP1þ is described by

� ¼ 2

�ð4� 
Þ ln
�
t�
t�0

�
þ �0; (5.21)

a� ¼ a�0
�
t�
t�0

�
p�
; (5.22)

where
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p� ¼ 2

�2ð4� 
Þ2 : (5.23)

In this case, matter does not contribute to the expansion of
the universe, i.e. at the fixed point, �� ¼ 0. The cosmic
expansion becomes inflationary if p� > 1, i.e.,

4

�
1�

ffiffiffi
2

p
4�

�
<
< 4

�
1þ

ffiffiffi
2

p
4�

�
: (5.24)

The singularity of (5.23) at 
 ! 4 is obviously related to
the limit V� ! const as noticed in (5.4).

For FP2�, we have

� ¼ � 3	
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6½3	ð2� 	Þ � 2ð4� 3	Þð3	� 
Þ�2�p þ �0;

(5.25)

a� ¼ a�0 exp
� �ð3	� 
Þ�
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6½3	ð2� 	Þ � 2ð4� 3	Þð3	� 
Þ�2�p �
:

(5.26)

The cosmic time t� is given by

t� ¼ t�0 exp
� �3	ð4� � 
Þ
�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6½3	ð2� 	Þ � 2ð4� 3	Þð3	� 
Þ�2�p �

:

(5.27)

Hence the solution of FP2þ is described by

� ¼ 2

�ð4� 
Þ ln
�
t�
t�0

�
þ �0; (5.28)

a� ¼ a�0
�
t�
t�0

�
p�
; (5.29)

where

p� ¼ 2ð3	� 
Þ
3	ð4� 
Þ ¼

2

3	
þ�p�; (5.30)

where

�p� ¼ 2ð3	� 4Þ
3	ð4� 
Þ ; (5.31)

which describes the deviation from the conventional power
exponent with the adiabatic index 	. It is due to the
interaction between the matter fluid and the scalar field
�. It is precisely this interaction that keeps the ratio ��=V�
constant at FP2�. The value is obtained from Eq. (3.19);

1

6

�
��
V�

�
FP2

¼2�2ðyð�Þ
2 Þ2�ðxð�Þ

2 Þ2
3

�1

6

¼ 2½ð4�
Þ2þð3	�4Þð4�
Þ�3	=�2�
2ð3	�4Þ2þ2ð3	�4Þð4�
Þþ3	ð2�	Þ=�2 ;

(5.32)

which is consistent with (5.9) for the energy density.

In order for this energy density to be positive, we have to
impose the following condition:


< 1
2½ð3	þ 4Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3	� 4Þ2 þ 12	=�2

q
� for FP2þ;


 > 1
2½ð3	þ 4Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3	� 4Þ2 þ 12	=�2

q
� for FP2�:

We also find a simple result p� ¼ 1=2 follows either by

 ¼ 0 for any 	 or by 	 ¼ 4=3 for any 
. This result may
be described by

p� ¼ 1
2 þ �p0�; (5.33)

where

�p0� ¼ ð3	� 4Þ

6	ð4� 
Þ ¼




4
�p�: (5.34)

We are now looking into more details of the power-law
inflation. We find a power-law inflation by � if the power
exponent of the potential V� is sufficiently small, i.e.

j�ð4� 
Þj< ffiffiffi
2

p
, and if there is no coupling between the

matter fluid and the scalar field � in the Einstein frame.
This type of inflation is realized in the fixed point FP1þ
even when we include the coupling with the matter fluid,
which has nothing to do with inflation at FP1þ. However,
the power-law inflation may occur also for FP2�, in which
the coupling to the matter fluid is non-negligible. From the
condition p� > 1 for the power exponent of the scale factor
in the Einstein frame, we find the following conditions:


<
6	

3	� 2
or 
=2> 2 for 	 <

2

3
; (5.35)


> 4 for 	 ¼ 2

3
; (5.36)

4<
<
6	

3	� 2
for

2

3
< 	<

4

3
; (5.37)

no case for 	 ¼ 4

3
; (5.38)

6	

3	� 2
<
< 4 for 	 >

4

3
: (5.39)

This is a new type of inflation. The potential itself is too
steep to cause inflation, but the matter fluid assists to cause
a faster expansion because of its coupling to the scalar
field. Note that including the matter fluid with 	 < 2=3
means that we can have inflation just by this fluid. But the
coupling with the scalar field does not assist such a type of
inflation. Rather it will restrict the possibility of inflation-
ary expansion.
Next we have to analyze the stability of the fixed points.

We can analyze it by perturbations or by use of the phase
diagram, as shown in the previous section. Here we give
the perturbation analysis. Inserting the perturbations
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around the fixed points x ¼ xF þ �x, y ¼ yF þ �y in the
basic equations (5.10) and (5.11), we find a set of the linear
perturbation equations (3.39) with the components of the
matrix being

Axx ¼ ð3	� 
ÞxF � 3yF;

Axy ¼ �3xF þ 6�2ð4� 3	ÞyF;

Ayx ¼ � 2� 	

2�2
xF þ ð4� 
Þ

2
yF;

Ayy ¼ ð4� 
Þ
2

xF � 3	yF:

(5.40)

Setting �x, �y / e!
� , we find the eigenequation for ! as
(3.41) with

Tr A ¼ ð3	þ 2� 3
=2ÞxF � 3ð	þ 1ÞyF; (5.41)

detA ¼ 1

2�2
½ð3	� 
Þð4� 
Þ�2 � 3ð2� 
Þ�x2F

þ 3ð
	� 10	þ 8ÞxFyF
þ 3½3	� �2ð4� 3	Þð4� 
Þ�y2F: (5.42)

Using these equations, we analyze the stability of the
fixed points as before. The result is shown in Fig. 6. The
regions denoted by FP1 and FP1-I give the attractor solu-
tion of FP1þ, while those by FP2 and FP2-I correspond to
the attractors of FP2�. For FP1þ, the inflationary solutions
exist in the case of a flat potential (�j4� 
j< 1=2), but
the new type of inflationary solution also appears for FP2�
if 	 � 4=3. Each region for inflation is also shown by FP1-
I or FP2-I. This new type of inflation is assisted by a
coupling between the scalar field � and the matter fluid.

In the Jordan frame, we show only the behavior of the
fixed points FP1� and FP2�. After a conformal transfor-
mation, we find them

a / tp; (5.43)

� / tq; (5.44)

where

ðp; qÞ ¼

8>>><
>>>:

�
2ð1�ð4�
Þ�2Þ
ð2�
Þð4�
Þ�2 ;

2
2�


�
for FP1��

� 2

2�
 ;

2
2�


�
for FP2�:

(5.45)

The scale factor in the Jordan frame for FP2� is not
constant except for 
 ¼ 0. It is expanding for 
< 0 or

> 2, while it is contracting for 0<
< 2. For 
 ¼ 2,
we find a / exp½� 2

3	 t�.

VI. CONCLUDING REMARKS

We have presented a formulation in which we trace the
temporal development of cosmological solutions of the
scalar-tensor theory in two-dimensional phase space.
Thanks to assuming a simple equation of state, in
Secs. III, IV, and V, we have obtained two different sets
of fixed points, FP1� and FP2�. Conditions of obtaining
attractors are studied in detail.
We have established the attractor nature of the fixed

points. At FP2�, the scale factor behaves like a constant

and t1=2� in the Jordan and the Einstein frames, respectively,
for �2 > 1=4 or � < 1=2 (!<�1=2) with � ¼ �1, when
we have a simple cosmological constant in the Jordan
frame. This solution is also accompanied with the propor-
tionality between �� and V�, called a scaling behavior,
which is going to be replaced by the ‘‘interlacing’’ behav-
ior, as exemplified in Fig. 5.8. of [4], by further extending
the model.
An extension to the power-law potential in Sec. V has

shown that the coupling between the scalar field and the
matter provides a new type of inflation with 	 off the

(a) (dust) (b) (radiation) (c) (stiff matter)

FIG. 6 (color online). For various matter fluids ((a) dust [	 ¼ 1], (b) radiation [	 ¼ 4=3], (c) stiff matter [	 ¼ 2]), we show the
ranges in the �-
 plane of attractor fixed points (FP1þ, FP2�). The shaded regions FP1 and FP1-I are those for FP1þ, while FP2 and
FP2-I are those for FP2�, respectively. The dark shaded regions FP1-I and FP2-I are the ranges for power-law inflation. There is no
attractor solution in the unshaded region.
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conventional choice 4=3, even if the potential of the scalar
field is too steep to cause inflationary expansion by itself.

We have also learned that, even confining ourselves to
the fixed-point solutions, reaching an attractor can be
somewhat complicated if we have another fixed point, as
we faced in the example of Fig. 4, though a simple recipe is
shown to be applied by adopting either of the two attitudes
suggested; limiting the range of �2 or being content with an
a posteriori consideration that initial values of x and y had
happened to be in favor of reaching the attractor. The first
appears to be the case in our realistic choice (� ¼ 1:5823)
to fit the observed accelerating universe shown in Fig. 5.8
of [4], for example. The second of the above suggestions
might also apply to drifting to infinities, as will be dem-
onstrated in Appendix B.

If there is a spatial curvature, the result will be changed.
However, we can show that the fixed point is still an
attractor if the universe expands very fast, i.e., if it is an
inflationary universe, as shown in Appendix A.

The most intriguing result in the present scalar-tensor
theory is, however, that the static universe in the Jordan
frame is an attractor, an unavoidable fate in the presence of
the cosmological constant. There is no smooth limit as
V0 ! 0. As we reiterate, the Jordan frame features truly
constant masses of microscopic fields, according to the
Brans-Dicke model, originally intended to qualify this
frame to be physical, allowing a nonstatic universe in the
absence of the cosmological constant. Its presence alters
the entire situation, forcing us to accept ma ¼ const. This
entails eventually that the universe in the Einstein frame
expands in the same rate as the (time-dependent) micro-
scopic length standard. This crisis will be evaded only by
leaving the Brans-Dicke model, as was elaborated in [4,6]
together with the ensuing consequences. The view that this
crisis hinges upon the attractor nature of the solutions is
now reinforced even more strongly by our study in this
article.

We also emphasize that the extension to the power-law
potential leaves the above crisis unsolved. The exponent
1=2 in radiation dominance in the Einstein frame is a
unique consequence of 	 ¼ 4=3 independent of the way
V0 is modified by the scalar field. The argument on the
power-law inflation also remains unaffected, as we point
out, by the structure of the mass term.
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APPENDIX A: THE EFFECT OF CURVATURE
TERM (k � 0)

In this appendix, we study the curvature effect. It may be
convenient to analyze the equations rewritten by new
variables because the fixed points are constant. We discuss
the cases with a cosmological constant and with a power-
law potential separately.

1. The case with a cosmological constant

We show the curvature effects both in the Einstein and in
the Jordan frames in this order.

a. Curvature term in the Einstein frame

The curvature term is proportional to e4��=a2�. We evalu-
ate the time evolution of this term by

d lnðe4��=a2�Þ
d
�

¼ 2ð2x� yÞ: (A1)

We find the behavior near the fixed point ðxF; yFÞ as
d lnðe4��=a2�Þ

d
�
¼ 2ð2xF � yFÞ

¼

8>><
>>:

8�2�1

2�
ffiffiffiffiffiffiffiffiffiffi
3�8�2

p for FP1þffiffiffi
	

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�	�2ð4�3	Þ�2Þ

p for FP2þ:
(A2)

Hence we find that the curvature term decreases in time for
the inflationary solution at FP1þ (�2 < 1=8). It can be
ignored. However, it will grow in time if the universe
expands without acceleration. It will become important
as the same as the usual case.

b. Curvature term in the Jordan frame

The time evolution of the curvature term in the Jordan
frame is given by

d lnð�2=a2Þ
d


¼ 2ð�0 ��H Þ ¼ 2ð2�0 �H Þ

¼ 2ð2x� yÞ: (A3)

We find the behavior near the fixed point ðxF; yFÞ as
d lnð�2=a2Þ

d

¼ 2ð2xF � yFÞ; (A4)

which is exactly the same as Eq. (A2). Hence the curvature
term near the fixed point FP1þ is not important for the
inflationary solution (�2 < 1=8).

2. The case with a power-law potential

In this case, we can repeat the same analysis. The

curvature term is proportional to eð4�
Þ��=a2�. So the time
evolution near the fixed point is given by
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dlnðeð4�
Þ��=a2�Þ
d
�

¼�½2ð2xF�yFÞ�
xF�

¼

8>><
>>:

2�2ð2�
=2Þ2�1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð6��2ð
�4�Þ2

p for FP1þ
�½6	�
ð3	�2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6½3	ð2�	Þ�2ð4�3	Þð3	�
Þ�2�
p for FP2þ:

(A5)

The curvature term is not important for the inflationary
solution near the fixed point FP1þ (�2ð4� 
Þ2 < 2) and
near the fixed point FP2þ (
> 6	=ð3	� 2Þ with 	 >
4=3) or FP2� (
< 6	=ð3	� 2Þ with 2=3<	< 4=3).

APPENDIX B: ADDITIONAL SOLUTIONS FOR
RADIATION DOMINANCE IN THE JORDAN

FRAME

We often relied on the numerical approach to solve the
cosmological equations in the Jordan frame because the
solution is characterized by the simplest aspect of the static
universe. We encounter, however, another complicated
aspect to be discussed in what follows.

We started conveniently from

6’H2 ¼ �1
2
_�2 þ V0 þ �� 6H _’; (B1)

€’þ 3H _’ ¼ 4�2V0; (B2)

_�þ 4H� ¼ 0; (B3)

where ’ ¼ ð�=2Þ�2 in terms of which (4.3) has been put
into a simplified form in (B2), as in [4]. We also write V0 ¼
� ¼ 1.

Since H occurs always without derivative, we may
eliminate it by using (B3), for example,

H ¼ � 1

4

_�

�
: (B4)

Equations (B1) and (B2) are then put into

3

�
_�

�

�
2
’� 12

_�

�
_’þ 2��1 _’2

’
¼ 8ðV0 þ �Þ; (B5)

€’� 3

4

_�

�
_’ ¼ 4�2V0; (B6)

which are to be solved by giving three initial values of �,
’, _’.
We notice, however, that we solve (B5) and (B6) first

with respect to _�=�. This involves solving an algebraically
quadratic equation for _�=�, thus producing two differential
equations, hence resulting in two separate solutions.
An example of numerical solutions is shown in Figs. 7(a)
and 7(b). In Fig. 7(a), developed basically from Fig. 4.1 of

[4], we do find asymptotic behaviors H ! 0, _� !ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V0=ð6�� 1Þp

, � ! �3V0ð2�� 1Þ=ð6�� 1Þ corre-
sponding to an attractor solution. Figure 7(b) illustrates,
on the other hand, the solution of another equation, but
sharing the same initial values of �, ’, and _’ as discussed
in (a). This one represents, however, a shrinking universe
taking place in a short time. This type of the second
solution occurs nearly always. It even appears as if we
are going to lose an opportunity to reach the fixed-point
attractor.
Fortunately, as it turns out, however, the phase-space

description is so generous that the resulting two solutions
are accommodated as those due to two different initial
locations of y, as demonstrated in Fig. 7(c). Again for a
typical solution for � ¼ 1=4, we find two trajectories for
the solutions of (B5) and (B6). Both start at x ¼ 0 corre-
sponding to our initial value ’0 ¼ 0, but with y separated
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FIG. 7 (color online). Two solutions for the initial values at lnt ¼ 0; � ¼ 0:1, ’ ¼ 0:1, _’ ¼ 0 together with V0 ¼ 1. The asymptotic
values mentioned above, hence (3.34) and (3.35) are reached in (a), while these quantities in (b) diverge quickly at lnt ! 0:248, in this
example. Behaviors of the solutions shown in (a) and (b) are represented by two different trajectories in phase space of x, y of (c),
starting at two different points A and B. The upper curve corresponding to (a) spirals finally down into the attractor denoted by a blob
(green) at x ¼ y ¼ 1, while the lower curve for (b) runs steadily toward the right-lower infinity, as ‘‘guided’’ by the arrow.

ATTRACTOR UNIVERSE IN THE SCALAR-TENSOR . . . PHYSICAL REVIEW D 79, 084026 (2009)

084026-13



from y ¼ 0 nearly the same distance in the opposite direc-
tions. The upper curve starts at the point A. After a looplike
trip, it finally spirals down into the fixed point at x ¼ y ¼
1, as usual. Another curve starting at B drifts steadily
toward x ! 1, y ! �1. Both trajectories started imme-
diately ‘‘outside’’ the y0 ¼ 0 boundaries.

As we find from y ¼ ��1H � preceding (3.15) and
(3.16), the solutions with y > 0 and y < 0 correspond to
the expanding and contracting universes, respectively, in
the Einstein frame. From this point of view, what we are in
the expanding universe at quite a late epoch must be a
consequence of the initial value selected to be y > 0, as
represented by the upper trajectory in Fig. 7(c). In this
sense the solution like Fig. 7(b) is excluded leaving the
attractor solution alone.

APPENDIX C: DUST DOMINANCE IN THE
SCALE-INVARIANT MODEL

In Secs. III and IV we discussed cosmological solutions
mainly in the radiation-dominated universe finding a crisis
arising from too much time dependence of particle masses
evaded finally by departing from the Brans-Dicke model,
even at the risk of WEP violation. The same type of
analysis of dust dominance suffers more seriously because

it entails a� � t1=2� , as shown by (3.35) even for 	 ¼ 1. As
was discussed in [4], the remedy comes simultaneously
from the scale-invariant model intended to overcome the
crisis for radiation dominance. We sketch below how this
model provides attractor solutions also for the dust-
dominated universe. See Chapter 4.4.3 of [4] and
Section 3.4 of [6] for more details.

The field equations for � and � turn out to be given by
(3.6) and (3.7) with the right-hand sides removed to the
classical approximation.

As a remarkable difference from (3.35) we find

a� ¼ a�0ðt�=t�0Þ2=3; (C1)

in agreement with the conventional law of expansion.
Equations (3.51) and (3.52) are replaced by

x0 ¼ �ð2x2 � 3xyþ 1Þ; (C2)

y0 ¼ 1

2�

�
� 1

2
x2 þ 1

4
þ �2ð4x� 3yÞy

�
; (C3)

respectively. The solutions with (3.34) and (C1), and

expð�4��0Þ ¼ 1
16�

�2; (C4)

in place of (3.37) are obtained for x ¼ 1=
ffiffiffi
2

p
, y ¼ 2

ffiffiffi
2

p
=3,

corresponding to an attractor yielding x0 ¼ y0 ¼ 0.
A similar distinction between the elliptic and the hyper-

bolic curves as in radiation dominance occurs also for �2 <
3=8 and �2 > 3=8, respectively. The same recipe should
apply as mentioned toward the end of Sec. VI.

We add that the scale invariance coming from the ab-
sence of dimensional coupling constants has an advantage
that � serves as a massless Nambu-Goldstone boson which
will acquire a small mass after the invariance is finally
broken explicitly through loops, as discussed in Sec. 6.3 of
[4].

APPENDIX D: ANOTHER APPROACH TO THE
POWER-LAW POTENTIAL

It seems also useful to apply (B1)–(B3) to the power-law
potential to offer a simplified alternative to derive the same
common result p� ¼ 1=2 for radiation dominance as stated
immediately after in (5.30).
We multiply V0 in (B1) and (B3) by �
. We search for

the solution of the type

aðtÞ � tp (D1)

and

�ðtÞ � t�: (D2)

By substituting them into (B2) modified as above and
comparing the exponents of t we obtain

� ¼ 2

2� 

; (D3)

implying that
 ¼ 0 corresponds to� ¼ 1. In the modified
(B1), on the other hand, we find all the terms other than �
to behave like t2��2, while (B3) entails �� t�4p. For a
consistent approach we expect 2�� 2 ¼ �4p, or

p ¼ 1� �

2
¼ � 


2ð2� 
Þ : (D4)

This point was not properly recognized when it was erro-
neously stated in Appendix B of [6] that only 
 ¼ 0 is
consistent with the physically acceptable condition p� ¼
1=2 (the coefficients 
 and � in Appendix B of [6] are
replaced by 
=2 and �=2, respectively, according to the
present notation).
Now from (4.6) and ��� combined with (D2), we

obtain

dt� ¼ �dt� t�dt; (D5)

which is integrated to give

t� � t�þ1; (D6)

where we have ignored inessential coefficients for
simplicity.
In the same context we also use (4.7) to derive

a� ¼ �a� t�þp: (D7)

Combining this with (D4) and (D6) we identify the right-
hand side with tp�� where
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p� ¼ 1

�þ 1
ð�þ pÞ ¼ 1

2
; (D8)

which turns out to be the same as the result for the purely
constant V0 ¼ �, in agreement with (5.30) with 
 ¼ 0 for
any 	. This justifies the present solution to be an attractor.

We also notice that the universe is no longer static in the
Jordan frame, as shown in (D4). We may no longer rely on
the simplest argument am ¼ a�m� ¼ const to leave the
BDmodel. According to Appendix D of [6], particularly its
(3.10) and a more general procedure developed there,
however, the mass m� of the matter fields in the Einstein
frame is related to m in the Jordan frame as

m� ¼ ��1m� t��m: (D9)

From (D3) and (D6) we find

t�� � t��=ð�þ1Þ
� � t�ð1=2Þ=ð1�
=4Þ

� : (D10)

The exponent�ð1=2Þ=ð1� 
=4Þ is not exactly the same as
�1=2 which would have implied that the universe looks
static if measured with respect to the microscopic length
standard, but is nevertheless far from zero as expected if
the Einstein frame is qualified to be a physical conformal
frame for any reasonable choice of 
. In this sense the
crisis for the purely constant V0 as discussed before is not
evaded by multiplying it by the scalar field. Departure from
the BDmodel seems still unavoidable. We also add that the
argument for the constant m� with the assumed scale-
invariant model remains unaltered by the multiplied scalar
field.
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