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I. INTRODUCTION

Hawking radiation is an important quantum effect in
black hole physics. It arises for quantum fields in a back-
ground spacetime with an event horizon. Apart from
Hawking’s original derivation [1,2], which calculates the
Bogoliubov coefficients between in- and out-states for a
body collapsing to form a black hole, there are also other
approaches [3,4]. One of the most interesting proposals
was put forward many years ago by Christensen and
Fulling [5], who showed that Hawking radiation can be
derived from the trace anomaly in the energy-momentum
tensor of quantum fields in a Schwarzschild black hole
background.

The idea of Christensen and Fulling [5] was to relate an
anomaly in conformal symmetry with the energy-
momentum tensors of quantum fields in a black hole
background. This relation manifests itself as a contribution
of the anomaly to the trace T�

� of the energy-momentum
tensor in a theory where it vanishes classically. Requiring
finiteness of the energy-momentum tensor of massless
fields as seen by a freely falling observer at the horizon
in a ð1þ 1Þ-dimensional Schwarzschild background met-
ric and using the anomalous trace equation everywhere,
one finds an outgoing flux which is in quantitative agree-
ment with Hawking’s result.

The validity of this result is subjected to some limita-
tions. The method has been applied to conformal field
theories in ð1þ 1Þ dimensions. Also, the assumption in
[5] of massless scalar fields was essential to relate fluxes at
the horizon to Hawking radiation. The requirement of
massless scalar fields was addressed later in [6]. It was
considered a massive tachyon field in the background of a
dilatonic ð1þ 1Þ-dimensional black hole [7]. It was found
that the contribution of the tachyon field to Hawking
radiation is due to its coupling to the dilaton field, and
the Hawking rate due to the tachyon field is enhanced
comparable to conformal matter.

Quite recently, Robinson and Wilczek [8] followed by
Iso, Umetsu, and Wilczek [9] proposed a new method to
calculate Hawking radiation. Their basic idea is to identify

outgoing modes of some matter distribution near the hori-
zon as right-moving modes and ingoing modes as left-
moving modes, in the Unruh vacuum [10]. Then, because
all the ingoing modes cannot classically affect physics
outside the horizon, integrating the other modes they ob-
tain an effective chiral action in the exterior region which is
anomalous under gauge and general coordinate transfor-
mations. However, the underlying theory is invariant under
these symmetries, and these anomalies must be canceled
by quantum effects of the classically irrelevant ingoing
modes. They have proved that the condition for anomaly
cancellation at the horizon determines the Hawking flux of
the charge and energy-momentum. The flux is universally
determined only by the value of anomalies at the horizon.
The crucial point in the Robinson-Wilczek method, and

its generalization to include charge, is to reduce an initially
high-dimensional theory to two dimensions, in the vicinity
of the horizon, which is a necessary step in order to be able
to identify the chiral modes. This is achieved by consider-
ing a matter source, just outside the horizon of a static
spherically symmetric black hole, parametrized by a scalar
field minimally coupled to this background. Performing a
partial wave decomposition of the scalar field in terms of
the wave functions of the classical wave equation, they find
that the effective radial potentials for partial wave modes of
the scalar field vanish exponentially fast near the horizon.
Thus, physics near the horizon can be described using an
infinite collection of massless ð1þ 1Þ-dimensional scalar
fields, each propagating in a ð1þ 1Þ-dimensional space-
time with a metric given by the ðt; rÞ section of the original
high-dimensional metric, where t and r are the time and
radial coordinates, respectively.
The method was further extended to include rotations

[11,12]. It was shown that the reduction procedure goes
through, and observing that an angular isometry generates
an effective Uð1Þ gauge field in the ð1þ 1Þ-dimensional
theory, with the azimuthal quantum number m serving as
the charge of each partial wave, the known results were
obtained with angular momentum acting like a chemical
potential for the effective charge.
In this work we will study the Hawking effect via the

gravitational anomalies method in a gravitational back-
ground of constant negative curvature. At first, we will
carry out the dimensional reduction procedure of an action
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given by a scalar field minimally coupled to gravity in the
background of a ð3þ 1Þ-dimensional topological black
hole (TBH), in order to show that near the horizon the
theory is reduced to an effective theory of an infinite
collection of ð1þ 1Þ-dimensional scalar fields in a ð1þ
1Þ-dimensional background. Identifying the chiral modes,
we will finally show that the flux necessary to cancel the
gravitational anomalies is identified with the Hawking flux.

We will also apply the method to a topological black
hole coupled to a scalar field. Providing that asymptotically
the space is anti-de Sitter (AdS), these black hole solutions
are stable, they satisfy the Breitenlohner-Freedman bound
[13], and the scalar field is regular at the horizon [14]. In
this context, we will discuss the applicability of the method
in the case of a scalar field backreacting on the gravita-
tional background. As a first step we will consider the case
where the scalar field, which generates the Hawking flux, is
nonminimally coupled to gravity.

The paper is organized as follows. In Sec. II we review
the basic properties of TBHs, and we perform a mode
analysis of a scalar field in the background of a TBH. In
Sec. III we describe the reduction procedure to two dimen-
sions for a TBH of genus ~g ¼ 2. In Sec. IV we derive the
Hawking radiation of a TBH of genus ~g ¼ 2, and in Sec. V
we carry out the same calculation for a TBH coupled to a
scalar field. In Sec. VI we investigate whether a scalar field
nonminimally coupled to a black hole background has any
effect on the Robinson-Wilczek method. Finally, we sum-
marize in the last section.

II. MODE ANALYSIS OF THE WAVE EQUATION
OFA SCALAR FIELD IN THE BACKGROUNDOFA

TBH

We consider the bulk action

I ¼ 1

16�G

Z
ddx

ffiffiffiffiffiffiffi�g
p �

Rþ ðd� 1Þðd� 2Þ
l2

�
(2.1)

in asymptotically AdSd, where G is Newton’s constant, R
is the Ricci scalar, and l is the AdS radius. The presence of

a negative cosmological constant ð� ¼ � ðd�1Þðd�2Þ
2l2

Þ al-

lows for the existence of black holes with topology R2 �
�, where � is a ðd� 2Þ-dimensional manifold of constant
negative curvature. These black holes are known as topo-
logical black holes [15,16]. The simplest solution of this
kind in four dimensions reads

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�2;

fðrÞ ¼ r2 � 1� 2�

r
;

(2.2)

where we employed units in which the AdS radius is l ¼ 1,
� is a constant, which is proportional to the mass and is
bounded from below � � � 1

3
ffiffi
3

p , and d�2 is the line

element of the two-dimensional manifold �, which is

locally isomorphic to the hyperbolic manifold H2 and of
the form

� ¼ H2=�; � � Oð2; 1Þ; (2.3)

where � is a freely acting discrete subgroup (i.e. without
fixed points) of isometries. The line element d�2 of � is

d�2 ¼ d�2 þ sinh2�d’2; (2.4)

with � � 0 and 0 � ’< 2� being the coordinates of the
hyperbolic space H2 or pseudosphere, which is a noncom-
pact two-dimensional space of constant negative curvature.
This space becomes a compact space of constant negative
curvature with genus ~g � 2 by identifying, according to
the connection rules of the discrete subgroup �, the oppo-
site edges of a 4~g-sided polygon whose sides are geodesics
and which is centered at the origin � ¼ ’ ¼ 0 of the
pseudosphere [15–17]. An octagon is the simplest such
polygon, yielding a compact surface of genus ~g ¼ 2 under
these identifications. Thus, the two-dimensional manifold
� is a compact Riemann two-surface of genus ~g � 2.
Further details on this kind of compactification scheme
can be found in [17,18]. The configuration (2.2) is an
asymptotically locally AdS spacetime. The horizon struc-
ture of (2.2) is determined by the roots of the metric
function fðrÞ,

fðrÞ ¼ r2 � 1� 2�

r
¼ 0: (2.5)

For � 1
3
ffiffi
3

p <�< 0, this equation has two distinct non-

degenerate solutions, corresponding to an inner and an
outer horizon, r� and rþ, respectively. For � � 0, fðrÞ
has just one nondegenerate root, and so the black hole (2.2)
has one horizon, rh. The horizons for both cases of � have
the nontrivial topology of the manifold �. We note that for
� ¼ � 1

3
ffiffi
3

p , fðrÞ has a degenerate root, but this horizon

does not have an interpretation as a black hole horizon
[15].
We will examine the eigenmodes of the classical wave

equation of a scalar field� of massm�, in the background
of the topological black hole (2.2), and perform a partial
wave decomposition of the wave functions. The classical
wave equation in the background of (2.2), without any
identifications of the pseudosphere (i.e. H2), is

r2� ¼ m2
��; (2.6)

where r2 is the Laplace-Beltrami operator defined by

r2 � 1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@�Þ; (2.7)

and hence the wave equation is�
� 1

f
@2t þ 1

r2
@rðr2f@rÞ þ 1

r2 sinh�
@�ðsinh�@�Þ

þ 1

r2sinh2�
@2’

�
� ¼ m2

��: (2.8)

PAPANTONOPOULOS AND SKAMAGOULIS PHYSICAL REVIEW D 79, 084022 (2009)

084022-2



We factorize out the angular and radial dependence of the
field as

�ðt; r; �; ’Þ ¼ Rðt; rÞ
r

Yð�; ’Þ: (2.9)

With this factorization and using separation of variables,
we get two differential equations. The angular wave equa-
tion is

�
�

1

sinh�
@�ðsinh�@�Þ þ 1

sinh2�
@2’

�
Yð�;’Þ ¼ �Yð�; ’Þ;

(2.10)

while the radial wave equation is

@2t Rðt;rÞ�f

�
ð@rfÞ@r�@rf

r
þf@2r �m2

�� �

r2

�
Rðt;rÞ¼ 0;

(2.11)

where � is a separation constant. The angular wave equa-
tion has the solution [17]

Ym
l ð�;’Þ ¼ Pm

l ðcosh�Þeim’ ¼ Pm
�ð1=2Þ�i�ðcosh�Þeim’;

(2.12)

where Pm
l are the associated Legendre functions and

m ¼ 0;�1;�2;�3; . . . ; � ¼ �lðlþ 1Þ;
l ¼ �1

2 � i�; � ¼ �2 þ 1
4:

(2.13)

The radial wave equation, after separating the time depen-
dence by writing Rðt; rÞ ¼ RðrÞei!t, becomes

!2RðrÞþf

�
ð@rfÞ@r�@rf

r
þf@2r�m2

���2þ 1
4

r2

�
RðrÞ¼0:

(2.14)

There is no general solution to this equation, but we can
write it in a very simple form using the tortoise coordinate
r� defined by

@r�
@r

¼ 1

fðrÞ : (2.15)

The radial wave equation in terms of the tortoise coordi-
nate r� becomes

½@2r� þ!2 � fðrðr�ÞÞVðrðr�ÞÞ	Rðrðr�ÞÞ ¼ 0; (2.16)

with

VðrÞ ¼ 1

r2

�
r
dfðrÞ
dr

þ �2 þ 1

4

�
þm2

�; (2.17)

which for the fðrÞ of the background (2.2) is

VðrÞ ¼ 2þ �2 þ 1
4

r2
þ 2�

r3
þm2

�: (2.18)

In conclusion, the eigenmodes of the classical wave equa-
tion in the background of (2.2) are

�ðt; r; �; ’Þ ¼ R�ðt; rÞ
r

Pm
�ð1=2Þ�i�ðcosh�Þeim’: (2.19)

Without any identifications of the pseudosphere, the
spectrum of the angular wave equation is continuous;
thus � takes any real value � � 0. Since the two-
dimensional manifold � is a quotient space of the form
H2=� and is a compact space of constant negative curva-
ture, the spectrum of the angular wave equation is discre-
tized and thus � takes discrete real values, � � 0. On the
simplest such manifold of constant negative curvature,
which is a compact surface of genus ~g ¼ 2, the angular
wave functions (2.12) must satisfy four periodicity condi-
tions, and the compatibility of these four periodicity con-
ditions is what generates the discrete spectrum [17]. In
general, there are no explicit analytical results in the lit-
erature for the angular eigenvalues �ðlÞ and for the angular
eigenfunctions, although some numerical results exist [17].
Therefore, in the next sections we will elaborate only on
the case of � being a compact two-dimensional manifold
of genus ~g ¼ 2 with constant negative curvature.

III. DIMENSIONAL REDUCTION FOR A
TOPOLOGICAL BLACK HOLE

We consider matter in the background of the topological
black hole (2.2) of genus ~g ¼ 2 given by a complex scalar
field 	ðxÞ with an action of the form

S ¼ Sfree þ Sint; (3.1)

where Sfree is the free part of the action,

Sfree ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

	�r2	; (3.2)

and Sint is the part of the action which includes a mass term,
potential terms, and interaction terms. We perform a partial
wave decomposition of 	 in terms of the eigenmodes
(2.19),

	ðt; r; �; ’Þ ¼ Xþ1

m¼�1

R�mðt; rÞ
r

Ym
� ð�; ’Þ; (3.3)

where, for convenience, we chose a different normalization
of the eigenmodes by defining the functions Ym

� [19] as

Y m
� ð�; ’Þ �

�
2�

� tanhð��Þ
�
1=2

Pm0
�ð1=2Þþi�ðcosh�Þeim’

¼
�

2�

� tanhð��Þ
�
1=2

� �ði�þ 1
2Þ

�ði�þmþ 1
2Þ
Pm
�ð1=2Þþi�ðcosh�Þeim’;

(3.4)

with m ¼ 0;�1;�2;�3; . . . and � taking discrete real
values, � � 0. In this definition we have used the functions
Pmn

l , which form the canonical basis for the irreducible
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representations of the group SLð2; CÞ and can be viewed as
playing the same role for the group SU(1,1) (see
Appendix A). These functions are related to the associated
Legendre functions through

P m0
l ðcosh�Þ ¼ �ðlþ 1Þ

�ðlþmþ 1ÞP
m
l ðcosh�Þ: (3.5)

The functions Ym
� form a complete set of functions on the

manifold �, they satisfy four periodicity conditions [17],
and their orthogonality condition is Eq. (A15) of
Appendix A, that is,Z 1

0
d�

Z 2�

0
d’ sinh�Ym

� ð�; ’ÞðYm0
�0 ð�; ’ÞÞ� ¼ 
��0
mm0 :

(3.6)

Furthermore, it is proved in Appendix A that they satisfy
the equation

��Ym
� ð�;’Þ ¼ �ð�2 þ 1

4ÞYm
� ð�; ’Þ; (3.7)

where �� is the differential operator

�� ¼ 1

sinh�
@�ðsinh�@�Þ þ 1

sinh2�
@2’: (3.8)

Substituting the partial wave decomposition of 	 in the
free part of the action, we get

Sfree ¼ � 1

2

Z
dtdrd�d’r2 sinh�

�� Xþ1

m0¼�1

R�0m0

r
Ym0

�0

��

�
�
� 1

f
@2t þ 1

r2
@rðr2f@rÞ þ 1

r2
��

�

�
� Xþ1

m¼�1

R�m

r
Ym

�

��
; (3.9)

and with the help of the property (3.7),

Sfree ¼ � 1

2

X
m;m0

Z
dtdrd�d’ sinh�

�
R�
�0m0

�
� 1

f

�
@2t R�m

þ R�
�0m0

r
@r

�
r2f@r

�
R�m

r

��
� R�

�0m0

r

R�m

r

�
�2 þ 1

4

��
�Ym

� ð�; ’ÞðYm0
�0 ð�; ’ÞÞ�: (3.10)

Performing the integrations on � and ’, using the normal-
ization condition (3.6), we have

Sfree ¼ � 1

2

X1
m¼�1

Z
dtdr

�
R�
�m

�
� 1

f

�
@2t R�m

þ R�
�m

r
@r

�
r2f@r

�
R�m

r

��
� R�

�m

r

R�m

r

�
�2 þ 1

4

��
:

(3.11)

Next, we will make a transformation to the tortoise coor-
dinates ðt; r�Þ, defined by (2.15), and consider only the
region near the event horizon. In the case of � 1

3
ffiffi
3

p <�<

0, this is the outer horizon rþ, and in the case of � � 0,
this is the horizon rh. In order to include in our analysis
both of these cases, we denote both rþ and rh as rH.
But first, we will determine the behavior of the radial

coordinate r and of the metric function fðrÞ in tortoise
coordinates in the region near the horizon rH. The Taylor
expansion of the metric function fðrÞ around the event
horizon is

fðrÞ ¼ 2�ðr� rHÞ þ
X1
n¼2

fðnÞðrHÞ
n!

ðr� rHÞn; (3.12)

where � � 1
2 ð@rfÞjrH is the surface gravity. In the region

near the event horizon, we can keep only the first two terms
of the Taylor expansion,

fðrÞ 
 2�ðr� rHÞ: (3.13)

Transforming to the tortoise coordinates ðt; r�Þ and inte-
grating both sides of (2.15) using the approximation (3.13),
we get

r� 

Z 1

2�ðr� rHÞ drþ C; (3.14)

and so

rðr�Þ 
 Ae2�r� þ rH; (3.15)

where C is an arbitrary integration constant and A �
e�2�C. Finally, Eqs. (3.13) and (3.15) give

fðrðr�ÞÞ 
 2�Ae2�r� : (3.16)

The last two equations describe the behavior of r and fðrÞ
in tortoise coordinates in the region near the event horizon.
Note that the limit r ! rH is equivalent to the limit r� !
�1 in tortoise coordinates, which means that the event
horizon in tortoise coordinates is located at ð�1Þ. In
addition, note that near the event horizon fðrðr�ÞÞ vanishes
exponentially fast, hence fðrðr�ÞÞ is a suppression factor
near the event horizon.
Now, we can return to Eq. (3.11), transform to tortoise

coordinates, and consider only the region near the horizon.
After using the fact that fðrðr�ÞÞ is a suppression factor
near the horizon and keeping only dominant terms, the free
part of the action becomes, in tortoise coordinates and in
the region near the horizon,

ðSfreeÞ� ¼
X1

m¼�1
� 1

2

Z
dtdr�R�

�m½�@2t þ f@rðf@rÞ	R�m;

(3.17)

where the upper star denotes complex conjugation, the
lower star denotes the tortoise coordinates, and f, R�m,

R�
�m are implicit functions of r�. Transforming back to the

original coordinates we find
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Sfree ¼
X1

m¼�1
� 1

2

Z
dtdrR�

�m

�
� 1

f
@2t þ @rðf@rÞ

�
R�m:

(3.18)

Concerning the part Sint of the action, which includes a
mass term, potential terms, and interaction terms, after
performing a partial wave decomposition in terms of the
functions Ym

� and upon transforming to the tortoise coor-

dinates, one finds that all of its terms contain the factor
fðrðr�ÞÞ and vanish exponentially fast near the horizon.
Thus, the total action S is obtained,

S ¼ X1
m¼�1

� 1

2

Z
dtdrR�

�m

�
� 1

f
@2t þ @rðf@rÞ

�
R�m:

(3.19)

According to this action, physics in the region near the
horizon can be effectively described by an infinite collec-
tion of ð1þ 1Þ-dimensional free massless complex scalar
fields, each propagating in a ð1þ 1Þ-dimensional space-
time, which is given by the ðt; rÞ part of the ð3þ
1Þ-dimensional metric of the topological black hole of
genus ~g ¼ 2, that is,

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2: (3.20)

IV. HAWKINGRADIATION FROMTOPOLOGICAL
BLACK HOLES

In the reduced ð1þ 1Þ-dimensional background (3.20),
outgoing modes of the ð1þ 1Þ-dimensional fields near the
horizon behave as right-moving modes and ingoing modes
behave as left-moving modes. If we neglect the ingoing
modes in the region near the horizon, because they cannot
classically affect physics outside the horizon, then the
effective two-dimensional theory becomes chiral. As it is
known [20–24] a two-dimensional chiral theory exhibits a
gravitational anomaly. The consistent gravitational anom-
aly for right-handed fields reads [20,22]

r�T
�
� ¼ 1

96�
ffiffiffiffiffiffiffiffiffiffiffiffi�gð2Þ

p �

@
@��
�
�
; (4.1)

and the covariant gravitational anomaly takes the form

r�
~T�� ¼ ���

96�
ffiffiffiffiffiffiffiffiffiffiffiffi�gð2Þ

p @�R; (4.2)

where T
�
� and ~T

�
� are the consistent and covariant energy-

momentum tensors, respectively, �01 ¼ ��10 ¼ 1, and R
and gð2Þ are the Ricci scalar and the metric determinant of

the reduced metric (3.20), respectively. The consistent
gravitational anomaly satisfies the Wess-Zumino consis-
tency condition, but the consistent energy-momentum ten-
sor T�

� does not transform covariantly under general
coordinate transformations. The covariant energy-

momentum tensor ~T
�
� , on the contrary, transforms cova-

riantly under general coordinate transformations, but the
covariant gravitational anomaly does not satisfy the Wess-
Zumino consistency condition. Consistent and covariant
expressions are related by local counterterms [21,23,24]. In
[9,11] the consistent expressions for the anomalies were
taken, whereas the imposed boundary conditions involved
the covariant form. A reformulation of this approach was
given in [25], where only covariant expressions were used,
rectifying this conceptual issue. Furthermore, a more tech-
nically simplified way to obtain the Hawking flux was
suggested in [26–28], where the calculation involved
only the expressions for the anomalous covariant Ward
identities and the covariant boundary conditions. We will
follow this approach to derive the Hawking flux.
We consider the expression for the two-dimensional

covariant gravitational Ward identity, that is, the covariant
anomaly (4.2), and taking its � ¼ t component, we get

@r ~T
r
t ¼ 1

96�
f@rf

00; (4.3)

where we have used the facts that the background is static
and that the Ricci scalar is R ¼ �f00ðrÞ, while a prime
denotes differentiation with respect to r. Equation (4.3) can
be written as

@r ~T
r
t ¼ @r ~N

r
t (4.4)

or

@rð ~Tr
t � ~Nr

t Þ ¼ 0; (4.5)

where

~N r
t ¼ 1

96�

�
ff00 � f02

2

�
: (4.6)

Solving Eq. (4.4) we find

~T r
t ðrÞ ¼ aH þ ~Nr

t ðrÞ � ~Nr
t ðrHÞ: (4.7)

Here aH is an integration constant. Imposing the covariant
boundary condition [11,28]

~T r
t ðrHÞ ¼ 0; (4.8)

namely, the vanishing of the covariant energy-momentum
tensor at the event horizon, yields aH ¼ 0. Hence, the
anomalous covariant energy-momentum tensor (4.7) is

~T r
t ðrÞ ¼ ~Nr

t ðrÞ � ~Nr
t ðrHÞ: (4.9)

In what follows we restore in our formulas the value of the
AdS radius l, which had been set to l ¼ 1. So, the metric
function is

fðrÞ ¼ r2

l2
� 1� 2�

r
: (4.10)

We remind the reader that the Hawking flux is measured at
infinity, where there is no gravitational anomaly, and in

HAWKING RADIATION VIA GRAVITATIONAL ANOMALIES . . . PHYSICAL REVIEW D 79, 084022 (2009)

084022-5



[8,9,11] it was given by the anomaly-free (or conserved)
energy-momentum tensor. In [8,9,11] this required split-
ting the space into two distinct regions, one near the
horizon and the other away from it, and using both the
anomalous Ward identity in the vicinity of the horizon and
the normal Ward identity in the exterior region. This is
redundant if one observes that, for the metric (3.20) and the
specific metric function fðrÞ of the ð3þ 1Þ-dimensional
topological black hole of genus ~g ¼ 2, the gravitational
anomaly vanishes at asymptotic infinity, r ! 1. Indeed,
we see that in this limit

���

96�
ffiffiffiffiffiffiffiffiffiffiffiffi�gð2Þ

p @�R ¼ � ��1

96�
f000 ¼ � ��1

96�

12�

r4
! 0

(4.11)

and

@r ~N
r
t ¼ 1

96�
@r

�
ff00 � f02

2

�
¼ 1

96�
f@rf

00

¼ 1

96�

�
12�

l2r2
� 12�

r4
� 24�2

r5

�
! 0: (4.12)

It is also important to notice that although the gravitational
anomaly vanishes at infinity, the ~Nr

t does not, since

~N r
t ðr ! 1Þ ¼ � l�2

48�
; (4.13)

because the spacetime asymptotically is not flat but AdS.
The last three equations, and observation of Eq. (4.5),
imply that the anomaly-free (or conserved) energy-
momentum tensor, which is the energy flux � measured
at infinity, is given by

� ¼ ~Tr
t ðr ! 1Þ � ~Nr

t ðr ! 1Þ

¼ � l�2

48�
� ~Nr

t ðrHÞ �
�
� l�2

48�

�
¼ � ~Nr

t ðrHÞ: (4.14)

Thus,1 the energy flux measured at infinity is

� ¼ � ~Nr
t ðrHÞ ¼ 1

192�
f02ðrHÞ; (4.15)

or in a different form,

� ¼ �

12

�
f0ðrHÞ
4�

�
2
: (4.16)

A beam of massless blackbody radiation moving in the
positive r direction at a temperature T has a flux of the
form� ¼ �

12T
2. Therefore, we see that the flux (4.16) has a

form equivalent to blackbody radiation with a temperature

TH ¼ f0ðrHÞ
4�

¼ �

2�
: (4.17)

This temperature is exactly the Hawking temperature of a
ð3þ 1Þ-dimensional topological black hole of genus ~g ¼ 2
as determined in [16]. Hence, � is the Hawking flux.

V. HAWKING RADIATION FROM ATBH
CONFORMALLY COUPLED TO A SCALAR FIELD

Another interesting nonspherical background is a TBH
conformally coupled to a scalar field. Consider four-
dimensional gravity with a negative cosmological constant
ð� ¼ �3l�2Þ and a scalar field 	ðxÞ described by the
action

I½g��;		 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
RE þ 6l�2

16�G

� 1

2
g��@�	@�	� Vð	Þ

�
; (5.1)

where RE is the Ricci scalar in the Einstein frame, l is the
AdS radius, and G is Newton’s constant. We take the
following self-interaction potential:

Vð	Þ ¼ � 3

4�Gl2
sinh2

ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
	: (5.2)

It was proved in [14] that there is a static black hole
solution (MTZ black hole) with topology R2 � �, where
� is a two-dimensional manifold of constant negative
curvature, which is locally isomorphic to the hyperbolic
manifold H2 and of the form

� ¼ H2=�; � � Oð2; 1Þ; (5.3)

where � is a freely acting discrete subgroup (i.e. without
fixed points) of isometries. This black hole solution is
given by

ds2 ¼ rðrþ 2G�Þ
ðrþG�Þ2

�
�
�
r2

l2
�

�
1þG�

r

�
2
�
dt2

þ
�
r2

l2
�

�
1þG�

r

�
2
��1

dr2 þ r2d�2

�
; (5.4)

and the scalar field is

	ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
3

4�G

s
arctanh

G�

rþG�
: (5.5)

Here d�2 is the line element of the two-dimensional mani-
fold �,

1In the case of an asymptotically flat spacetime treated in [26–
28], it was ~Nr

t ðr ! 1Þ ¼ 0 and the gravitational anomaly van-
ished at infinity, so that the energy flux was calculated as � ¼
~Tr
t ðr ! 1Þ ¼ � ~Nr

t ðrHÞ. The difference in the case of the ð3þ
1Þ-dimensional TBH of genus ~g ¼ 2 is that, although the gravi-
tational anomaly vanishes at infinity, the ~Nr

t ðr ! 1Þ is not zero,
due to the fact that the spacetime is asymptotically AdS, so one
must take it into consideration according to Eq. (4.5), in order to
find the correct conserved energy-momentum tensor at infinity.
Of course, if we put ~Nr

t ðr ! 1Þ ¼ 0 in Eqs. (4.4), (4.5), (4.9),
and (4.14), we retrieve the result for the asymptotically flat case.
Note that, finally, for both the asymptotically AdS spacetime and
the asymptotically flat spacetime, the energy flux is given by the
equation � ¼ � ~Nr

t ðrHÞ.
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d�2 ¼ d�2 þ sinh2�d’2; (5.6)

where � � 0 and 0 � ’< 2� are the coordinates of the
hyperbolic space H2. The mass of this solution is given by

M ¼ �

4�
�; (5.7)

where � denotes the area of � and �>�l=4G is a
constant. Performing a conformal transformation with a
scalar field redefinition of the form

ĝ �� ¼
�
1� 4�G

3
�2

��1
g��;

� ¼
ffiffiffiffiffiffiffiffiffiffi
3

4�G

s
tanh

ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
	;

(5.8)

the action (5.1) and (5.2) reads

I½ĝ��;�	 ¼
Z

d4x
ffiffiffiffiffiffiffi�ĝ

p �
R̂þ 6l�2

16�G
� 1

2
ĝ��@��@��

� 1

12
R̂�2 � 2�G

3l2
�4

�
: (5.9)

In this frame the scalar field equation is conformally
invariant, since the matter action is invariant under arbi-
trary local rescalings ĝ�� ! �2ðxÞĝ�� and � ! ��1�.

The black hole solution (5.4) and (5.5) acquires a simple
form once expressed in the conformal frame,

dŝ2 ¼ �
�
r2

l2
�

�
1þG�

r

�
2
�
dt2

þ
�
r2

l2
�

�
1þG�

r

�
2
��1

dr2 þ r2d�2; (5.10)

with

�ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
3

4�G

s
G�

rþG�
: (5.11)

We define

fðrÞ � r2

l2
�

�
1þG�

r

�
2
; (5.12)

and the metric (5.10) is written as

dŝ2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�2 þ r2sinh2�d’2:

(5.13)

We consider only the case in which the two-dimensional
manifold � is a compact two-dimensional manifold of
genus ~g ¼ 2, with constant negative curvature, after the
identifications that we have mentioned in Sec. II. For non-
negative mass � � 0, this solution possesses only one
event horizon at

rþ ¼ l

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G�

l

s �
; (5.14)

and � is regular everywhere. For negative mass �l=4<
G�< 0, the metric (5.10) develops three horizons, two of
which are event horizons located at r�� and at rþ,

r�� ¼ l

2

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4G�

l

s �
; (5.15)

r� ¼ l

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G�

l

s �
; (5.16)

rþ ¼ l

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4G�

l

s �
; (5.17)

which satisfy 0< r�� <�G�< r� < l=2< rþ. The
scalar field � is singular at r ¼ �G�. The Ricci scalar
of the black hole solution (5.10) in the conformal frame is

R̂ ¼ �12l�2: (5.18)

As before, we consider a complex scalar field 	̂ðxÞ in the
background of the MTZ black hole of genus ~g ¼ 2, with a
scalar hair �, in the conformal frame. This field has an
action of the form

S ¼ Sfree þ Sint; (5.19)

where Sfree is the free part of the action,

Sfree ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�ĝ
p

	̂�
�
� 1

f
dt2 þ 1

r2
@rðr2f@rÞ

þ 1

r2
��

�
	̂; (5.20)

and Sint is the part of the action which includes a mass term,
potential terms, and interaction terms, where we have

ignored the interaction of 	̂ with �. We perform a partial

wave decomposition of 	̂ in terms of the functions Ym
� ,

	̂ðt; r; �; ’Þ ¼ Xþ1

m¼�1

R�mðt; rÞ
r

Ym
� ð�; ’Þ: (5.21)

We substitute the partial wave decomposition in the free
action and transform to the tortoise coordinates ðt; r�Þ
defined by (2.15). Then, one finds that in the region near
the event horizon rþ, which for �l=4<G�< 0 is the
outer event horizon and for � � 0 is the unique event
horizon, the effective radial potentials for partial wave
modes of the field contain the suppression factor fðrðr�ÞÞ
and vanish exponentially fast. The same applies to the mass
terms and interaction terms of the part Sint. Thus, physics in
the region near the horizon can be effectively described by
an infinite collection of ð1þ 1Þ-dimensional free massless
scalar fields, each propagating in a ð1þ 1Þ-dimensional
spacetime, which is given by the ðt; rÞ part of the ð3þ
1Þ-dimensional metric of the MTZ black hole of genus ~g ¼
2 in the conformal frame, that is,

dŝ2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2: (5.22)
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In this two-dimensional background we identify out-
going modes near the horizon as right-moving modes and
ingoing modes as left-moving modes. Neglecting the clas-
sically irrelevant ingoing modes in the region near the
horizon, the effective two-dimensional theory becomes
chiral and a gravitational anomaly appears. The covariant
gravitational anomaly for right-handed fields reads

r�
~T�� ¼ ���

96�
ffiffiffiffiffiffiffiffiffiffiffiffi�ĝð2Þ

p @�R; (5.23)

where ~T
�
� is the covariant energy-momentum tensor, �01 ¼

��10 ¼ 1, and R ¼ �f00ðrÞ and ĝð2Þ are the Ricci scalar

and the metric determinant of the reduced metric (5.22),
respectively. Taking the � ¼ t component of the two-
dimensional covariant anomaly (5.23), we have

@r ~T
r
t ¼ 1

96�
f@rf

00: (5.24)

This equation is written as

@r ~T
r
t ¼ @r ~N

r
t (5.25)

or

@rð ~Tr
t � ~Nr

t Þ ¼ 0; (5.26)

where

~N r
t ¼ 1

96�

�
ff00 � f02

2

�
: (5.27)

Solving Eq. (5.25) we find

~T r
t ðrÞ ¼ bþ þ ~Nr

t ðrÞ � ~Nr
t ðrþÞ: (5.28)

Here bþ is an integration constant. Implementing the usual
covariant boundary condition,

~T r
t ðrþÞ ¼ 0; (5.29)

yields bþ ¼ 0. Therefore, the anomalous covariant energy-
momentum tensor is

~T r
t ðrÞ ¼ ~Nr

t ðrÞ � ~Nr
t ðrþÞ: (5.30)

We notice that for the metric (5.22), with a metric function
fðrÞ given by Eq. (5.12), the gravitational anomaly van-
ishes at asymptotic infinity r ! 1, but the ~Nr

t does not due
to the fact that, asymptotically, the spacetime is AdS.
Indeed, in this limit we have

���

96�
ffiffiffiffiffiffiffiffiffiffiffiffi�ĝð2Þ

p @�R ¼ � ��1

96�
f000

¼ � ��1

96�

�
12G�

r4
þ 24ðG�Þ2

r5

�
! 0

(5.31)

and

@r ~N
r
t ¼ 1

96�

�
12G�

l2r2
þ 24ðG�Þ2

l2r3
� 12G�

r4
� 48ðG�Þ2

r5

� 60ðG�Þ3
r6

� 24ðG�Þ4
r7

�
! 0; (5.32)

but

~N r
t ðr ! 1Þ ¼ � l�2

48�
: (5.33)

Using the same arguments as in Sec. IV, we see that the
anomaly-free energy-momentum tensor, and thus the en-
ergy flux � measured at infinity, is

� ¼ ~Tr
t ðr ! 1Þ� ~Nr

t ðr ! 1Þ

¼ � l�2

48�
� ~Nr

t ðrþÞ �
�
� l�2

48�

�
¼ � ~Nr

t ðrþÞ

¼ 1

192�
f02ðrþÞ; (5.34)

or in a different form,

� ¼ �

12

�
f0ðrþÞ
4�

�
2
: (5.35)

This flux is equivalent to a flux of blackbody radiation with
a temperature

TH ¼ f0ðrþÞ
4�

¼ �

2�
; (5.36)

where � � 1
2 ð@rfÞjrþ is the surface gravity. The tempera-

ture TH is identical to the Hawking temperature of the
MTZ black hole as determined in [29,30]. Hence, � is
identified with the Hawking flux of the MTZ black hole,
which is a ð3þ 1Þ-dimensional topological black hole
conformally coupled to a scalar field.

VI. ROBINSON-WILCZEK METHOD WITH A
SCALAR FIELD NONMINIMALLY COUPLED TO

THE BLACK HOLE BACKGROUND

In the previous section we showed that the scalar field
�, which is coupled to the black hole, does not explicitly
contribute to the Hawking radiation. The reason is that the
scalar field does not introduce any new conserved charge,
and its only effect is to alter the form of the background
black hole solution to a maximal Reissner-Nordström-AdS
black hole. In the Robinson-Wilczek method this is ex-
pected since the scalar field is time independent, and there-
fore it cannot generate a flux. For this reason, if we had
tried to perform the usual reduction procedure only with
the scalar field �, assuming that it gives Hawking radia-
tion, we would have found that its action in the vicinity of
the event horizon vanishes due to the suppression factor
fðrðr�ÞÞ (see Appendix B). However, it is interesting to
investigate what happens if the scalar field, which parame-
trizes the matter, backreacts on the geometry. In this direc-
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tion we will discuss the consequences that possibly occur
in the standard Robinson-Wilczek method when this scalar
field is nonminimally coupled to gravity.

We consider, for simplicity, a static, spherically sym-
metric, four-dimensional spacetime

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�2 þ r2sin2�d’2;

(6.1)

where fðrÞ is a function which admits at least one event
horizon. The event horizon is located at r ¼ rH where
fðrHÞ ¼ 0 and the surface gravity is � � 1

2 ð@rfÞjrH . We

also consider an interacting scalar field 	ðxÞ, which is
nonminimally coupled to the black hole background (6.1)
. The action of this scalar field is

S½		¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

g��@�	@�	�X1
n¼2

�n	
n��R	2

�
;

(6.2)

where �n are a set of arbitrary coupling constants (for
example, �2 � m2 gives the mass), R is the Ricci scalar,
and � is a coupling constant to gravity. In particular,

� ¼
�
0 for minimally coupled 	ðxÞ
D�2

4ðD�1Þ for conformally coupled 	ðxÞ; (6.3)

for aD-dimensional spacetime. For the spacetime (6.1) it is
D ¼ 4 and � ¼ 1=6, if 	ðxÞ is conformally coupled to the
black hole background. We can write the action (6.2) as the
sum of three different terms, each having a different physi-
cal meaning,

S ¼ Sfree þ Sint þ Sc; (6.4)

where the first term is

Sfree ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

g��@�	@�	

¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

	r2	; (6.5)

and r2 is the Laplace-Beltrami operator. Sfree is the free
part of the action. The second term is

Sint ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p X1

n¼2

�n	
n; (6.6)

and describes the interactions of the scalar field. The third
term is

Sc ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

�R	2; (6.7)

and it is the part of the action, S, which describes the
nonminimal coupling of the scalar field to the black hole
background (6.1). We will mainly focus our attention on
Sc. The Ricci scalar is

R ¼ �f00ðrÞ � 4f0ðrÞ
r

� 2fðrÞ
r2

þ 2

r2
; (6.8)

where a prime denotes differentiation with respect to r. The
partial wave decomposition of the scalar field in terms of
the spherical harmonics is

	ðxÞ ¼ X
l;m

ulmðt; rÞ
r

Ym
l ð�;’Þ; (6.9)

and substituting to the action (6.7), we find, after perform-
ing the integrations on �, ’ with the help of the normal-
ization and orthogonality conditions of the spherical
harmonics, that

Sc ¼ � 1

2

Z
dtdr�R

X
l1;l2

X
m1;m2

ul1m1
ul2m2


l1l2
m1m2
:

(6.10)

Using the expression (6.8) for R, we get

Sc ¼ 1

2

Z
dtdr�

�
f00ðrÞ þ 4f0ðrÞ

r
þ 2fðrÞ

r2
� 2

r2

�
� X

l1;l2

X
m1;m2

ul1m1
ul2m2

ð2ÞCfm1;m2g
fl1;l2g ; (6.11)

where ð2ÞCfm1;m2g
fl1;l2g � 
l1l2
m1m2

. A transformation to tor-

toise coordinates ðt; r�Þ, defined by Eq. (2.15), transforms
Sc to

Sc� ¼ 1

2

Z
dtdr�

�
fðrðr�ÞÞ�

�
f00ðrðr�ÞÞ þ 4f0ðrðr�ÞÞ

rðr�Þ
þ 2fðrðr�ÞÞ

r2ðr�Þ
� 2

r2ðr�Þ
�

� X
l1;l2

X
m1;m2

ul1m1
ul2m2

ð2ÞCfm1;m2g
fl1;l2g

�
; (6.12)

where now r, fðrÞ, ul1m1
, ul2m2

are thought as implicit

functions of r� and the prime still denotes differentiation
with respect to r. In the region near the event horizon we
have proved that

rðr�Þ 
 Ae2�r� þ rH (6.13)

and

fðrðr�ÞÞ 
 2�Ae2�r� : (6.14)

Hence, the limit r ! rH is equivalent to r� ! �1 in
tortoise coordinates and fðrðr�ÞÞ is a suppression factor
near the horizon. Now, we examine how each term of Sc�
behaves in the vicinity of the horizon, using Eqs. (6.13) and
(6.14), in order to find which terms are dominant. We easily
see that in this region

fðrðr�ÞÞ 2fðrðr�ÞÞ
r2ðr�Þ

! 0; (6.15)
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� fðrðr�ÞÞ 2

r2ðr�Þ
! 0: (6.16)

The other two terms need special attention, so for the
region near the event horizon we write

f0ðrðr�ÞÞ ¼ @fðrðr�ÞÞ
@r

¼ @fðrðr�ÞÞ
@r�

@r�
@r

¼ @fðrðr�ÞÞ
@r�

1

fðrðr�ÞÞ ¼
@

@r�
½lnfðrðr�ÞÞ	 
 2�:

(6.17)

Thus, we find for r� ! �1

fðrðr�ÞÞ 4f
0ðrðr�ÞÞ
rððr�ÞÞ ! 0: (6.18)

Similarly, we write

fðrðr�ÞÞ@
2fðrðr�ÞÞ
@r2

¼ fðrðr�ÞÞ @@r
�
@

@r�
lnfðrðr�ÞÞ

�

¼ fðrðr�ÞÞ @

@r�

�
@

@r�
lnfðrðr�ÞÞ

�
@r�
@r

¼ fðrðr�ÞÞ @

@r�

�
@

@r�
lnfðrðr�ÞÞ

�
1

fðrðr�ÞÞ
¼ @

@r�

�
@

@r�
lnfðrðr�ÞÞ

�
: (6.19)

Hence, we get

fðrðr�ÞÞf00ðrðr�ÞÞ ! 0: (6.20)

From Eqs. (6.15), (6.16), (6.18), and (6.20) the action (6.12)
in the region near the event horizon becomes Sc� ¼ 0 and
therefore

Sc ¼ 0: (6.21)

Regarding the part Sint of the total action, which describes
the interactions of the scalar field 	ðxÞ, after performing a
partial wave decomposition of 	ðxÞ in terms of the spheri-
cal harmonics and upon transforming to the tortoise coor-
dinates, one finds [8,9,11] that it vanishes exponentially
fast near the event horizon

Sint ¼ 0; (6.22)

due to the presence of the suppression factor fðrðr�ÞÞ.
Concerning the free part Sfree of the total action, after
performing a partial wave decomposition of 	ðxÞ of the
form of (6.9), transforming to the tortoise coordinates, and
keeping only dominant terms [8,9,11], we find in the region
near the event horizon

Sfree ¼ � 1

2

X
l;m

Z
dtdrulm

�
� 1

f
@2t þ @rðf@rÞ

�
ulm:

(6.23)

Adding Eqs. (6.21), (6.22), and (6.23) we get the total
action for the region near the event horizon,

S ¼ X
l;m

� 1

2

Z
dtdrulm

�
� 1

f
@2t þ @rðf@rÞ

�
ulm: (6.24)

Thus, physics near the horizon can be described using an
infinite set of ð1þ 1Þ-dimensional massless scalar fields,
each propagating in a ð1þ 1Þ-dimensional background
with a metric

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2: (6.25)

In conclusion, the nonminimal coupling of the scalar
field to the gravitational background does not introduce
any special modification to the reduction procedure, since
the part of the action Sc, which describes this nonminimal
coupling, vanishes in the region near the event horizon.
Then, the standard Robinson-Wilczek method proceeds in
exactly the same way as in the case of a minimally coupled
scalar field. Of course, the preceding analysis can be
generalized for D-dimensional spacetimes (D> 4), which
have a metric of the type

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�2

D�2; (6.26)

with the difference that we must expand the scalar field in
terms of the ðD� 2Þ-dimensional spherical harmonics and
integrate over a ðD� 2Þ-dimensional sphere.
We should clarify one point here. The wave equation of a

scalar field minimally coupled or nonminimally coupled to
gravity in higher than two dimensions will develop a
potential which, away from the horizon, will modify
Hawking radiation. Therefore, the actual Hawking radia-
tion observed at infinity is calculated through the grey-
body factors. However, in the Robinson-Wilczek method
the thermal Hawking flux results from the infinite ð1þ
1Þ-dimensional fields which act as the thermal source of
this flux.

VII. SUMMARY

We studied the method of calculating Hawking radiation
via gravitational anomalies in gravitational backgrounds of
constant negative curvature. At first we discussed the mode
analysis of the scalar wave equation in the background of a
topological black hole. In the case of ð3þ 1Þ-dimensional
topological black holes of genus ~g ¼ 2, we performed the
dimensional reduction procedure to two dimensions and
we showed that near the horizon the matter scalar field is
reduced to an infinite collection of ð1þ 1Þ-dimensional
free massless scalar fields. To calculate Hawking radiation
from the topological black holes of genus ~g ¼ 2, we
followed the covariant anomalies approach proposed in
[26–28], which we modified in order to include asymptoti-
cally nonflat spacetimes, because it is conceptually simpler
and technical problems connected with a complicated ho-
rizon structure of the topological black holes of genus ~g ¼
2 can be avoided.
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We also applied this method to a ð3þ 1Þ-dimensional
topological black hole of genus ~g ¼ 2 conformally
coupled to a scalar field, and we retrieved the correct
Hawking flux and temperature. These solutions are inter-
esting because they are examples of a scalar field back-
reacting on the geometry. Because the scalar field is static it
cannot give an extra contribution to the Hawking flux.
However, there exist solutions of BTZ-type black holes
coupled to time-dependent scalar fields [31]. These solu-
tions are not analytical so it is not clear how the Robinson-
Wilczek method can be applied to these backgrounds.

It is interesting to investigate if the Robinson-Wilczek
method can be applied to general backgrounds where the
scalar field responsible for the Hawking flux backreacts on
the geometry. In this direction, we addressed the problem
of using, in the method of gravitational anomalies, a scalar
field nonminimally coupled to the gravitational back-
ground, instead of a minimally coupled scalar field as is
customary. We proved explicitly that the nonminimal cou-
pling does not affect the dimensional reduction procedure
or the method in general, since the part of the action which
describes the nonminimal coupling vanishes in the region
near the event horizon. It is also interesting to examine the
applicability of the gravitational anomaly method in fully
dynamical backgrounds, but one first has to tackle more
fundamental problems like how one can apply the tech-
nique of dimensional reduction to time-dependent back-
grounds and how one can uniquely define the surface
gravity for time-dependent horizons (for a recent discus-
sion on dynamical black holes, see [32]).
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APPENDIX A: THE FUNCTIONS Ym
�

The functions Pmn
l ðzÞ [17,19] form the canonical basis

for the irreducible representations of the group SLð2; CÞ
and can be viewed as playing the same role for the group
SU(1, 1). They are defined in the complex z plane with a
cut located on the real axis between �1 and þ1. A con-
venient representation, which can serve as a definition for
the functions Pmn

l ðzÞ, is

Pmn
l ðcosh�Þ ¼ 1

2�i

Z
C
dz

�
cosh

�

2
� z sinh

�

2

�
lþn

�
�
sinh

�

2
þ z cosh

�

2

�
l�n

zm�l�1; (A1)

where C is the unit circle prescribed positively,m and n are
integers, and l can be complex (typically of the form l ¼
� 1

2 � i�, � > 0). The generating function of the Pmn
l is

X1
m¼�1

Pmn
l ðcosh�Þe�im’ ¼ e�in’

�
cosh

�

2
þ ei’ sinh

�

2

�
lþn

�
�
cosh

�

2
þ e�i’ sinh

�

2

�
l�n

:

(A2)

In the case of n ¼ 0, we have

X1
m¼�1

Pm0
�ð1=2Þ�i�ðcosh�Þe�im’

¼ ðcosh�þ sinh� cos’Þ�ð1=2Þ�i�: (A3)

The functions Pmn
l have the following properties:

P mn
l ðcosh�Þ ¼ P�m;�n

l ðcosh�Þ; (A4)

P mn
l ðcosh�Þ ¼ ð�1Þm�nP nm

�l�1ðcosh�Þ; (A5)

½Pmn
l ðcosh�Þ	� ¼ Pmn

l� ðcosh�Þ: (A6)

The functions Pm0
l are related to the associated Legendre

functions Pm
l through

P m0
l ðcosh�Þ ¼ �ðlþ 1Þ

�ðlþmþ 1ÞP
m
l ðcosh�Þ; (A7)

and for l ¼ � 1
2 þ i�, this is

P m0
�ð1=2Þþi�ðcosh�Þ ¼

�ði�þ 1
2Þ

�ði�þmþ 1
2Þ
Pm
�ð1=2Þþi�ðcosh�Þ:

(A8)

The functions Pm0
�ð1=2Þþi� form a complete set of functions

on the pseudosphere and satisfy the orthogonality relationZ 1

0
d� sinh�Pm0

�ð1=2Þþi�ðcosh�ÞðPm0
�ð1=2Þþi�0 ðcosh�ÞÞ�

¼ 1

4�2
� tanhð��Þ
ð�� �0Þ; (A9)

where �, �0 � 0. When �, �0 take discrete real values, the
delta function 
ð�� �0Þ becomes the Kronecker delta 
��0 .

We also note that the associated Legendre functions satisfy
[17,19] the equation

��½Pm
l ðcosh�Þeim’	 ¼ lðlþ 1ÞPm

l ðcosh�Þeim’; (A10)

or equivalently

��½Pm
�ð1=2Þþi�ðcosh�Þeim’	
¼ �ð�2 þ 1

4ÞPm
�ð1=2Þþi�ðcosh�Þeim’; (A11)

where �� is the differential operator

�� ¼ 1

sinh�
@�ðsinh�@�Þ þ 1

sinh2�
@2’: (A12)
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We define the functions Ym
� as

Y m
� ð�; ’Þ �

�
2�

� tanhð��Þ
�
1=2

Pm0
�ð1=2Þþi�ðcosh�Þeim’

¼
�

2�

� tanhð��Þ
�
1=2

� �ði�þ 1
2Þ

�ði�þmþ 1
2Þ
Pm
�ð1=2Þþi�ðcosh�Þeim’:

(A13)

From this definition and Eq. (A11) we see that

��Ym
� ð�;’Þ ¼ �ð�2 þ 1

4ÞYm
� ð�; ’Þ: (A14)

The functions Ym
� form a complete set of functions on the

pseudosphere H2. For the two-dimensional manifold � ¼
H2=�, which is a compact manifold of genus ~g ¼ 2, they
form a complete set of functions, � takes discrete real
values and they must satisfy four periodicity conditions,
since the functions Pm0

l ðcosh�Þ satisfy four periodicity

conditions [17], due to the compactness of�. The orthogo-
nality condition of the Ym

� is found from Eq. (A9) to be

Z 1

0
d�

Z 2�

0
d’ sinh�Ym

� ð�; ’ÞðYm0
�0 ð�; ’ÞÞ� ¼ 
��0
mm0 :

(A15)

APPENDIX B: DIMENSIONAL REDUCTION FOR
THE SCALAR HAIR OF THE MTZ BLACK HOLE

IN THE CONFORMAL FRAME

We are going to perform the dimensional reduction
procedure for the action (5.9). We consider the region
near the event horizon rþ, which is the only event horizon
for non-negative masses and the outermost event horizon
for negative masses. In this region, as we have previously
seen, we have

rðr�Þ 
 Ae2�r� þ rþ (B1)

and

fðrðr�ÞÞ 
 2�Ae2�r� : (B2)

Hence, the limit r ! rþ is equivalent to r� ! �1 in
tortoise coordinates and fðrðr�ÞÞ is a suppression factor
near the horizon. After transforming to tortoise coordi-
nates, the action (5.9) takes the form

I½ĝ��;�	� ¼
Z

dtdr�d��r
2ðr�Þfðrðr�ÞÞ

�
R̂ðrðr�ÞÞ þ 6l�2

16�G

� 1

2
ĝ��@��ðrðr�ÞÞ@��ðrðr�ÞÞ

� 1

12
R̂ðrðr�ÞÞ�2ðrðr�ÞÞ � 2�G

3l2
�4ðrðr�ÞÞ

�
;

(B3)

where d�� ¼ sinh�d�d’. Now, we examine the behavior
of each term of this action, using Eqs. (B1) and (B2). The
scalar field in tortoise coordinates near the event horizon is

�ðrðr�ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffi
3

4�G

s
G�

rððr�ÞÞ þG�
!

ffiffiffiffiffiffiffiffiffiffi
3

4�G

s
G�

rþ þG�
;

(B4)

and for the terms of the action (B3) in the region near the
event horizon, we getZ

dr�r2ðr�Þfðrðr�ÞÞ
�
� 2�G

3l2
�4ðrðr�ÞÞ

�
! 0; (B5)

Z
dr�r2ðr�Þfðrðr�ÞÞ 6l�2

16�G
! 0: (B6)

Substituting R̂ from Eq. (5.18) to the third term of the
action (B3), we getZ

dr�fðrðr�ÞÞl�2�2ðrðr�ÞÞ ! 0: (B7)

Similarly, we find

Z
dr�r2ðr�Þfðrðr�ÞÞ R̂ðrðr�ÞÞ16�G

! 0: (B8)

The remaining term of the action to be examined is

� 1

2

�
Z

dtdr�d��r
2ðr�Þfðrðr�ÞÞĝ��@��ðrðr�ÞÞ@��ðrðr�ÞÞ;

(B9)

and originates from the part of the action (5.9), which is

� 1

2

Z
d4x

ffiffiffiffiffiffiffi�ĝ
p

ĝ��@��ðrÞ@��ðrÞ

¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�ĝ
p

ĝrr@r�ðrÞ@r�ðrÞ

¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�ĝ
p

fðrÞ 3G�
2

4�

1

ðrþG�Þ4 : (B10)

Therefore, in tortoise coordinates and always near the
horizon, from the last equation, we get

� 3G�2

8�

Z
dtdr�d��r

2ðr�Þf2ðrðr�ÞÞ 1

ðrðr�Þ þG�Þ4 ! 0;

(B11)

that is,

� 1

2

Z
dtdr�d��r

2ðr�Þfðrðr�ÞÞĝ��@�

��ðrðr�ÞÞ@��ðrðr�ÞÞ ! 0: (B12)

Adding the expressions (B5)–(B8) and (B12), we find that
the action (B3) in tortoise coordinates and in the region
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near the event horizon vanishes. Thus, in the vicinity of the
event horizon the action of the conformally coupled scalar
field of the MTZ black hole is

I½ĝ��;�	 ¼ 0: (B13)
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