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Analogs of the double-Reissner-Nordstrom solution in magnetostatics and dilaton gravity:
Mathematical description and basic physical properties
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In this paper we consider a magnetic analog of the double-Reissner-Nordstrom solution and construct
the corresponding magnetic potential A, in the explicit form. The behavior of the resulting solution under
the Harrison transformation then naturally singles out the asymmetric black diholes—configurations
composed of two nonextreme black holes possessing unequal masses, and charges equal in magnitude but
opposite in sign—as its most general subclass for which equilibrium of the black-hole constituents can be
achieved with the aid of the external magnetic (or electric) field. We also generalize the double-Reissner-
Nordstrom solution to dilaton gravity with arbitrary dilaton coupling, yielding the four-dimensional
double-Gibbons-Maeda spacetime. The study of some physical properties of the solutions obtained leads,
in particular, to very simple formulas for the areas of the horizons and surface gravities.

DOI: 10.1103/PhysRevD.79.084024

L. INTRODUCTION

As was shown in [1-5], static axisymmetric solutions of
the Einstein-Maxwell-dilaton theory can be generated
from the known stationary solutions of the Einstein equa-
tions or directly from the static solutions of Einstein-
Maxwell theory. The solution-generating procedure per-
mitting one to do this was described in detail in [4,5], and
an interesting outcome of its use are various dihole space-
times describing a dilatonic pair of black holes endowed
with electric or magnetic dipole moments (the black-hole
constituents carry charges which are equal in magnitude
but opposite in sign'). Thus, the Davidson-Gedalin solu-
tion [2] representing a dilatonic generalization of Bonnor’s
magnetic dipole solution [6] can be interpreted, according
to a thorough analysis carried out by Emparan [3], as a pair
of magnetically charged extreme Reissner-Nordstrom
black holes (a dilatonic extreme dihole). Moreover,
Emparan demonstrated that the extremal constituents in
Bonnor’s and Davidson-Gedalin diholes can be balanced
by placing the diholes into the external magnetic field. The
nonextremal electric diholes were constructed and studied
by Emparan and Teo [5]. It has been shown recently [7]
that the Emparan-Teo solutions can be rewritten in a pa-
rametrization involving Komar masses and charges of the
constituents as arbitrary parameters; the paper [7] also
clarifies the construction of magnetic analogs of those
solutions.

All the extreme and nonextreme diholes considered in
[2,3,5], in addition to being static and axisymmetric, have
one more symmetry—they are equatorially symmetric; i.e.,
the corresponding metric functions are invariant under the
transformation z — —z [8], and this is a reflection of the

"In this sense the solution obtained by Liang and Teo [4] is not,
strictly speaking, of the dihole type since, in general, the charges
of the constituents are not equal in absolute values.
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fact that these solutions are composed of identical (up to
the sign of the charge) constituents. It would therefore be
of interest to go beyond the known families of symmetric
dihole solutions and consider a more general case of asym-
metric black diholes—the ones consisting of a pair of
black-hole constituents with unequal masses but equal
and opposite charges. In the present paper we will demon-
strate a remarkable general property of such solutions
possessing zero total magnetic/electric charge to be able
to describe equilibrium configurations of two nonextreme
Reissner-Nordstrom black holes [9,10] by placing these
into the external magnetic/electric field. We will accom-
plish this task within the framework of the magnetostatic
analog of the double-Reissner-Nordstrom solution [11,12]
by constructing the corresponding magnetic potential A,
whose behavior on the symmetry axis provides one with
the restrictions on the charges of black holes defining
equilibrium configurations in the presence of the external
field. We mention that, in the case of extremal black holes
with nonzero total charge, the inability of the additional
Bonnor-Melvin-type magnetic field [13,14] to regularize
the symmetry axis was proved by Liang and Teo [4], and
later on [5], Emparan and Teo conjectured that the same
must be true for the nonextreme black holes with unequal
charges as well. In our paper the validity of the latter
conjecture will find its justification thanks to the use of
the explicit formula for the magnetic potential A, ob-
tained. Moreover, we shall derive the general conditions
needed for the constituents of asymmetric black diholes to
be in equilibrium in the external magnetic field.

The second major objective pursued by the present paper
is the construction of the four-dimensional double-
Gibbons-Maeda solution for two arbitrary static dilatonic
black holes endowed with electric or magnetic charges. It
is very advantageous to have such a solution on hand to be
able to study analytically the general properties of inter-
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acting black holes in the presence of a dilaton field, and we
will generate the desired solution with the aid of a proce-
dure described by Emparan and Teo in [5]. We remark that
recently several formal and hardly manageable mathemati-
cal relations for some physical properties of the interacting
Reissner-Nordstrom black holes have been presented in
[15], so in our paper we shall pay special attention to
elaborating the thermodynamic characteristics of both the
double-Reissner-Nordstrom and the double-Gibbons-
Maeda solutions in a concise, explicit form.

The paper is organized as follows. In Sec. II we review
the double-Reissner-Nordstrom solution and construct its
magnetic analog. The main original results of this section
are the remarkably simple formulas for the horizon areas of
interacting Reissner-Nordstrom black holes and the ana-
lytical expression of the magnetic potential A, for two
magnetically charged static black holes. In Sec. III we
consider a family of asymmetric diholes arising as a special
subclass of the double-Reissner-Nordstrom solution for
which the equilibrium of black-hole constituents can be
achieved by means of the Harrison transformation [16].
Here we find a simple formula for the magnetic parameter
of the exterior field which determines the equilibrium of
two static black holes endowed with unequal masses and
equal but opposite charges. Section 1V is devoted to the
derivation of the dilatonic generalization of the double-
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Reissner-Nordstrom solution which we interpret as a non-
linear superposition of two four-dimensional Gibbons-
Maeda solutions [1]; in this section we also briefly com-
ment on the physical properties of the double-Gibbons-
Maeda spacetime. Concluding remarks are given in Sec. V.

II. THE DOUBLE-REISSNER-NORDSTROM
SOLUTION AND ITS ANALOG IN
MAGNETOSTATICS

The exact electrostatic five-parameter solution describ-
ing the nonlinear superposition of two arbitrary Reissner-
Nordstrom black holes has been worked out in a closed
analytical form in Refs. [11,12] using different but mathe-
matically equivalent parametrizations. Since we are inter-
ested in the binary black-hole systems, in what follows we
shall write out the double-Reissner-Nordstrom solution in
the Varzugin-Chistyakov parametrization [17] employed in
[12], which involves as arbitrary parameters the relative
distance and the individual Komar masses and charges [ 18]
of the constituents; we shall also slightly change the nota-
tions of Ref. [12] to make them more congruent with the
recent physical representation of the Emparan-Teo sym-
metric dihole solution [7]. The Ernst potentials £ and ®
[19] defining the double-Reissner-Nordstrom solution have
the form [12]

A =30c[v(Ry +R)ry +r_)+4x(R R_+ ror_)] — (u?v — 26> (Ry — R_)(ry —r_),
B =230[(vm + 2kM)(R, + R_) + (vM + 2km)(ry + r_)] + 20[vu(Q — u) — 26(RM — g — u?)J(Ry — R_)

+23[vplg + w) + 2kRm + nQ — p?))(ry —ro),

C=230{lv(g + p) +2k(Q = WIR: + R-) +[¥(Q — p) + 2x(q + w](ry +7-)}
+ 20[uvM + 2k(um — RQ + uR)|(R. — R_) + 23 [uvm + 2k(uM + Rg + uR)|(r. — r_), (1)

where A, is the electric component of the electromagnetic
four-potential A; = (0,0, 0, A,), the functions R. and r~
are defined as

1 2
R+=\/p2+(z+2Ri2),
1 2
re = p2+<z—ERi0'),

S = M2 - Q* +2u0,

. mQ— Mgq
KRy M+m

o= \/mz — q2 —2uq,

2

and R is the distance between the centers of the black
holes; the constant objects v and « are given by the

[
formulas

v=R*—-3%— 02 +2u’
=R -M-—m*+(Q-p’+(@+un: O
k=Mm—(Q— u)g+ p).

Note that the upper Reissner-Nordstrom constituent is
described by the functions r., and it possesses the mass
m and charge g (see Fig. 1). The location of the lower
constituent is determined by the functions R, its mass and
charge being M and Q, respectively. The total mass M and
total charge Qr of the system are simple sums of the
individual masses and charges, respectively:

My =M+ m, Or=0+gq. 4)

The metric functions f and 7y of the double-Reissner-
Nordstrom solution, which enter as coefficients into Weyl’s
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FIG. 1. Location of the black-hole constituents on the symme-
try axis.

line element
ds* = f~'[e*(dp? + d2?) + p*d@*] — fdr*,  (5)
are expressible in terms of A, B, and C as follows:
A?—B*+(? _A B+
(A +B? "’ K3R,R_r.r_" (6)
Ky =430[R> — (M — m)*> + (Q — q — 2uw)*].

2y

f=

Obviously, formulas (1)-(6) describe a pair of interact-
ing nonextreme black-hole constituents when 32 > 0 and
o’ >0.

A. Some properties of the double-Reissner-Nordstrom
solution

Since in Ref. [12] the thermodynamical characteristics
of the double-Reissner-Nordstrom solution were not con-
sidered, below we briefly comment on them within the
framework of the well-known Smarr mass formula [20],
valid for each black-hole constituent:

1
M=3+ Os0 = —«ksAs + OO,
dar
) (7N
m=oc+®,qg=—k,A, + D,q,
dar

where the quantities @y, Ay, and ks describing the lower
black hole are, respectively, the constant value of the
potential A, = —® on the horizon, the area of the horizon,
and the surface gravity; the analogous characteristics of the
upper black hole are @, A, and «,. Using (1), one easily
finds that

0—2u
M+3’ 7

At the same time, the calculation of Ay and A, which can
be carried out, for instance, with the aid of the formulas [5]

_qt2u
m+ o’

&y = ®)

As = 477'2(Pf_1€y)|p=0,—2sz+(1/2)1eszr )

Ao‘ = 4770—(pf_1ey)|p=0,—oﬁz—(1/2)RSU’

is by far more difficult since the initial expressions result-
ing from the straightforward calculations are extremely
complicated and unwieldy. Fortunately, after a laborious
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and prolonged work we eventually arrive at the following
elegant formulas for Ay and A,

_4n[(R+ M+ m)(M +3) — 0(Q + g

As (R+ 3)?*— o2 (10)
A — AR+ M + m)(m + o) — q(Q + ¢)]?
7 (R + o)? — 32 ’

and we remark that in obtaining (10) a concise expression
for the horizon area of the Emparan-Teo nonextreme di-
hole [5] was a guiding line for us. Lastly, the form of «y
and k, can be read off from (7) and (10):

_ S[(R +3)? - o]
[(R+M+mM+3)—-0Q+qgF
_ o[(R + o)? — 27]
[(R+ M+ m)(m+ o) — q(Q + @)
Formulas (10) and (11) clearly illustrate that the affir-
mation made in a recent paper [15] about the absence of
simple expressions for the surface gravities and horizon

areas in the general case of the double-Reissner-Nordstrom
solution is not correct.

Ks
(1D

K

B. The case of magnetically charged black holes

Because of the one-to-one correspondence existing be-
tween the electrostatic and magnetostatic FEinstein-
Maxwell fields [13], the Ernst potentials of the magnetic
analog of the double-Reissner-Nordstrom solution have the
form

_A-B P — iC

A+ B A+ B
where the functions A, B, and C are the same as in
formulas (1), and the corresponding metric functions f
and y are given by Egs. (6). At the same time, finding
the remaining magnetic potential A, [the ¢ component of
the four-potential A; = (0,0, A, 0)] represents a difficult
technical problem because, unlike in the electrostatic case,
its form cannot be read off directly from the expression of
®. Formally, A, can be obtained by solving the following
system of first-order differential equations:

0A od 0A od
£ =ipf” L= a3
P

&

(12)

- I
ap inf iz’ 0z
However, in practice, the integration of (13) looks infea-
sible not only in our five-parameter case, but even in the by
far simpler case of identical black holes carrying opposite
charges [5]. The way out of this problematic situation
consists of circumventing the resolution of the system
(13) by finding A, as the real part of Kinnersley’s potential
@, [21], whose construction within Sibgatullin’s integral
method [22] is analogous to the construction of the Ernst
potentials £ and ®. In Ref. [23] an explicit expression for
@, was obtained in the general case of the analytically
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extended multisoliton solution [see formulas (3.13) and
(3.14) of [23]]. Then, setting N = 2 in the latter formulas
and taking into account that in the magnetostatic case the
potential @, is equal to A, exactly, one is able, after
expanding the determinants and performing the reparamet-

I —-zC
A+ B

A<P=Q+q+

PHYSICAL REVIEW D 79, 084024 (2009)

rization within the lines of Ref. [12], to arrive at the desired
expression for the magnetic potential. The calculation of
A o combined with the subsequent tedious search for con-
siderable simplifications, has finally led us to the following
result:

I =430{[mR(Q — p) — u(k + m?) + w(Q — w)*lror— — [MR(q + w) + p(k + M?) — u(g + p)*JRyR_}
+u = 20)[(k + p?)(Ry = R)(ry —r-) = 2Ry + R)(ry +r)] — (v =230 — 2u°)[Mo(Q — u)
—m3(g+ wWIRir- —R_ry)+ (v + 230 —2u)[Ma(Q — ) + m3(g + w)R_r- — Ryry)

+ 2[muv +2Mux + 2Rx(g + w)20(ry +r_) —R(ry —r )]+ oMuv +2muk — 2Rx(Q — u)]
X[22(Ry + R-) + R(R+ — R)]+ Zo[v(Q — ) + 2x(q + w)[20(ry —r-) = R(ry +1-)]

+ 2ofv(g + p) +2x(Q — w]22(R, —R_) + R(Ry + R_)] —2u(v — 26){0[MR + u(Q — g — 2u)]

XRy —R_)—2[mR+ uw(Q—q—2wW]ry —r_)+20l(M —m)(ry. +r_ — R, —R_)+2(v +2x)]}. (14)

The magnetostatic analog of the double-Reissner-
Nordstrom solution is now completely defined by formulas
(1)—(6), (12), and (14), Q and g being the individual
magnetic charges of the constituents.

III. ASYMMETRIC BLACK DIHOLES

The extreme and nonextreme black dihole solutions
considered in Refs. [3,5] are composed of two identical
constituents and, as can be easily shown, they are symmet-
ric with respect to the equatorial (z = 0) plane. In this
connection it would be of apparent interest to extend
Emparan’s notion of black dihole spacetimes to the equa-
torially nonsymmetric case and consider the asymmetric
black diholes—the systems of two black holes which
possess unequal masses and charges equal in magnitude
but opposite in sign. Let us substantiate the importance of
asymmetric diholes by demonstrating a remarkable general
property shared by these configurations—the possibility of
balance of their black-hole constituents in the external field
introduced via the Harrison transformation [16]. We shall
treat this special balance effect within the framework of the
magnetostatic case for which the application of the above-
mentioned transformation is physically somewhat more
transparent than in the case of electrostatics, but of course
our conclusions will be equally valid for both cases in view
of Bonnor’s theorem [13].

The action of the Harrison transformation on the mag-
netostatic analog of the double-Reissner-Nordstrom solu-
tion leads to the metric functions f, ¥ and the magnetic
potential A o of the form

f= A,
A, =2B"'[A71(1 +1BA,) — 1] (15)
A= (1+1BA,)* +1B?p?f !,

62';7 — )\4827,

|where f> v, and A, are given by formulas (6) and (14) of
the previous section, and B is a real constant defining the
exterior “uniform” Bonnor-Melvin-type magnetic field
[13,14]. When B = 0, one recovers from (15) the magnetic
version of the double-Reissner-Nordstrom solution; in this
(asymptotically flat) case, equilibrium of two nonextreme
charged black holes with positive masses does not seem
possible [11,24] because of an irremovable strut (conical
deficit) on the part of the symmetry axis separating the
constituents. The question is whether the strut can be
removed for some B # 0. We remind the reader that the
balance of aligned Reissner-Nordstrom black holes implies
vanishing of the metric function vy on all the parts of the
symmetry axis outside the horizons; i.e., in our two-body
case, the balance equations have the form

yO =0 yW=0 W =0 (16)

where segments I, II, and III of the symmetry axis are
defined as p =0, z > %R + o (the upper part), p =0,
—1R + 3 <z <IR — o (the intermediate part), and p =
0,z<— %R — 3 (the lower part), respectively. Taking into
account (15), another way of writing (16) is

’\?1 o eI — | (17)

where Ay and Y1 stand for the values of A and y
on segments I, II, IIT of the symmetry axis and refer to the
“seed”” double-Reissner-Nordstrom solution. From (1) and
(6) it follows that y™) = identically, and also that
P f p=0 = 0; hence, the system of the balance equations

finally takes the form
Ag) =0, Agn) =0,

(18)

(1 + 1BAGV)S X = 1,

AE};“’“D being the values of the magnetic potential (14) on
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the respective parts of the z axis. From (14) we find the
required axis values of the potential A:

AQ=0 AP =29  AP"=20+9, (19

and it follows from (19) that the first condition in (18) is
satisfied automatically, while the fulfilment of the third
condition in (18) is secured by the vanishing of the total
charge:

Or=0+4=0. (20)

Now finding W with the aid of (1) and (6), and solving the
second equation in (18) for B, we arrive at the following
value of the latter parameter at which two magnetically
charged black holes will be balanced by the external mag-
netic field:

:l<ij”+2"_1>, 0+q=0. (I
q v — 2k

Note that for physical reasons (B — 0 when R — ©0) one
has to choose the upper sign in (21). The zero total charge
condition naturally singles out the asymmetric black dihole

configurations as the ones whose black-hole constituents
|

_ A% — 4B2 + 402C? . 20C
f (A +2B? A +2B’
Ky = 430[R* — (M — m)* + 40%*(1 — w)?],

A, =

2y =

PHYSICAL REVIEW D 79, 084024 (2009)

can achieve equilibrium in the external magnetic field, the
precise “‘balance” value of a such field being given by
formulas (21).

Once the significance of asymmetric black diholes is
established, we will turn to their more detailed description,
returning again to the electrostatic picture and restricting
our consideration to the asymptotically flat case (no exter-
nal field). Then, the choice ¢ = —Q in the formulas
(1)—(3) and (6) of the previous section permits us to in-
troduce the nondimensional parameter w in the expres-
sions for 3 and o~

S = M2 - Q21 - 2p),

o=\’ = Q*(1 - 2p),

M+ m
= 22
B R+ M+ m @2)
The expressions for » and «, with g = —Q, take the form
v=R>—M>—m*+20°(1 — u)?,
(23)

kK =Mm+ Q*(1 — u)%

while for the electric potential A, and metric functions f
and vy, we obtain

A2 — 4B* + 40%C*
KiR,R_ryr_

A =30cv(Ry +R_)ry +r_) +4x(R.R_ + ryr )] — (Q*u?v —2k*)(R. — R_)(ry — r_),
B =3So[(mv +2Mk)(R, + R_) + (Mv + 2mk)(ry +r_)]+ Q*(u — u?)(v —2x)[0c(R. — R_) — 2(ry — r_)]

—2Rk[Mo (R, —R_) — m3(r, — r_)],

C=3c(1—u)(v—2x)r. +r_- —Ry —R_)+ o[Muv +2x(mu — R+ Ru)|(R; — R_)

+ 3[mpuv +2k(Mu — R+ Ruw)l(rp — ro),

2 2
R+=\/p2+(z+%RiE), r+=\/p2+(z—%Ria). (24)

From the above formulas (22) and (23) one immediately
draws the following three interesting conclusions about the
properties of asymmetric black diholes:

(i) Since 2 and o cannot take the same values for
different positive values of M and m, the asymmetric
diholes with two extreme components (2 = o = 0)
do not exist.

(i1) The formula for the interaction force between the
black-hole constituents in an asymmetric dihole is
readily obtainable from the general expression de-
rived in [12] for the double-Reissner-Nordstrom so-
lution, and from (23); it has the form

Kk Mm+ Q*(1 — p)?

7= RE— (M + m)?

. (@25

v — 2Kk

which means that no equilibrium states without a

supporting strut between the constituents (such states
are defined by the equation F = 0) can be achieved,
at finite separation, for arbitrary values of Q and any
positive values of M and m.

(ii1) The absolute value of charge Q in the asymmetric
black diholes can considerably exceed the values of
M and m due to the presence of the factor (1 — 2u)
in the expressions of 2 and o.

The physical quantities @y, ®,, Ay, and A, character-
izing the asymmetric diholes have a somewhat simpler
form than in the case of the general double-Reissner-
Nordstrom solution. Thus, for @5 and @, we have

_ 001 —2u) o1 —2pu)

0
% M+ 3 m+ o

, ¢, = — . (20)

and for Ay and A, we get from (10)
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_4Am(R+ M + m)>(M + 2)?

* (R+2)?—o0? ’
(27)
_A7(R+ M + m)*(m + o)?
7 R+o0)P -3

so that the charge Q is not explicitly present in (27). We
mention that the electric dipole moment of the asymmetric
dihole is equal to —Q(R — M — m).

_0(I —2z0)

Ae =" 128

PHYSICAL REVIEW D 79, 084024 (2009)

In the limit of equal constituents (3 = o, M = m), one
easily recovers from (26) and (27) the expressions for the
electric potential and the horizon area found by Emparan
and Teo for a nonextreme symmetric dihole [5].

In conclusion of this section we write out explicitly the
expression of the potential A, for the magnetic analog of
the electrically charged asymmetric black dihole [appar-
ently, the functions A, B, and C of this analog are the
same as in formulas (24)]:

I =430[R(1 = p) = uM + m)JMR R+ mryr_) + u(v = 2x)[(k + p?Q*)(Ry — R_)(ry —71-)
—30R, +R)ry +r)]— (0 — uwi[R?— 2 + o)’ Mo+ m3)R.r_ —R_r,) +[R> — (2 — 0)?]
X (Mo —m2)(Riry —R_r )} + S[muv + 2Murx — 2Rk(1 — w)[20(ry + r_) — R(ry — r_)]
+oMuv +2mux —2Rk(1 — w)[22(Ry + R_) + R(R. — R_)] — 20oR(1 — u)(v — 2k)
X(Ry+R_+r,+r_)—2v—2c{o[MRu + (2> + 20*u*)(1 — w)](Ry — R_)
—3[mRu + (02 +20%°u>)( — w)(ry —r_) + u2o[(M —m)(ry +r— — R, — R_) +2(v + 2x)]}, (28)

and we also remark that the explicit form of formula (21)
for the parameter B defining the equilibrium of the mag-
netically charged black-hole constituents in the external
magnetic field, taking into account (22) and (23), takes the
form

o] {/RZ—(M—m)2+4Q2(1—M)2_
N é( R? = (M + m)?

O being the magnetic charge of the lower constituent.

1), (29)

IV. THE DOUBLE-GIBBONS-MAEDA SOLUTION

To generalize the double-Reissner-Nordstrom solution
to the Einstein-Maxwell-dilaton theory arising from the
Lagrangian [1,25]

:L — — 2 _ ,2a¢p 2
L 1677\/_g[R 2(Vg)> — e **9F?], (30)

where ¢ is the dilaton field and « the arbitrary coupling
constant (« = 0 for the pure Einstein-Maxwell fields, « =
1 for the low energy effective limit of string theory, and
a = +/3 for the Kaluza-Klein theory), it is advantageous to
make use of the solution-generating procedure described in
Refs. [3,5]. Recall that, according to this procedure, given a
seed electrostatic solution f, vy, and A,, its dilatonic gen-
eralization f , Y, A,, and ¢ is defined by the formulas

. N ) 1
f:fl/(l+a)e 2 d’O’ ')/:—zf)/+fy()’
1+ a
| (3D
A :714[, eZ(b :fa/(1+a2)ez¢0’

' V1 + a?

where f and ¥ enter the line element
ds? = F e (dp? + dZ?) + p*de*] — fdi?,  (32)
¢, is an arbitrary solution of the equation

¢O,p,p + p71¢0,p + ¢0,z,z = O’ (33)

and 7, is obtainable from ¢ by solving the system

Yop = (1 + az)p((rb%,p - d)%,z)’

i (34)
Yo =20+ a®pbo, b

the integrability condition of which is Eq. (33).

In the case of the double-Reissner-Nordstrom solution,
the functions f and 7y are given by formulas (6), while the
potential A, is equal to —® from (1). Therefore, we only
need to identify the function ¢, and the corresponding vy,
to obtain the desired generalization. Since our ¢ has to, in
particular, generalize Emparan and Teo’s analogous choice
for the symmetric black dihole solution [5], we have to
take, as ¢, the linear superposition of two arbitrary
Schwarzschild solutions with the “masses” 2 and o, and
find the corresponding vy, using the results of Ref. [26].
Then, after applying the procedure (31) to the double-
Reissner-Nordstrom solution, we finally obtain
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’

o [RB O,
KSR R_ror_
o+ + (35)
ezd’l]’

(A + B)?

ezyoz[R+R_+p2+(z+éR)2—22.r+r_+p2+(z—éR)2—a'2.R+r_+p2+(z+%R+E)(Z—éR—U)

2R.R_

» Rory +p*+(@Z+iR-3)z—1iR+ a)]a2/<1+a2>

R+r++p2+(z+%R+E)(z—%R+a’)

This completes the construction of the dilatonic general-
ization of the electrostatic metric for two charged black
holes. In the limit of identical black-hole constituents with
opposite electric charges (X = o, ¢ = —Q), from the
formulas obtained, one easily recovers the Emparan-Teo
nonextremal dihole solution [5] in the physical parametri-
zation of Ref. [7]. Moreover, by setting either m = g = 0
or M = Q = (Ointhe above formulas, we arrive at the well-
known Gibbons-Maeda solution [1] for a single Reissner-
Nordstrom black hole in the four-dimensional dilaton grav-
ity. So, observing a certain parallelism with the well-

known double-Kerr solution [27], it would be most appro-
|

2r r_

R,r,+p2+(z+%R—E)(z—%R—0')

(36)

|
priate to call the dilaton two-body configuration considered
in this section the double-Gibbons-Maeda solution.

The presence of the dilaton field in the double-Gibbons-
Maeda solution only slightly changes the form of the
corresponding potentials ®s and @, in which the addi-
tional factor (1 + «?)~"/? arises, compared to the expres-
sions (8) of the double-Reissner-Nordstrom solution. On
the other hand, the dilaton field has a more substantial
effect on the form of the horizon areas, Ay and A, due
to the presence of the functions ¢, and 7, in the expres-
sions for f and 9. Nonetheless, for Ay and A, we have
been able to obtain the following compact expressions:

_ Am(as) IR + M+ m)(M + 3) = Q(Q + g)/1+e)

A 2 2 ’
> R+~ 0)R+ 3+ g)t-e)/ta) 37
_ 47(40) /TR + M + m)(m + o) — q(Q + q) /1 +¢)
7 (R—3+ )R+ 3 + )=+ ’

which generalize formulas (10) in a nice manner. Notice that, as expected, in the presence of the nonzero dilaton field
(a # 0) the extremal dilatonic holes (2 = 0 and/or o = 0) develop null singularities.
For the interaction energy in the double-Gibbons-Maeda solution, we find the expression

Vint -

which follows from the formula [5]

L. .
Vi = 2(6”’ = 1), (39)
L being the coordinate length of the strut, and ¥, being the
value of the metric function ¥ on the part of the symmetry
axis separating the black-hole constituents.

We end this section by observing that the magnetic
analog of the double-Gibbons-Maeda solution is defined
by a slight modification of the generating formulas (31), in
which one only has to replace the electric potential A, by
the magnetic potential A, defined by (14) and set ¢ to — ¢;

(R—M—m){(v— 2k)1ma)/ A+ )[R2 — (3, 4 )2’/ U+a®) — (3 + 24)}
4(v + 2k) ’

(38)

|
the choice of the functions f, y, ¢, and vy, is the same as
in the electrostatic solution.

V. CONCLUSIONS

In the present paper we have considered several appli-
cations of the double-Reissner-Nordstrom solution to the
binary systems of charged black holes. We started with a
brief review of the electrostatic case, supplementing it with
a derivation of remarkably simple formulas for the horizon
areas and surface gravities of two interacting Reissner-
Nordstrom black holes. We then obtained a magnetic ana-
log of the double-Reissner-Nordstrom solution, which re-
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quired the construction of the corresponding magnetic
potential A, with the aid of Sibgatullin’s integral method.
The analysis of the behavior of magnetically charged black
holes in the external magnetic field naturally led us to
asymmetric black diholes as an important family of binary
configurations for which equilibrium of the black-hole
constituents is achievable, and we found a precise value
of the parameter B of the external field at which the balance
of the gravitational and magnetic forces occurs. One would
anticipate that the “balanced” asymmetric black dihole
spacetimes could find interesting applications in the nu-
merical simulations of the nonstationary black-hole con-
figurations as the initial static conditions. The absence of
asymmetric dihole configurations with two extreme com-
ponents is a curious fact established in this paper, which
lends additional importance to the Bonnor magnetic dipole
metric [6] and to some of its generalizations [3] as the
extreme black dihole models. At the same time, it should
be mentioned that our paper provides a basis for the
analysis of the black dihole configurations involving one
extreme and one nonextreme component.

There are various reasons for thinking that the double-
Gibbons-Maeda solution, obtained and briefly discussed in
Sec. IV, opens new promising opportunities for the study of
binary black-hole configurations in the presence of a dila-
ton field. First of all, this solution describes a pair of
arbitrary Gibbons-Maeda black holes and, therefore, per-
mits one to study more general binary black-hole systems,
with zero or nonzero total charge, than earlier considered
in the literature; it is important that the existence of simple
formulas (37) for the horizon areas strongly suggests that
the overall physical analysis of the double-Gibbons-Maeda
spacetime is feasible as well. Furthermore, the availability

PHYSICAL REVIEW D 79, 084024 (2009)

of the general expression for the magnetic potential A,
now allows a straightforward application of the dilatonic
Harrison transformation [28] to the solution obtained and
also makes it possible to search for equilibrium configura-
tions of the constituents in the framework of dilatonic
asymmetric black diholes surrounded by the external mag-
netic field, in analogy with the pure Einstein-Maxwell
case. In this respect it is worth mentioning that in
Ref. [5] a microscopic description of the entropy of inter-
acting equal black holes carrying opposite charges was
given using the ‘“‘effective string” model and the large
separation approximation needed for obtaining a weak
strut singularity. Although it is clear that a similar analysis
is also applicable to our asymmetric black diholes, it seems
more advantageous to develop a description which would
not be subject to the restriction of large separation; for this
purpose, as was already observed in [5], the well-behaved
black diholes balanced by the external field are the best
solutions to employ. Since the crucial point in the latter
solutions is the explicit form of the magnetic potential A,
which was constructed in the present paper, we expect that
the desired improved microscopic description of the en-
tropy will be provided in the future.
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