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Extremal black hole/CFT correspondence in (gauged) supergravities
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We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to
large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence,
proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-
horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral
theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in
dimension D there are [(D — 1)/2] commuting Virasoro algebras. We consider a general canonical class
of near-horizon geometries in arbitrary dimension D, and show that in any such metric the [(D — 1)/2]
central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-
Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of
the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity
solutions with four charges in D = 4 and three charges in D = 5, that their extremal near-horizon
geometries indeed lie within the canonical form. This establishes that, in all these examples, the
microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies

of the extremal rotating black holes.
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I. INTRODUCTION

A recent paper [1] proposed a new holographic duality
symmetry in quantum gravity, in which the quantum states
in the near-horizon region of a four-dimensional extremal
Kerr black hole are identified with a certain two-
dimensional chiral conformal field theory (CFT). This
CFT arises by examining the asymptotic symmetry gener-
ators associated with a class of diffeomorphisms of the
near-horizon Kerr geometry that obey suitably chosen
boundary conditions at infinity. The Lie brackets of the
infinitesimal diffeomorphism transformations close on a
centerless Virasoro algebra. By defining charges associated
with the transformations, and evaluating the Dirac brackets
of the charges, one obtains a Virasoro algebra with a
central charge that is related to the angular momentum of
the black hole. By using the Cardy formula, the micro-
scopic entropy of the chiral CFT can be computed. This
calculation requires that one invoke the ideas of Frolov and
Thorne [2] in order to define a quantum theory in the
extremal black hole geometry, and to associate a nonzero
temperature Tgr with the vacuum state. It was shown in [1]
that the microscopic entropy so calculated agrees precisely
with the Bekenstein-Hawking entropy of the extremal Kerr
black hole. (See [3-9] for some earlier related work, and
[10-15] for recent follow-ups.)

The proposed Kerr/CFT correspondence was extended
to a wider class of rotating black hole backgrounds in [11].
It was shown that the microscopic entropy of the dual CFT
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again agrees with the Bekenstein-Hawking entropy in the
case of extremal Kerr-anti-de Sitter (AdS) black holes,
both in four dimensions and also in all higher dimensions.
A new feature that arises in more than four dimensions is
that there is a Virasoro algebra, and a corresponding chiral
CFT, associated with each of the orthogonal 2-planes in
which the black hole is rotating. Curiously, although the
central charges are different for the different CFTs, their
Frolov-Thorne temperatures differ too, in precisely such a
way that the Cardy formula leads to an identical micro-
scopic entropy for each of the CFTs. Furthermore, each
one of these entropies agrees precisely with the
Bekenstein-Hawking entropy of the extremal rotating
Kerr-AdS black hole [11].

It is perhaps useful at this point to elaborate a little on the
role of the Frolov-Thorne temperature in the calculation of
microscopic entropy via the Cardy formula. The Cardy
formula gives the entropy of the two-dimensional CFT as

cL
S = 27m4|—,
7T\/é

where c is the central charge and L is the energy. The
temperature of the CFT is then given by dL = TdS, and so

from (1.1) we have dS = m+/c/(6L)TdS and hence

(1.1)

\/Z=W ET.

. (1.2)
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Substituting back into (1.1) gives

(1.3)

It is in this form, with ¢ being the central charge of the
Virasoro algebra, and T being the Frolov-Thorne expres-
sion for the temperature of the near-horizon metric, that the
Cardy formula delivers an expression for the microscopic
entropy of the CFT that can be compared with the
Bekenstein-Hawking entropy of the extremal black hole.

Another extension of the original proposal in [1] has also
recently been given, in which it was shown that the micro-
scopic entropy of the dual CFT agrees with the Bekenstein-
Hawking entropy in the case of the Kerr-Newman-(A)dS
charged rotating extremal black hole in four dimensions
[13]. It was also noted in [13] that if one makes an
assumption about the Frolov-Thorne temperature for black
hole solutions to a class of four-dimensional theories in-
volving the coupling of gravity to electromagnetic and
scalar fields, one could establish an equality of the micro-
scopic CFT entropy and the Bekenstein-Hawking entropy
for a wide class of higher-dimensional extremal black
holes that are related by dimensional reduction.

In this paper, we shall probe the Kerr/CFT correspon-
dence for a large class of extremal higher-dimensional
rotating charged black holes. Our strategy will be first to
establish, for a general ansatz for near-horizon geometries,
a result that demonstrates the equality of the microscopic
entropy derived via the Cardy formula and the Bekenstein-
Hawking entropy. Then, for any specific black hole solu-
tion it only remains to construct its extremal near-horizon
limit, and to show that it is contained within the general
ansatz mentioned above, in order to establish the equality
of the microscopic and the Bekenstein-Hawking entropies
for that case.

The charged rotating black hole examples that we shall
consider in this paper include: the solution in four-
dimensional N = 2 (Einstein-Maxwell) gauged super-
gravity [16]; five-dimensional minimal gauged supergrav-
ity [17]; four-dimensional ungauged supergravity with
4 unequal charges [18]; four-dimensional gauged super-
gravity with 2 sets of pairwise equal charges [19]; five-
dimensional ungauged supergravity with 3 unequal
charges [20]; five-dimensional gauged supergravity with
3 charges, of which 2 are equal [21-23]; five-dimensional
gauged supergravity with both angular momenta equal and
3 charges [24]; six-dimensional gauged supergravity [25];
seven-dimensional gauged supergravity with two equal
charges [26]; the higher-dimensional Kerr-AdS solution
[27,28]; and a general class of black holes in arbitrary
dimension with two equal charges [26,29].
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II. GENERAL EXTREMAL ROTATING BLACK
HOLES AND CFT DUALS

It was argued in [13] from the general structure of four-
dimensional extremal rotating black holes that the entropy
of the black hole can be obtained from the Cardy formula
of the two-dimensional conformal field theory in the
boundary of the black hole near-horizon geometry. Here,
we shall present a general argument for higher-
dimensional black holes.

We consider first D = 5 black holes that are asymptotic
to flat or AdS spacetimes, with the asymptotic metric given
by

dr?
1+ /€2
+ #2(d6* + cost0d 3 + sin20d H3).

ds* = —(1 + ¢ )di* +
(2.1)

The discussion that follows is applicable for both vanishing
and nonvanishing cosmological constant £~ 2. In the ex-
tremal limit, it is possible to extract the near-horizon
geometry as an exact solution in its own right, by first
making the coordinate transformations

(ﬁl = ¢1 + Q(l);’
t (2.2)
2aTRrgA”

F=ry(1+ Ap),
by =y + 097, i=

Here ry is defined to be the horizon radius in the extremal
limit. The quantities (¢ are the angular velocities on the
horizon for the two azimuthal angles (;'A)i, with the super-
script O indicating that they are evaluated in the extremal
limit. Let r, be the outer horizon radius of the general
nonextremal black hole, which we regard as one of the
parameters of the general nonextremal family of solutions,
and Ty(ry) be the corresponding Hawking temperature.
The quantity 73 is defined to be

aT,
TP =1 (2.3)
ar+ ry=rop
For later purposes, we also define
a0},
QP = — , (2.4)
Ors lr=r,

where ();(r.) are the angular velocities for the general
nonextremal black hole.

Taking the scaling parameter A to zero, we obtain the
near-horizon geometry of the extremal black hole, whose
metric has the form

dp?

dsg _ A(H)(—pzdtz + —2> + F(H)d@z + Bl(e)é%
p

+ B,(0)(&, + C(0)e,)%, (2.5)
e, =do, + kpdt, &, = do, + kypdt,

where A, B;, C and F are functions of the latitude coor-
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dinate #. The metric can be viewed as an S bundle over
AdS,. The AdS, base of the metric, written here in
Poincaré coordinates (7, p), can be recast in global coor-
dinates (7, ) by means of the transformations

N V1 + r2sint
p=r+~NI1+ r-cosr, t= .
r+ 1+ rrcosrt

(2.6)

Since this implies that pdt = rdt + dvy, where

. 1+ 1+ rsinT
el )

2.7
cosT + rsint 2.7)
it follows that if in addition we send ¢; — &; — k;7, then
the metric (2.5) becomes
2 2y 7.2 dr? 2
dss = A@)| —(1 + r*)dr* + 5|+ F(0)do
r
+ B(0)3 + By(6)(, + C(0)8)), @9
él =d¢1 +k1rdt, Ez=d¢2+k2rdt.
In either form, the constants k; and k, are given by
k ! 2.9
! 27TTZ ’ '
with
T T/O
T, = lim ——— H (2.10)

The quantities 7;, defined first for higher-dimensional
Kerr-AdS black holes in [11], can be interpreted as the
Frolov-Thorne temperatures [1,2] associated with the
CFTs for each azimuthal angle ¢;. The Bekenstein-
Hawking entropy for the extremal black hole is given by

1
SBH = Z [de\/BleFfd(ﬁld(ﬁz

The five-dimensional near-horizon geometry (2.8) has a
pair of commuting diffeomorphisms that generate two
commuting Virasoro algebras:

@2.11)

. 0 . 0

§((i)) = —e ¢ PP — ipre indr —

3 (2.12)
g(Z) = —e~ings — inre ind2

2 Jar

The central charges c; in these Virasoro algebras, at the
level of Dirac brackets of the associated charges an) =
1/@8m) [, kfn), can be calculated in the manner described
in [30,31] and applied in [1], namely, from the m? terms in
the expressions

1

87 93 k;fnz)[£§f—r:,)g’ 8l =

i
——(m* + ;
12(m am)c;, (2.13)

where
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%[gvv#h - gvva'h,u,g- + govvhyo
+ %hV,,{M - h,7V,{,
+ %hw(vﬂf‘r + V‘T{#)] # (dx* A dx), (2.14)

kg[h, g] =

Taking g,,, to be given by (2.8), we find that the central
charges are

6k;S
c; = —k fde,/B B,F fd¢1d¢2 BH, (2.15)
for i = 1 and i = 2. Thus we have
2 2
SBH = ?CITI = ?Csz, (216)

in precise agreement with the microscopic entropy given
by the Cardy formula (1.3).

The argument above can be straightforwardly general-
ized to higher dimensions. The near-horizon geometry of
extremal rotating black holes in D = 2n + € dimensions,
with € = 0, 1, can be written, using Poincaré AdS, coor-
dinates, as

n—1+e
ds> = A ( 2dt2+—) ZF dy: + z gije;e;,
i,j=1
i 1 0
e; = d¢l + kipdt, ki = ﬁ, Ti = _97;0,
2.17)

or alternatively, using global AdS, coordinates, as

d}’2 n—1
r2) + ) Fhdy?
a=1

ds? = A(—(l + r2)dr* +

-1+
Zgéé

éi=do¢; + kird k;, = ! T——TI{?
€ i irat, i 27T, i Q;()'
(2.18)

Here we follow [32] and use a set of unconstrained latitu-
dinal coordinates y,, rather than the direction cosines u,
subject to 37_, u2 = 1 that were used in the original
formulation of the higher-dimensional Ricci-flat [33] or
asymptotically AdS [27,28] rotating black holes. The func-
tions A, F, and g;; depend only on these latitudinal coor-
dinates. The metric has n — 1 + € copies of the Virasoro
algebra. It has been shown that near-horizon geometries
are generally of this form for classes of theories that are of
interest in four and five dimensions [34], and also for
cohomogeneity-1 horizons in arbitrary dimension [35].
We have verified for dimensions D = 7 that the central
charges are given by
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3 n—1 1/2
==k | a"! (det~»- F )
¢ 2 i f Ya glj l!:[l a

x [dg...d, ..

6k;Spn
g

(2.19)

Since this relation does not have any features relying on a
particular dimension, it is very likely to hold in arbitrary
dimension. It follows that

Spy = La?e,T,, for each i,

! (2.20)

holds in general, in complete agreement with the micro-
scopic entropy given by the Cardy formula (1.3).

In the next few sections, we shall examine a large class
of charged rotating black holes in diverse dimensions. We
obtain the near-horizon geometries of these black holes in
the extremal limit. We demonstrate that the metrics can all
be cast into the form (2.17), and hence that the Cardy
formulae are all satisfied.

III. EINSTEIN-MAXWELL ADS SUPERGRAVITIES
IN FOUR AND FIVE DIMENSIONS

We shall start our main discussion with two relatively
simple examples, namely, the charged rotating black holes
in Einstein-Maxwell AdS supergravities in four and five
dimensions.

A. Four-dimensional Einstein-Maxwell AdS super-
gravity
This example, the Kerr-Newman-AdS solution, was dis-
cussed in detail in [13]; we include it here for complete-
ness. The metric is given by

dr? de*\ Agsin?0/ . P4 a2
d32=p2<fr+A_9>+ asplzn (adt—r :a dd))
A/ . asin?0  ~\2
& (-5 ).

p? = 2 + a*cos?6,
A= (#+a®)(1 + 7% —2MF + Q7
Ay =1 — a*€ 2cos?6, 2 =1- a2
3.1

Here Q% = p? + ¢°, with (g, p) being the electric and
magnetic charges. The solution describes a charged black
hole with the outer horizon at 7 = r,, where r, is the
largest root of the function A(#). The metric is asymptoti-
cally AdS, in global coordinates, but with nonvanishing
angular velocity Q, = —a?¢~2. The Hawking tempera-
ture, entropy and angular velocity on the horizon are given
by
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i —a*>— Q>+ il 2(3rk + a?)

Ty = ,
H dr, (rh + a?) (3.2)
_ Ea _a(rh +a?) '
Qd’ N 2+ a% N = ’
+ Ll

The extremal limit is achieved when the parameters M

and Q take the following values:
M =ry+ ro2r: + a®)€72,
o T rolarg (3.3)
0> = r(z) —a*+ r(z)(3r% + a2,

The horizon of the metric is at 7 = r, with the function A
near the horizon given by

A=V(#—ry)?+OF —ry)’,
V=1+(6r]+a*)t2

with
(3.4)

To obtain the near-horizon geometry, we make the coor-
dinate transformation

F=ro(1+ Ap), b= ¢+ Q4 (3.5)
where Q?b = Q(,,I”:,O. We then scale the time coordinate
f by

2 2

. Tygta

= , 3.6
VOV/\ ( )

and send A — 0. We obtain the metric
dp®> Vde?
—+ +
p Ay

(r3 + a*)’sin’6A,

E2p3

2

ds? = &<—p2dt2 +
\%

d ! d ’

X + — t],

p3 = 13 + a’cos?6,

(3.7)
where the Frolov-Thorne temperature T, is given by
9, Ty V(r + a?)
Ty=——"— =———". 3.8
¢ 8r+Q¢ ry=ro 477»:(1}’0 ( )
The entropy in the extremal limit is
2 + 2
S = WO?“) (3.9)
The central charge can be easily obtained, given by
12ar,
= . 3.10
c 7 (3.10)

B. Five-dimensional minimal gauged supergravity

The general nonextremal rotating black hole in five-
dimensional minimal gauged supergravity with two arbi-
trary angular momenta was obtained in [17]. Here we shall
adopt the notation given in [36]. The metric is given by
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ds®> = —e eo-l-Zee (3.11)
where
R r2 + 2
e = 21y 2(d’/ — P2dyy), e = Yy dy,
b
¢t = ”f—(dﬂ + (2 — P)dipy — Py,
Py
qy
+—" 7 A) 3.12
ab(@ +?) ) (3-12)
and
(1 + P22 (P + a®) (P + b?) + 2abg + ¢*
= = - 2M,
_ =y (a2 =y — y?) (3.13)
Y=— . ,
y
J{Zl = dtl + yzdl,b'].

The coordinates ¢, | and ¢, are not proper canonical
time and azimuthal coordinates. The proper coordinates

(7, &1, b,) are given by
tl = ;_ (a2 + bz)lpl - azbzlpz,
adA’l + bé’z
2 (a®>—b>  E,b*—a%)
b, b
a(b* —a®)E, bla®> - b)E,’
where E, =1 —a’¢"2? and E, = 1 — b*>¢ 2. Then the
coordinates ¢, and ¢, have period 2. The metric is
AdSs asymptotically, but in a rotating coordinate frame
with angular velocities ; = —a€~2 and Q, = —bh{ 2.
The thermodynamic quantities for this black hole were
obtained in [17]. Here we shall present the temperature,

entropy and the angular velocities of the horizon. These are
given by

b= (3.14)

Yy =

T — r <aR)
U 4mlA + (@2 + bR + ablab + ¢)]\ o7/ | =
[ + (a® + 172)r+ + ab(ab + q)]

ry

S =
2r+ ‘—w‘—'b
q — E (ark + ab® + gb) (3.15)
"R+ a) (R + b + qab’
0, — 2,(br% + a’b + qa)
, =

(rr + a®)(r3 + b?) + gab’

We now consider the extremal limit, given by the following
conditions:
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_ U+t + a5 +b°) + g7 + 2abq
2r3

(ab + q)* — 1}

2= .
rg(a® + b + 2r3)

(3.16)

Near the horizon, we have
R =V(#—ry)*+ OF — rp), V= %R”(ro). (3.17)

To extract the near-horizon geometry, we make the follow-
ing coordinate transformation:

F=ry(l+ Ap), b= ¢ + Q0
by = ¢, + QI

(3.18)

where Q9 = [, _, . We then scale the time coordinate 7
as
= B,
5— 1 rO + (a2 + bz)rO + ab(ab + q)
2T VriA
(3.19)

Taking the limit of A — 0, the vielbeins become

e’ = ‘,r% - yzpdt 1 = X’Md_p
1% ' vV p’

2 . 2
s oty d
e y
o2 Y (a(a®+r5)é;  b(b* + r%)éz)
5+ )y\Eu@® — b)) E,(b* —d?)

oo ab ((a2 — y)agy® + b(@® + rp)(rg +y*)

roy ab(a®> = bH)E,(r] + y?)
G y)(bgy* + a(b? + r§)(r§ + y?) _ )
ab(b®> — a®)E,(r3 + y?) 2)

(3.20)
where

1
ki=—— (3.21)

G, =do, + k;pdt,
el ¢l lp 27TTl

and T,’s are the Frolov-Thorne temperatures defined in
(2.10). Thus we see that the near-horizon geometry of the
extremal black hole can be put in the general form (2.17)
discussed in Sec. II, and hence the Cardy formulas (2.20)
are satisfied. To be specific, we have

rOV[(r% + az)(r% + b?) + gab]
478 [a(r} + b?)* + gb(b? +213)]

roVI(r3 + a®)(r + b?) + gab]
4B [b(r} + a®)?* + qala® + 2r3)]

Tl =
(3.22)
T2 =

The corresponding central charges are given by
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_ 6mla(rd + b*)? + gb(b* + 2r3)]
r(%EbV ’

_ 6m[b(r} + a*)? + ga(a® + 2r3)]
eV '

C1
(3.23)

(&)

IV. FOUR DIMENSIONS

In this and the following sections, we consider a variety
of rotating black holes involving multiple charges in vari-
ous dimensions. We start here with four dimensions, and
then later proceed to increase the dimensionality.

A. Ungauged supergravity with four unequal charges

Black holes with four unequal charges arise from the
bosonic sector of the four-dimensional /N° = 2 ungauged
supergravity coupled to three vector multiplets. The metric
was first obtained in [18], and the explicit form of the
gauge potentials was given in [19].

The solution is specified by mass, angular momentum,
and two electric and two magnetic charges. The metric
takes the form

_p2 — 2mr

ds? = (d? + Bd)?

A2 -2 22

+ W(d—r + gg? + i 0dd” ) 4.1

A p- — 2mrp
where

A= -2mi+ad>  p>=#+ad’cos’h,

_ 2m(a* — u)[Feipzy — (F = 2m)s 23]

>

a(p? —2mp)
W2 = riryrary + u* + u?[27% 4+ 2m#(s? + 53 + 53+ 53)
+ 8m*ciaa481034 — 4m* (sy3 + 575, + 5754
+ 5334 + 2s%234)],
ri=*#+2ms?,  u=acosb,

¢j,..i, = coshd; ...coshd; ,

s;,..i, = sinhd; ...sinhg; . 4.2)
The outer and inner horizons are at 7# = r., with
re =m*\m? — a2 (4.3)

The entropy S, Hawking temperature Ty and the angular
velocity () have the explicit form

S =2m{m*(c1p34 + $1234) T mVm* — a*(c1234 — 51234)]
1

TH = )
47Tm[C]234 — 51234 + (61234 —+ s1234)m/,/m2 _ aZ]
T (P — 4.4)
m? — a>

PHYSICAL REVIEW D 79, 084018 (2009)

The extreme black hole corresponds to

m=a and ry =a. 4.5)

The near-horizon geometry of the extreme black hole is
obtained by taking

t

F=a(l+ Ap), b=+ Qi f:X’ (4.6)
with A — 0. The near-horizon metric is then
d 2
ds? = W0<— prdtt + L+ d(#)
p
26in20 B2
+ TR0 (4 + kpdi), @.7)
Wo
where
By = Bli—ym=a = —2a(c1234 — $1234),
L — 1 9.0 _ Ci234 ~ Sim
27Ty 27, Ty | r,=a  Cr23a + 81234
WO = Wlf*:a,mZa- (48)

Thus, we see that the form of the near-horizon geometry of
the extremal black hole fits into the general pattern dis-
cussed in Sec. II, and hence the Cardy formula is satisfied.

B. U(1)* gauged supergravity with pairwise equal
charges

The most general charged rotating black hole solution
known in four-dimensional U(1)* gauged supergravity has
the four U(1) charges pairwise equal [19].

The metric is

R .oar—yr .\

ds2=H[— _ 2(dt—aﬁyd¢)
H*(7* + y?) Ea

’\2+ 2 ’\2+ 2 Y
+ T gy T gy

Y HX(7 + y?)

% (d?— (7 + 611)(’:" q) +a’ d(&)z],

Ea

(4.9)

where

R=7/+a*+ g+ q)F+ @)[(F + q)F + g) + a?]
— 2mrp,

Y=(1-gy)a>—y)  E=1-dg,

_(F+q)(F+q) +y°

H
f‘2+y2

, q1 = 2’”5%’

s; = sinhé;. (4.10)

Note that, as is standard in the gauged supergravity litera-
ture, we are using g to denote the gauge-coupling constant,
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which is related to the AdS length scale € by g = €~'. We
have used a shifted azimuthal coordinate (ﬁ that gives an
asymptotically rotating coordinate frame; the coordinate
change (]3 — é — ag”f would give an asymptotically non-

|

PHYSICAL REVIEW D 79, 084018 (2009)

rotating coordinate frame. This shifted azimuthal coordi-
nate is used merely to make the metrics more convenient to
write, and is not otherwise significant. The Hawking tem-
perature and entropy are

Rll;”':r
TH = — )
dal(ry + q)(ry + q2) + a’]
_ i@+ a8 — qign) + & + q)(r + q)Br + qire + gare — q190) @.11)
dar[(ry + q)(ry + qo) + a?] ’
s+ a)r +a5) + @]
In our asymptotically rotating coordinate frame, the angu- V[(ro + q)(ro + q2) + a*]
lar velocity of the horizon is To=0, I = 27Eary+ g1 + q2) (4.18)
Q- o )(Ea+ s (4.12)  The central charge is
r r a
A T o = 6a(2ro + g1 + g2) 4.19)
For an extremal solution, with a horizon at 7 = r,, we ! \% ' )
have R|;—,, = 0 and R'|;_,, = 0, and so
V. FIVE DIMENSIONS

ro— @’ +a’g*(r5 = q1g2) + &%(rg + q1)(ro + 42)
X (Brg + q1r0 + qaro — q192) = 0. (4.13)

Then we have the near-horizon expansion

R =V(#—ry)*+ O — ry)?, (4.14)
where
V =1+ gX6r3 + 6q,r) + 6g,r¢ + a* + ¢3
+ 43 +44100). (4.15)

To obtain the near-horizon geometry, we make the coor-
dinate changes

t
N 27TTI/_?V())\’
(4.16)

~>

P=r(l+Ap),  d=0¢+0Q%

and then take the limit A — 0. The near-horizon geometry

1S
r(z) + y2
Y

2 2 2 272 dp* 2
ds®> = Hy| (r5 + y)| —p*dt* + —-) + dy
p

Y 2ry + +
(0 q1 qudt

+
H%(r% +y?) %
Lot QI)(’E + q,) + a? d¢>2],

=a

4.17)

where H, = HI?:,O. This can be cast in the form of (2.17),
so the Cardy formulas are satisfied.

For the extremal solution, the Frolov-Thorne tempera-
tures are

A. Ungauged supergravity with three unequal charges

The U(1)? charged black hole in D = 5 ungauged su-
pergravity was obtained in [20]. The solution was ex-
pressed in a simpler form in [22], in which the metric is
given by

dst = (HH,H;)"3(x + y)

G
X|——s———(di+ A)* + ds? 5.1
( CE T AT ds“)’ G-

dx* dy*\ U Z \ XY
==+ —=)+t=ldxy —=d ) +—do?,
dss (4X 4Y> G(X v) "’
where

X = (x+ a*)(x + b?) — 2Mx,

Y =—(a®> = )b —y),
G=x+yx+y—2M),

U=yX —xY, Z=ab(X+Y),
M 5.2)
_ C1C62C3 2 2
= e—_—- = - + — —_
A para—— v [(@* + b* — y)do — abdx]
2M
— 2N bdo — ydy),
x+y
2
Hi =1+ 2MSi y §; = Sinh(Si, C; = COSh(Si.
x+y

Here, x is the radial coordinate with the asymptotic flat
region at x = o0, The horizon is at x = x, where x is the
largest root of X. The latitude coordinate y runs from a to
b. The U(1) coordinates o and y are related to the canoni-

084018-7



CHOW, CVETIC, LU, AND POPE

cal azimuthal coordinates as follows:

_aqgl _bdA’z _bqgl —a¢32
i X = 2 (5.3)

The entropy, Hawking temperature, and angular velocities
on the horizon are given by

G_ m(x, + a®)(x;. + b*)(cicacsxy + 515,53ab)

2x3/2 ’
T Jxr (x5 — a?b?)
HT 2m(x, + a®)(xy + b*)(cicac3x4 + 515,53ab)’
0, — i ax, ’
(xy + a*)(cicrc3xy + s15083ab)
b
Q, = s (5.4)

(x4 + b>)(cicpc3xs + 515,83ab)

The extremal limit of the solution is achieved with the
condition M = 1 (a + b)?, in which case the horizon is at
X = xg, where xo = ab. As in the previous case, the ex-
tremal limit can be extracted by the following coordinate
transformation:

x = xo(1 + Ap), b= ¢+ Q%,
. t 5.5)
27 x0T (xg)A”

We then take the limit A — 0. The near-horizon geometry
then has the following form:

% ab+yl—[<

4
dy2
p*dr + 20 + —_—
( (a®> = y)(* = y)

(a + b)%s 2)1/3
ab +y

(5.6)

where &; = d; + k;pdt, with k; = 1/(2#T;). This is pre-
cisely the same form as in (2.17), and so the Cardy for-
mulas are satisfied. Here we present the entropy, the
Frolov-Thorne temperatures and central charges:

1
= 5772(61 + b)>\ab(cicocs + 515,53),

Vab(cicacs + 515253)

T = s
U m(beycyes — as sys;)
Vab(cicycy + 5152583)

T, = (5.7)

m(ac cycy — bsysys3)

3
Cp, = E’lT(d + b)*(bejcrcs — asys,s3),

3
Cd’z = EW(G + b)z(aC1C2C3 - bS15253).

PHYSICAL REVIEW D 79, 084018 (2009)
B. U(1)? gauged supergravity

The maximal five-dimensional gauged supergravity has
gauge group SO(6), which has Cartan subgroup U(1)3. We
have already considered black holes in minimal gauged
supergravity, which corresponds to all three Abelian
charges being equal. Here, we consider some further black
hole solutions of the theory.

1. Charge parameters 6, = 6, and 65 =0

Another particularly simple charged and rotating black
hole in five-dimensional U(1)? gauged supergravity has
three charge parameters 6; that satisfy 6, = 6, =: § and
63 =0, as well as both angular momenta independent
[21].

The metric, using the vielbeins presented in [26] but here
with Boyer-Lindquist azimuthal coordinates, is

~2 + 2
ds? = H2/3[—7R A2+ g
H* (P + y?)
7+ y? a(+ad* .
+———dy’ + di — d
y TR+ ( =@~ )
_ b(P +b?) dd, — q )2
Eyb>—a®)" "7 H(P+ )
N 2b2 (di— (}’,\.2 + (12)([12 _ y2) dd,;
Py’ Beala® = by

P+ =)
Ehb(bz - az)

g A) ]

where

~2 + 2\( 22 + b2
=" a}lgr )+g2(f2+a2+q)(f’2+b2+4)
—2m,
y— 1= &y)@ -y —y?)
y? (5.9)
E.=1-ag, B, =1-0¢
H=1+ P j]_ 5, q = 2ms?, s = sinhd,
y
. ala® —y?) b(b*> —y*) 4
A =dt — do,.
=@ = B, o

We have used shifted azimuthal coordinates dA), that give an
asymptotlcally rotatlng coordinate frame; the coordinate
changes qbl — ¢1 — ag’f and ¢2 — qﬁz bg?t would
give an asymptotically nonrotating coordinate frame. The
Hawking temperature and entropy are
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(PR |5=,,
Tn=g + + b2) + g2
77[(”+ a )(r+ ) qr+]
_ = a?b? + g2 rt (2rk + d® + b + 2q) (5.10)
2ar [(FA + a®)(% + b))+ qrt] '
§ = 2[(r+ + aZ)(r+ + bz) + qr+]

2B Epr+
In our asymptotically rotating coordinate frame, the angu-
lar velocities of the horizon are
O, = 2 Ezaa(;i - lzz) 2
(ri +a’)(ry +b°) + gry
E,b(r% + a?)
(rr +a®)(r% + b?) + gri’

(5.11)

0, =

For an extremal solution, with a horizon at 7 = r,, we
have R'|;—,, = 0, and so

rg—a?b? + g*r{2ri + a*> + b* +29) = 0. (5.12)

PHYSICAL REVIEW D 79, 084018 (2009)
Then we have the near-horizon expansion
R = V(f' - r0)2 + O(f’ - r0)3, (513)

where

3a2b?

”0

V=1-

+ g2(6r + a® + b* + 29). (5.14)

To obtain the near-horizon geometry, we make the coor-
dinate changes

#=ro(1+ Ap), b=, + Q%%

R t (5.15)
= ¢, + Q)i =
2 ¢2 b 27TTI/_?}’())\

~>

-

and then take the limit A — 0. The near-horizon geometry
is

2 + 2 2 2 + 2 2 + 2 + + 2 +
d82=H§/3{r0 Yy (—pzdt2+diz)+r0 Y dy? + . Y 2[ 2ry pdi + a(i’ﬂ az 6]2) dp, + b(r§ bz q) ¢2:|
1% p Y rg +y*LHyV HyE (a* — b*) HyZ,(b*> — d?)
22 ) 2 2 4 22 +v2) + ar21(a2 — V2
ab 2[ ( P o 2)pdt+[(r0 a )z(ro 2yH) q;o](a2 y )ddn
roy- LHoroV 5ty Hy(rg + y?)Eqala® — b?)
2+b2 + 2 + 2 bZ_ 2 2
[(r )2(r0 2y3 qgo]( Y )d¢2] } (5.16)
Ho(rg + y*)E,b(b* — a*)
f
where Hy = H|;_, . This can be cast in the form of (2.17), MR
so the Cardy formulas are satisfied. ds3 = — f_dt + Tdrz Ty R(d02 +sin*0d$?)
For the extremal solution, the Frolov-Thorne tempera- f f
1 2
tures are 4R2 (dl// + cosOd¢p — 2f ) (5.19)

Vrol(rd + a®)(rd + b?) + gqri]
4B al(r} + b?)* + qb?]
Vro[(r(z) + az)(r(z) + b?) + qr(z)]

TOZO, Tl =

i

T, = 5.17
2 475, b[(r3 + a*)? + ga?] .17
The central charges are
6mal(ry + b?)* + gb*]
‘= =5 )
V:,bro
(5.18)
6mb[(r3 + a*)* + ga?]
) = .
: VE,.r3

2. Equal angular momenta

Charged rotating black holes with both angular mo-
menta equal and three arbitrary U(1) charges in D =5
gauged supergravity were obtained in [24]. Owing to the
equality of the angular momenta, the solution is of coho-
mogeneity 1. The metric has the form [24]

where Y, R, f| and f, are functions of the radial variable 7
only, and were presented in detail in [24]. The angular
coordinates ¢ and ¢ are related to the standard 27-period
azimuthal coordinates ¢; and ¢, as follows:

=3¢ — b = + b (5.20)
The extremal limit is achieved when Y has a double root at
7 = ry. As in the previous cases, we make the following
coordinate transformation:

f2(ro)A

P=ro(l+Ap), =i+ filro)”

(5.21)

]

fl(ro
VA

~>

t)

where V = 1Y"(ry). Taking the A — 0 limit, it is straight-
forward to obtain the near-horizon geometry, given by
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r2R(ro) dp?
ds? =02 (— 2de + —)
5 % p e

+ %R(ro)[dﬁz +sin?6(8; — &,)*]
f1(ro)
IRy P

where é; = d¢; + k;pdt. This is exactly the same form
discussed in Sec. II, and hence the Cardy formula is
satisfied.

(e, + &, + cosB(é, — &,))%,  (5.22)

PHYSICAL REVIEW D 79, 084018 (2009)
VI. SIX AND SEVEN DIMENSIONS

A. Six-dimensional gauged supergravity

We consider here the black hole solution of six-
dimensional SU(2) gauged supergravity [25], which has
two independent angular momenta and a single U(1)
charge in the Cartan subgroup of the gauge group.

The metric is

_ 22V (2 2
ds? = HI/Z[ —— A2 + UdAz n ( ) y Z )dy2 + (7 + 22)(z y )dZz
H-U R Y 7
Y ¢>1 . d¢2 q?ﬂl)z
+ + 42 _ 2 4 p2)(p2
(7 + y)0* - z2)< ARl R iU bty 777

Z
+ dt
(i + 2)(2* = yz)(
where

R = (# + a®)(P + b?) + g*[(#*

. d
~ (P + )@ )

+ @) + qI[F(P + b?) + q] — 2m#,

i_ 22 g2 2_2”%_‘1?“%)2]
- (7 + b°)(b y)e2 au) |

Y =—(1-g)a =y =y,

(6.1)

Z=-(1-g2)a -2 -2, U=@FE+yW)(*+2),  e=Eal@-b)  &=Ebb -d)
E,=1-da’? E,=1-b%% H=1+ %, g=2ms?>, 5= sinhd, (6.2)
dé dé
A =di - (@ - @ - P 2 - 2 - )2
1 2

The coordinate changes cﬁl — (/31 — ag’f and qu — (ﬁz — bg’t would give an asymptotically nonrotating coordinate

frame. The Hawking temperature and entropy are

R'|._
T — 2 lp=r, i
An{(rZ + a®) (% + b*) + gry]
=2(1+g’"+)’"+(2’"++a +b2)—(1—g )(r++a2)(r++b2)+4qgr+—qg (6.3)
dar [(FA + a®) (% + b*) + qry] ’ '
§ = 2772[(r+ + az)(r+ +b?) + CI’"+]
3:a'—'b
I
In our asymptotically rotating coordinate frame, the angu- R=V(¢ - r0)2 + O — r0)3, (6.6)
lar velocities of the horizon are
_ where
A Z,a(rh + b?)
T+ D+ ) + gy 64 V= 6r§ + a* + b + g*[15r] + 6(a* + b)rg
E,b(2 + a?) + 6qry + a’b?]. (6.7)

Q, =

(r+ +a2)(r+ +b2)+qr+

For an extremal solution, with a horizon at 7 = r,, we
have R|;—, = 0 and R'[;, =0, and so

3rg + (a® + bH)rd — a*b? + g?r3[5r¢ + 3(a® + b)r
+ a’b*] + 4q8°r; — ¢*g*> = 0. (6.5)

Then we have the near-horizon expansion

To obtain the near-horizon geometry, we make the coor-
dinate changes

b= + ng,
t (6.8)

- 2aTRroA’

#=ro(1 + Ap),

R AOn
by = ¢y + Oy,

~>

and then take the limit A — 0. The near-horizon geometry
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is

7 d 2 2+ 2 2 __ 2 2+ 2 2 2
g5t — H(l)/z[%(_pzdtz +L2) N (rg +y)0* — 2z )a,y2 N (rg + 29z —y )dzz
p

Y Z
2 4 2 O
+( — 2)); . 2)(2?0("(;/ z )pdt+ (r% + a®)(a® — Zz)de;%_,_ (r(z) + b2)(b? _Zz)de;%—l— groﬁﬂ)
o Yy )W™ — 2 2 0
Z 2ro(rg + %) ¢1 doy  qro zY?
+ dt + (72 + a®)(a? — (2 (B2 = V)22 ) ) ]’ 6.
e (N s G @@ =) L e -2 2 aY] 69

where U = Ul;—,,, Hy = Hl|;—,,, and

~ —34 — 22(32 + 22) + 222 d d
A=AV - @ — 9P e - 0P (6.10)
Vry € €
This can be cast in the form of (2.17), so the Cardy formulas are satisfied.
For an extremal solution, the Frolov-Thorne temperatures are
o VI(r§ + a®)(r} + b*) + gry] B VI(r} + a®)(r} + b?) + gro] ©.11)
! 2w al2ry(r§ + b?)* + q(b> — r})] 2 27 E,b[2r(r] + a®)* + q(a®> — r})] '
and 7, = 0. The central charges are
o — dmal2ry(ry + b*)* + q(b* — ro)] o — 47b[2ry(ry + a*)* + g(a* — rz)] 6.12)

V E b V -
B. Seven-dimensional gauged supergravity

We consider here the black hole solution of [26] in seven-dimensional SO(5) gauged supergravity. It possesses three
independent angular momenta and a single charge parameter, corresponding to two equal U(1) charges in the U(1)? Cartan
subgroup of the full gauge group.

The metric is

(# +y)0? — 22 iy L (P2 -y
Y Z
> (2+az)%d¢,_ q
e +y2)y —z2)<d ,:Z, a—y* & HiUﬂ)
( > +a)7,d¢,_q )

d'\2

i R e

U
HU R

+ df — — A
(7 + zz)(z =) & a e HU
2 32+ d 2.2 )
+88[a-y CLm )y’ Wi o (14 272 aT) (6.13)
= €; HU aa,as
where
_ 1+ 1rer °7 2 2082 4 2 4 2 4 2y 248910205 4’8 _1- g y
l_[( +a;7) + qg*(27* + a7 + a3 + a3) — 2 2 —2m, n(a -y?)
N g 2 — (2 2\(32 4 2 202 2\ (2 2 = 2 2
l_[(a U - (r + y )(r + Z )) ’)/i - ai (ai - y )(ai -2 )! ei - ‘:iail_[(ai - aj))
i
3 R
=1 — 42,2 - q _ 5 . _ do,;
Ei=1—-ag", H_1+(?2+y2)(f"2+z2)’ q = 2ms”*, s = sinhd, A =di ;yi p (6.14)

The coordinate changes g{A)i — cf)i — a,;g%t would give an asymptotically nonrotating coordinate frame. The Hawking
temperature and entropy are
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. (PRY ;=
U 4al(R + (A + )+ ad) + (R — ararasg)]
(1 + 233 XT3 + a) —TL(A + a}) + 2q(g*r + gajazas) — ¢*¢?
= / 6.15
- 2 2)(,2 2)(,2 2 2 _ ’ (6.15)
27Tr+[(r+ + a])(r+ + az)(r+ + a3) + Q(r+ al“2a3g)]
o TR+ @R+ B+ ad) + (3~ aaasg)]
45, By Esry
f
In our asymptotically rotating coordinate frame, the angu-  where
lar velocities of the horizon are
3 _ 2
A Ela; n]:#l(r+ + az) - ‘In/;&l V= 6r3 + a% + a% + a% + (ala2a34 98) + g2[15r3
' (r+ +ad) (% +ad)(rr + a3) + q(rh — alaza3g) "
(6.16) + 6(ai + a3 + a3)rg + atal + aza3 + azai + 2q]
(6.19)

For an extremal solution, with a horizon at 7 = r,, we
have R'|;—,, = 0, and so

222
14243

2+ (a} + a3+ a3)ry —a
+ g*[3r8 + 2(a? + a3 + ad)r§
+ (a%a3 + a3a3 + a3at + 2q)ry — ¢°]
+ 2qga;araz; = 0. (6.17)
Then we have the near-horizon expansion
R = V(7 — ry)* + O(F — ry)?, (6.18)

To obtain the near-horizon geometry, we make the coor-
dinate changes

¢, =¢; + Q?f’

t
27TTII_(I)I"0/\’

r= 7'0(] + /\p),

N (6.20)
=

and then take the limit A — 0. The near-horizon geometry
is

7 2 2 + 2 2 2 2 + 2 2 .2
ds? — H(z)/s{ﬁ(_pzdtz +di2> L0672 L et )@y,
\%4 p Y
Y 27‘0(7'0 + Zz) (r() + az)yz d¢z q = \?
T T2 — 2 ( % pdt + Z ‘ ] > ﬂ)
(r5 + )" — 2°) - -y € HoU
z 2 +y? +a?
r A ( ro(ro y?) pdi + Z(I’O a: )'yl d(;['>l )
(r5 + 22)(z" — %) |4 = -2 € Ho

2,202 2 /. +a?)y; d 2\ 5 TP
dedall 2 (5 quz) P +ZM T LRy 1 | SN (00
r y z Vro a a,as al €; H()U ayaas
[

where U Ulr ro? H() le r()’ and T, = VrO[(r% + a%)(r(z) + a%)(r(z) + d%) + q(r(z) — Cllazagg)]

_ 2r0(2r2 + y2 + 22) 3 d¢ 1 47TEI

A==t pdi =3 vim e (62 X [ay(r§ + @370 + @3 + qay(a3a3 = 1)

= 1

This can be cast in the form of (2.17), and so the Cardy
formulas are satisfied.

For an extremal solution, the Frolov-Thorne tempera-
tures are

084018-

— qgayas(3ry +2a3r3 + 2a3r} + a3a?)
~ ¢*gamas], (6.23)

temperatures 7, and T3, obtained by cyclic permutation of
a;, i = 1,2,3, and also T, = 0. The central charges are
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372

Q== =v3 Vi s[ai (ry + a3)*(r§ + a3)* + qa, (a3a3 — ()
et ) et 3
— qgara3(3ry + 2a5r3 + 2a3ry + a3a3) — ¢*gayas),
(6.24)

and also ¢, and c3, obtained by cyclic permutation of a;,
i=17273.

VII. ARBITRARY DIMENSIONS

A. Higher-dimensional Kerr-AdS

The extremal black hole/CFT correspondence for the
higher-dimensional Kerr-AdS solution [27,28] was previ-
ously considered in [11], where it was shown that the
Cardy formulas are satisfied. We return to this example,
showing directly that the near-horizon geometry of its
extremal limit can be cast in the form of (2.17). (Note
that the near-horizon geometry of the extremal Kerr-AdS
black hole in D = 5 was obtained in [37], and that of the
Myers-Perry solution in [35].)

1. Even dimensions D = 2n

The Kerr-AdS metric in even dimensions D = 2n is

R U U
2 — 2 ~2 o 2
dS = 27.?1 +-}€¢ir + :g:ji;_d
n—1 — 2
X, (7 + a? “)Yi dq’))
+ — , 7.1
aZlU( Z‘ Cl _yoz €; (7.1)
where

n—1
= l_[(f’2 + a2) — 2mf, X, =— n(a% —y2),
k=1

n—1 n—1
A . /
U= lj[l(r2 +y3),  Up=—(P+ yi)[[ (v — ¥2),

n—1

vi=[1@ -y  e&=Eia l_[ a; — ay),
a=1 k=1
n—1 (2;
Ei=l-alg®, A=di—->v (7.2)

i=1 €i

The notation ]'[/ means that we omit the factor that van-
ishes from a product.

For the extremal solution, the Frolov-Thorne tempera-
tures are

V(r3 + a?)
4= a;r l_[jaﬁi(”% + a?)’

T, = (7.3)

where V = 1R"| #=r,» and also Ty = 0. The near-horizon
geometry is [11]

PHYSICAL REVIEW D 79, 084018 (2009)

U dp® — U, =X
ds? =—(—p2dt2+—pz>+ D tdyr+ Y oo
14 p =1 Xa a1 Ua
27'00 n_l (r(z) + az)yi d(i)l 2
<V 2+2Pdf+z p—; ,>’
(VO ya) i=1 a; Ya €;

(7.4)

where U = Ul;—,, and U, = U,l;—,,
We can cast this near-horizon geometry in the form of
(2.17), reading off g;; from 8,0, TO explicitly see how for

this example, we need to account for the correct coeffi-
cients of dt within the vielbeins. From the partial fraction
decomposition

U _ ”i‘j Eia;vi
(5 + YDz 0F +ap) & €laf — y2) (g + af)’
(7.5)

we see that this is indeed the case. It follows that the Cardy
formulas are satisfied.

2. 0dd dimensions D = 2n + 1
The Kerr-AdS metric in odd dimensions D = 2n + 1 is

— U,
ds? = _qu + = (f2 + —2dy?
a=]“"a
n—1 no(x2 2 n
X, [ . + a?)y, dd\2
+_ _J£<dt__ }E(r - aIZYI‘:?i)
=i Ua =1 4 " Ya &
l_[k 1 a ( L (7 + 612)71 d¢)
, 7.6
2 Z 1ya ;; 61 ( )
where

=

1

1 &
:A_zl_[(r2+a%)—2m, X, =y_2 (a%—y%,),
k= a k=1

n—1

) !
—(P+yD[T 0% =2,

B=1

U=l;[ +ya

yi=a ]_[(a -2, &=Ea l_[(a - a),
H=1- A=di- 3 3
=F azg?, = yi—. (1.7)

i=1 i
For the extremal solution, the Frolov-Thorne tempera-
tures are
B Vro(rd + a?)
"oAmEa 1 (g + a?)’

(7.8)

where V = 1R"| #=r,» and also Ty = 0. The near-horizon
geometry is [11]
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U dp? oty
2942 a

V( p-dt +p2)+ E —2dy?,

(r + a; )% do;
5oy pdt T+ Z )

V(ro + }’a) i=1 - )’a €;
Z Y2 Vro = a,- €

(7.9)

where U = Ul;—,, and U, = U,l;—,,

Analogously to the even-dimensional case, the near-
horizon geometry can be cast in the form of (2.17). The
analogous partial fraction decomposition used is

0 i Ea;y;
(’”() + ya) l_lk 1(’"0 + ak) 1€i(az‘2 - yi)(rﬁ + a%)'
(7.10)

It again follows that the Cardy formulas are satisfied.

B. Charged rotating black holes in ungauged
supergravity

The solution considered here is the two-charge Cvetic-
Youm solution [29], with the simplification of [26] that
both charges are equal. It can be regarded as a solution of
toroidally compactified heterotic supergravity in dimen-
sion 4 = D = 9, although the construction generalizes to
arbitrary dimension as a solution of a low-energy effective
action of bosonic strings. This solution underlies the un-
gauged limit of some of the gauged black hole solutions
that we have considered above. We use the form of the
metric in [26].

1. Even dimensions D = 2n

In even dimensions D = 2n, the metric is

R _
— 2/(D-2 2 4 P24
R e Z
n—1 n—1(x 2 A
Xof (7 +ad)y; dp; g )2]
+ ) —|di— ) ——5— -—A) |
aan( lzzl alz_y%l €; HU
(7.11)
where
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n—1
R=[]# + a}) — 2m#p, = — l_[(ak y2)
k=1
n—1
U: (?2"')%), U +ya)l_[(yﬂ a
a=1
n—1 n—1 ’
yi=[]@ -2,  &=a]]}~-a}
a=1 k=1
H=1-+ Ur, g = 2ms
s = sinhs, =di — Z yl (7.12)
The Hawking temperature and entropy are
. Rl
H =
4a[[Tr=i(r2 +a3) + gri ] (7.13)
o ApolIli}02 +a) + ar.]

4r,

where A ,_, = 27P~D/2/T[(D — 1)/2] is the volume of
a unit (D — 2)-sphere, so for example A, = 47 and
A, = 372 The angular velocities of the horizon are

a; [Tj#(ry + a3)
[0 + )+ ar.

For an extremal solution, with a horizon at 7 = r,, we

Q, = (7.14)

have R|;—, = 0 and R'[;—, = 0, and so
— 1
Z =572 (7.15)
i=1 2ry
Then we have the near-horizon expansion
R = V(}'A' - r0)2 + O(f - }’0)3, V= %R”l?:ro'
(7.16)
Since R’ I;:ro = ( for an extremal solution, we have
Vv
0 = , (7.17)
H 2a([1i2}(rg + ad) + qrol
and, using (7.15), we obtain
2a;r, r:+ a2
QP = - 5 Onff’( 0 ) (7.18)
(r() + a; )[l_l" (r() + ak) + qu]
Therefore the Frolov-Thorne temperatures are
V(rg + a?
To=0 T, = ry + ap) (7.19)

darairg [14:(r§ + a?)'

To obtain the near-horizon geometry, we make the co-
ordinate changes
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= ro(1 + Ap), bi=o; + Q,
; (7.20)

R —
27TTI/_(I)V()A

and then take the limit A — 0. The near-horizon geometry
is

ds? = H§/<H)[g( pdf® + —) Z g— Va
=1

\%
+ ”_1&( 27‘0U dt i (2) + 2)71 dd)z
= U V(r0 +y2) = a?—y: €
~\2
+ 470 ;4) ] (7.21)
HoU
where U = Ul;—,,, U, = Ugls—,,, Hy = Hl;—,,, and
H/ 6)HO qr0<] n_l 2}"0 )
0 aro 0 ro 2 + ya (722)

By checking dt coefficients within the vielbeins, we can
directly see that this near-horizon geometry may be cast in
the form of (2.17). Some terms follow in the same way as
for the higher-dimensional Kerr-AdS solution. There are
also extra terms when charge is included; these extra terms
are within A. To check these extra terms, we use the
identity

i n/#:t(ro + aZ) nzl nil 1
et-(ro + a?) 2 +y2 2+ a?

= i=1"0

(7.23)

which is seen to hold by a partial fraction decomposition of
the entire left-hand side. On the right-hand side, the coef-
ficients of 1/(r + a?) are trivial, and the coefficients of
1/(r3 + y2) in turn follow from the partial fraction decom-
position

Ua n—1 ay;
= L7 . (7.24)
ErDX, 2@ =)

Now using the extremality condition (7.15), we see that

2ry "< a;Y; l-[j?&i(r% + ajz-) _ (1T L 2r,

0 ; €,(r3 +a3) B (r_o “rdt ya)

= — H(/)U, (7.25)
qro

completing the verification. It follows that the Cardy for-
mulas are satisfied. The central charges are
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3Ap_sa;rg[1j+:i(r§ + az)[nz (g +a2) + qro]
aV(rj + a?)

Ci =

(7.26)

2. Odd dimensions D = 2n + 1

In odd dimensions D = 2n + 1, the metric is

n—1
ds® = H2/<D—2>[——R a2+ Yy > Ya 42
2U R a=1 XO‘

n—1 no(a2 2 n
Xof - (7 + aj)y; do;
+ U_a<dt -yt

I, “i
I12) >

X (df - ZM debi _ iﬂtﬂ, (7.27)

q 2
_j[)
& a?—y2 e HU

a=1

+

= a? e, HU
where
1 n
( +tap) —2m X, =5 (i—yi),
k Ya =

—1

n
U=TT@+y2.
a=1

+yoz)l_[(yﬁ oz

yi=a ]_[(a — ), a]_[(a - a3),
_ q _ 2 — g
H—1+5, q = 2ms~, s = sinh§,
. & do;
A =df — —. 7.28
i:ZI vitg (7.28)
The Hawking temperature and entropy are
(PR)ls=,,
Iy =
Am[Tie, (rh + a) + qri] (7.29)
§ = ﬂsz[nk:1(r+ + ak) + qr+]

4r,

where A ,_, = 27P~D/2/T[(D — 1)/2] is the volume of
a unit (D — 2)-sphere, so for example A; = 27> and
As = 1. The angular velocities of the horizon are

a; [Tji(ry + a3)
l_[;j:l(r?F + a%) + grt’

For an extremal solution, with a horizon at 7 = r(, we

O, = (7.30)

have R'|;—,, = 0, and so
n 1 1
= . (7.31)
Srta ng
Then we have the near-horizon expansion
R=V(F#—=rg)*+0F—r)}, V=1R"|;—,. (132
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Since R’ |?:,O = (0 for an extremal solution, we have

I 2y

T = (7.33)
B a2 + &) + qr3)
and, using (7.31), we obtain
0_ _ 2a;ro [1j4:(r5 + ajz') (7:34)
! (rg + a)ITi—, (73 + a3) + gqr3]
Therefore the Frolov-Thorne temperatures are
Vro(rg + a?
To=0 1,=— Y ta) (7.35)

dma; Fl,;¢i(r% + 0,2-)'
To obtain the near-horizon geometry, we make the co-
ordinate changes
P=ry(l + Ap), b, = ¢, + Q%
N t
B T
27TTH ro)\

(7.36)

and then take the limit A — 0. The near-horizon geometry
is

n—1 ,,2
oz=1y01

+ 2 d ~ \2
X 7pdl+z(r0 f)yl ¢I q~ﬂ) il,
"o =

a; €;

where U = Ul;—,,, U, =

dry U&= r% + yi’
o ) (7.38)
-~ H\U )
A="—pdt =Y y;—
Vg ; i

As in the even-dimensional case, we can directly see that
this near-horizon geometry can be cast in the form of (2.17)
by checking dt coefficients. The analogous identities
needed are

1 Za iYi l-[]#z(r(] + a2) ”il
(2) =1 61(r0+a12) 2+yoz

i :
2 2
“rita

+ (7.39)

Uy - Yi

FriX, X aa@ =)

(7.40)
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The 1/ r(z) coefficient on the right-hand side of (7.39) fol-
lows from the identity

n . —
y Y la-iva ly“ (7.41)
Saier [Ii- lak

as seen by a partial fraction decomposition of one of the
terms on the left-hand side. Now using the extremality
condition (7.31), we see that

2 a;yi nptl(”o + 02) nl 27'0
roU & €(r3 + a?)

For the dt coefficient of the unpaired vielbein, we also need
to use the partial fraction decomposition

U o ay;
l'l}é:1(r% + a%) i=1 61'(7% + a%)’

hence completing the verification. It again follows that the
Cardy formulas are satisfied. The central charges are

_ 3Ap2a;[1j2:i(rg + a2 (5 + ap) + qro]
wVry(rd + a?)

(7.43)

(7.44)

VIII. CONCLUSIONS

In this paper, we have generalized the recently proposed
extremal black hole/CFT correspondence to large classes
of charged rotating black holes in a variety of dimensions.
For extremal black holes, the near-horizon geometry can
be obtained by a limiting (or decoupling) procedure that
implies that the near-horizon geometry is a solution in its
own right. We started with a general argument that the
near-horizon geometry of extremal rotating black holes is
of the form of a sphere bundle over AdS,, with the con-
nection potentials proportional to the inverse of the Frolov-
Thorne temperatures. It is then straightforward to demon-
strate that the Cardy formulas for these near-horizon ge-
ometries are satisfied, which we have verified in low
dimensions. Since the formulas do not rely on any special
features of a particular dimension, they are very likely to be
satisfied in arbitrary dimension. With this general argu-
ment, to show that the Cardy formulas are satisfied for a
particular black hole solution, it suffices to show that its
near-horizon geometry may be cast in a canonical form.

We then obtained the near-horizon geometries for a
variety of charged rotating black holes in gauged and
ungauged supergravities in a variety of dimensions, and
in gravity theories that are low-energy effective actions of
bosonic strings in arbitrary dimension. In all of these
examples, the near-horizon geometry has the form estab-
lished in the general argument. Consequently the Cardy
formulas are satisfied and the microscopic entropies of the
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dual CFTs agree with the Bekenstein-Hawking entropies of
the extremal rotating black holes.
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